
A Dynamic Movement Primitives-Based Tool Use Skill
Learning and Transfer Framework for Robot Manipulation

LU, Zhenyu <http://orcid.org/0000-0002-5446-7285>, WANG, Ning
<http://orcid.org/0000-0002-3264-1852> and YANG, Chenguang
<http://orcid.org/0000-0001-5255-5559>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/35110/

This document is the Accepted Version [AM]

Citation:

LU, Zhenyu, WANG, Ning and YANG, Chenguang (2024). A Dynamic Movement
Primitives-Based Tool Use Skill Learning and Transfer Framework for Robot
Manipulation. IEEE Transactions on Automation Science and Engineering, 22, 1748-
1763. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1


Abstract—This paper presents a framework for learning and

transferring robot tool-use skills based on Dynamic Movement
Primitives (DMPs) for robot fine manipulation. DMPs and their
enhanced methods are employed to acquire a specific tool-use skill
applicable to tools with similar sizes, shapes, and uses. However,
the acquired skills may not be transferable to other scenarios and
tools with variations. The new framework introduces two new
types of skills based on DMPs: Object Operating (O2) skill and
Tool Flipping (TF) skill. The O2 skill enables robots to handle tools
for manipulating objects to achieve desired effects. The learning
process for the O2 skill considers limitations imposed by tools and
the environment during human demonstrations. Distinguishing
between whether constraints can be modelled or not, we propose
both a model-based and a constraint-based method to separate a
constraint-irrelevant (CI) skill and the constrained conditions.
The CI skill is generalized using a novel method called constrained
-DMP lite, enabling adaptation to new tasks with special tools. The
TF skill addresses situations where tools must generate an action
to alter contacting positions on both objects and tools while
avoiding conflicts during movement. Finally, the TF and O2 skills
are generalized to be applied in creating a continuous action chain.
We conduct several experiments to compare and analyze the
advantages and disadvantages of the proposed methods with other
approaches in terms of generalizability and calculation complexity.

Note to Practitioners—Strengthening robot tool-use ability has
been a hot research topic in recent years because these tools can
extend the reachability and enhance the flexibility of robots. The
previous research on DMPs has been utilized for learning tool-use
skills. However, the learned skills few considered the tools’ special
use regulations, therefore the skill of using a tool is hard to transfer
to another tool-use case. This paper explores tool-use skill learning
and transfer between different tools by developing a framework
based on the DMPs for this problem. The framework consists of
two kinds of skills: O2 skill and TF skill with different purposes as
well as a series of newly developed algorithms, such as constrained
-DMP lite, a model-based and a constraint-based CI skill learning
methods. These methods can separate the constraints from human
demonstrations of using tools to achieve a CI skill and generalize
the CI skill according to the constraints generated from a new tool-
use manipulation task. We verify the effectiveness of the proposed
framework through some typical tool-use experiments, including
pushing objects, cutting and obstacle avoidance in actuality. The
development of this framework can be used in industrial and house
working scenarios.

 This work was supported in part by Engineering and Physical Sciences

Research Council (EPSRC) under Grant EP/S001913 and in part by the Marie
Skłodowska-Curie Actions Individual Fellowship under Grant 101030691.

 Zhenyu Lu and Ning Wang are with the Bristol Robotics Laboratory,
University of the West of England, BS16 1QY, UK.

Index Terms—Dynamic movement primitives, Robot learning,
Skill transfer, Multi-tool use skill, Robot manipulation

I. INTRODUCTION

OOLS are essential for extending the reach and enhancing
the working efficiency of humans, which are also crucial
for improving the flexibility of robot manipulations. As

indicated in [1], tool use is an important avenue for the research
of robot manipulation, and some preliminary studies have been
conducted in this direction. Qin et al. made a comprehensive
review of robot tool use and a classification as non-causal tool
use and causal tool use. The causal tool use is further separated
to single and multiple manipulations with detailed taxonomies
[2]. Generally, a robot tool use skill is defined as manipulating
an object through some actions to reach the desired objectives.
Compared to robot causal tool use, non-causal tool use tasks
emphasize generating accurate actions with less consideration
of the objects, effects, and relations, which is applicable for the
fine manipulations that require high precision, such as fastening
nuts [4] and screws [5], pouring water [15], cutting and drilling
objects [6], [7], [16], and drawing. Causal tool-use emphasizes
actions of realizing the desired effects and the research has more
widespread topics, covering tool recognition, selection, action
planning, tool-use strategy and multiple tool-use cooperation in
which several robots complete complicated and sequential tasks,
such as tidying [17], assembling furniture [3], scooping using
spoon-like tools [63] and manipulating deformable objects [65].
The majority of tool-use methodologies are verified by typical
applications, including pushing-slider, pouring, cutting and peg
-in-hole tasks [66].

The methodology of robot tool use can be categorized as tool-
use recognition and tool-use skill generation. Tool recognition
is to identify the “properties of a tool” [53] or “understanding
tool-use desired effects” [52]. Understanding the affordances of
objects was well-studied, but the functional usage recognition
draws some attention but not been thoroughly researched [40]-
[45] For example, Zhu et al. proposed a new framework aiming
at understanding underlying functions, physics and causality in
using objects as “tools” [41]. Qin et al. proposed KETO which
can learn key point representations of tool-based manipulations

 Chenguang Yang was with Bristol Robotics Laboratory, University of the
West of England, Bristol, BS16 1QY, UK, and is with Department of Computer
Science, University of Liverpool, Liverpool, L69 3BX, UK.

*Corresponding author. Email:cyang@ieee.org

Zhenyu Lu, Member, IEEE, Ning Wang, Member, IEEE, and Chenguang Yang, Fellow, IEEE

A Dynamic Movement Primitives-based Tool
Use Skill Learning and Transfer Framework for

Robot Manipulation

T

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

[51]. Hassanin et al. classified three types of tool functionalities
as motion-based, interaction-based, and shape-based functiona-
lities, and the tool features are handcrafted and then trained by
supervised learning [40]. However, there are limitations to the
tool use, such as when objects or tools are significantly different
from the training cases, it is difficult to process [45].

Robot tool-use skills can be generated using various methods,
such as deep learning [62], [64], reinforcement learning [67],
[68] and imitation learning [13], [14], [63] for robot arms [10],
[11] and whole-body robots [12]. Imitation learning or learning
from demonstration (LfD) technology drew much attention that
enables robots to quickly acquire skills from demonstrations to
mimic human tool-use actions safely by kinesthetic teaching,
teleoperation, and passive observation [8], [9]. Usually, a long-
term skill can be further segmented into several primitive skills
for tool use that are easy to generalise and composed to achieve
a new action [29]. Dynamic Movement Primitives (DMP) is a
classic method of learning primitive skills that leverages the
idea of attractors from dynamical systems [16], [19] to generate
some actions for grasping [19]-[20], lower-limb prosthesis [21]
and exoskeleton control [22]-[24], minimally invasive surgery
[25], visual servoing control [26], and EMG-based impedance
control [27]-[29]. The DMPs and their improved methods are
categorized as non-causal tool use in [2]. However, it can be
used to generate trajectories combined with deep learning [64]
and reinforcement learning [68] for causal tool-use cases.

This paper will focus on DMP-based transferable causal tool-
use skills, which are learned and transferred to another tool [2].
Feature matching of unlearned objects and known objects is a
research branch in this direction as well as the prework for the
following action generation algorithms. Tee and Brown et. al,
did research on effective tool-use region recognition, which is
the precursor to robot tool manipulation [52], [53], [56]. The
research integrated various analytical models, deep learning
and feature mapping methods with the prior knowledge of tools,
objects, and environments to identify effective region features
[13], [52] and key points [51] of tools and generate parametric
constraints from demonstration [46]-[48]. In this paper, we will
focus on tool-use action planning based on the tool recognition
and perception results.

During the demonstration process, human actions or robot
actions in kinesthetic teaching for a specific tool are recorded.
However, the actions are specific to this tool-use case and only
applicable to tools with similar sizes, shapes and usages, which

may not be suitable for other tools. Meanwhile, humans easily
transfer one tool-use skill to another tool, find the common use
between the two tools and adapt actions to realize the same
operational goals. In this paper, we refer to this human ability
and name a skill, which is not constrained by functions, sizes
and shapes of tools, as a constraint-irrelevant (CI) skill. For
example, we use a hammer to strike a nail. The structure of the
hammer and its special functions of holding the handle and
using the hammer head to strike nails will constrain the hand’s
trajectory. For another tool, we can use it to realize the same
purpose differently. Therefore, the CI skill is described as the
‘strike’ skill which is not limited to a hammer.

This paper aims to acquire CI skills from demonstrations by
separating multiple constrained conditions from the tools, the
environment and manipulation requirements and transferring
the learned skills to another tool-use case. We propose the tool-
use skill learning and transfer framework along with two types
of skills based on the concept of CI skills: object operating (O2)
skill and tool flipping (TF) skill in Fig. 1. O2 skill describes tool
use trajectory affecting an object and enables the object to reach
the design position. TF skill describes the process in which the
object remains static and the tool changes contact state with the
object or the ability to connect dispersed O2 skills to organize
a continuous action. Meanwhile, due to the different constraints
of the tools and the environment, we proposed a model-based
and a constraint-based method for the O2 skills and a virtual-
trajectory-based method for the TF skill.

