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Abstract: 9 

Carbohydrate content is one of the most crucial factors in common beans flour (CBF) quality after processing. 10 

However, the analysis procedure necessitates the time-consuming and costly selection of elite genotypes from many 11 

experimental lines in a destructive manner. Combining hyperspectral imaging (HSI) with machine learning (ML) 12 

algorithms provides an effective and fast approach for evaluating the quality of food products. This study determined 13 

the quality of CBF by evaluating the contents of carbohydrate using HSI technology. The samples of this work were 14 

composed of 12 varieties CBF and each variety was treated by hydration-dehydration method. After various spectral 15 

preprocessing steps, spectral features were extracted from the spectral profiles using different feature extraction 16 

methods. Partial least square regression (PLSR), Support vector machine regression (SVMR) and Temporal 17 

convolutional network-attention (TCNA) were established to predict the contents of carbohydrate in CBF. The best 18 

value of R2 and the RMSE and RPD were 0.982, 0.165 and 4.905, respectively by topology of OSC-CARS-TCNA.  19 

The outputs demonstrated although deep learning presents more accuracy than ML models, the applied ML models 20 

not only provided acceptable and reliable accuracy but also affect significantly in time-analyzing. In addition, 21 

visualization output of the current research revealed that the developed models and system can integrate to some 22 

intelligent sensors for digitalization aims. This study demonstrates the combination of HSI and ML can be an effective 23 

tool in improving the CBF processing industry and providing sustainable and efficient methods in the production of 24 

CBF. 25 

Key words: Common beans flour, Machine learning, Quality prediction, HSI, Hydration-dehydration treatment 26 

 27 

1. Introduction 28 

Common beans are essential to the food system's sustainability because of their multifaceted positive impacts 29 

environmentally, economically, and nutritionally. Common beans are essential in richness for proteins, fiber, vitamins, 30 

and minerals, thus making critical contributions to dietary requirements, especially in developing countries where 31 

sources of proteins are limited (Yu et al., 2022). The annual global production of beans in 2023 was forecasted at 30 32 

million metric tons, with a multifunctional potential for beans that indicates the importance of beans for driving the 33 
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sustainable practices of the food industry (FAO, 2023). Bean flour can be produced from the wet-milled or the dry-34 

milled process. The natural thickener capacity of bean flour is utilizable in soups, sauces, and instant meal 35 

formulations, adding a creamy texture and enhancing its nutritional value (Alfaro‐Diaz et al., 2023). Therefore, diverse 36 

bean flour applications are very crucial in the further development of health, sustainability, and innovation in food 37 

industry, hence, the producers and processors should heed to the quality of bean flour. 38 

The main critical parameters that influence in a robust way the quality and functionality of ordinary bean flour 39 

are variety, processing methods, and environmental factors. The variety of beans is necessary for determining the 40 

nutrient composition and its inherent characteristics, such as protein content, fiber levels, and antioxidant properties 41 

(Wainaina et al., 2021). Wainaina et al. (2021) and Uebersax et al. (2023) revealed that carbohydrate content has an 42 

important role in determining functional properties such as water absorption, viscosity, and textural characteristics in 43 

CBF, and thus it holds great importance in food formulations. The increased levels of carbohydrate may enhance the 44 

gelation and thickening characteristics of the CBF, thereby improving the nutritional quality of the flour. The diversity 45 

of the processes and conditions include drying, milling, and storage, during the processing highly influence the 46 

physicochemical properties of bean flours. For instance, the drying temperature and time taken to dry will affect the 47 

retention of nutrients and the final moisture content; these will directly affect the shelf life and the susceptibility to 48 

microbial contamination (Uebersax et al., 2023). Therefore, there is a need to understand quality that incorporates 49 

desired functional and nutritional attributes for the consumption target of bean flour. 50 

Non-destructive methods such as near-infrared spectroscopy (Zaukuu et al., 2024), machine vision (Fdez-Vidal 51 

et al., 2024), Fourier transform infrared (Liu et al., 2022), Raman spectroscopy (Sato and Numata, 2024), and 52 

hyperspectral imaging (Zhang et al., 2023) have been applied for detection of food quality. Zaukuu et al. (2024) were 53 

able to predict protein, carbohydrate, total color change, fat, and lightness precisely in melon seed powders. Sato and 54 

Numat. (2024) performed an experiment for simultaneous quantitative analysis of quercetin and rutin in Tartary 55 

buckwheat flour using Raman Spectroscopy (RS). Developing a partial least square model, the Raman spectra of 56 

quercetin and rutin in ethanol solutions at various concentrations were measured. Both NIR and RS were easy to 57 

operate, able to monitor water-rich samples and fingerprint the identification features very well. However, broad 58 

overlapping spectra and limited sensitivity for direct detection of trace components cause challenges and limitations 59 

for applying the mentioned methods (Ma et al., 2023). Therefore, some researchers have been encouraged to use 60 

hyperspectral imaging (HSI) for non-destructive quality evaluation of food. 61 

HSI techniques have been applied in the quality assessment of various flours and powders by simultaneous 62 

acquisition of image, spectra and spatial information, enabling the precise assessment of compositional attributes 63 

(Saha et al., 2023; Zhang et al., 2023; He et al., 2023; Li et al., 2024). Conventional methods for the analysis of CBF 64 

quality generally involve time-consuming and destructive techniques and require an elaborate preparation of samples 65 

besides not having spatially resolved data. HSI coupled with ML has been enabled for fast, nondestructive, and high-66 

throughput analysis of these products by capturing their spectral fingerprints related to their compositional properties, 67 

hence enabling the prediction of quality parameters with high accuracy and well-resolved spatial information. Zhang 68 

et al. (2023) used HSI for rapid determination of protein, starch and moisture content in wheat flour. Further, Li et al. 69 
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(2024) applied HSI to predict and visualize matcha color physicochemical indicators. The approach presented in the 70 

literature applied to quality control of various powdery foods. However, due to the limited performance of the 71 

calibration model and the effect of image noise, they recommended to use multivariate calibration algorithms and 72 

optimized machine learning (ML) methods. 73 

The merging of spectroscopy systems with machine learning methods-like support vector regression (Guan et al., 74 

2024), decision trees (Zhao et al., 2024), and artificial neural networks (Jiang et al., 2024) allows for the powerful, 75 

complete, precise automation of data analysis from complicated datasets to support a wide range of scientific 76 

applications. The combined VIS-NIR Bayesian optimization machine learning algorithm was proposed by Guan et al. 77 

