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Abstract—This paper presents a framework for learning and 

transferring robot tool-use skills based on Dynamic Movement 
Primitives (DMPs) for robot fine manipulation. DMPs and their 
enhanced methods are employed to acquire a specific tool-use skill 
applicable to tools with similar sizes, shapes, and uses. However, 
the acquired skills may not be transferable to other scenarios and 
tools with variations. The new framework introduces two new 
types of skills based on DMPs: Object Operating (O2) skill and 
Tool Flipping (TF) skill. The O2 skill enables robots to handle tools 
for manipulating objects to achieve desired effects. The learning 
process for the O2 skill considers limitations imposed by tools and 
the environment during human demonstrations. Distinguishing 
between whether constraints can be modelled or not, we propose 
both a model-based and a constraint-based method to separate a 
constraint-irrelevant (CI) skill and the constrained conditions. 
The CI skill is generalized using a novel method called constrained 
-DMP lite, enabling adaptation to new tasks with special tools. The 
TF skill addresses situations where tools must generate an action 
to alter contacting positions on both objects and tools while 
avoiding conflicts during movement. Finally, the TF and O2 skills 
are generalized to be applied in creating a continuous action chain. 
We conduct several experiments to compare and analyze the 
advantages and disadvantages of the proposed methods with other 
approaches in terms of generalizability and calculation complexity. 
 

Note to Practitioners—Strengthening robot tool-use ability has 
been a hot research topic in recent years because these tools can 
extend the reachability and enhance the flexibility of robots. The 
previous research on DMPs has been utilized for learning tool-use 
skills. However, the learned skills few considered the tools’ special 
use regulations, therefore the skill of using a tool is hard to transfer 
to another tool-use case. This paper explores tool-use skill learning 
and transfer between different tools by developing a framework 
based on the DMPs for this problem. The framework consists of 
two kinds of skills: O2 skill and TF skill with different purposes as 
well as a series of newly developed algorithms, such as constrained 
-DMP lite, a model-based and a constraint-based CI skill learning 
methods. These methods can separate the constraints from human 
demonstrations of using tools to achieve a CI skill and generalize 
the CI skill according to the constraints generated from a new tool-
use manipulation task. We verify the effectiveness of the proposed 
framework through some typical tool-use experiments, including 
pushing objects, cutting and obstacle avoidance in actuality. The 
development of this framework can be used in industrial and house 
working scenarios. 
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I. INTRODUCTION 

OOLS are essential for extending the reach and enhancing 
the working efficiency of humans, which are also crucial 
for improving the flexibility of robot manipulations. As 

indicated in [1], tool use is an important avenue for the research 
of robot manipulation, and some preliminary studies have been 
conducted in this direction. Qin et al. made a comprehensive 
review of robot tool use and a classification as non-causal tool 
use and causal tool use. The causal tool use is further separated 
to single and multiple manipulations with detailed taxonomies 
[2]. Generally, a robot tool use skill is defined as manipulating 
an object through some actions to reach the desired objectives. 
Compared to robot causal tool use, non-causal tool use tasks 
emphasize generating accurate actions with less consideration 
of the objects, effects, and relations, which is applicable for the 
fine manipulations that require high precision, such as fastening 
nuts [4] and screws [5], pouring water [15], cutting and drilling 
objects [6], [7], [16], and drawing. Causal tool-use emphasizes 
actions of realizing the desired effects and the research has more 
widespread topics, covering tool recognition, selection, action 
planning, tool-use strategy and multiple tool-use cooperation in 
which several robots complete complicated and sequential tasks, 
such as tidying [17], assembling furniture [3], scooping using 
spoon-like tools [63] and manipulating deformable objects [65]. 
The majority of tool-use methodologies are verified by typical 
applications, including pushing-slider, pouring, cutting and peg 
-in-hole tasks [66]. 

The methodology of robot tool use can be categorized as tool-
use recognition and tool-use skill generation. Tool recognition 
is to identify the “properties of a tool” [53] or “understanding 
tool-use desired effects” [52]. Understanding the affordances of 
objects was well-studied, but the functional usage recognition 
draws some attention but not been thoroughly researched [40]-
[45] For example, Zhu et al. proposed a new framework aiming 
at understanding underlying functions, physics and causality in 
using objects as “tools” [41]. Qin et al. proposed KETO which 
can learn key point representations of tool-based manipulations 
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[51]. Hassanin et al. classified three types of tool functionalities 
as motion-based, interaction-based, and shape-based functiona-
lities, and the tool features are handcrafted and then trained by 
supervised learning [40]. However, there are limitations to the 
tool use, such as when objects or tools are significantly different 
from the training cases, it is difficult to process [45].  

Robot tool-use skills can be generated using various methods, 
such as deep learning [62], [64], reinforcement learning [67], 
[68] and imitation learning [13], [14], [63] for robot arms [10], 
[11] and whole-body robots [12]. Imitation learning or learning 
from demonstration (LfD) technology drew much attention that 
enables robots to quickly acquire skills from demonstrations to 
mimic human tool-use actions safely by kinesthetic teaching, 
teleoperation, and passive observation [8], [9]. Usually, a long-
term skill can be further segmented into several primitive skills 
for tool use that are easy to generalise and composed to achieve 
a new action [29]. Dynamic Movement Primitives (DMP) is a 
classic method of learning primitive skills that leverages the 
idea of attractors from dynamical systems [16], [19] to generate 
some actions for grasping [19]-[20], lower-limb prosthesis [21] 
and exoskeleton control [22]-[24], minimally invasive surgery 
[25], visual servoing control [26], and EMG-based impedance 
control [27]-[29]. The DMPs and their improved methods are 
categorized as non-causal tool use in [2]. However, it can be 
used to generate trajectories combined with deep learning [64] 
and reinforcement learning [68] for causal tool-use cases.  

This paper will focus on DMP-based transferable causal tool-
use skills, which are learned and transferred to another tool [2]. 
Feature matching of unlearned objects and known objects is a 
research branch in this direction as well as the prework for the 
following action generation algorithms. Tee and Brown et. al, 
did research on effective tool-use region recognition, which is 
the precursor to robot tool manipulation [52], [53], [56]. The 
research integrated various analytical models, deep learning 
and feature mapping methods with the prior knowledge of tools, 
objects, and environments to identify effective region features 
[13], [52] and key points [51] of tools and generate parametric 
constraints from demonstration [46]-[48]. In this paper, we will 
focus on tool-use action planning based on the tool recognition 
and perception results.  