The two O2 skills are distinguished by whether constraints
can be modelled or expressed by discrete datasets. The model-
based method contains a new iterative identification algorithm
for estimating parameters of the model and the constraint-based
method builds a Sigmoid-like function to extract CI skills from
the trajectories with constraints. The TF skill divides a tool-use
flipping actions into two correlative DMPs, one is the CI skill
and the other is a virtual trajectory relating to the outline of the
object. The learned CI skills can be generalized for a new task
using a new tool under some constraints from the environment
and the tool. The O2 skills are generalized by constrained-DMP
lite, which is developed from a method in our previous research
[21]. The TF skill generalization is realized by combining the
generalized two correlative skills to achieve a new TF action to
bridge the separated O2 skills to achieve a continuous tool-use
action for new tools’ applications. These skills are realized in
different parts in Section III and marked in Fig.1 separately.

Fig. 1. Illustration of Tool-Use Skill Learning and Transfer Framework. The framework considers the relationships between objects and the environment,
objects and tools, and tool-flipping operational requirements. The contributions are presented in skill learning and generalization modules and highlighted in
green. The O2 skill is for action generation in manipulating objects and is divided into a model-based method and a constraint-based method. The TF skill is
for generating tool flipping actions to change the tool contact regions. The two types of skills are integrated for robot tool-use manipulations.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

The remainder of this paper is organized as follows: Section
2 introduces the preliminary work, especially about DMPs and
their improved methods. We present the limitations of using
these methods for tool-use manipulation through an example.
Section 3 presents the learning and generalization methods of
the O2 skill and the TF skill and robot controllers to realize
these skills in actuality. The generated trajectory is proved to
converge to the target position, satisfies the rigorous constraints
and requirements for tool-use operations and avoids conflicts
with the environment and the objects. Section 4 conducts two
experiments to verify the effectiveness of the proposed method
integrating two types of skills. Section 5 makes a discussion on
autonomy of skill learning and generalization, and increment of
calculation complexity. Section 6 make a conclusion.

II. PRELIMINARY WORK

A. General DMP

Following the taxonomy of tool use in [2], DMP, proposed
by Ijspeert et al. and updated in 2013 [18], is a typical non-
causal tool use learning method. It has a concise and effective
representation used for learning from demonstrations of robotic
skills due to its strong generalization ability. A general DMP
model is expressed as

    z zv g x v f s

x v

  



    







, (1)

where x is the position and x is the velocity of the trajectory,

  ()Tf s s W Ψ is a linear combination of n nonlinear Radial

Basic Functions, named forcing function, which enables robots
to follow any trajectory from the start 0x to the goal g , where

 1 2, , ..., ,
T

nw w wW  1 2() , , ...,
T

ns   Ψ and

 2

1

()
, () exp(())

()
i

i i i in

ii

s s
s h s c

s


 




   


, (2)

where ic and 0ih  are the centers and widths of the Radial

Basic Functions respectively, and , 0z z   are coefficients.

Eq. (1) has the unique attracting point at , 0. 0x g v    is

a scaling parameter, and s is a phase variable to achieve the
dependency of  f s out of time, whose dynamics is expressed

by a canonical system as
 , 0s s     . (3)

The converging time is modified by factor  , and vector W

is learned using locally weighted regression [29]:

    2

1
min

N Tar
jj

f f s


 , (4)

where N represents the number of demonstrated trajectories

and  jf s represents the item calculated by the jth trajectory

jx , and Tar
jf is the target value of  f s :

   Tar
j j z z j jf v g x v      , (5)

 By changing the start 0x , goal g and scaling factor  , the

skill expressed by DMP can be generalized in a new task.

B. Improved DMP for constrained conditions

The DMPs model in (1) are improved to perform constrained
tasks, such as obstacle avoidance [30] and cooperative manipu-
lation [31], where constraints are generated by obstacles, and
the relative distances of robot ends. The function of the DMP
model is also modified. For example, Park et. al [32] and Tan
et. al [38] added a gradient of a potential field to the forcing
function. Hoffmann et.al [33] were motivated by the biological
data and extended the DMP function into a new expression
without singularities and large accelerations to achieve
automatic goal adaptation and real-time obstacle avoidance.
Umlauft et. al [35] and Gams et. al [37] developed coupling
movement primitives (CMP) for cooperative manipulation.
These improved DMPs are presented by adding a new term u

to the forcing function  f s , which can be expressed in a

general form as

    z zv g x v f s u

x v

  



      







, (6)

where u is the additional term, like)exp(Rv   in [33].

The parameters  and  are known, and the variable  and

matrix R are observable. In our recent research, we considered
the case that term u cannot be modelled but characterized by
a set of discrete datasets and proposed the Constrained Dynamic
Movement Primitives (C-DMP) [21] for skill generalization.
However, the DMP-based model only addressed the constraints
after learning skills, which may lead to unsatisfactory results in
an environment with different constraints. For example, the
demonstrations of obstacle avoidance maybe inherently contain
limitations imposed by obstacles, and the learned skills may not
generalize well to environments without obstacles or with more
obstacles.

C. How to separate CI skills from demonstrations

Separating a CI skill from tool use demonstrations influenced
by constraints is a core challenge to be resolved. We can specify
the question from the mathematical perspective of DMP. DMP
can represent an action learned from a demonstration or a series
of actions. After adding the constrained conditions to (1), we
can achieve (6), where u is the term influenced by the
constraints. If u is well-modelled and the parameters in u
are known, we can easily reduce u from (6) and achieve the
CI skill expressed by (1), like the methods in [30]-[38].

However, during the demonstration process, the parameters
in u are usually unknown or the constraints cannot be
extracted with an exact model of u but are expressed by a
series of discrete datasets like in [21]. Meanwhile, the
constraints generated by the objects, tools and environment
have been inherited in the demonstrations. Then the proposed
methods in Section III are to separate the influence of u ,
achieve CI skills in (1) and adapt the learned results to new
tasks with the new constraints generated from new objects and
environments to realize skill transfer.

Here, we can use an example to illustrate the necessity of CI
skill learning for tool-use cases. As shown in Fig. 2, we use a
finger-shaped tool (blue) to push an object (red circle) forward

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

and leftward, generating trajectories of the object and the tool
(Fig. 2(b)). The effective contact regions are shown in Fig. 2(c).
Multiple trajectories are obtained by repeating object pushing
action, as shown in Fig. 2(d), and DMPs are used to learn from
these trajectories to achieve a red line in Fig. 2(e). We see that
the learned trajectory, red line in Fig. 2(e), is smoother than the
demonstrations and has fewer corners due to the state change of
pushing actions, indicating that the learned skill diminishes the
features of tool-use actions. Therefore, the learned results from
demonstrations can not applied to new tools and tasks, because
the generated trajectories may be not suitable for the given tools.

III. MULTI-TOOL USE SKILL LEARNING AND TRANSFER

In this section, we will carefully introduce how to realize the
modules in Fig.1. Subsections A and B are for the O2 skill and
the TF skill learning from human demonstrations, respectively.
Subsection C is for skill generalization of both O2 skill TF skill
and integration of the two skills to achieve a desired trajectory.
Subsection D designs a controller to enable the robot to follow
the trajectory to complete a new tool-use task.

A. Object operating (O2) skill learning

1) Model-based method

In the model-based method, the expression of u is known

but with unknown parameters. Therefore, the term  f s cannot

be achieved without knowledge of the exact expression of u .
The first is estimating a forcing function term integrating

 f s and u by minimizing

    2

1
min ,

N Tar
jj

F F s u


 . (7)

where

   Tar
j j z z j jF v g x v      , (8)

and
  (,) :F s u f s u   . (9)

Next, with knowing the general expression of u , such as
)ex= p(Ru v   in [33], we need to estimate parameters 

and  , and separate u from (,)F s u . The u is transformed

by a function (*)T and expressed as

   TT u   θ Ψ , (10)

where is a noise term, θ is an unknown parameter vector and
Ψ is a state vector for identification. For example, u in [33]
can be transformed as

    ln ()exp lnT
i iRv Rv     θ Ψ , (11)

where  n ,l
T

    θ and Ψ  1,
T

i . Set ˆ()kθ as the

estimation of θ in the thk calculation round, then the target

value of  f s in (9) is calculated by ˆ()kθ at the thk time as

 (()ˆ)Tar Tar
j k jf F u k  θ . (12)

and  f s at the thk round is calculated by minimizing

    2

1
min

N Tar
j k kj

f f s


 . (13)

The vector ˆ(+1)kθ is updated based on the kth calculating

results ˆ()kθ and  k
f s as

      ˆ ˆ ˆ(1) () (), T
n k

Tk F s u f sk k    θ θ K θ Ψ (14)

where  is a constant updating factor and nK is a gain matrix.

It is obvious that if ˆ()Kθ converged at the calculation round

k K , then   k Kf s  will approach to a stable results. Finally,

we can get the stable results of ˆ()Kθ and   k Kf s  as the final

outcomes of O2 skill learning, the CI skill, is expressed as

    z z k Kv g x v f s

x v

  


    







 (15)

and the constrained model is estimated as  ˆ()Tu T K  θ Ψ ,

where  *T  represents the inverse calculation of  *T . The

calculation procedure is presented in Algorithm 1 in detail.

2) Constraint-based method.