(2024). It was applied for fast authentication of Panax notoginseng powder. The results showed that most of the 78 

proposed methods gave very good performances in the discriminant analysis of the flour varieties, with deep learning 79 

algorithms reaching up to 100 % accuracy during the testing periods. Zhao et al. (2024) employed four algorithms 80 

comprising DT, LDA, KNN, and SVM for recognizing lily origins based on HSI. They reported not only that all 81 

models had a prediction accuracy above 90.0%, but also the potential capability for reaching 100.0% with optimization 82 

of the hyperparameters of an image processing technique. The conclusion is that hyperspectral imaging teamed with 83 

machine learning offers enormous possibilities and threats for the fast assessment of fresh food quality, allowing an 84 

in-depth analysis of their chemical and physical properties, enhancing quality control, and ensuring the safety of foods. 85 

A critical literature review of the nondestructive ways in food quality evaluation has resulted in techniques such 86 

as NIR and traditional machine vision systems when some unique strengths are considered-in particular, either rapid 87 

analysis provided, structural insights, or major compositional assessments-but often lack certain comprehensive spatial 88 

and spectral information well provided by hyperspectral imagining (Barbedo, 2023). But each of these methods has 89 

its own limitation, such as an applicability range, low resolution, or nonsimultaneous assessment ability. HSI is 90 

especially suitable here, given its ability for integration of spatial and spectral information into one image, allowing 91 

for both high accuracy and multi-parameter investigations of the quality (Ma et al., 2023). 92 

Several works in the literature have reported on the application of HSI systems for quality assessment of flours 93 

and flours of various products. However, there is no research (to the best of our knowledge) focusing on potential of 94 

HSI and ML to characterization of various untreated/treated common bean flour. Therefore, the main aims of the 95 

current paper are i) effect of hydration-dehydration treatments on the physicochemical properties of various common 96 

beans; ii) Determine carbohydrates, proteins, fats and starch content in the common beans flour by using traditional 97 

chemical methods and obtain HSI images information iii) Using different robust spectral pre-processing and feature 98 

extraction; iv) Apply different Ml models consist of  partial least square regression (PLSR),  support vector machine 99 

regression (SVMR), and Temporal convolutional network-attention (TCNA) methods and v) applying the image 100 

processing optimal model enables visualization of the chemical composition distribution of all flour beans pixels. 101 

2. Material and methods 102 

2.1. Sample preparation 103 
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In the present study, twelve genotypes of common bean (Phaseolus vulgaris L.) from different Mediterranean areas 104 

were used: IT-134, IT-206, IT-380, IT-449 and IT-874 (Italy), SP-171 and SP-496 (Spain), GR-430 and GR-833 105 

(Greece), AL-924 and AL-1237 (Albania) and CR-1417 (Croatia). Mature seeds were manually sorted and cleaned to 106 

remove foreign material, dirt, dust, damaged and immature grains and stored in a dry environment at room temperature 107 

(21 ± 2°C) until further use. For each genotype, beans were divided into two portions identified as were identified as 108 

undehulled (or non-treated beans, NT) and dehulled (or pre-treated beans, T). Before dehulling treatment, seeds were 109 

soaked for 16 h at room temperature (21 ± 2°C) in distilled water (1:5, w/v, bean to water ratio) and dried in a ventilated 110 

drying oven at 60°C for 6 h. Beans were then dehulled using an impact dehuller prototype (Otake FS20, 1850 rpm). 111 

Each bean sample was ground to obtain a fine powder using a stainless-steel mill (Thermomix Vorwerk TM31, 112 

Wuppertal, Germany) at 10000 rpm and 30 s intervals for a total 3 min milling. All twenty-four samples were collected 113 

and stored in polyethylene bags at room temperature until analysis. 114 

2.2. Spectral data acquisition 115 

2.2.1 Hyperspectral imaging 116 

A near-infrared hyperspectral imaging (NIR-HSI) system equipped line-scan spectrograph (Headwall 117 

Photonics, Fitchburg, MA, USA) that covers a spectral range of 890-2500 nm has been applied. Two halogen lamps 118 

(Ushio EKE, 150W) were used as the illumination source, and also a data acquisition and processing system were 119 

used (Figure 1). To maintain the uniform light and reduce environmental noise, the system was covered by a case and 120 

the distance of the camera to the screen on which the samples were placed was adjusted manually (using a conveyor 121 

on which the camera was installed).  122 
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 123 

 124 

Figure 1. Image acquisition system alongside ROI selection and feature extraction processes. 125 

The flour was placed on a circular plate with dimension and depth of 70 and 50mm, respectively and the 126 

flour surface was flattened using a thick paper stick without compression. Then was placed on a black, non-127 

reflective 50 × 25 cm sample tray and To obtain clear and distortion-free hyperspectral images of samples, the 128 

intensity of the halogen light source, light source positioned from the horizontal plane, the sample away from the 129 

camera, exposure time, image acquisition speed were adjusted for 75% of total power, 55 ͦ, 52 cm, 9ms, 0.95 cm.s-1, 130 

respectively. All of the 24 flours were placed on the tray without compression. The image hypercubes were 131 

composed of 367 × 368 × 169 pixels collected at 9.527 nm intervals between 950.105 and 2498.125 nm.  The 132 

imaging system settings were optimised to ensure that the samples had the correct aspect ratio and to eliminate 133 

scanning bed vibrations induced by the manual adjustments. 134 

2.2.2. Calibration procedure 135 

Potential errors could include uneven illumination due to variations in the halogen lamp output, stray light 136 

reflections from surrounding surfaces, detector noise caused by environmental temperature fluctuations, or geometric 137 

distortions from misaligned components (Ma et al., 2023; Peng et al., 2024; Sun et al., 2024) . For calibration dark 138 

current correction was considered to address sensor noise by removing signals captured. Furthermore, white reference 139 
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calibration was applied for accurate normalization of reflectance values by accounting for variations in light intensity 140 

and sensor sensitivity, and finally wavelength calibration was utilized to minimize errors in spectral alignment by 141 

correcting shifts in wavelength detection. The images should be corrected for spectral and spatial radiation 142 

discrepancies induced by spectral response and grating scattering, dark current, and uneven light source intensity (He 143 

et al., 2023; Jiang et al., 2024). Therefore, black and white correction calculations were performed on the original 144 

hyperspectral image. The signal strength was reflected in the acquired raw image data. The spectral reflectance must 145 

be calculated by correcting for black and white. Black calibration with white calibration plate to set maximum 146 

emissivity (~99 %) and cover the dark correction lens cap to set the minimum reflectivity (~0 %) and then calibration 147 

image was calculated using Eq.1 148 

𝐼 =  
𝐼0−𝐼𝑑

𝐼0−𝐼𝑤
     (1) 149 

Where  𝐼0, 𝐼𝑑, and 𝐼𝑤 are original hyperspectral image, blackboard calibrated image and whiteboard calibrated 150 

image, respectively. 151 

2.2.3. Region of Interest (ROI) selection 152 

The spectral image was extracted from the HSI Analyzer software (ITT Visual Information Solutions, 153 