During the demonstration process, human actions or robot 
actions in kinesthetic teaching for a specific tool are recorded. 
However, the actions are specific to this tool-use case and only 
applicable to tools with similar sizes, shapes and usages, which 

may not be suitable for other tools. Meanwhile, humans easily 
transfer one tool-use skill to another tool, find the common use 
between the two tools and adapt actions to realize the same 
operational goals. In this paper, we refer to this human ability 
and name a skill, which is not constrained by functions, sizes 
and shapes of tools, as a constraint-irrelevant (CI) skill. For 
example, we use a hammer to strike a nail. The structure of the 
hammer and its special functions of holding the handle and 
using the hammer head to strike nails will constrain the hand’s 
trajectory. For another tool, we can use it to realize the same 
purpose differently. Therefore, the CI skill is described as the 
‘strike’ skill which is not limited to a hammer.  

This paper aims to acquire CI skills from demonstrations by 
separating multiple constrained conditions from the tools, the 
environment and manipulation requirements and transferring 
the learned skills to another tool-use case. We propose the tool-
use skill learning and transfer framework along with two types 
of skills based on the concept of CI skills: object operating (O2) 
skill and tool flipping (TF) skill in Fig. 1. O2 skill describes tool 
use trajectory affecting an object and enables the object to reach 
the design position. TF skill describes the process in which the 
object remains static and the tool changes contact state with the 
object or the ability to connect dispersed O2 skills to organize 
a continuous action. Meanwhile, due to the different constraints 
of the tools and the environment, we proposed a model-based 
and a constraint-based method for the O2 skills and a virtual-
trajectory-based method for the TF skill.  

The two O2 skills are distinguished by whether constraints 
can be modelled or expressed by discrete datasets. The model-
based method contains a new iterative identification algorithm 
for estimating parameters of the model and the constraint-based 
method builds a Sigmoid-like function to extract CI skills from 
the trajectories with constraints. The TF skill divides a tool-use 
flipping actions into two correlative DMPs, one is the CI skill 
and the other is a virtual trajectory relating to the outline of the 
object. The learned CI skills can be generalized for a new task 
using a new tool under some constraints from the environment 
and the tool. The O2 skills are generalized by constrained-DMP 
lite, which is developed from a method in our previous research 
[21]. The TF skill generalization is realized by combining the 
generalized two correlative skills to achieve a new TF action to 
bridge the separated O2 skills to achieve a continuous tool-use 
action for new tools’ applications. These skills are realized in 
different parts in Section III and marked in Fig.1 separately. 

 
Fig. 1. Illustration of Tool-Use Skill Learning and Transfer Framework. The framework considers the relationships between objects and the environment, 
objects and tools, and tool-flipping operational requirements. The contributions are presented in skill learning and generalization modules and highlighted in 
green. The O2 skill is for action generation in manipulating objects and is divided into a model-based method and a constraint-based method. The TF skill is 
for generating tool flipping actions to change the tool contact regions. The two types of skills are integrated for robot tool-use manipulations. 
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The remainder of this paper is organized as follows: Section 
2 introduces the preliminary work, especially about DMPs and 
their improved methods. We present the limitations of using 
these methods for tool-use manipulation through an example. 
Section 3 presents the learning and generalization methods of 
the O2 skill and the TF skill and robot controllers to realize 
these skills in actuality. The generated trajectory is proved to 
converge to the target position, satisfies the rigorous constraints 
and requirements for tool-use operations and avoids conflicts 
with the environment and the objects. Section 4 conducts two 
experiments to verify the effectiveness of the proposed method 
integrating two types of skills. Section 5 makes a discussion on  
autonomy of skill learning and generalization, and increment of 
calculation complexity. Section 6 make a conclusion.  

II. PRELIMINARY WORK 

A. General DMP  

Following the taxonomy of tool use in [2], DMP, proposed 
by Ijspeert et al. and updated in 2013 [18], is a typical non- 
causal tool use learning method. It has a concise and effective 
representation used for learning from demonstrations of robotic 
skills due to its strong generalization ability. A general DMP 
model is expressed as  

 
    z zv g x v f s

x v

  



    







, (1) 

where x  is the position and x  is the velocity of the trajectory, 

  ( )Tf s s W Ψ  is a linear combination of n  nonlinear Radial 

Basic Functions, named forcing function, which enables robots 
to follow any trajectory from the start 0x  to the goal g , where 
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where ic  and 0ih   are the centers and widths of the Radial 

Basic Functions respectively, and , 0z z   are coefficients. 

Eq. (1) has the unique attracting point at , 0. 0x g v     is 

a scaling parameter, and s  is a phase variable to achieve the 
dependency of  f s  out of time, whose dynamics is expressed 

by a canonical system as 
 , 0s s     . (3) 

The converging time is modified by factor  , and vector W  

is learned using locally weighted regression [29]: 

    2

1
min

N Tar
jj

f f s


 , (4) 

where N represents the number of demonstrated trajectories 

and  jf s  represents the item calculated by the jth  trajectory 

jx , and Tar
jf is the target value of  f s : 

   Tar
j j z z j jf v g x v      , (5) 

     By changing the start 0x , goal g  and scaling factor  , the 

skill expressed by DMP can be generalized in a new task. 

B.  Improved DMP for constrained conditions 

The DMPs model in (1) are improved to perform constrained 
tasks, such as obstacle avoidance [30] and cooperative manipu-
lation [31], where constraints are generated by obstacles, and 
the relative distances of robot ends. The function of the DMP 
model is also modified. For example, Park et. al [32] and Tan 
et. al [38] added a gradient of a potential field to the forcing 
function. Hoffmann et.al [33] were motivated by the biological 
data and extended the DMP function into a new expression 
without singularities and large accelerations to achieve 
automatic goal adaptation and real-time obstacle avoidance. 
Umlauft et. al [35] and Gams et. al [37] developed coupling 
movement primitives (CMP) for cooperative manipulation. 
These improved DMPs are presented by adding a new term u  

to the forcing function  f s , which can be expressed in a 

general form as  

 
    z zv g x v f s u

x v

  



      







, (6) 

where u  is the additional term, like )exp(Rv    in [33]. 

The parameters    and   are known, and the variable   and 

matrix R are observable. In our recent research, we considered 
the case that term u  cannot be modelled but characterized by 
a set of discrete datasets and proposed the Constrained Dynamic 
Movement Primitives (C-DMP) [21] for skill generalization. 
However, the DMP-based model only addressed the constraints 
after learning skills, which may lead to unsatisfactory results in 
an environment with different constraints. For example, the 
demonstrations of obstacle avoidance maybe inherently contain 
limitations imposed by obstacles, and the learned skills may not 
generalize well to environments without obstacles or with more 
obstacles.  

C. How to separate CI skills from demonstrations 

Separating a CI skill from tool use demonstrations influenced 
by constraints is a core challenge to be resolved. We can specify 
the question from the mathematical perspective of DMP. DMP 
can represent an action learned from a demonstration or a series 
of actions. After adding the constrained conditions to (1), we 
can achieve (6), where u  is the term influenced by the 
constraints. If u is well-modelled and the parameters in u  
are known, we can easily reduce u  from (6) and achieve the 
CI skill expressed by (1), like the methods in [30]-[38].  