Discontinuous limitations widely exist in the trajectory
planning of autonomous vehicles [54] and robots [55]. Usually,
the boundaries are obtained through digital maps [54] or the
corresponding configuration [55]. For the O2 skill learning, we

(a) (b)

(c)

 (d) (e)
Fig. 2. Demonstration and skill learning based on DMP (a) Experiment setup
(b) Trajectories of the tool’s end and object center (c) The effective tool-using
areas of the tool and the generated trajectory. (d) Object moving trajectories
(e) Skill learning from demonstrations based on the standard DMP

-5 0 5
4

6

8

10

12

-5 0 5
4

6

8

10

12

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

assume that the skill learned and expressed by (1) . Each point
x is limited by constraints L Hx x x  . If we want to achieve
a CI skill by removing the influence of constrained inequality,

our solution is to find a transformation function from x to ux ,
similar to the polar-like space analysis approach [69], to match
the constrained space and the universal space with the unique
mapping relationship.

To achieve this, we first learn a constraint skill from human
demonstrations using (1). Next, a sigmoid-like function is built

to convert x to ux , thus removing constraints imposed by the
boundaries:

 

(())1
u H L

H L

H L

L

k x k x k x

x x
x x

e  


 


, (16)

Here, k , Hk and Lk are non-zero constants, satisfying 0 

, 1H Lk k  and 1H Lk k  . In (16), the relationship between x

and ux is unique. ux can be achieved by the inverse calculation

1

log
H

u H L
H LL

x x
x k x k x

k x x

 
     

. (17)

 It is desirable that the start and end points will be not changed,

that is ux x at time 0t  and t   . Based on this condition,

we can achieve the values of Lk , Hk and k :

Proposition 1 (The proof of Proposition 1 is presented in the
Appendix A.): For the Sigmoid-like mapping function of x and

ux in (16) and (17), the essential condition of 0,
u

tx x   is

 

   
 

 

   
 

0 0
0

1 1

0 0 0

0 0

0 0
0

1 1

0 0 0

0 0

1
log

log log

log

1
log

log log

log

L L
g L H

H g

L L L L
g g

L H
g

H H
g H H

L g

H L H L
g g

H H
g

x g x x
k x x g

x k x

x x x x g x

x x x

x g x x
k x x g

x k x

x x x x g x

x x x

 
     

    
  


      
    

  

, (18)

and

      

     

0 0
2

0 0 0 0

1
log log

log log

H L H L
g g

H L H L
g g

k x g g x x x
x

x x x x x x

      

   

. (19)

where g and 0x are the goal and start of x in (1), 0, ,L H L
g gx x x and

0
Hx are the boundary conditions of g and 0x , 1x and 2x are

0 0 0 0
1

1

3 1 3 1
2

2

,
,

, 0
,

H L H L H L H L
g g g gx x x x if x x x x

x
others

x x if x x
x

others





    

      

  


 (20)

where    3 0 0 0
H L H L

g gx g x x x x x     , and 1 and 2 are

small enough values for ensuring 1x and 2x are not 0.

Final, we can use DMP in (1) again to learn and generalize a

constraint-irrelevant O2 skill from ux as

    u u u u

z z

u u

v g x v f s

x v

  



    

 




. (21)

where  uf s is achieved based on the new ux and uv . The

constraint-based O2 skill learning is presented in Algorithm 2.

B. Tool Flipping (TF) skill learning

The TF skill is for the situation where the object keeps static
and only the tool changes contact positions on the object. Figure
3 provides an overview of the TF skill. The pink tool changes
contact position from left (point 2) to top (point 1) along a black
solid trajectory and the contact position on the object is changed
from the right to the bottom. This contact point switching path
is influenced by the shapes of both the tool and the object. We
can imagine that if the tool can be seen as a point, the possible
moving trajectory is represented by the blue dashed line in Fig.
3. The extra displacement (a red arrow line in a zoomed figure)
from Point 2 to Point 1 is caused by the tool’s shape. Therefore,
we proposed an idea of 'virtual object movement' to describe
the displacement which is caused by the tool’s shape. First, we
can firstly learn from the tool’s movement (black line) using
DMP to achieve the expression

    Tf Tf Tf Tf Tf

z z

Tf Tf

v g x v f s

x v

  



    

 




. (22)

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

where Tfx and Tfv are the position and velocity of the tool’s

path, and  Tff s is the forcing function. Set 0
Tfx as the start of

Tfx and use the geometric relations at the start and end position

shown in Fig.3, Tfx is divided and expressed by two trajectories:

the tool’s movement tx (blue dashed line that is also a CI TF

skill) and a virtual object movement ox (red dashed line):

    0 1 0 2 0
Tf Tf t Tf o Tfx x k x x k x x     , (23)

where 1k and 2k are constant factors. Then, if the outline of the

tool can be described using the following DMP function:

    o o o o o

z z

o o

v g x v f s

x v

  



    

 




, (24)

we can get the following proposition for the TF skill tx .
Proposition 2: (The proof of Proposition 2 is presented in the
Appendix B.): For a TF demonstration trajectory in (22), after
generating a fixed virtual object’s movement (24), the TF skill
is learned and expressed in a DMP from as

      1 2 1

t t t t Tf o
z z

t t

v g x v f s k k f s k

x v

  



     

 




.(25)

where 1 2,k k satisfy

      1

1 2

Ht oI k I k tr x x
     (26)

where 0
t o Tfx g x   and 0

o t Tfx g x   , and  *tr represents

the trace calculation of a matrix.

Remark 1: As shown in (25), the TF skill has infinite solutions.
We can see from the zoomed figure in Fig.3 that the constraints
come from the start and end points in (23), selection of  of s

in (24) and factors , 1,2ik i  . The term 2k reflects the influence

of the virtual object movement ox to TF skill learning process,

but the trajectory ox doesn’t have a fixed shape. To avoid the
conflict between the tool and objects, we can choose the tool’s

contour to generate ox in (24) and 2 1k  to meet the minimum

requirements for avoiding conflicts. Then we can get the unique

1k and trajectory tx :

       

  

1

1 2

t t t t Tf o
z z

t t

Ht o

v g x v f s f s k

x v

k I tr x x

  



     
 


   




 (27)

We can reduce conflicts between the object and the tool by
enlarging 2k in skill learning and generalization process.

C. Skill generalization

The model-based O2 skill can be generalized by the methods
in [30]-[38] based on the model with the estimated parameters
ˆ()Kθ . The generalization of TF skill is also easy to realize: first

generalizing object virtual movement ox using (24) and the CI
movement of the tool using (25) incorporating the new flipping

contact points separately. After acquiring tx and ox , the new
TF movement of the tool is calculated by

  1 2 2 1 01Tf t o Tfx k x k x k k x     . (28)

where 0
Tfx represents the initial contact point of TF actions. The

primary focus of our contribution is on the generalization of
constraint-based O2 skills, building upon our earlier research
[21], which necessitates prior knowledge of constraints in a new
situation and the reference trajectory cx . In this section, we
enhance this method and propose Constrained-DMP(C-DMP)
lite. First, we assume that the generalized skill is expressed as

    N N N u c

z z

N N

v g x v f s u

x v

  



      

 




, (29)

where cu is an additional constrained term. Similar to (6), Nx

and Nx represent new trajectory and velocity. NLx and NHx are

constraints of Nx , having the same conditions to the constraint-

based learning process: (0)Nx (0)ux and () ()N ux x   . ux

is the generalized CI trajectory. Define NL u
ih x x  , NH

ih x
ux , it is desired that Nx in (29) bounded with

 N u
i ih x x h   . (30)

We build a novel Lyapunov function candidate cV :

 
  

2

2
2

1 1

1 1
log

2 24

i ic
n

i i

h h
V k z

h z z h



 

 
. (31)

where 1
N uz x x  , 2

Nz v   , and  1 2u
i ix z h h    

is a virtual term for ensuring system stabilization, and nk is a

positive number. Then skill generalization condition for (29) is
concluded in Theorem 1 as:
Theorem 1: (The proof of Theorem 1 is presented in Appendix
C.) For the DMP function in (29) with the Lyapunov function
candidate cV in (31), then the sufficient condition for 0cV  ,

enabling Nx to satisfy (30), is

  
 

2
1 1 2

1c
z z z z

ni i

z
u z z k

kh h
    



 
      
  

 ,(32)

where 0zk  is constant factor.

Remark 2: Compared with [21], the expression in (32) is more
concise, requiring fewer manual configurations and featuring a
shorter stability proof. Notably, there is no requirement for the

Fig. 3. Decomposation of tool flipping (TF) skill

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

reference point cx , as calculation of cu can be performed by
(32) directly. Consequently, the C-DMP lite reduces calculation
complexity by at least 30%, thus eliminating time-consuming

calculations of ,c
nx k and 2 . Furthermore, compared to other

improved DMP methods mentioned in [39], this approach does
not depend on acceleration information, which is often subject
to inaccurate measurements.

D. Controller design

After separately generalizing the O2 skill and the TF skill, a
complete trajectory is established for manipulation using a kind
of skill or connecting the two skills to represent the desired path

dx for robot, and we can calculate robot desired joint angle of
dq using the inverse kinematic model.

Therefore, the final step involves controlling robots to follow
the desired trajectory. In general, a robot system is expressed as

    , ()T
eM q q C q q q G J q F       , (33)

where q , q and q represent angle, velocity and acceleration

of robot joints, ()M q and  ,C q q are the inertia matrix and

the centripetal and Coriolis matrix, G is the gravitational
torque, ()J q is the Jacobian matrix and eF represents the

environmental force from interaction process with bounded
values.  is the control torque to be developed as

       + , +d d
e e eM q q k e C q q q k e G r        , (34)

where dq and dq are the desired angle and angle velocity of the

joints, which are calculated by the trajectory achieved by skill
learning methods in Section III. B and generalization results in
Section III.C. Set de q q  is the joint tracking error , the term

+e er e k e  , where ek is a constant factor and  is the constant

impedance factor. Following the previous research [28], [29],
and [59], the controller stability is easy to be proved by building
Lyapunov bounded stable conditions.