Boulder, CO, USA). In each sample, the mass of CBF was placed in the center of the image. Based on the typical 154 

shape of the mass of CBF and the distribution of relevant spectral information within them, the sample can be separated 155 

from the background by simple threshold segmentation. Thus, a circular binary mask was applied for the selection of 156 

ROI in the hyperspectral images, assigning values 0 and 1 to the pixels corresponding to the background and CBF, 157 

respectively. Using the specified center and radius, this mask was applied to hyperspectral image to extract only the 158 

pixel data within the circle. 159 

The spectral information within the ROI was concatenated to acquire the final spectral matrix. In this matrix, 160 

the rows and columns represented the number of CBF images and the wavelengths, respectively. In consequence, the 161 

120 × 230 dimensional spectral matrix was obtained for chemical content prediction. The average spectrum of each 162 

image was then obtained by averaging the extracted spectral information from each pixel to create a representative 163 

spectrum for each CBF to establish the model (Figure 1). The ROI was consistently defined using a circular binary 164 

mask with a fixed center and radius, ensuring uniform application across all samples to minimize variability. 165 

Repeatability was verified by visually inspecting the extracted ROI on multiple samples, confirming that the method 166 

accurately isolated the CBF mass while excluding background pixels. 167 

2.3. Qualification parameters 168 

The chemical composition analysis was performed under dry weight basis using the Herrera et al. (2021) 169 

methods with some revisions. The revision was applied for measurement of carbohydrate component such as moisture 170 

and protein. Herra et al. (2021) for final glucose concentration used a GOD-PAP kit and a glucose standard solution 171 

(0−0.98 mg/dL).While in this research,  to measure carbohydrates content (Eq. 2), the process involves measuring ash 172 
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by separating and analyzing the soluble and insoluble fiber fractions through gravimetric analysis after enzymatic 173 

treatment. 174 

Carbohydrates (g/100 g) = 100 – [Ash (g/100 g) + Total Fat (g/100 g) + Moisture (g/100 g) + Protein (g/100 g)]  (2) 175 

Total dietary fiber was determined by the combination of enzymatic and gravimetric methods, using the Total 176 

Dietary Fiber Assay kit (kit K-TDFR, Megazyme, Ireland). For measurement of starch, the final glucose concentration 177 

was analyzed using a kit K-TSTA (Megazyme, Bray, Ireland), and a glucose standard solution (0-1 mg/dL) was used 178 

as control. The fat content was determined by extracting lipids using hexane and then gravimetric analysis was applied 179 

to quantify the extracted fat. In addition, nitrogen content through the Kjeldahl method was applied for the protein 180 

content. 181 

2.4. Spectral image multivariate analysis 182 

2.4.1. Set division 183 

The research samples could ensure the performance of the model by being reasonably partitioned into the 184 

calibration set and prediction set. The samples in the calibration set should be representative and include the extreme 185 

value. In this research, Kennard-Stone (KS) and SPXY (sample set partitioning based on joint X-Y distance) methods 186 

have been applied to divide sample set. In the SPXY based KS method, spectral and reference variables were 187 

considered, and the spatial distance of the samples was calculated. The advantage of SPXY was that the partition 188 

sample set synchronously considered the spectral and concentration matrix, improving the capability of the model 189 

(Zhang et al., 2023). The distance between samples was calculated using Eq. 3-5.  190 

𝑑𝑥(𝑝. 𝑞) = √(𝑥𝑝 − 𝑥𝑞)
2 = |𝑥𝑝 − 𝑥𝑞|; 𝑝. 𝑞 ∈ [1. 𝑛]     (3) 191 

𝑑𝑥(𝑝. 𝑞) = √(𝑥𝑝 − 𝑥𝑞)
2 = |𝑥𝑝 − 𝑥𝑞|; 𝑝. 𝑞 ∈ [1. 𝑛]   (4) 192 

 193 

𝑑𝑥.𝑦(𝑝. 𝑞) =  
𝑑𝑥(𝑝.𝑞)

𝑚𝑎𝑥𝑝.𝑞∈(1.𝑛)𝑑𝑥(𝑝.𝑞)
+

𝑑𝑦(𝑝.𝑞)

𝑚𝑎𝑥𝑝.𝑞∈(1.𝑛)𝑑𝑥(𝑝.𝑞)
; 𝑝. 𝑞 ∈ [1. 𝑛]     (5) 194 

After division using the KS method, dependence on data other than those concerned with the spatial distribution of 195 

the samples in the predictor space, X, it was set in such a way that a maximum distance between selected samples 196 

would obtain a uniform coverage (Karaziack et al., 2024). Ignoring response variables might have some subsets that 197 

are not representative in the relationship presented by predictors to responses as it was meant to be, hence resulting in 198 

this suboptimal model calibration. BY contrast, SPXY overcame these by incorporating X‑Space-distance and 199 

Y‑Space during the selection of samples. Luo et al. (2024) and Zhong et al. (2025) reported that , it has been further 200 

expounded that with SPXY factoring the variability jointly in both predictors and responses, the subset portrays the 201 

underlying relationship that does occur between X and Y-thus, more representative sets of calibration and validation 202 

which result in the enhancement seen in predictive modeling over spectral images. Finally, the SPXY method was 203 

chosen for set division. 204 



8 
 

 205 

2.4.2. Spectral pre-processing 206 

Spectral data contains irrelevant information and noise, such as background noise, electrical noise, baseline 207 

drift, and radio scattering, along with the chemical information contained in samples. Prior to modeling, spectral data 208 

were preprocessed using traditional spectral preprocessing techniques such as standard normal variate (SNV), 209 

probabilistic quotient normalisation (PQN), orthogonal signal correction (OSC), and mean centering (MC) to mitigate 210 

the effects of these irrelevant elements and increase model accuracy (Erkinbaev et al., 2019). Further, some of the 211 

advanced spectral preprocessing techniques like the external parameter orthogonalization (EPO) filter and generalised 212 

least squares (GLS) weighting were used to see the effects of these advanced spectral preprocessing techniques on the 213 

predictive accuracy of the models. 214 

The EPO operates in a manner that is almost identical to that of OSC, but there are some differences. The 215 