However, during the demonstration process, the parameters 
in u  are usually unknown or the constraints cannot be 
extracted with an exact model of u  but are expressed by a 
series of discrete datasets like in [21]. Meanwhile, the 
constraints generated by the objects, tools and environment 
have been inherited in the demonstrations. Then the proposed 
methods in Section III are to separate the influence of u , 
achieve CI skills in (1) and adapt the learned results to new 
tasks with the new constraints generated from new objects and 
environments to realize skill transfer.  

Here, we can use an example to illustrate the necessity of CI 
skill learning for tool-use cases. As shown in Fig. 2,  we use a 
finger-shaped tool (blue) to push an object (red circle) forward 
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and leftward, generating trajectories of the object and the tool 
(Fig. 2(b)). The effective contact regions are shown in Fig. 2(c). 
Multiple trajectories are obtained by repeating object pushing 
action, as shown in Fig. 2(d), and DMPs are used to learn from 
these trajectories to achieve a red line in Fig. 2(e). We see that 
the learned trajectory, red line in Fig. 2(e), is smoother than the 
demonstrations and has fewer corners due to the state change of 
pushing actions, indicating that the learned skill diminishes the 
features of tool-use actions. Therefore, the learned results from 
demonstrations can not applied to new tools and tasks, because 
the generated trajectories may be not suitable for the given tools.  

III. MULTI-TOOL USE SKILL LEARNING AND TRANSFER 

In this section, we will carefully introduce how to realize the 
modules in Fig.1. Subsections A and B are for the O2 skill and 
the TF skill learning from human demonstrations, respectively. 
Subsection C is for skill generalization of both O2 skill TF skill 
and integration of the two skills to achieve a desired trajectory. 
Subsection D designs a controller to enable the robot to follow 
the trajectory to complete a new tool-use task.  

A. Object operating (O2) skill learning 

1) Model-based method 

In the model-based method, the expression of u is known 

but with unknown parameters. Therefore, the term  f s cannot 

be achieved without knowledge of the exact expression of u .  
The first is estimating a forcing function term integrating 

 f s  and u  by minimizing 

    2

1
min ,

N Tar
jj

F F s u


 . (7) 

where 

   Tar
j j z z j jF v g x v      , (8) 

and  
  ( , ) :F s u f s u   . (9) 

Next, with knowing the general expression of u , such as 
)ex= p(Ru v   in [33], we need to estimate parameters 

and  , and separate u from ( , )F s u . The u  is transformed 

by a function (*)T  and expressed as 

   TT u   θ Ψ , (10) 

where is a noise term, θ is an unknown parameter vector and 
Ψ  is a state vector for identification. For example, u  in [33] 
can be transformed as  

    ln ( )exp lnT
i iRv Rv     θ Ψ , (11) 

where  n ,l
T

    θ and Ψ  1,
T

i . Set ˆ( )kθ  as the 

estimation of θ in the thk calculation round, then the target 

value of  f s  in (9) is calculated by ˆ( )kθ  at the thk time as 

 (( )ˆ )Tar Tar
j k jf F u k  θ . (12) 

and  f s  at the thk  round is calculated by minimizing  

    2

1
min

N Tar
j k kj

f f s


 . (13) 

The vector ˆ( +1)kθ  is updated based on the kth calculating 

results ˆ( )kθ  and  k
f s  as 

          ˆ ˆ ˆ( 1) ( ) ( ), T
n k

Tk F s u f sk k    θ θ K θ Ψ  (14) 

where   is a constant updating factor and nK is a gain matrix. 

It is obvious that if ˆ( )Kθ converged at the calculation round 

k K , then   k Kf s   will approach to a stable results. Finally, 

we can get the stable results of ˆ( )Kθ and   k Kf s   as the final 

outcomes of O2 skill learning, the CI skill, is expressed as  

 
    z z k Kv g x v f s

x v

  


    







 (15) 

and the constrained model is estimated as  ˆ( )Tu T K  θ Ψ , 

where  *T   represents the inverse calculation of  *T . The 

calculation procedure is presented in Algorithm 1 in detail. 

2) Constraint-based method.  

Discontinuous limitations widely exist in the trajectory 
planning of autonomous vehicles [54] and robots [55]. Usually, 
the boundaries are obtained through digital maps [54] or the 
corresponding configuration [55]. For the O2 skill learning, we 

 
(a)                                              (b)  

  
(c) 

 
              (d)  (e) 
Fig. 2.  Demonstration and skill learning based on DMP (a) Experiment setup 
(b) Trajectories of the tool’s end and object center (c) The effective tool-using 
areas of the tool and the generated trajectory. (d) Object moving trajectories 
(e) Skill learning from demonstrations based on the standard DMP 
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assume that the skill learned and expressed by (1) . Each point 
x  is limited by constraints L Hx x x  . If we want to achieve 
a CI skill by removing the influence of constrained inequality, 

our solution is to find a transformation function from x  to ux  , 
similar to the polar-like space analysis approach [69], to match 
the constrained space and the universal space with the unique 
mapping relationship.  

To achieve this, we first learn a constraint skill from human 
demonstrations using (1). Next, a sigmoid-like function is built 

to convert x  to ux , thus removing constraints imposed by the 
boundaries: 

 
 

( ( ))1
u H L

H L

H L

L

k x k x k x

x x
x x

e  


 


, (16) 

Here, k , Hk and Lk are non-zero constants, satisfying 0 

, 1H Lk k   and 1H Lk k  . In (16), the relationship between x

and ux  is unique. ux  can be achieved by the inverse calculation 
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u H L
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x x
x k x k x

k x x
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 It is desirable that the start and end points will be not changed, 

that is ux x  at time 0t   and t   . Based on this condition, 

we can achieve the values of Lk , Hk and k :  

Proposition 1 (The proof of Proposition 1 is presented in the 
Appendix A.): For the Sigmoid-like mapping function of x and 

ux in (16) and (17), the essential condition of 0,
u

tx x   is 
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and 
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where g and 0x are the goal and start of x in (1), 0, ,L H L
g gx x x  and 

0
Hx are the boundary conditions of g and 0x , 1x and 2x are 
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 (20) 

where    3 0 0 0
H L H L

g gx g x x x x x     , and 1  and 2 are 

small enough values for ensuring 1x  and 2x are not 0.  

Final, we can use DMP in (1) again to learn and generalize a  

constraint-irrelevant O2 skill from ux  as  

 
    u u u u

z z

u u

v g x v f s

x v

  



    

 




. (21) 

where  uf s is achieved based on the new ux  and uv . The 

constraint-based O2 skill learning is presented in Algorithm 2. 