IV. EXPERIMENTS

This section conducts several experiments to validate the
effectiveness of the proposed framework. The first experiment
is conducted with a desktop Omni joystick and two self-made
tools, with accurate kinematic and dynamics models of robots
and the tools for error quantification. The second experiment
employs a Franka robot and several real-world tools to verify
generalizability of the proposed framework. The organization
of this Section is: Sections IV.A and B pertain to the first
experiment and its comparative experiment, while Section IV.
C focuses on the second experiment.

A. Experiment 1: a pusher-slider and obstacle avoidance task

Pusher-slider and obstacle avoidance experiments are typical
for verifying tool-use skill ability. In the experiment, we verify
both kills simultaneously. Fig. 4 illustrates the experimental
setup, comprising a Kinect, a Joystick, two tools (coloured
blue), and a red round object. The tools are attached to the end
of the Joystick, which serves both as a demonstrator to record
the positions of the robot end and as an actuator to execute
planned actions. The experiment follows the procedure outlined

in Fig.1, which consists of several steps for pushing the object
from the starting region 'S' to the end region 'E.' The shaded area
'O' represents an obstacle that must be avoided.

We developed two tools for manipulation. Tool 1 has a stick
shape with a round head, while Tool 2 has an L shape with three
surfaces (areas marked as 1, 2 and 3 in Fig. 4) for generating
pushing actions in three directions. These tools are considered
as typical examples of the pull-from-tube tasks described in [8]
and the shape primitives of the tool in the simulation presented
in [50]. Effective contact regions are set manually or recognized
through demonstrations. During the experiments, movements
of both tools and objects are recognized by the camera and the
robot movements are recorded by the Joystick. The geometric
information of tools, objects and obstacles is known beforehand.
This allows us to obtain information for the skill generalization
process. The detailed information about objects, tools, obstacles,
and maps used in the experiments is provided in Table 1.

The constraints are derived from the effective regions of the
tool, obstacles, and the actuator's effective working space, with
the following conditions: the tool’s operational directions are
perpendicular to the contact surfaces, and the object doesn't slip
on the tool's surface. We then utilize human demonstration data,
as shown in Fig. 2(b) and divide, resample, and align them to
create a dataset for learning the O2 and TF skills. The processed
demonstrations are represented as the grey lines in Fig. 2(e) for
the O2 skill and in Fig. 6(c) and (d) for the TF skill.

1) O2 skill learning and generalization

Learning O2 skills is subject to the constraints imposed by
the tool’s usages and robot’s workspace. To account for these

constraints, we define Tx as the contact point positions on the

tool, Ax as the actuator’s end position, and Ox as the object
center position with the relationship ,T T A O O T

A Tx T x x T x  ,

Fig. 4. Experimental setup.

TABLE 1 Acquired information of the tools, objects, obstacles and maps
 Pre-acquired Information

Map
Size: 180mm*180mm,
Demonstration: Start at [6,5.5] and end at [-6,13];
Generalization: Start at [6,8] and end at [-5.5,11];

Tools

Tool 1: Length = 30mm; Width = 12mm; Radius of
contact head =6mm; Head contact angles = [-0.08 rad,
0.08 rad]. Left contact length = 10mm;
Tool 2: Length = 40mm; Width = 40mm; Contact
length of 1st surface =15 mm, Contact length of 2nd
surface =10 mm, Contact length of 3rd surface=20 mm
in Fig. 8;

Object Radius =12 mm;
Obstacle

in map
Rectangular obstacle: width=30mm, height =40mm,
center position is [0 10];

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

where T
AT and O

TT are the transforming matrices. The reachable

areas of tools from the start to the end for each fragment are
presented as the grey shaded areas with blue dots in Fig.5 (a),
while the black line represents the tool’s movement within the
constrained region. These constraints cannot be modelled as an
exact function but can be limited to the boundaries of the grey
areas.

Using (17), we can transfer the trajectories of two sections
into a universal trajectory mapping to the entire region between
two points, presented by the red and blue dot lines. Other object
trajectories are transformed similarly, resulting in a group of CI
actions, as shown by the grey lines in Fig.5 (b). A CI skill is
then learned from these CI actions using the standard DMP. The
model-based method is not applicable because the constraints
are dispersed and cannot be modelled.

Different constraints lead to different generalized O2 skills.
As shown in Fig.5 (c), the green line represents the trajectory
generalized from the learned O2 skill without any constraints.
To avoid conflicts between obstacles and objects, we introduce
a 1.5cm width 'safe margin', as used in [57], to achieve the blue
line shown in Fig. 5(c) using Constrained-DMP lite. In our prior
work [21] and the DMP-based obstacle avoidance methods, e.g.,
[33], the influence of tool contact regions to the trajectory is
rarely considered. Thus, the blue line is the final trajectory for
robot manipulation. Here, we add new constraints from tool-use
cases where the three areas in Fig.4 are selected as the potential
contact areas. The generalized object's movement is shown as
red lines in Fig. 5(c). Due to the frequently changing contact
regions, the object’s motions are completed in three segments,
within the robot’s movement ranges. Especially, in phase 2, the

generalized trajectory suffers from the constraints of the tool's
reachability and 'safe margins' to avoid conflicts with obstacles.
Using the transformation function O A T T

O Ax T T x , the movements

of the L-shape tool are calculated and marked in Fig.5 (d) in
sequence to push forward and leftward the object from the start
to the destination.

2) TF skill learning and generalization

In Fig.6 (a) and (b), we compare the results of learning from
the same demonstrations using different tool shapes: the red line
represents skills learned from the original, the orange line
represents the tool’s outline ox and the blue line represents a

TF skill tx achieved by (23). It is evident that the trajectory in
Fig. 6 (a) significantly derivates from the starting point to avoid
conflicts compared to Fig. 6 (b), even when the start and end
points are the same.

The TF skill can connect O2 actions between two adjacent
phases, as illustrated steps 2 and 3, and steps 4 and 5 in Fig. 5
(b). Fig. 6 (c) and (d) illustrate two examples that we need to
know the initial and the final contact positions and poses for the
objects and tools. For example, we set the position of the object
is (0,0) and the radium is 1.5, the initial and final contact angles
are  1/ 3 , 1/ 3rad rad and  1 12 , 1 3rad rad .The generalized

trajectories are presented in Fig. 6 (c) and (d) and we mark the
flipping processing using numbers. We can see that both objects
and tools change contact positions throughout the TF process to
enable the object to be pushed along the desired direction in the
following O2 actions.

3) Skills integration and application

The final step involves connecting the generalized O2 skills
and TF skills to generate a complete trajectory for the process.
As shown in Fig. 7 (a), the purple lines represent the planned

(a) (b)

(c) (d)

Fig.5. Skill learning and generalization of O2 skill for a pushing and obstacle
avoiding task (a) constraints and unconstrainted trajectory for a fragment in a
demonstration; (b) unconstrainted trajectories and skills learned from them;
(c) generalized skills (the skill is generalized three times: the green line shows
the generalization of the learned CI skill, the blue line is the generalization for
obstacle avoidance based on the green line, and the red line is a generalized
skill considering the tool and the acutator’s constraints and based on the blue-
trajectory; (d) illustraion of using a L-shape tool to push the object to the target
(O2 skill part)

-6 0 6
4

5

6

7

8

9

10

11

* *

. Reachable

area & points
Trajectory

Modified path

points

-5 0 5

2

4

6

8

10

12

14

16

5

4

3

2

(a) (b)

(c) (d)

Fig. 6. Constraints and the recovered demonstrations and the skill learned from
the processed data. (a) TF skill learning for a arched virtual object movement;
(b) TF skill learning for a line virtual object movement; (c-d) TF skill
generalizations for different operational requirements by using a new tool

-4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

1

2

3

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

robot end trajectories achieved in O2 skill generalization (as
depicted in Fig. 5(d)), and the red lines represent the TF skill
generalization results used to connect these O2 skills based on
the end positions, such as (-1, 3.5) achieved in Fig. 5(d) for the
step 5, and its pushing directions of the O2 trajectories, similar
to the results in Fig.6 (c) and (d). By using the controller (34)
and setting the control parameters as 3ek  and 10  , the

joystick with Tool 2 is effectively controlled to push and pan
the object, enabling it to follow the desired way, circumvent
obstacles, and reach the destination successfully. The final real
trajectory is shown as the blue dashed line in Fig. 7 (a) and the
realization process is illustrated in Fig. 7 (b).
Remark 3: Upon achieving the planned trajectory, the focus
shifts to controlling the robot to follow the desired path. Our
previous research dealt with several cases that combined DMP
and adaptive impedance control [16], [28]-[29] as well as neural
network (NN)-based control [58] to ensure stable interaction
with the objects and the environment, taking into consideration
uncertain dynamics and external disturbances. In this paper, we
develop an impedance controller to minimize position tracking
errors. Furthermore, the proposed TF skill allows for real-time
modifications of contact points on the same tool. Therefore, in
case of large errors occurring along the way, we can adjust the
contact points in real-time to achieve trajectory modifications.

B. Comparison with other methods

To evaluate the performance of the proposed framework and
method, we compared the O2 skill and TF skill learning results
with the baseline methods separately. For DMP-based O2 skills,
we compare the results in Fig.5(d) with the trajectory achieved
by the two-level RRT* method [70]. We utilize the same map
and obstacle depicted in Fig. 4 and the parameters in RRT* are
as follows: a displacement of 0.2 cm to the goal, a maximum
step length of 0.2 cm, the neighboring node radius of 1cm, and
the number of the closest vertex (node) extensions set to 7. The
maximum number of nodes is set to 1400 and the satisfaction
condition returned true only for configurations within 0.2 cm
displacement to the goal.