OSC function operates by orthogonalizing a response vector (y) or matrix (Y) to the data matrix (X), which is not 216 

possible with unsupervised methods. EPO estimates the data’s noise subspace without regard to Y orthogonality. As 217 

a result, it can be used as a preprocessing step prior to applying unsupervised techniques (Saha et al., 2023). The GLS 218 

method is capable of filtering out irrelevant information. This information is derived from the differences between 219 

similar samples and then filtered from the original data matrix (Kucha et al., 2021). 220 

2.4.3. Feature extraction 221 

The spectral signal is highly complex and contains numerous parameters, necessitating the need for feature 222 

extraction. The objective of feature extraction is to reduce dimensionality, computational complexity, and enhance 223 

precision. In the context of spectral analysis applications, feature extraction is vital in identifying abnormalities in 224 

spectra, distinguishing between various samples, and extracting useful features for modeling (Chen et al., 2024; Peng 225 

et al., 2024). Despite the dissimilarity in their attributes and objectives, they all aim to portray the sample’s nature via 226 

spectroscopy. To predict the chemical content of CBF, four distinct feature extraction methods namely physiological 227 

experiments identifying spectral profile changes (PHY), Competitive Adaptive Reweighted Sampling (CARS); 228 

Continuous Wavelet Transform (CWT), and Iteratively Retaining Informative Variables (IRIV) have been employed. 229 

The accurate detection of chemical bonds and any changes occurring in a component of the substance will 230 

also be reflected through hyperspectral analysis. Consequently, when variations in carbohydrates, starch, protein and 231 

fat occur in beans powder, a change in the hyperspectral image of the CBF is expected. This change is directly 232 

associated with the variation in chemical properties. The central idea of the PHY method is to select features by 233 

comparing two types of hyperspectral spectral lines in the CBF. This method focuses on extracting key features from 234 

the spectral profiles, which are typically changes in frequency, amplitude, or phase, to understand the underlying 235 

physiological processes. By isolating these spectral features, the PHY method aids in the prediction of physiological 236 

states (Chen et al., 2024). 237 
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The CARS technique has been used for the selection of important wavelengths. CARS selects the critical 238 

wavelengths in a series of steps. The CARS technique uses exponentially decreasing function (EDF) and adaptive 239 

reweighted sampling (ARS) techniques, so the trivial weight of the wavelengths is eliminated (Luo et al., 2024). In 240 

this study, the feature wavelengths were evaluated using ten-fold cross validation. Several subsets of wavelengths are 241 

obtained after the execution of the loops. Finally, the effective wavelengths are defined as those subsets of wavelengths 242 

with the lowest root mean squared error of cross validation and the prediction models were built using the chosen 243 

wavelengths. 244 

The CWT technique significantly enhances feature extraction accuracy in hyperspectral data by effectively 245 

capturing both local and global features. By effectively capturing spectral and spatial features, CWT facilitates 246 

improved data representation, leading to better model performance. CWT can streamline the feature extraction 247 

process, making it computationally feasible to handle large hyperspectral datasets while maintaining high accuracy 248 

(Sun et al., 2024). 249 

The IRIV method was developed on the concept of a binary matrix shuffling filter (BMSF) for selecting 250 

variables. This approach uses model population analysis (MPA) to categorise all variables as highly informative, 251 

moderately informative, uninformative, and interfering (Saha et al., 2023). Through an iterative process, the interfering 252 

and uninformative variables are eliminated. The variables remaining after backward elimination are then selected as 253 

feature variables. In this investigation, a ten-fold cross validation with a maximum of ten principal components was 254 

conducted and specified wavelengths were utilised to develop the prediction models. 255 

2.5. Machine learning and performance evaluation 256 

2.5.1. Partial-least squares regression (PLSR) 257 

PLSR, which is a highly effective and meaningful technique for data analysis, plays a critical role in analyzing 258 

spectral data considering its high performance. It can efficiently handle large, multicollinear datasets, and extract 259 

relevant information for predictions and interpretations. PLSR is adopted to search for potential linear combinations 260 

of wavelength variable (X) and chemical content (Y): 261 

𝑌 = 𝑋 × 𝐵 + 𝐸    (6) 262 

where B and E are the regression coefficient matrix and the regression residual matrix, respectively. The 263 

linear combinations, called latent variables (LVs), offer as much crucial, useful information as possible (Luo et al., 264 

2024). The optimal quantity of LVs was determined when finally reaching the minimum RMSECV. 265 

2.5.2. Support vector machine regression (SVMR) 266 

PLSR assumes a linear spectrum–property relationship, which is not necessarily always true. Hence, a non-267 

linear model like SVMR was employed as a comparison. SVMR is a non-parametric algorithm that maps the data into 268 

a higher feature space dimension and creates a discrete hyperplane using the kernel function. The kernel function 269 

minimizes the model complexity and maximizes the prediction accuracy. Different kernel functions have been used 270 
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in the developed nonlinear SVMR models to predict the chemical components of various products using HSI (Yin et 271 

al., 2023; Peng et al., 2024, Luo et al., 2024). In this study, four kernel functions consisting of the Radial basis function 272 

(RBF, Eq. 7), Polynomial (Eq. 8), Gaussian (Eq. 9), and Pearson universal (Eq. 10) were employed due to their 273 

computational efficiency. 274 

𝑓(𝑥𝑦) = 𝑒−𝛼‖𝑥−𝑦‖2
                       (7) 275 

𝑓(𝑥𝑦) =
[(𝑥𝑦+1)𝑛]

√(𝑥𝑦+1)𝑛(𝑦2+1)𝑛
               (8) 276 

𝑓(𝑥𝑦) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥‖2

2𝜎2 )              (9) 277 

𝑓(𝑥𝑦) =
1

[
 
 
 

1+(2
√

‖𝑥−𝑦‖2√
2

1
𝛽−1)2

]
 
 
 
𝛽     (10) 278 

where α, x, y, n, σ, and β are kernel dimension, feature vectors, polynomial degree, Gaussian and Pearson 279 

width, respectively. To optimize the Polynomial and Gaussian functions, the penalty factor (C) should be regularized. 280 