B. Tool Flipping (TF) skill learning 

The TF skill is for the situation where the object keeps static 
and only the tool changes contact positions on the object. Figure 
3 provides an overview of the TF skill. The pink tool changes 
contact position from left (point 2) to top (point 1) along a black 
solid trajectory and the contact position on the object is changed 
from the right to the bottom. This contact point switching path 
is influenced by the shapes of both the tool and the object. We 
can imagine that if the tool can be seen as a point, the possible 
moving trajectory is represented by the blue dashed line in Fig. 
3. The extra displacement (a red arrow line in a zoomed figure) 
from Point 2 to Point 1 is caused by the tool’s shape. Therefore, 
we proposed an idea of  'virtual object movement' to describe 
the displacement which is caused by the tool’s shape. First, we 
can firstly learn from the tool’s movement (black line) using 
DMP to achieve the expression  

 
    Tf Tf Tf Tf Tf

z z

Tf Tf

v g x v f s

x v

  



    

 




. (22) 
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where Tfx and Tfv are the position and velocity of the tool’s 

path, and  Tff s is the forcing function. Set 0
Tfx  as the start of 

Tfx  and use the geometric relations at the start and end position 

shown in Fig.3, Tfx is divided and expressed by two trajectories: 

the tool’s movement tx  (blue dashed line that is also a CI TF 

skill) and a virtual object movement ox (red dashed line): 

    0 1 0 2 0
Tf Tf t Tf o Tfx x k x x k x x     , (23) 

where 1k  and 2k are constant factors. Then, if the outline of the 

tool can be described using the following DMP function: 

 
    o o o o o

z z

o o

v g x v f s

x v

  



    

 




, (24) 

we can get the following proposition for the TF skill tx . 
Proposition 2: (The proof of Proposition 2 is presented in the 
Appendix B.): For a TF demonstration trajectory in (22), after 
generating a fixed virtual object’s movement (24), the TF skill 
is learned and expressed in a DMP from as  

 
      1 2 1

t t t t Tf o
z z

t t

v g x v f s k k f s k

x v

  



     

 




.(25) 

where 1 2,k k satisfy  

      1

1 2

Ht oI k I k tr x x
      (26) 

where 0
t o Tfx g x   and 0

o t Tfx g x   , and  *tr represents 

the trace calculation of a matrix.  

Remark 1: As shown in (25), the TF skill has infinite solutions. 
We can see from the zoomed figure in Fig.3 that the constraints 
come from the start and end points in (23), selection of  of s  

in (24) and factors , 1,2ik i  . The term 2k  reflects the influence 

of the virtual object movement ox  to TF skill learning process, 

but the trajectory ox  doesn’t have a fixed shape. To avoid the 
conflict between the tool and objects, we can choose the tool’s 

contour to generate ox  in (24) and 2 1k   to meet the minimum 

requirements for avoiding conflicts. Then we can get the unique 

1k  and trajectory tx  : 
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1 2

t t t t Tf o
z z
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v g x v f s f s k

x v

k I tr x x

  



     
 


   




 (27) 

We can reduce conflicts between the object and the tool by 
enlarging 2k in skill learning and generalization process. 

C. Skill generalization  

The model-based O2 skill can be generalized by the methods 
in [30]-[38] based on the model with the estimated parameters 
ˆ( )Kθ . The generalization of TF skill is also easy to realize: first 

generalizing object virtual movement ox  using (24) and the CI 
movement of the tool using (25) incorporating the new flipping 

contact points separately. After acquiring tx  and ox , the new 
TF movement of the tool is calculated by  

  1 2 2 1 01Tf t o Tfx k x k x k k x     . (28) 

where 0
Tfx  represents the initial contact point of TF actions. The 

primary focus of our contribution is on the generalization of 
constraint-based O2 skills, building upon our earlier research 
[21], which necessitates prior knowledge of constraints in a new 
situation and the reference trajectory cx . In this section, we 
enhance this method and propose Constrained-DMP(C-DMP) 
lite.  First, we assume that the generalized skill is expressed as  

 
    N N N u c
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, (29) 

where cu is an additional constrained term. Similar to (6), Nx

and Nx represent new trajectory and velocity. NLx  and NHx  are 

constraints of Nx , having the same conditions to the constraint-

based learning process: (0)Nx  (0)ux  and ( ) ( )N ux x   . ux  

is the generalized CI trajectory.  Define NL u
ih x x  , NH

ih x
ux , it is desired that Nx  in (29) bounded with  

 N u
i ih x x h   . (30) 

We build a novel Lyapunov function candidate cV : 
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where 1
N uz x x  , 2

Nz v   , and  1 2u
i ix z h h      

is a virtual term for ensuring system stabilization, and nk is a 

positive number. Then skill generalization condition for (29) is 
concluded in Theorem 1 as:  
Theorem 1: (The proof of Theorem 1 is presented in Appendix 
C.) For the DMP function in (29) with the Lyapunov function 
candidate cV  in (31), then the sufficient condition for  0cV  , 

enabling Nx to satisfy (30), is  
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 ,(32) 

where 0zk  is constant factor.   

Remark 2: Compared with [21], the expression in (32) is more 
concise, requiring fewer manual configurations and featuring a 
shorter stability proof. Notably, there is no requirement for the 

 
Fig. 3. Decomposation of tool flipping (TF) skill 
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reference point cx , as calculation of cu  can be performed by 
(32) directly. Consequently, the C-DMP lite reduces calculation 
complexity by at least 30%, thus eliminating time-consuming 

calculations of ,c
nx k  and 2 . Furthermore, compared to other 

improved DMP methods mentioned in [39], this approach does 
not depend on acceleration information, which is often subject 
to inaccurate measurements.  

D. Controller design  

After separately generalizing the O2 skill and the TF skill, a 
complete trajectory is established for manipulation using a kind 
of skill or connecting the two skills to represent the desired path 

dx  for robot, and we can calculate robot desired joint angle of 
dq  using the inverse kinematic model.  

Therefore, the final step involves controlling robots to follow 
the desired trajectory. In general, a robot system is expressed as   

    , ( )T
eM q q C q q q G J q F       , (33) 

where q , q and q  represent angle, velocity and acceleration 

of robot joints, ( )M q and  ,C q q  are the inertia matrix and 

the centripetal and Coriolis matrix, G  is the gravitational 
torque, ( )J q is the Jacobian matrix and eF  represents the 

environmental force from interaction process with bounded 
values.   is the control torque to be developed as  

       + , +d d
e e eM q q k e C q q q k e G r        , (34) 

where dq and dq are the desired angle and angle velocity of the 

joints, which are calculated by the trajectory achieved by skill 
learning methods in Section III. B and generalization results in 
Section III.C. Set de q q   is the joint tracking error , the term

+e er e k e  , where ek is a constant factor and   is the constant 

impedance factor. Following the previous research [28], [29], 
and [59], the controller stability is easy to be proved by building 
Lyapunov bounded stable conditions. 