The simulation results about the object motion trajectory are
shown in Fig.8 (a), where the thick highlighted blue nodal lines
represent the final trajectory from the starting point to the target
region, and the thin dark blue short lines represent the extended
trajectories. We can observe that the end of the trajectory does
not coincide with the destination, even if the target position is
known beforehand using the RRT* method. However, within

the DMP, a trajectory is generated based on the start and end
points, and the forcing function in (1) decreases to zero at the
end, ensuring that the trajectory stops at the target.

Based on the results in Fig.8 (a), we further make a tool-level
movement planning. If we don’t consider the constraints of the
pushing directions and working regions of the tool, any contact
point can be selected to push the object along the planned
trajectory to the target, as shown in Fig.8 (b). However, there
exist some constraints, such as the location of the joystick base,
reachable regions, and limited DOFs of the actuator (only three
joints are driven by the motors of the joystick), the tool should
select several available contact points to push the object from
one node to the next generated by RRT*. As illustrated in Fig.
8 (c), the tool changes contact points (22 points) throughout the
path in three phases colored purple, green, and orange in Fig. 8
(d). It is notable that the L-shaped tool changes contact surfaces
only twice, from the bottom side to the left side and then from
the left side to the top side, resembling the DMP-based method
results in Fig.5(d).

The difference lies in the fact that the RRT*-based method
always requires changing contact points to push the object in
the planned directions, while the DMP-based O2 skill learning
only needs three contact points to push the object to the target
with fewer calculations. Additionally, the RRT* based method
does not fully consider the multiple constraints of the tool and
environment during object-level planning, which may result in
the generated tool positions that are not reachable under these
constraints. In contrast, the proposed DMP-based method fully
considers these constraints, generating an object trajectory from
start to destination that can't be generalized to a new case by the
RRT* based tool-use action. However, DMP can be combined
with RRT* to implement path rescheduling as shown in [71]
allowing for human-like responses through the use of human
demonstrations.

We compare the computation complexity of the two methods.
Following the depictions in [60], the computational complexity
of DMPs depends on the regression calculation to minimize the
weighted quadratic error in (4). Generally, we can use Locally
Weighted Regression(LWR) and Locally Weighted Projection
Regression (LWPR) to perform the regression, but the two
methods require different computational complexities. For

LWR, it is polynomial 2()n , and for LWPR, it is linear ()n ,

where n represents the size of the data set. The proposed
framework comprises several improved DMPs, where the main
calculation burden still lies in the regression calculation.
Therefore, the number of calculations increases linearly and the

 (a) (b)
Fig. 7. The whole-process skill generealization and experimental certification for goal reaching task by integrating the O2 and TF skills; (a) Generalized and
real measured trajectories; (b) Demonstrations using the old tool and experimental certifications for generalized skills based on the new tool.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 10

computation complexity ranges between ()l n and 2()l n ,

where l depends on the division of tool-use phases and iteration
number for the identification. Moreover, the computational
complexity or time is also determined by the number of the
basic function i in (2) [60]. FFT* method and its improved

methods exhibits a computation complexity of (log)n n [61],

a value between ()n and 2()n , where n represents the

number of samples. Therefore, the computational complexities
of the two algorithms are at the similar level. For the cases with
a large number of samples, it is suggested to use LWPR to
achieve more efficient calculations. According to [60], the

average computational time of DMPs ranges from 410 s to
310 s. The proposed framework increases the computational

complexity linearly, and the time is also linearly increased from
310 s to 110 s, as verified through simulation using MATLAB.

A detailed summary of the comparisons is presented in Table 2.
We further compare the results of the classic DMPs for tool

flipping actions, as presented in Fig. 9 (a) and (b), with those
from TF skills, which are shown in Fig. 6 (c) and (d) under the
same conditions. Our method of decomposing and recombining
the learned DMP skills for tool flipping has two advantages.
Firstly, it enables the tool to change contact points and
directions during the tool flipping process and final states
simultaneously. While the classic DMP-based approach results
in conflicts and cannot be used to realize this purpose, as
indicated in Fig. 9. It is due to that the shape of the tool and
contacting point changes on the tool are not considered such
that the object may be knocked out by the tool. Secondly, by
choosing 2 1k  , the range of robot motion is smaller based on

the proposed approach. For example, the right range of the
trajectory in Fig.9 (a) is approximately 8 cm, while it is only
about 5 cm in Fig.6 (c).

C. Applications on robot arms and real-world tools

The proposed methods are executed using a Franka robot and
real-world tools, such as cups and knives, to perform pouring
and cutting tasks. The primary difference between real-world
tools and 3D-printed tools is that the geometry of the real tools
is not accurately modelled. Therefore, human demonstrators are
required to indicate the functions and effective working regions
of the tools through human demonstrations. Simultaneously, the
demonstration trajectories are recorded for skill learning and
generalization. Fig. 10 illustrates the processes of robot tool-use
manipulations for cutting and pouring with different objects.
The human demonstrator only demonstrates once, and the rest
of the actions are performed by the robot autonomously. Fig. 11
illustrates the results of interacting with different objects.

In Fig. 10(a), we can observe that the generalized actions can
adapt to different object requirements, such as slicing a banana
into three parts and dealing with objects of different shapes and
sizes, such as biscuits, grapes, strawberries, and meatballs. We
can compare the incision made, when cutting the banana using
the tool-use method (Fig.11(b)) with that using general skills
learned from demonstrations (Fig. 14(a)). Since the sections cut
by the tools are chosen to constrain the robot’s motions, the

 (a) (b)

 (c) (d)
Fig.8. Two-level tool-use skill trajectory planning using RRT* method (a)
object movements (blue thick line with 22 trajectory nodes is the final object
movement and dark thin line segments are extended trajectories. (b) pushing
motions without limitations of the tool’s effective using regions and
directions; (c) tool’s pushing motions without constraints of tool’s effective
contact directions and regions; (d) three phases of tool’s motions from the
start to the destination(the purple tool with dash and solid lines in the same
color represents the tool pushing states, object’s motions and the tool’s
motions in the 1st phase, the green tool with green lines represent those in
phase 2 and the orange tool with orange lines respresent results in phase 3)

(a) (b)

Fig. 9. TF skill learning and generalization using a new tool to realize tool
flipping. (a-b) The comparative results of using the general DMP technology
to those in Fig. 6 (c) and (d)

TABLE 2 Comparison of the proposed method with Two-Level RRT* tool
use trajectory:

Proposed DMP
-based method

Two-level
RRT*

Levels of tool action planning 2 2
Phases of tool movement 3 3

Number of trajectory points/tool
trajectory rescheduling times

4 22

Continuous tool trajectory
within each phase

Yes No

Feasibility of reaching the goals Yes May not
If a generated position is
unreachable by the tool

No May yes

Skill generalization ability Yes No
Incorporation of human

demonstrations
Yes No

Computational complexity 2() ()lO n lO n (log)O n n

Computational time 310 s to 110 s 310 s to 110 s

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 11

incisions are much smoother, and the actions are adaptable to
meet various object-cutting demands (Fig. 11(c) to (Fig. 11(f)).

For the pouring task, actions are generated encompassing two
sub-actions: approaching the desired position and pouring the
objects into the particulate matter into different containers.
These actions are governed by constraints such as the shape of
the pouring cup, the pose, position, and shape of the object
containers, as well as the requirement that the relative distance
of pouring edges on the two containers must be sufficiently
close to ensure a successful pour. In the case of the second sub-
action, consideration needs to be given to avoiding conflicts
within a confined space. Therefore, we utilize the O2 skill to

achieve goal approaching and the TF skill to ensure pouring
accuracy. As depicted in Fig. 10(b), the robot learns pouring
skills from human demonstrations and successfully pours the
beans into the target cups. Figs. 11 (g) to (i) illustrate that only
for the tall bottle with a narrow mouth, some beans are spilt,
while the other two wide-mouth containers collect all the beans,
thereby verifying the effectiveness of the action execution.

Through the above experiments, we know that the O2 and TF
skills can be used independently and are compatible with other
DMP methods. For example, the pouring experiment is taken
by integrating the TF skill and O2 skill to complete the whole
action, while the cutting experiment is only based on the O2
skill. Compared to other DMP methods, the learned CI skills
can eliminate the influence of constraints from the special tools
that occurs during the human demonstration process and enable
the skill to have stronger generalizability.

V. DISCUSSION

A. Autonomy of skill learning and generalization

The effective region and function recognition of tools in tool-
use applications is the precursor to tool manipulation [52], [53],
[56]. The DMP-based skill learning and generalization methods
proposed in this paper belong to action planning of non-causal
tool-use tasks. Therefore, the methods are taken after acquiring
prior knowledge of tools, objects, and environments by utilizing
analytical models and deep learning algorithms to identify the
features [13],[52] and key points [51] and generate parametric
constraints from demonstrations [46]-[48]. Then these methods,
combined with the proposed DMP-based tool-use skill learning
framework and controllers, like (34), can lead to autonomy in
skill learning, generalization and action execution to satisfy the

 (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

(a) Object cutting tasks (i-v) banana cutting process (vi-viii) cutting other different objects(grape, strawberry and wafer biscuits)

 (i) (ii) (iii) (iv)

 (v) (vi) (vii) (viii)

(b) Pouring tasks (i-vi) bean pouring process (vii, viii) pouring to other different containers

Fig.10. Experiments taken on real robot and tools.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)
Fig.11. Experimental results. (a)-(f) results of cutting different objects; (g)-(i)
results of pouring beans to different containers.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12

assumptions or manipulation requirements (as those introduced
in Section IV).