This parameter controls the SVMR performance by estimating the accuracy of the trained data point (Lin et al., 2023). 281 

Furthermore, the tuning parameter (γ) affects the mapping data into the higher dimensional space by controlling the 282 

width of the RBF and Pearson kernel (Zhang et al., 2023). Therefore, five levels of C (0.01, 0.1, 1, 10, and 100) and 283 

three levels of γ (0.01, 0.1, and 1) were applied to define the position of the hyperplanes. Subsequently, the 284 

performance of the developed model was assessed until it reached the best performance. 285 

2.5.3. Temporal convolutional network-attention mechanism 286 

Temporal Convolutional networks are  a typical neural network model that integrates dilated and causal 287 

convolutions and the residual module. Temporal Convolutional Networks have been used for prediction tasks by 288 

modeling sequential data, allowing for the capturing of temporal dependencies with their dilated causal convolutions 289 

and extensive receptive fields (Qi et al., 2023; Luo et al., 2023; Wang et al., 2024). In this method, the convolution 290 

operation is calculated by Eq. 11. 291 

𝐹(𝑝) = (𝑥𝑓𝑑)(𝑝) = ∑ 𝑓(𝑖)𝑥𝑝−𝑑𝑖
𝑘−1
𝑖=0      (11) 292 

Where k, d, p-di represent the size of the convolution kernel, expansion coefficient, and corresponding 293 

sequence in the convolution kernel. To enhance the temporal convolutional network prediction accuracy by selectively 294 

focusing on the most relevant time steps or features within the input sequence, the temporal convolutional network-295 

attention mechanism (TCNA) method was applied. This allows the model to dynamically weigh important 296 

information, improving its ability to capture long-range dependencies and complex temporal patterns (Shuai et al., 297 

2024). By assigning weight values to each variable, the attention mechanism focuses on important variables to improve 298 

the prediction result (Wang et al., 2024). The detailed calculation of the output attention vector can be found by Eq. 299 

12 and 13. 300 
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𝐺𝑖
𝑑 =

exp(𝑔𝑖)

∑ exp (𝑔𝑘)𝑚
𝑘=1

    (12) 301 

𝛽𝑗 =
exp(𝑔𝑗

𝑑)

∑ exp (𝑔𝑘
𝑑)𝑛

𝑘=1

     (13) 302 

where the [g1, …, gm], βj, n are block vector of the output vector, the output vector length, and the weight coefficient. 303 

In the model training process, the nodeNums was set to 38, the loss function was the mean absolute error , the optimizer 304 

was “adam”, the batchSize was 38, and the number of epochs was 200. 305 

2.6. Performance evaluation 306 

In model analysis, all the CBF samples were divided into calibration, validation and prediction sets. The 307 

calibration set was used to adjust the model and conduct 10-fold cross-validation for obtaining all optimized model 308 

hyperparameters. To objectively evaluate the performance of the ML models (PLSR, SVMR, and TCNA) in predicting 309 

the content of carbohydrates, consistent model parameters were adopted for all models in the corresponding type of 310 

output. All the model analysis was carried out using the Matlab 2023 software and prediction performance of the 311 

model was mainly evaluated in terms of the coefficient of determination (R2), root mean squared error (RMSE), and 312 

relative percentage deviation (RPD). The calculation of the evaluation indicators and the evaluation criteria for model 313 

performance were described in the literature (He et al., 2023; Qi et al., 2023; Luo et al., 2024; Peng et al., 2024). 314 

3. Results and discussion 315 

3.1. Chemical analysis  316 

  The chemical composition of various CBF were presented in Table1. The average value of protein of all the 317 

treated samples was more than in the control samples. However, the difference of all samples was not significant. The 318 

average value of protein in treated samples, 4.98 g/100 g was more than the control CBF. Similarly, the average value 319 

of fat, starch and carbohydrate of treated samples were more than the controls CBF, even though significant difference 320 

was not observed between most cases. The amount of fat, starch and carbohydrate of control samples were 0.72 g/100 321 

g, 38.16 g/100 g and 66.95 g/100 g, while for the treated CBF were 1.03 g/100 g, 41.50 g/100 g and 70.04 g/100 g, 322 

respectively.  323 

  It seems hydration-dehydration treatment did not considerably increase the absolute amount of protein in 324 

CBF. Instead, it improves the quality and bioavailability of the protein. After the treatment, the removal of water 325 

results in a concentration of all solid components, including fat and starch. Thus, the relative percentage of fat and 326 

starch in the bean's dry weight might appear slightly increased, but this is due to the concentration effect rather than 327 

an actual increase in fat content (Wainaina et al., 2021; Alfaro‐Diaz et al., 2023). Also, Table 1 shows the correlation 328 

coefficient values of the quantitative regression for all CBF were above 0.980, indicating an acceptable linear 329 

quantitative relationship. Even though the differences were not significant, the observed variations in protein, fat, 330 

starch, and carbohydrate content between treated and control samples can be attributed to changes induced by the 331 

hydration-dehydration treatment at a molecular level. The treatment could cause structural changes to proteins such 332 
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as unfolding or denaturation, which might enhance their solubility and bioavailability without affecting the overall 333 

quantity significantly. Similarly, the concentration effect resultant of water removal could accordingly enhance the 334 

relative proportions where such solid components like fat and starch became more pronounced due as a result of an 335 

intensive dry matter content. Hydration-dehydrations may change the manner of arrangement of starch granulature, 336 

improving digestability, and accessibility of hydrogenous nutrients. Such mentioned above molecular interactions 337 

demonstrate also how the treatment could really influence the quality rather or even more than the type, of the absolute 338 

absolute composition of the bean flour basic constituents (Alfaro‐Diaz et al., 2023; Bai et al., 2024). 339 

Table 1. Chemical content of untreated and treated beans powder and correlation coefficient values of the quantitative regression 340 
for all powder content 341 

No. 

Samp

le 

Qualification parameter 

 Control Treated 

 
Protein 

(g/100 g) 

Fat(g/10

0 g) 

Starch(g/1

00 g) 

Carbohydrate(g/

100 g) 
R2 

Protein(g/

100 g) 

Fat(g/10

0 g) 

Starch(g/1

00 g) 

Carbohydrate(g/

100 g) 
R2 

1 
16.14±1.

23a 

0.56±0.0

8b 

36.21±3.4

8e 
65.38±5.45g 

0.99

2 

18.72±2.0

4a 

0.68±0.0

9c 

37.30±3.0

1e 
68.47±6.21g 

0.98

3 

2 
17.13±1.