IV. EXPERIMENTS 

This section conducts several experiments to validate the 
effectiveness of the proposed framework. The first experiment 
is conducted with a desktop Omni joystick and two self-made 
tools, with accurate kinematic and dynamics models of robots 
and the tools for error quantification. The second experiment 
employs a Franka robot and several real-world tools to verify 
generalizability of the proposed framework. The organization 
of this Section is: Sections IV.A and B pertain to the first 
experiment and its comparative experiment, while Section IV. 
C focuses on the second experiment.  

A.  Experiment 1: a pusher-slider and obstacle avoidance task 

Pusher-slider and obstacle avoidance experiments are typical 
for verifying tool-use skill ability. In the experiment, we verify 
both kills simultaneously. Fig. 4 illustrates the experimental 
setup, comprising a Kinect, a Joystick, two tools (coloured 
blue), and a red round object. The tools are attached to the end 
of the Joystick, which serves both as a demonstrator to record 
the positions of the robot end and as an actuator to execute 
planned actions. The experiment follows the procedure outlined 

in Fig.1, which consists of several steps for pushing the object 
from the starting region 'S' to the end region 'E.' The shaded area 
'O' represents an obstacle that must be avoided. 

We developed two tools for manipulation. Tool 1 has a stick 
shape with a round head, while Tool 2 has an L shape with three 
surfaces (areas marked as 1, 2 and 3 in Fig. 4) for generating 
pushing actions in three directions. These tools are considered 
as typical examples of the pull-from-tube tasks described in [8] 
and the shape primitives of the tool in the simulation presented  
in [50]. Effective contact regions are set manually or recognized 
through demonstrations. During the experiments, movements 
of both tools and objects are recognized by the camera and the 
robot movements are recorded by the Joystick. The geometric 
information of tools, objects and obstacles is known beforehand. 
This allows us to obtain information for the skill generalization 
process. The detailed information about objects, tools, obstacles, 
and maps used in the experiments is provided in Table 1. 

The constraints are derived from the effective regions of the 
tool, obstacles, and the actuator's effective working space, with 
the following conditions: the tool’s operational directions are 
perpendicular to the contact surfaces, and the object doesn't slip 
on the tool's surface. We then utilize human demonstration data, 
as shown in Fig. 2(b) and divide, resample, and align them to 
create a dataset for learning the O2 and TF skills. The processed 
demonstrations are represented as the grey lines in Fig. 2(e) for 
the O2 skill and in Fig. 6(c) and (d) for the TF skill. 

1) O2 skill learning and generalization 

Learning O2 skills is subject to the constraints imposed by 
the tool’s usages and robot’s workspace. To account for these 

constraints, we define Tx as the contact point positions on the 

tool, Ax  as the actuator’s end position, and Ox  as the object 
center position with the relationship ,T T A O O T

A Tx T x x T x  , 

 
Fig. 4.  Experimental setup. 
 

TABLE 1 Acquired information of the tools, objects, obstacles and maps 
 Pre-acquired Information 

Map 
Size: 180mm*180mm, 
Demonstration: Start at [6,5.5] and end at [-6,13]; 
Generalization: Start at [6,8] and end at [-5.5,11]; 

Tools 

Tool 1: Length = 30mm; Width = 12mm;  Radius of 
contact head =6mm; Head contact angles = [-0.08 rad, 
0.08 rad]. Left contact length = 10mm; 
Tool 2: Length = 40mm; Width = 40mm;  Contact 
length of 1st surface =15 mm, Contact length of 2nd 
surface =10 mm, Contact length of 3rd surface=20 mm 
in Fig. 8; 

Object Radius =12 mm; 
Obstacle 

in map 
Rectangular obstacle: width=30mm, height =40mm, 
center position is [0 10]; 
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where T
AT and O

TT are the transforming matrices. The reachable 

areas of tools from the start to the end for each fragment are 
presented as the grey shaded areas with blue dots in Fig.5 (a), 
while the black line represents the tool’s movement within the 
constrained region. These constraints cannot be modelled as an 
exact function but can be limited to the boundaries of the grey 
areas.  

Using (17),  we can transfer the trajectories of two sections 
into a universal trajectory mapping to the entire region between 
two points, presented by the red and blue dot lines. Other object 
trajectories are transformed similarly, resulting in a group of CI 
actions, as shown by the grey lines in Fig.5 (b). A CI skill is 
then learned from these CI actions using the standard DMP. The 
model-based method is not applicable because the constraints 
are dispersed and cannot be modelled.  

Different constraints lead to different generalized O2 skills. 
As shown in Fig.5 (c), the green line represents the trajectory 
generalized from the learned O2 skill without any constraints. 
To avoid conflicts between obstacles and objects, we introduce 
a 1.5cm width 'safe margin', as used in [57], to achieve the blue 
line shown in Fig. 5(c) using Constrained-DMP lite. In our prior 
work [21] and the DMP-based obstacle avoidance methods, e.g., 
[33], the influence of tool contact regions to the trajectory is 
rarely considered. Thus, the blue line is the final trajectory for 
robot manipulation. Here, we add new constraints from tool-use 
cases where the three areas in Fig.4 are selected as the potential 
contact areas. The generalized object's movement is shown as 
red lines in Fig. 5(c). Due to the frequently changing contact 
regions, the object’s motions are completed in three segments, 
within the robot’s movement ranges. Especially, in phase 2, the 

generalized trajectory suffers from the constraints of the tool's 
reachability and 'safe margins' to avoid conflicts with obstacles. 
Using the transformation function O A T T

O Ax T T x , the movements 

of the L-shape tool are calculated and marked in Fig.5 (d) in 
sequence to push forward and leftward the object from the start 
to the destination. 

2) TF skill learning and generalization 

In Fig.6 (a) and (b), we compare the results of learning from 
the same demonstrations using different tool shapes: the red line 
represents skills learned from the original, the orange line 
represents the tool’s outline ox  and the blue line represents a 

TF skill tx  achieved by (23). It is evident that the trajectory in 
Fig. 6 (a) significantly derivates from the starting point to avoid 
conflicts compared to Fig. 6 (b), even when the start and end 
points are the same. 

The TF skill can connect O2 actions between two adjacent 
phases, as illustrated steps 2 and 3, and steps 4 and 5 in Fig. 5 
(b). Fig. 6 (c) and (d) illustrate two examples that we need to 
know the initial and the final contact positions and poses for the 
objects and tools. For example, we set the position of the object 
is (0,0) and the radium is 1.5, the initial and final contact angles 
are  1/ 3 , 1/ 3rad rad  and  1 12 , 1 3rad rad .The generalized  

trajectories are presented in Fig. 6 (c) and (d) and we mark the 
flipping processing using numbers. We can see that both objects 
and tools change contact positions throughout the TF process to 
enable the object to be pushed along the desired direction in the 
following O2 actions.  