There are also some research integrated modeling, and skill
learning and control of robots to generate actions and policies
directly. For example, Seita et. al utilized 3D dense point flow
prediction [63] and the learned perception model [72] to predict
the tool and object state for further manipulation. Pertsch et al.
[73] and Wang et al. [74] utilized reinforcement learning (RL)
for robot interaction with environments and completing block
stacking tasks. The difference is these methods need to build
observation-action pairs, and the actions are generated by the
observations (states) or networks. It needs to learn the policy
through demonstrations and setting some parameters with some
calculation time. It is obvious that the methods can generate the
actions directly without the need for the separated steps for tool
recognition and tool-use planning. However, the research did
not realize skill transfer from one tool to another and the actions
are not continuous and expressed in a formulation.

Comparatively, DMPs can conclude and express a skill from
multiple similar demonstrations. The calculation of DMP could
filter trajectory deviations and achieve a smooth trajectory from
the start to the end. DMP is also a one-shot learning method that
does not need a long time for policy resignation. Meanwhile,
manual settings based on human experience and requirements
are still necessary, such as the "safe margin" width and control
parameters. These requirements are easy to present as the
constraints to add to the learned trajectory without the need of
retraining the network and policies. However, the DMP-based
method is still a non-causal tool-use, where the pre-knowledge
about the tools, objects and the environment are so necessary to
generate constraints and trajectories, which is not flexible and
cannot be updated through training in the simulation and real-
world environments.

B. Incremental calculation complexity

Compared with Reinforcement Learning and other network-
based learning methods, the calculation complexity of the DMP
-based method is much smaller such that the results are learned
and achieved within a short period or even real-time execution.
Therefore, we only compare the incremental complexity of the
proposed method with the classic DMP method.

Regarding the model-based learning method of the O2 skills,

incremental computations are spent on the estimation of  ˆ kθ .

Therefore, it requires several iterations of DMP calculations to

achieve  ˆ Kθ , and then the calculation complexity increases

K times to obtain u in (9) for a new skill. Generalization
does not need extra computations since the model for u is
fixed. Fortunately, the identification process converges within
a few steps, which can minimize the calculation time required.
In the case of the constraint-based O2 skill, after calculating the
parameters Hk , Lk and k using (18) and (19), additional

computations are performed to extract CI actions via (17). The
actions are learned using DMP, and no extra computations are
required. The improved skill generalization method presented
in [33], known as constrained DMP lite, can reduce complexity
compared to the methods in [33] , as it eliminates the need for

additional calculations of cx and 2 . In the context of TF skill

learning, the original TF actions are divided and expressed
using two DMP functions, resulting in three DMPs. Therefore,
the computations for skill learning and generalization are
tripled. In the overall framework, human demonstrations are
separated into several O2 and TF actions, which are learned and
generalized separately and achieve an action chain for a new
tool-use manipulation task. So the complexity combines the
calculations of the two skills. The computational complexity is
higher than that of the original DMP and other improved multi-
phase DMPs e.g., [29]. However, the proposed method can
effectively avoid conflicts and ensure that the object can follow
the desired trajectory when using special tools to move within
the robot's reachable areas.

VI. CONCLUSION

This paper presents research on robot tool-use skill learning
and transfer based on DMP to enable robots to adapt tool-use
skills from one tool to another in a new task. We propose a new
framework comprising two skills: the O2 skill and the TF skill,
along with several technical innovations based on DMP relating
to action decomposition and combination. The O2 skill can be
achieved in two ways, depending on whether the constraints can
be modeled or expressed with discrete datasets. Additionally,
we improved our previous work [21] by reducing over one-third
of the computations required for skill generalization. The TF
skill ensures the continuity for generalizations of O2 skills.

We perform several simulations and experiments to verify
the effectiveness of both independent and joint applications of
the O2 skills and TF skills. The results illustrate that, compared
to the two-level RRT* tool-use trajectory planning, the O2
skills achieve a continuous and accurate trajectory with fewer
rescheduling times. The TF skill can avoid conflicts between
tools and the object during the moving period and at the contact
moment. Experiments conducted on the Franka robot platforms
focus on the verification of the generalizability of the proposed
framework and independent methods.

Although the improved methods are only based on DMPs,
the framework is not limited to this method. Some recently
proposed methods, such as kernelized movement primitive [49],
can also be incorporated into the framework as well, to reduce
calculation complexity to some extent.

APPENDIX

A. Proof of Proposition 1

In the trajectory transformation, it is desired that start and end

points should not be changed, namely 0,
u

tx x   , then we

can create the following condition:

0 0

0 0 0
0 0

1
log

1
log

H
g H L

H g L gL
g

H
H L

H LL

x g
g k x k x

k g x

x x
x k x k x

k x x

  
        


 

      

. (35)

By setting 0 0
H L H L
g gx x x x , Hk and Lk can be calculated by:

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 13

   

     

   

     

0 0
0

0 0 0 0

0 0 0 0 0

0 0
0

0 0 0 0

0 0 0 0 0

1
log

log log log

1
log

log log log

L L
g L H

H gH L H L H L H L
g g g g

L L L L L H
g g g

H H
g H H

L gH L H L H L H L
g g g g

H L H L H H
g g g

x g x x
k x x g

x x x x k x x x x

x x x x g x x x x

x g x x
k x x g

x x x x k x x x x

x x x x g x x x x

 
     


     


      

     





.

(36)
According to 1H Lk k  , we can get

   

   

0 0
0 0

0 0

0 0 0 0 0

1
log log

H H
gL H L H

g gL L
g

L H L H H L H L
g g g g

x g x x
x x x x

k g x x x

x x g x x x x x x x

    
             

    

. (37)

Then, if    0 0 0 0 0 0H L H L H L H L
g g g gg x x x x x x x x x      is

satisfied, the general expression of k is

   

   

0 0
0 0

0 0

0 0 0 0 0

log log
H H
g H L H L

g gL L
g

H L H L H L H L
g g g g

x g x x
x x x x

g x x x
k

g x x x x x x x x x

   
          

    
. (38)

B. Proof of Proposition 2

Following (23) and setting tg and og as the end position of
tx and ox , we have

   
   

0 1 0 2 0

0 1 0 2 0

Tf Tf t Tf o Tf

Tf Tf t Tf o Tf

x x k x x k x x

g x k g x k g x

     


    
. (39)

According to the geometric relationship in Fig.3 , we can get

0
Tf Tf o tg x x x     . Taking the conditions into (39), we have

      1

1 2

Ht oI k I k tr x x
     , (40)

which means 1k and 2k are determined by the relative distance

of the start and end contact points. Using (23), we have

  1 2 1 2 0
Tf t o Tfx k x k x I k k x     . (41)

Furthermore, we assume that tx and ox can be expressed by
DMP, sharing the same phase variable s as

    t t t t t

z z

t t

v g x v f s

x v

  



    

 




, (42)

    o o o o o

z z

o o

v g x v f s

x v

  



    

 




. (43)

Using (22) and (42), we have

      1

t t t t Tf t
z z

t t

v g x v f s k f s

x v

  



     

 

   
 

, (44)

where 1
t Tf tg g k g  , 1

t Tf tx x k x  and 1
t Tf tv v k v  .

Taking (41) into (44), we can get

    

   
2 2 2

1 1 2 0

o t o o Tf
z z

t Tf
z z

k v g k x k v f s

k f s I k k x

  

 

    

  

 
. (45)

Comparing (43) with (45) and considering 0
Tf Tf og x x  

tx we have

      1 2 0Tf t of s k f s k f s   . (46)

 Taking      1 2 1
t Tf of s f s k k f s k  into (42), (25) is

achieved.

C. Proof of Theorem 1

 Following (31), we set
 

  

2

1

1 1

1
log

2 4

i ic

i i

h h
V

h z z h




 
and

2
2 2

1

2
c

nV k z . As     
2

1 14 0i i i ih h h z z h     , then

 1

2

1
log 1 0

2

0

c

c

V

V

  

 

, (47)

Thus, 1 2 0c c cV V V   and the desired condition is 0cV  .

Taking (29) into 1
cV , we have

 
   

 

 
  

 

 
  

   

  

1

1

1 1

1

2

1 1

1

1

1 1

2

2
1 1 1

2
2

1 1

2

2
=

2

2

2 2

4

i ic u N

i i

i i u

i i

i i u i i

i i

i i
i i

i i

z h h
V x x

h z z h

z h h
x z

h z z h

z h h h h
x z

h z z h

h h z
z h z z h

z

h z z h

 


 


 






 
  

 

 
  

 

   
      

   

 
     

 

 

  



 . (48)

Setting  1 2 0u
i ix z h h      , we can get

  1 2u
i ix z h h     , (49)

and the following inequality is achieved by (48) as

  

2
2

1

1 14
c

i i

z
V

h z z h


 
 . (50)

The time derivative of 2
cV is

  2 2 2 2
c N

n nV k z z k z v       . (51)

The sufficient condition for 0cV  is 1 0k  satisfies

    

2
2

1 2 2

1 14

0

c c N
n

i i

z
V V k z v

h z z h
 


   

 



  
 .(52)

Taking the definition of  into (52), we have

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 14

    

 

2
2

2 1

1 1

2
22

4

1

N u
n

i i

z

i i

z
k z v v z

h z z h

k z
h h






   
 

 
   
  

  

. (53)

where zk is a tiny positive number.