35a 

0.67±0.0

9bc 

37.41±4.3

6e 
66.45±4.98g 

0.99

5 

20.07±1.8

2a 

1.01±0.1

2d 

40.32±4.2

8e 
69.7±8.66g 

0.98

9 

3 
16.71±1.

51a 

0.62±0.0

7b 

37.18±5.7

2e 
65.45±4.82g 

0.98

4 

19.43±1.5

6a 

0.94±0.0

6d 

40.28±6.3

4ef 
69.17±7.62g 

0.98

1 

4 
17.78±1.

68a 

0.78±0.0

6bc 

38.98±7.2

4e 
67.46±6.13g 

0.99

0 

21.01±1.7

5a 

1.09±0.9
d 

47.51±7.3

9f 
70.45±5.82g 

0.98

4 

5 
17.10±1.

52a 

0.67±0.0

9b 

37.30±9.3

4e 
66.43±5.88g 

0.98

2 

20.00±1.9

1a 

0.99±0.0

5d 

40.72±9.6

4ef 
69.53±8.26g 

0.98

0 

6 
17.65±2.

26a 

0.74±0.0

8b 

37.94±5.3

6e 
67.30±8.41g 

0.98

8 

20.68±2.3

4a 

1.04±0.9

2d 

41.39±6.3

3e 
70.07±10.27g 

0.98

1 

7 
18.40±2.

55a 

0.84±0.1

3bc 

38.74±4.7

8e 
67.86±9.22g 

0.99

5 

21.54±3.7

5a 

1.15±0.1

2d 

41.89±5.3

6ef 
70.90±8.22g 

0.99

2 

8 
18.66±3.

37a 

0.87±0.0

9c 

39.03±6.3

4e 
68.12±10.07g 

0.99

3 

21.80±2.3

6a 

1.22±0.1

1d 

42.56±7.2

5e 
71.14±6.99g 

0.98

8 

9 
16.57±2.

88a 

0.60±0.0

8b 

36.98±5.3

9e 
65.65±8.24g 

0.98

6 

19.32±1.7

8a 

0.93±0.0

8cd 

40.08±9.3

7ef 
69.12±8.34g 

0.98

5 

10 
18.03±3.

07a 

0.87±0.0

9c 

38.53±4.2

7e 
67.64±9.36g 

0.99

3 

21.18±1.8

2a 

1.11±0.1

5d 

41.72±6.3

7ef 
70.59±7.22g 

0.99

0 

11 
18.83±2.

55a 

0.89±0.0

9c 

39.40±6.2

3e 
68.57±8.24g 

0.99

5 

21.93±1.5

5a 

1.22±0.1

3d 

43.05±8.2

5ef 
71.47±9.47g 

0.98

8 

12 
17.65±3.

01a 

0.60±0.0

5b 

40.28±7.5

0e 
67.63±8.81g 

0.98

9 

20.61±1.7

2a 

1.03±0.1

1d 

41.19±9.4

7ef 
69.94±8.22g 

0.98

5 

240 samples (24samples × 10 replicates) of common beans powder. Mean ± sd: mean content with standard deviation. The 342 
lowercase letters (a, b, c, etc.) indicate a significant difference at a level of P < 0.05. 343 

 344 

3.2. Spectral characteristics 345 
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The spectral lines have been changed according to applied pre-processing methods (Figure 1). The spectral 346 

lines of MC, PQN and GLS become diffusers, while the dispersion of OSC and SNV looks similar to the original 347 

spectra. However, a particular preprocessing method cannot be selected only from the variation of spectral line 348 

dispersion, because no algorithm is the most suitable and finding the best method to achieve the research goal usually 349 

requires iterations (Aulia et al., 2022; Chen et al., 2024). 350 

Figure 2.a shows the raw average curves of the spectra reflectance (890–2500 nm) obtained from 240 CBF 351 

samples with different chemical contents. In the wavelength range the waveforms revealed a similar spectral trend for 352 

different CBF. Nevertheless, the trend of some spectrum curves was irregular, which could be attributed to the 353 

excessive energy at the scanning step and the decreased noise reduction effect (Zhang et al., 2023). Figure2.b illustrates 354 

the range of average hyperspectral wavelength (without any preprocessing) and the spectral reflectivity was 0.12–0.5, 355 

which were selected for the subsequent work. The identified spectral regions corresponding to various chemical bonds 356 

and functional groups provide valuable information on the chemical composition and quality of CBF. The peaks 357 

around 1085 and 1142 nm was related to fat and starch, respectively, which were very important in understanding 358 

carbohydrate and lipid contents that directly affect the energy value and texture of the flour. Reflectance around 1235 359 

nm could be associated with starch, but differences were observed in this zone for the CBF, suggesting the presence 360 

of carbohydrates linked with fat and starch (Yu et al., 2022). In fact, fat and starch are one of the main constituents in 361 

CBF, and responsible for many of the aforementioned reflectance peaks with 1257–1285 and 1361–1389 nm 362 

(Hernández-Hernández et al., 2022). 363 

The spectral features for the region between 1420 and 1520 nm could also be ascribed to N–H stretching, 364 

which normally refers to the presence of protein, the nutritional value component, or functional properties essential 365 

for holding moisture and promoting dough-forming capability (Kaur et al., 2024). On one hand, its region around 366 

1600‒1700 nm encompasses only the two Amide regions, the A and B bands in particular. This region pays special 367 

emphasis to the structural and contents preoccupation of protein due to the interaction between itself and the 368 

carbohydrate components or the already formed protein-carbohydrate complexes affecting viscosity, water retentions, 369 

and texturing during processing. The region between 1650 and 1710 nm is allocated to the first sign of C-H stretching. 370 

In the 1800–1870 nm region, combination bands involving N-H stretching and bending vibrations are prominent, 371 

indicating the presence of amide bonds in carbohydrate (Hernández-Hernández et al., 2022). In addition, the broad 372 

peaks between 1900 and 1980 nm were related to the complexity of carbohydrate mixtures, reflecting variability in 373 

starch and fiber content, with implications for flour digestibility, texture, and cooking properties. A relatively broader 374 

region between 1900 and 1980 nm region, while specific to carbohydrate, shows bands related to C-H, N-H, and O-H 375 

groups, reflecting a mixture of these functional groups in the CBF. The spectra display broad peaks and overlapping 376 

signals, indicating complex mixtures of carbohydrates or amino acids with varied reflectance suggesting differences 377 

in concentration or composition. Prominent peaks found in the spectra around ∼1520 nm and ∼1980 nm, align with 378 

regions associated with carbohydrate reflectance, and broader peaks around 2320 and 2430 nm correspond to 379 

combination bands involving various functional groups (Yu et al., 2022; Kaur et al., 2024; Sim et al., 2024). 380 
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 381 