3) Skills integration and application 

The final step involves connecting the generalized O2 skills 
and TF skills to generate a complete trajectory for the process. 
As shown in Fig. 7 (a), the purple lines represent the planned 

 
(a)                                                       (b) 

 
(c)                                                       (d) 

Fig.5. Skill learning and generalization of O2 skill for a pushing and obstacle 
avoiding task (a)  constraints and unconstrainted trajectory for a fragment in a
demonstration; (b) unconstrainted trajectories and skills learned from them; 
(c) generalized skills (the skill is generalized three times: the green line shows
the generalization of the learned CI skill, the blue line is the generalization for 
obstacle avoidance based on the green line, and the red line is a generalized 
skill considering the tool and the acutator’s constraints and based on the blue-
trajectory; (d) illustraion of using a L-shape tool to push the object to the target 
(O2 skill part) 
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Fig. 6. Constraints and the recovered demonstrations and the skill learned from 
the processed data. (a) TF skill learning for a arched virtual object movement; 
(b) TF skill learning for a line virtual object movement; (c-d) TF skill 
generalizations for different operational requirements by using a new tool 
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robot end trajectories achieved in O2 skill generalization (as 
depicted in Fig. 5(d)), and the red lines represent the TF skill 
generalization results used to connect these O2 skills based on 
the end positions, such as (-1, 3.5) achieved in Fig. 5(d) for the 
step 5, and its pushing directions  of the O2 trajectories, similar 
to the results in Fig.6 (c) and (d). By using the controller (34) 
and setting the control parameters as 3ek   and 10  , the 

joystick with Tool 2 is effectively controlled to push and pan 
the object, enabling it to follow the desired way, circumvent 
obstacles, and reach the destination successfully. The final real 
trajectory is shown as the blue dashed line in Fig. 7 (a) and the 
realization process is illustrated in Fig. 7 (b). 
Remark 3: Upon achieving the planned trajectory, the focus 
shifts to controlling the robot to follow the desired path. Our 
previous research dealt with several cases that combined DMP 
and adaptive impedance control [16], [28]-[29] as well as neural 
network (NN)-based control [58] to ensure stable interaction 
with the objects and the environment, taking into consideration 
uncertain dynamics and external disturbances. In this paper, we 
develop an impedance controller to minimize position tracking 
errors. Furthermore, the proposed TF skill allows for real-time 
modifications of contact points on the same tool. Therefore, in 
case of large errors occurring along the way, we can adjust the 
contact points in real-time to achieve trajectory modifications. 

B. Comparison with other methods 

To evaluate the performance of the proposed framework and 
method, we compared the O2 skill and TF skill learning results 
with the baseline methods separately. For DMP-based O2 skills, 
we compare the results in Fig.5(d) with the trajectory achieved 
by the two-level RRT* method [70]. We utilize the same map 
and obstacle depicted in Fig. 4 and the parameters in RRT* are 
as follows: a displacement of 0.2 cm to the goal, a maximum 
step length of 0.2 cm, the neighboring node radius of 1cm, and 
the number of the closest vertex (node) extensions set to 7.  The 
maximum number of nodes is set to 1400 and the satisfaction 
condition returned true only for configurations within 0.2 cm 
displacement to the goal.  

The simulation results about the object motion trajectory are 
shown in Fig.8 (a), where the thick highlighted blue nodal lines 
represent the final trajectory from the starting point to the target 
region, and the thin dark blue short lines represent the extended 
trajectories. We can observe that the end of the trajectory does 
not coincide with the destination, even if the target position is 
known beforehand using the RRT* method. However, within 

the DMP, a trajectory is generated based on the start and end 
points, and the forcing function in (1) decreases to zero at the 
end, ensuring that the trajectory stops at the target. 

Based on the results in Fig.8 (a), we further make a tool-level 
movement planning. If we don’t consider the constraints of the 
pushing directions and working regions of the tool, any contact 
point can be selected to push the object along the planned 
trajectory to the target, as shown in Fig.8 (b). However, there 
exist some constraints, such as the location of the joystick base, 
reachable regions, and limited DOFs of the actuator (only three 
joints are driven by the motors of the joystick), the tool should 
select several available contact points to push the object from 
one node to the next generated by RRT*. As illustrated in Fig. 
8 (c), the tool changes contact points (22 points) throughout the 
path in three phases colored purple, green, and orange in Fig. 8 
(d). It is notable that the L-shaped tool changes contact surfaces 
only twice, from the bottom side to the left side and then from 
the left side to the top side, resembling the DMP-based method 
results in Fig.5(d).  

The difference lies in the fact that the RRT*-based method 
always requires changing contact points to push the object in 
the planned directions, while the DMP-based O2 skill learning 
only needs three contact points to push the object to the target 
with fewer calculations. Additionally, the RRT* based method 
does not fully consider the multiple constraints of the tool and 
environment during object-level planning, which may result in 
the generated tool positions that are not reachable under these 
constraints. In contrast, the proposed DMP-based method fully 
considers these constraints, generating an object trajectory from 
start to destination that can't be generalized to a new case by the 
RRT* based tool-use action. However, DMP can be combined 
with RRT* to implement path rescheduling as shown in [71] 
allowing for human-like responses through the use of human 
demonstrations.  

We compare the computation complexity of the two methods. 
Following the depictions in [60], the computational complexity 
of DMPs depends on the regression calculation to minimize the 
weighted quadratic error in (4). Generally, we can use Locally 
Weighted Regression(LWR) and Locally Weighted Projection 
Regression (LWPR) to perform the regression, but the two 
methods require different computational complexities. For 

LWR, it is polynomial 2( )n , and for LWPR, it is linear ( )n , 

where n represents the size of the data set. The proposed 
framework comprises several improved DMPs, where the main 
calculation burden still lies in the regression calculation. 
Therefore, the number of calculations increases linearly and the 

 

 (a)                                                                                                                                       (b) 
Fig. 7. The whole-process skill generealization and experimental certification for goal reaching task by integrating the O2 and TF skills; (a) Generalized and 
real measured trajectories; (b) Demonstrations using the old tool and experimental certifications for generalized skills based on the new tool. 
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computation complexity ranges between ( )l n and 2( )l n , 

where l depends on the division of tool-use phases and iteration 
number for the identification. Moreover, the computational 
complexity or time is also determined by the number of the 
basic function i in (2) [60]. FFT* method and its improved 

methods exhibits a computation complexity of ( log )n n [61], 

a value between ( )n  and 2( )n , where n  represents the 

number of samples. Therefore, the computational complexities 
of the two algorithms are at the similar level. For the cases with 
a large number of samples, it is suggested to use LWPR to 
achieve more efficient calculations. According to [60], the 

average computational time of DMPs ranges from 410 s to
310 s. The proposed framework increases the computational 

complexity linearly, and the time is also linearly increased from 
310 s to 110 s, as verified through simulation using MATLAB. 