Finally, taking (21) and (29) into (53), we can get

  
 

2
1 1 2

1c
z z z z

ni i

z
u z z k

kh h
    



 
      
  

 . (54)

REFERENCES
[1] A. Billard, and D. Kragic, "Trends and challenges in robot manipulation,

" Science, vol. 364, no. 6446, p.eaat8414. 2019.
[2] M. Qin, J. Brawer, and B. Scassellati, "Robot tool use: A survey". Front.

Robot. AI, vol. 9, p.1009488. 2023.
[3] R. A. Knepper, T. Layton, J. Romanishin and D. Rus, "IkeaBot: An

autonomous multi-robot coordinated furniture assembly system," in
IEEE Int. Conf. Robot. Autom., Karlsruhe, Germany, 2013, pp. 855-862.

[4] K. Pfeiffer, A. Escande, and A. Kheddar, "Nut fastening with a humanoid
robot, " in IEEE/RSJ Int. Conf. Int. Robot. Syst., Sep. 2017, pp. 6142-
6148,

[5] R. Li, D.T. Pham, J. Huang, Y. Tan, M. Qu, Y. Wang, M. Kerin, K.
Jiang, S. Su, C. Ji, and Q. Liu, "Unfastening of hexagonal headed screws
by a collaborative robot, " IEEE Trans. Autom. Sci. Eng., vol. 17, no. 3,
pp.1455-1468, 2020.

[6] X. Mu, Y. Xue and Y. -B. Jia, "Robotic Cutting: Mechanics and Control
of Knife Motion," in Int. Conf. Robot. Autom., Montreal, QC, Canada,
2019, pp. 3066-3072.

[7] Y. Xue and Y. -B. Jia, "Gripping a Kitchen Knife on the Cutting Board,"
in IEEE/RSJ Int. Conf. Int. Robot. Syst., Las Vegas, NV, USA, 2020, pp.
9226-9231.

[8] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annu. Rev. Control
Robot. Auton. Syst., vol. 3, pp. 297-330, 2020.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration”. Rob. Auton. Syst., vol. 57, no. 5, pp.
469-483, 2009.

[10] A. G. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Rob. Auton. Syst., vol. 54,
no. 5, pp.370-384. 2006.

[11] M. Deniša, Gams, A., Ude, A. and Petrič, T., “Learning compliant
movement primitives through demonstration and statistical generali-
zation,” IEEE/ASME Trans. Mech., vol.21, no. 5, pp.2581-2594, 2015.

[12] H. Qiao, Y. X. Wu, S.L. Zhong, P. J. Yin, and J. H. Chen, “Brain-inspired
intelligent robotics: Theoretical analysis and systematic application, ”
Machine Intelligence Research, vol. 20, no. 1, pp.1-18, 2023.

[13] A. Xie, F. Ebert, S. Levine, and C. Finn, “Improvisation through physical
understanding: Using novel objects as tools with visual foresight,” arXiv
preprint arXiv:1904.05538, 2019.

[14] S. Elliott, Z. Xu and M. Cakmak, "Learning generalizable surface
cleaning actions from demonstration," in IEEE Int. Symp. Robot Human
Int. Comm. (RO-MAN), 2017, pp. 993-999.

[15] L. H. Kong, W. He, W. S. Chen, H. Zhang, and Y. N. Wang, “Dynamic
movement primitives based robot skills learning, ” Machine Intelligence
Research, vol. 20, no. 3, 396-407, 2023.

[16] C. Yang, C. Zeng, C. Fang, W. He, and Z. Li, “A DMPs-based
framework for robot learning and generalization of humanlike variable
impedance skills,” IEEE/ASME Trans. Mech., vol. 23, no. 3, pp. 1193-
1203, 2018.

[17] K. Yamazaki et al., "System integration of a daily assistive robot and its
application to tidying and cleaning rooms," in IEEE/RSJ Int. Conf. Int.
Robot. Syst., Taiwan, 2010, pp. 1365-1371,

[18] A. J. Ijspeert, J. Nakanishi, and S. Schaal, "Trajectory formation for
imitation with nonlinear Dynamic systems." in Proc. IEEE/RSJ Int. Conf.
Int. Robot. Syst., Maui, Hawaii, 2001, pp. 752-757.

[19] F. Bian, D. Ren, R. Li, P. Liang, K. Wang, and L. Zhao, "An extended
DMP framework for robot learning and improving variable stiffness
manipulation, " Ass. Autom. vol. 40, no. 1, 2020, pp. 85-94.

[20] Z. Lu, and N. Wang, "Dynamic movement primitives based cloud robotic
skill learning for point and non-point obstacle avoidance," Assem.
Autom., vol. 41, no. 3, 2021, pp. 302-311.

[21] Z. Hong, S. Bian, P. Xiong and Z. Li, "Vision-Locomotion Coordination
Control for a Powered Lower-Limb Prosthesis Using Fuzzy-Based
Dynamic Movement Primitives," IEEE Trans. Autom. Sci. Eng., 2023.

[22] R. Huang, H. Cheng, J. Qiu and J. Zhang, "Learning Physical Human–
Robot Interaction With Coupled Cooperative Primitives for a Lower
Exoskeleton," IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1566-
1574, Oct. 2019.

[23] X. Hao, Z. Li, P. Huang, P. Shi and G. Li, "Hierarchical Task-Oriented
Whole-Body Locomotion of a Walking Exoskeleton Using Adaptive
Dynamic Motion Primitive for Cart Pushing," IEEE Trans. Autom. Sci.
Eng., 2023.

[24] C. Zou, R. Huang, J. Qiu, Q. Chen and H. Cheng, "Slope Gradient
Adaptive Gait Planning for Walking Assistance Lower Limb
Exoskeletons," IEEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 405-413,
April 2021.

[25] H. Su, A. Mariani, S. E. Ovur, A. Menciassi, G. Ferrigno and E. De
Momi, "Toward Teaching by Demonstration for Robot-Assisted
Minimally Invasive Surgery," IEEE Trans. Autom. Sci. Eng., vol. 18, no.
2, pp. 484-494, April 2021.

[26] R. Prakash and L. Behera, "Neural Optimal Control for Constrained
Visual Servoing via Learning From Demonstration," IEEE Trans. Autom.
Sci. Eng., 2023.

[27] Z. Lu, N. Wang and C. Yang, "A constrained DMPs framework for robot
skills learning and generalization from human demonstrations," IEEE
/ASME Trans. Mech., vol. 26, no. 6, pp. 3265-3275, Dec. 2021.

[28] C. Zeng, C. Yang, H. Cheng, Y. Li, and S.-L. Dai, “Simultaneously
encoding movement and sEMG-based stiffness for robotic skill learning,”
IEEE Trans. Industr. Inform., vol. 17, no. 2, pp. 1244-1252, 2020.

[29] C. Yang, C. Zeng, Y. Cong, N. Wang, and M. Wang, “A learning
framework of adaptive manipulative skills from human to robot,” IEEE
Trans. Industr. Inform. vol. 15, no. 2, pp. 1153-1161, 2018.

[30] D. H. Zhai, Z. Xia, H. Wu and Y. Xia, "A motion planning method for
robots based on DMPs and modified obstacle-avoiding algorithm," IEEE
Trans. Autom. Sci. Eng., vol. 20, no. 4, pp. 2678-2688, Oct. 2023.

[31] H. Kim, C. Oh, I. Jang, S. Park, H. Seo and H. J. Kim, "Learning and
generalizing cooperative manipulation skills using parametric dynamic
movement primitives," IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4, pp.
3968-3979, Oct. 2022.

[32] D. H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement
reproduction and obstacle avoidance with dynamic movement primitives
and potential fields,” in Proc. 8th IEEE-RAS Int. Conf. Humanoid Robots,
2008, pp. 91–98.

[33] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, "Biologically-
inspired Dynamic systems for movement generation: Automatic real-
time goal adaptation and obstacle avoidance." in IEEE Int. Conf. Robot.
Autom., Kobe, Japan, May 12, 2009, pp. 2587-2592.

[34] È. Pairet, P. Ardón, M. Mistry, and Y. Petillot, “Learning generalizable
coupling terms for obstacle avoidance via low-dimensional geometric
descriptors,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 3979–3986, Oct.
2019

[35] J. Umlauft, D. Sieber, and S. Hirche “Dynamic movement primitives for
cooperative manipulation and synchronized motions,” in Proc. IEEE Int.
Conf. Robot. Autom., 2014, pp. 766–771

[36] T. Kulvicius, M. Biehl, M. J. Aein, M. Tamosiunaite, and F. Wörgötter,
“Interaction learning for dynamic movement primitives used in
cooperative robotic tasks,” Robot. Auton. Syst., vol. 61, no. 12, pp. 1450–
1459, 2013.

[37] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,” IEEE
Trans. Robot., vol. 30, no. 4, pp. 816–830, Aug. 2014.

[38] H. Tan, E. Erdemir, K. Kawamura, and Q. Du, "A potential field method-
based extension of the dynamic movement primitive algorithm for
imitation learning with obstacle avoidance." in Inter. Conf. Mech.
Autom., Beijing, China, 2011, pp. 525-530.