Figure 2. a) Raw acquired spectra, b) Average reflectance spectra of CBF samples 382 

 383 

3.3. Model evaluation 384 

3.3.1. Content regression models 385 

The spectra and the corresponding carbohydrate values in the calibration set were used as the input of the 386 

model, and the whole pre-processing methods and ML model were trained in a supervised way (Table 2). The samples 387 

in the validation set were used to test the model performance and tune the model parameters, while the samples in the 388 

prediction set were used to evaluate the performance of the applied models. Although the PLSR method provided 389 

good results in the research by Hernández-Hernández et al. (2022) and Luo et al. (2024) to predict the chemical 390 

properties of food products, in this research, the PLSR model did not achieve a high accuracy. The R2 and RMSE of 391 

PLSR were 0.716 and 0.456, respectively. By applying the SNV pre-processing method, the prediction accuracy 392 

increased (R2= 0.752, RMSE= 0.401), even though the OSC method had a negative effect. Similarly, Qi et al. (2023), 393 

Yin et al. (2023) had reported the effect of SNV preprocessing method in PLSR models and revealed that SNV could 394 

significantly decrease the error of prediction. The SNV helped to reduce the noise in the data by focusing on the mean-395 

centered data and standardizing it, which could help mitigate the effects of random noise (Qi et al., 2023; Yin et al., 396 

2023; Saha et al., 2023). 397 

SVMR with different kernel functions, penalty factor and tuning parameters were analyzed and the best 398 

kernel and variable were selected as the optimized SVMR for modeling (Table 1s). Based on the results, SVMR with 399 

RBF kernel, 10 level of C and 0.1 level of γ was considered for carbohydrate prediction by applying pre-processing 400 

(R2 = 0.893, RMSE = 0.366). Although Polynomial, Gaussian, and Pearson kernels could model non-linear 401 

relationships they require careful tuning of the tuning degrees and are prone to overfitting if the degree is too high. 402 

The RBF kernel, by contrast, offers a good balance between complexity and generalization which was demonstrated 403 

by Luo et al. (2023) and Sun et al. (2024). Contrary to the application of OSC in PLSR model, this pre-processing 404 

technique significantly increased the accuracy of the SVMR model (R2= 0.902, RMSE= 0.351) and PQN and MC 405 
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methods decreased the accuracy of the model. Also, SNV method increased the accuracy of the model, but the best 406 

result was obtained by OSC. In similar way, Saha et al. (2023) and Zhang et al. (2023) Applied various preprocessing 407 

methods such as OSC for predicted of protein content in single chickpea seed and reported that the accuracy of OSC 408 

was acceptable. OSC had ability to specifically remove variations that are orthogonal to the response variable, thereby 409 

enhancing the relevance of the data to the prediction task, improving model interpretability, reducing multicollinearity, 410 

and improving model performance (Saha et al., 2023; Zhang et al., 2023). 411 

The TCNA method without any pre-processing presented a good amount of R2 (0.956), RMSE (0.21) and 412 

RPD (2.05). Interestingly, some preprocessing methods reduced the level of performance parameters. In fact, TCNA 413 

uses both convolutions and attention mechanisms to learn relevant features in time-series data. It seems PQN, MC, 414 

EPO and GLS adjusted the data based on distribution assumptions, which might lead to the model losing access to 415 

raw patterns and loss of important temporal dependencies (Barbedo, 2023). SNV (R2: 0.956, RMSE: 0.219, RPD: 416 

2.857) and OSC (R2: 0.957, RMSE: 0.203, RPD: 2.903) methods increased prediction accuracy almost equally and 417 

with a slight difference compared to the N-TCNA. However, N-TCNA spent less time on analysis and in general, the 418 

analysis time and accuracy of PLSR<SVMR<TCNA. Wang et al. (2024) compared the accuracy and time analysis of 419 

multi-layer perceptron (MLP) and TCNA for prediction of diverse rare ginsenoside contents in Panax ginseng through 420 

hyperspectral imaging. They revealed although the prediction performance of TCNA was better than MLP, the 421 

difference of their time interfence was significant. Similarly, Qi et al. (2023) applied MLP, SVM, PLS and TCN to 422 

determine soluble solid content of crown pears and they reported the accuracy of MLP < PLS < SVM <TCN. TCNA 423 

exceled at learning complex non-linear relationships in data through multiple layers of transformations. While PLSR 424 

and SVMR were powerful methods to predict the quality parameters, they could struggle with highly complex non-425 

linearities, especially in high-dimensional time-series data (Barbedo, 2023; Qi et al., 2023; Wang et al. (2024). 426 

Table 2. Prediction results of carbohydrate content in CBF using full spectrum and ML methods with different pre-427 

processing techniques. 428 

Model Pre 

processing 

Calibration set Validation set Prediction set Time 

(m) 

  Rc
2 RMSEc Rv

2  RMSEv Rp
2  RMSEp RPDp  

PLSR N 0.795 0.371 0.755 0.391 0.716 0.456 1.963 0.093 

 MC 0.797 0.37 0.767 0.39 0.727 0.451 2.05 0.095 

 PQN 0.798 0.366 0.778 0.387 0.729 0.436 2.267 0.099 

 SNV 0.785 0.344 0.782 0.38 0.752 0.401 2.903 0.095 

 OSC 0.794 0.375 0.754 0.395 0.715 0.464 1.982 0.094 

 EPO 0.799 0.357 0.779 0.381 0.746 0.405 2.857 0.096 

 GLS 0.798 0.362 0.779 0.385 0.735 0.411 2.468 0.095 

          

SVMR N 0.924 0.289 0.908 0.326 0.893 0.366 3.655 0.152 
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 MC 0.919 0.302 0.904 0.334 0.865 0.382 3.455 0.152 

 PQN 0.92 0.301 0.907 0.332 0.891 0.373 3.561 0.175 

 SNV 0.955 0.231 0.916 0.317 0.899 0.352 3.739 0.163 

 OSC 0.958 0.202 0.917 0.316 0.902 0.351 3.859 0.168 

 EPO 0.925 0.285 0.912 0.325 0.896 0.363 3.889 0.172 

 GLS 0.928 0.281 0.913 0.32 0.898 0.36 3.852 0.158 

          