A detailed summary of the comparisons is presented in Table 2. 
We further compare the results of the classic DMPs for tool 

flipping actions, as presented in Fig. 9 (a) and (b), with those 
from TF skills, which are shown in Fig. 6 (c) and (d) under the 
same conditions. Our method of decomposing and recombining 
the learned DMP skills for tool flipping has two advantages. 
Firstly, it enables the tool to change contact points and 
directions during the tool flipping process and final states 
simultaneously. While the classic DMP-based approach results 
in conflicts and cannot be used to realize this purpose, as 
indicated in Fig. 9. It is due to that the shape of the tool and 
contacting point changes on the tool are not considered such 
that the object may be knocked out by the tool. Secondly, by 
choosing 2 1k  , the range of robot motion is smaller based on 

the proposed approach. For example, the right range of the 
trajectory in Fig.9 (a) is approximately 8 cm, while it is only 
about 5 cm in Fig.6 (c). 

C. Applications on robot arms and real-world tools 

The proposed methods are executed using a Franka robot and 
real-world tools, such as cups and knives, to perform pouring 
and cutting tasks. The primary difference between real-world 
tools and 3D-printed tools is that the geometry of the real tools 
is not accurately modelled. Therefore, human demonstrators are 
required to indicate the functions and effective working regions 
of the tools through human demonstrations. Simultaneously, the 
demonstration trajectories are recorded for skill learning and  
generalization. Fig. 10 illustrates the processes of robot tool-use 
manipulations for cutting and pouring with different objects. 
The human demonstrator only demonstrates once, and the rest 
of the actions are performed by the robot autonomously. Fig. 11 
illustrates the results of interacting with different objects. 

In Fig. 10(a), we can observe that the generalized actions can 
adapt to different object requirements, such as slicing a banana 
into three parts and dealing with objects of different shapes and 
sizes, such as biscuits, grapes, strawberries, and meatballs. We 
can compare the incision made, when cutting the banana using 
the tool-use method (Fig.11(b)) with that using general skills 
learned from demonstrations (Fig. 14(a)). Since the sections cut 
by the tools are chosen to constrain the robot’s motions, the 

 
 (a)  (b) 

 
 (c)  (d) 
Fig.8. Two-level tool-use skill trajectory planning using RRT* method (a) 
object movements (blue thick line with 22 trajectory nodes is the final object 
movement and dark thin line segments are extended trajectories. (b) pushing 
motions without limitations of the tool’s effective using regions and 
directions; (c) tool’s pushing motions without constraints of tool’s effective 
contact directions and regions; (d) three phases of tool’s motions from the 
start to the destination(the purple tool with dash and solid lines in the same 
color represents the tool pushing states, object’s motions and the tool’s 
motions in the 1st phase, the green tool with green lines represent those in 
phase 2 and the orange tool with orange lines respresent results in phase 3) 

 
(a)                                                    (b) 

Fig. 9. TF skill learning and generalization using a new tool to realize tool 
flipping. (a-b)  The comparative results of using the general DMP technology 
to those in Fig. 6 (c) and (d) 

TABLE 2  Comparison of the proposed method with Two-Level RRT* tool 
use trajectory: 

 
Proposed DMP 
-based method 

Two-level 
RRT*  

Levels of tool action planning 2 2 
Phases of tool movement 3 3 

Number of trajectory points/tool 
trajectory rescheduling times 

4 22 

Continuous tool trajectory 
within each phase 

Yes No 

Feasibility of reaching the goals Yes May not  
If a generated position is 
unreachable by the tool 

No May yes 

Skill generalization ability Yes No 
Incorporation of human 

demonstrations 
Yes No 

Computational complexity 2( ) ( )lO n lO n  ( log )O n n  

Computational time 310 s to 110 s 310 s to 110 s 
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incisions are much smoother, and the actions are adaptable to 
meet various object-cutting demands (Fig. 11(c) to (Fig. 11(f)). 

For the pouring task, actions are generated encompassing two 
sub-actions: approaching the desired position and pouring the 
objects into the particulate matter into different containers. 
These actions are governed by constraints such as the shape of 
the pouring cup, the pose, position, and shape of the object 
containers, as well as the requirement that the relative distance 
of pouring edges on the two containers must be sufficiently 
close to ensure a successful pour. In the case of the second sub-
action, consideration needs to be given to avoiding conflicts 
within a confined space. Therefore, we utilize the O2 skill to 

achieve goal approaching and the TF skill to ensure pouring 
accuracy. As depicted in Fig. 10(b), the robot learns pouring 
skills from human demonstrations and successfully pours the 
beans into the target cups. Figs. 11 (g) to (i) illustrate that only 
for the tall bottle with a narrow mouth, some beans are spilt, 
while the other two wide-mouth containers collect all the beans, 
thereby verifying the effectiveness of the action execution.  

Through the above experiments, we know that the O2 and TF 
skills can be used independently and are compatible with other 
DMP methods. For example, the pouring experiment is taken 
by integrating the TF skill and O2 skill to complete the whole 
action, while the cutting experiment is only based on the O2 
skill. Compared to other DMP methods, the learned CI skills 
can eliminate the influence of constraints from the special tools 
that occurs during the human demonstration process and enable 
the skill to have stronger generalizability.  

V. DISCUSSION  

A. Autonomy of skill learning and generalization  

The effective region and function recognition of tools in tool-
use applications is the precursor to tool manipulation [52], [53], 
[56]. The DMP-based skill learning and generalization methods 
proposed in this paper belong to action planning of non-causal 
tool-use tasks. Therefore, the methods are taken after acquiring 
prior knowledge of tools, objects, and environments by utilizing 
analytical models and deep learning algorithms to identify the 
features [13],[52] and key points [51] and generate parametric 
constraints from demonstrations [46]-[48]. Then these methods, 
combined with the proposed DMP-based tool-use skill learning 
framework and controllers, like (34), can lead to autonomy in 
skill learning, generalization and action execution to satisfy the 

               
 (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

(a) Object cutting tasks (i-v) banana cutting process (vi-viii) cutting other different objects(grape, strawberry and wafer biscuits) 

          
 (i) (ii) (iii) (iv) 

            
 (v) (vi) (vii) (viii) 

(b) Pouring tasks  (i-vi) bean pouring process (vii, viii) pouring to other different containers 

Fig.10. Experiments taken on real robot and tools. 

   
 (a)  (b) (c) 

   
 (d)  (e) (f) 

   
 (g)  (h) (i) 
Fig.11. Experimental results. (a)-(f) results of cutting different objects; (g)-(i) 
results of pouring beans to different containers.  
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assumptions or manipulation requirements (as those introduced 
in Section IV).  