[39] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, "Learning to
pour with a robot arm combining goal and shape learning for dynamic
movement primitives," Robot. Auto. Syst., 2011. Vol. 59, no. 11, pp.910-
922.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 15

[40] Hassanin, M., Khan, S. and M. Tahtali, "Visual Affordance and Function
Understanding: A Survey, " ACM Computing Surveys (CSUR), vol.54,
no. 3, pp.1-35. 2021.

[41] Y. Zhu, Y. Zhao, and S. C. Zhu, "Understanding tools: Task-oriented
object modeling, learning and recognition." in Proc. IEEE Conf. Comp.
Vision Patt. Recogn., Boston, MA, USA, 2015, pp. 2855-2864.

[42] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, "Keto: Learning
keypoint representations for tool manipulation, " in IEEE Int. Conf.
Robot. Autom, Paris, France, May. 2020, pp. 7278-7285.

[43] S. Akizuki, and Y. Aoki, "Tactile Logging for Understanding Plausible
Tool Use Based on Human Demonstration, " in BMVC, September 2018,
pp. 334-345.

[44] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos, "Affordance
Detection of Tool Parts from Geometric Features, " in IEEE Int. Conf.
Robot. Autom, Washington WA, USA, May 2015, pp.1374–1381.

[45] Saito, N., Ogata, T., Mori, H., Murata, S. and Sugano, S., "Tool-use
model to reproduce the goal situations considering relationship among
tools, objects, actions and effects using multimodal deep neural
networks,” Front. Robot. AI, vol.8, 2021. pp.309.

[46] J. Yuan, C.-M. Chew, and V. Subramaniam, "Learning Geometric
Constraints of Actions from Demonstrations for Manipulation Task
Planning." in IEEE Int. Conf. Robot. Biom., Kuala Lumpur, Malaysia,
2018, pp. 636-641.

[47] G. Chou, D. Berenson, and N. Ozay, "Learning constraints from
demonstrations." In Int.l Workshop Algorithm. Found. Robot., Mérida,
México, Dec 9 2018, pp. 228-245.

[48] G. Chou, N. Ozay, and D. Berenson, "Learning parametric constraints in
high dimensions from demonstrations." in Conf. Rob. Learn., London,
UK, May 2020, pp. 1211-1230.

[49] Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell, “Kernelized
movement primitives,” Int. J. Rob. Res., vol. 38, no. 7, pp. 833-852, 2019.

[50] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and S.
Savarese, “Learning task-oriented grasping for tool manipulation from
simulated self-supervision,” Int. J. Rob. Res., vol. 39, no. 2-3, pp. 202-
216, 2020.

[51] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, “Keto: Learning
keypoint representations for tool manipulation,” in IEEE Int. Conf. Robot.
Autom., 2020, May, pp. 7278-7285.

[52] K. P. Tee, J. Li, L. T. Pang Chen, K. W. Wan and G. Ganesh, "Towards
Emergence of Tool Use in Robots: Automatic Tool Recognition and Use
Without Prior Tool Learning," in IEEE Int. Conf. Robot. Autom.,
Brisbane, Australia, 2018, pp. 6439-6446.

[53] S. Brown, and C. Sammut, "A relational approach to tool-use learning in
robots." in Int. Conf. Ind. Logic Progr., Dubrovnik, Croatia, Sep 17, 2012,
pp. 1-15.

[54] X. Li, Z. Sun, D. Cao, Z. He and Q. Zhu, "Real-Time Trajectory Planning
for Autonomous Urban Driving: Framework, Algorithms, and
Verifications," IEEE/ASME Trans. Mech. vol. 21, no. 2, pp. 740-753,
April 2016.

[55] P. Boonvisut and M. C. Çavuşoğlu, "Estimation of Soft Tissue
Mechanical Parameters From Robotic Manipulation Data," IEEE/ASME
Trans. Mech. vol. 18, no. 5, pp. 1602-1611, Oct. 2013

[56] K. P. Tee, S. Cheong, J. Li, and G. Ganesh. "A framework for tool
cognition in robots without prior tool learning or observation. " Nature
Mach. Intell., 2022, pp.1-11.

[57] S. M., Khansari-Zadeh, and A. Billard, "A Dynamic system approach to
realtime obstacle avoidance. " Auton Robot, vol. 32, pp. 433–454, 2012.

[58] N. Wang, C. Chen, and Di A., Nuovo, "A framework of hybrid force/
motion skills learning for robots. " IEEE Trans. Cogn. Dev. Syst., vol. 13,
no. 1, pp.162-170. 2020.

[59] Z. Lu, N. Wang, M. Li and C. Yang, "Incremental Motor Skill Learning
and Generalization From Human Dynamic Reactions Based on Dynamic
Movement Primitives and Fuzzy Logic System," IEEE Trans. Fuzzy
Syst., vol. 30, no. 6, pp. 1506-1515, June 2022.

[60] M. Ginesi, N. Sansonetto, and P. Fiorini, "Overcoming some drawbacks
of dynamic movement primitives," Rob. Auton. Syst., vol. 144, pp.
103844, 2021.

[61] S. Karaman, and E. Frazzoli, "Sampling-based algorithms for optimal
motion planning, " Int. J. Rob. Res., vol. 30, no. 7, pp.846-894. 2011.

[62] K. Takahashi, K. Kim, T. Ogata, and S. Sugano, "Tool-body assimilation
model considering grasping motion through deep learning, " Rob. Auton.
Syst., 91, pp.115-127, 2017.

[63] D. Seita, Y. Wang, S.J. Shetty, E.Y. Li, Z. Erickson, and D. Held, "
Toolflownet: Robotic manipulation with tools via predicting tool flow

from point clouds, " in Conf. Rob. Learn. , pp. 1038-1049, PMLR.
March, 2023.

[64] A. Byravan and D. Fox, "SE3-nets: Learning rigid body motion using
deep neural networks," IEEE Int. Conf. Robot. Autom, Singapore, 2017,
pp. 173-180

[65] X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan,
"Diffskill: Skill abstraction from differentiable physics for deformable
object manipulations with tools, " arXiv preprint arXiv:2203.17275.
2022

[66] M. Qin, "Robot tool use: learning, transferring, reasoning, and applying
knowledge about robots using human tools" Doctoral dissertation, Yale
University, 2022.

[67] M. Eppe, P. D. Nguyen, and S. Wermter, "From semantics to execution:
Integrating action planning with reinforcement learning for robotic
causal problem-solving, " in Front. Robot. AI, 6, p.123. 2019.

[68] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal, "Skill
learning and task outcome prediction for manipulation," in IEEE Int.
Conf. Robot. Autom, pp.3828-3834, May, 2011.

[69] Z. Jin, W. Si, A. Liu, W. -A. Zhang, L. Yu and C. Yang, "Learning a
Flexible Neural Energy Function With a Unique Minimum for Globally
Stable and Accurate Demonstration Learning," in IEEE Trans. Robot..

[70] C. Zito, R. Stolkin, M. Kopicki, and J. L. Wyatt, “Two-level RRT
planning for robotic push manipulation.” in Proc. IEEE/RSJ Int. Conf.
Int. Robot. Syst.,, 2012, October, pp. 678-685.

[71] H. Lee, H. Kim and H. J. Kim, "Planning and Control for Collision-Free
Cooperative Aerial Transportation," in IEEE Trans. Autom. Sci. Eng.,
vol. 15, no. 1, pp. 189-201, Jan. 2018.

[72] L. Y. Chen et al., "AutoBag: Learning to Open Plastic Bags and Insert
Objects," IEEE Int. Conf. Robot. Autom, London, UK, 2023, pp. 3918-
3925,

[73] K.,Pertsch, Y. Lee, and J., Lim, "Accelerating reinforcement learning
with learned skill priors, " in Conf. rob. Learn., pp. 188-204, PMLR.
October. 2021,

[74] G. Wang, M. Xin, W. Wu, Z. Liu and H. Wang, "Learning of Long-
Horizon Sparse-Reward Robotic Manipulator Tasks With Base
Controllers," in IEEE Trans. Neural Netw. Learn. Syst., 2022

Zhenyu Lu (M’21) received the Ph.D
degree in Northwestern Polytechnical
University, Xi’an, China in 2019. He is
currently working as a senior research
fellow in Bristol Robotic Laboratory &
University of the West of England, Bristol.
His research interests include teleoperation,
human–robot interaction and learning.

Ning Wang (S’07-M’11) received the M.S.
and Ph.D. degrees in electronics engineering
from the Chinese University of Hong Kong,
Hong Kong, in 2007 and 2011, She is a
Senior Lecturer in Robotics at the Bristol
Robotics Laboratory, University of the West
of England, United Kingdom. Her research
interests lie in signal processing, intelligent

data analysis, human-robot interaction and autonomous driving.

Chenguang Yang (Fellow, IEEE) received
the B.Eng. degree in measurement and
control from Northwestern Polytechnical
University, Xian, China, in 2005, and the
Ph.D. degree in control engineering from
the National University of Singapore,
Singapore, in 2010. He performed
postdoctoral studies in human robotics at
the Imperial College London, London, U.K

from 2009 to 2010. He is Chair in Robotics with Department
of Computer Science, University of Liverpool, UK. He was

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 16

awarded UK EPSRC UKRI Innovation Fellowship and
individual EU Marie Curie International Incoming Fellowship.
As the lead author, he won the IEEE Transactions on Robotics
Best Paper Award (2012) and IEEE Transactions on Neural
Networks and Learning Systems Outstanding Paper Award
(2022). He is the Corresponding Co-Chair of IEEE Technical
Committee on Collaborative Automation for Flexible
Manufacturing. His research interest lies in human robot
interaction and intelligent system design.