There are also some research integrated modeling, and skill 
learning and control of robots to generate actions and policies 
directly. For example, Seita et. al utilized 3D dense point flow 
prediction [63] and the learned perception model [72] to predict 
the tool and object state for further manipulation. Pertsch et al. 
[73] and Wang et al. [74] utilized reinforcement learning (RL) 
for robot interaction with environments and completing block 
stacking tasks. The difference is these methods need to build 
observation-action pairs, and the actions are generated by the 
observations (states) or networks. It needs to learn the policy 
through demonstrations and setting some parameters with some 
calculation time. It is obvious that the methods can generate the 
actions directly without the need for the separated steps for tool 
recognition and tool-use planning. However, the research did 
not realize skill transfer from one tool to another and the actions 
are not continuous and expressed in a formulation.  

Comparatively, DMPs can conclude and express a skill from 
multiple similar demonstrations. The calculation of DMP could 
filter trajectory deviations and achieve a smooth trajectory from 
the start to the end. DMP is also a one-shot learning method that 
does not need a long time for policy resignation. Meanwhile, 
manual settings based on human experience and requirements 
are still necessary, such as the "safe margin" width and control 
parameters. These requirements are easy to present as the 
constraints to add to the learned trajectory without the need of 
retraining the network and policies. However, the DMP-based 
method is still a non-causal tool-use, where the pre-knowledge 
about the tools, objects and the environment are so necessary to 
generate constraints and trajectories, which is not flexible and 
cannot be updated through training in the simulation and real-
world environments.  

B. Incremental calculation complexity  

Compared with Reinforcement Learning and other network-
based learning methods, the calculation complexity of the DMP 
-based method is much smaller such that the results are learned 
and achieved within a short period or even real-time execution. 
Therefore, we only compare the incremental complexity of the 
proposed method with the classic DMP method.   

Regarding the model-based learning method of the O2 skills, 

incremental computations are spent on the estimation of  ˆ kθ . 

Therefore, it requires several iterations of DMP calculations to 

achieve  ˆ Kθ , and then the calculation complexity increases 

K times to obtain u  in (9) for a new skill. Generalization 
does not need extra computations since the model for u  is 
fixed. Fortunately, the identification process converges within 
a few steps, which can minimize the calculation time required. 
In the case of the constraint-based O2 skill, after calculating the 
parameters Hk , Lk and k  using (18) and (19), additional 

computations are performed to extract CI actions via (17). The 
actions are learned using DMP,  and no extra computations are 
required. The improved skill generalization method presented 
in [33], known as constrained DMP lite, can reduce complexity 
compared to the methods in [33] , as it eliminates the need for  

additional calculations of cx and 2 . In the context of TF skill 

learning, the original TF actions are divided and expressed 
using two DMP functions, resulting in three DMPs. Therefore, 
the computations for skill learning and generalization are 
tripled. In the overall framework, human demonstrations are 
separated into several O2 and TF actions, which are learned and 
generalized separately and achieve an action chain for a new 
tool-use manipulation task. So the complexity combines the 
calculations of the two skills. The computational complexity is 
higher than that of the original DMP and other improved multi-
phase DMPs e.g., [29]. However, the proposed method can 
effectively avoid conflicts and ensure that the object can follow 
the desired trajectory when using special tools to move within 
the robot's reachable areas.  

VI. CONCLUSION 

This paper presents research on robot tool-use skill learning 
and transfer based on DMP to enable robots to adapt tool-use 
skills from one tool to another in a new task. We propose a new 
framework comprising two skills: the O2 skill and the TF skill, 
along with several technical innovations based on DMP relating 
to action decomposition and combination. The O2 skill can be 
achieved in two ways, depending on whether the constraints can 
be modeled or expressed with discrete datasets. Additionally, 
we improved our previous work [21] by reducing over one-third 
of the computations required for skill generalization. The TF 
skill ensures the continuity for generalizations of O2 skills.  

We perform several simulations and experiments to verify 
the effectiveness of both independent and joint applications of 
the O2 skills and TF skills. The results illustrate that, compared 
to the two-level RRT* tool-use trajectory planning, the O2 
skills achieve a continuous and accurate trajectory with fewer 
rescheduling times. The TF skill can avoid conflicts between 
tools and the object during the moving period and at the contact 
moment. Experiments conducted on the Franka robot platforms 
focus on the verification of the generalizability of the proposed 
framework and independent methods. 

Although the improved methods are only based on DMPs, 
the framework is not limited to this method. Some recently 
proposed methods, such as kernelized movement primitive [49], 
can also be incorporated into the framework as well, to reduce 
calculation complexity to some extent.  

APPENDIX 

A. Proof of Proposition 1 

In the trajectory transformation, it is desired that start and end 

points should not be changed, namely 0,
u

tx x    , then we 

can create the following condition: 

 
0 0

0 0 0
0 0

1
log

1
log

H
g H L

H g L gL
g

H
H L

H LL

x g
g k x k x

k g x

x x
x k x k x

k x x

  
        


 

      

. (35) 

By setting 0 0
H L H L
g gx x x x , Hk and Lk  can be calculated by: 
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(36) 
According to 1H Lk k  , we can get 
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Then, if    0 0 0 0 0 0H L H L H L H L
g g g gg x x x x x x x x x       is 

satisfied, the general expression of k  is 
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. (38) 

B. Proof of Proposition 2 

Following (23) and setting tg and og  as the end position of 
tx  and ox , we have  

 
   
   

0 1 0 2 0
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. (39) 

According to the geometric relationship in Fig.3 , we can get 

0
Tf Tf o tg x x x     . Taking the conditions into (39), we have  

      1

1 2

Ht oI k I k tr x x
     , (40) 

which means 1k and 2k are determined by the relative distance 

of the start and end contact points. Using (23), we have  

  1 2 1 2 0
Tf t o Tfx k x k x I k k x     . (41) 

Furthermore, we assume that tx  and ox  can be expressed by 
DMP, sharing the same phase variable s  as 

 
    t t t t t
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Using (22) and (42), we have  
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, (44) 

where 1
t Tf tg g k g  , 1

t Tf tx x k x   and 1
t Tf tv v k v  . 

Taking (41) into (44), we can get  
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Comparing (43) with (45) and considering 0
Tf Tf og x x  

tx we have 

      1 2 0Tf t of s k f s k f s   . (46) 

 Taking       1 2 1
t Tf of s f s k k f s k   into (42), (25) is 

achieved.  

C. Proof of Theorem 1 

 Following (31), we set 
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Thus,  1 2 0c c cV V V    and the desired condition is 0cV  .  

Taking (29) into 1
cV , we have  
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Setting  1 2 0u
i ix z h h      , we can get  

  1 2u
i ix z h h     , (49) 

and the following inequality is achieved by (48) as 
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The time derivative of 2
cV is 

  2 2 2 2
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The sufficient condition for 0cV   is 1 0k   satisfies 
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Taking the definition of   into (52), we have  
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where zk is a tiny positive number.  

Finally, taking (21) and (29) into (53), we can get  
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