TCNA N 0.99 0.085 0.974 0.155 0.956 0.21 4.685 0.155 

 MC 0.982 0.136 0.965 0.172 0.949 0.24 4.116 0.156 

 PQN 0.979 0.15 0.962 0.184 0.945 0.252 3.963 0.159 

 SNV 0.989 0.105 0.974 0.155 0.957 0.219 4.682 0.161 

 OSC 0.991 0.082 0.975 0.151 0.957 0.203 4.695 0.156 

 EPO 0.984 0.135 0.971 0.165 0.953 0.233 4.155 0.155 

 GLS 0.985 0.126 0.972 0.163 0.954 0.221 4.236 0.154 

 429 

 430 

3.3.2. Model development with feature wavelength 431 

The optimized pre-processing methods were chosen for feature extraction and development of PLSR, SVMR 432 

and TCNA models. Although the PHY, IRIV and CWT affected the performance indexes of PLSR, the accuracy 433 

prediction of SNV-CARS- PLSR was increased significantly (R2p: 0.931, RMSEp: 0.237, RPDp: 3.653) (Figure 3). 434 

The positive effectiveness of CARS method on the PLSR models were claimed by Saha et al. (2023), Zhang et al. 435 

(2023), and Li et al. (2024). They reported the CARS method improves the accuracy of PLSR by selecting the most 436 

informative and relevant variables, reducing noise and overfitting, and ensuring the model focuses on the strongest 437 

signals in the data. In addition, CARS selects variables that are less redundant, improving latent factors and selects 438 

variables based on their contribution to the PLSR model. 439 

 440 
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 441 

 442 

Figure 3. The regression curve for the content prediction of CBF based on the effective wavelengths with topology 443 

of; (a) EPO-CARS-PLSR, (b) EPO-CWT-PLSR, (c) EPO-IRIV-PLSR, (d) EPO-PHY-PLSR, (e) OSC-CARS-444 

SVMR, (f) OSC-CWT-SVMR, (g), OSC-IRIV-SVMR, (h) OSC-PHY-SVMR, (i) OSC-CARS-TCNA, (j) OSC-445 

CWT- TCNA, (k) OSC-IRIV-TCNA, (l) OSC-PHY-TCNA 446 

The performance of OSC-CWT was poor in the SVMR model compared to the other feature wavelengths 447 

(R2p: 0.903, RMSEp:0.348, RPDp: 2.511) and similar to PLSR model, the CARS method improved the prediction 448 

accuracy of carbohydrate content in CBP. However, the level of R2p, RMSEp and RPDp of the developed SVMR 449 

model was less than PLSR. Saha et al. (2023) and Leo et al. (2024) used CARS and IRIV of feature wavelengths for 450 

rapid protein and soluble solid content prediction of chickpea and mandarin, respectively. They applied PLSR and 451 

SVMR model and before developing the ML model, the error of PLSR was greater than SVMR. Conversely, the 452 

CARS and IRIV enhanced the R2 and RMSE of PLSR by which the accuracy of this method took over the SVMR. 453 

Perhaps incompatibility between feature selection and SVMR kernel occurred (Saha et al., 2023). Furthermore, both 454 

CARS and IRIV methods aim to reduce the feature space by selecting only the most important variables. While this 455 

can reduce overfitting and simplify the model, it can also lead to over-simplification. SVMR works well with complex 456 

datasets, and removing too many variables can result in loss of useful information, particularly in nonlinear 457 

relationships. This loss of information might degrade the ability of SVMR to find optimal hyperplanes or decision 458 

boundaries in the feature space (Yin et al., 2023; Leo et al., 2024). 459 
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Similar to the PLSR and SVMR, the CARS method presented the best model for the TCNA with R2p: 0.982, 460 

RMSEp: 0.165 and RPDp : 4.905. Similarly, SVMR model, the most poor topology was OSC-CWT- TCNA (R2p: 461 

0.953, RMSEp: 0.219 and RPDp: 4.101). Overall, the level of performance parameters after development was 462 

SVMR<PLSR<TCNA. Comparative research among the algorithms for performance comparison of PLSR, SVMR, 463 

and TCNA presneted interesting strengths and limits in data handling and modeling of complex relationships. The 464 

highest prediction ability in carbohydrate content of PLSR was particularly achieved along with the use of a variable 465 

selection technique, especially CARS and IRIV, which showed outstanding capabilities in filtering and extracting 466 

information about latent variables to summarize the input effectively. While the SVMR in general did well in capturing 467 

nonlinear relationships due to kernel-based methods, their performance was affected adversely in the case of the 468 

SVMR. This could be because probably some of the selected feature selection methods are incompatible with them, 469 

and the over-shrinking of the feature space resulted in losing information that was crucial for its nonlinear captures 470 

(Qi et al., 2023). On the other hand, TCNA emerged the best compared to the PLSR and SVMR methods. This acts 471 

as a sign of suitability to handle such complex data that is characterized by high-dimensional feature spaces together 472 

with nonlinear relationships (Wang et al., 2024). It has thus given the best trade-off between accuracy and robustness 473 

for TCNA: R2p = 0.982, RMSEp = 0.165, RPDp = 4.905, while for the PLSR and SVMR with lower R2p values and 474 

higher RMSEp, they both showed limitations in modeling more complex relationships with reduced feature spaces or 475 

introducing nonlinearity. This comparison underlines the importance of matching the model choice with the data 476 

structure and the complexity of the relationships modeled. 477 

The robustness of TCNA to predict the quality parameters of various products was demonstrated in the 478 

literature (Qi et al.,2023; Wang et al., 2024; Shuai et al., 2024). Qi et al. (2023) reported that MLP-CNN-TCN model 479 

obtained better prediction performance compared to the SVMR model, with a prediction determination coefficient of 480 

0.956 for solid soluble content of pear. They reported TCNA excels at capturing temporal patterns and long-term 481 

dependencies, which SVMR struggles with and also TCNA scales better with large datasets compared to SVMR, 482 

which can struggle with high-dimensional data. Wang et al. (2024) compared the prediction accuracy of three deep 483 

learning models consist of MLP, TCN, and TCNA and reported the optimized TCNA presented minimum error. 484 

Overall, wavelength extraction methods can improve accuracy by eliminating irrelevant features but might reduce 485 

accuracy if non-linear interactions are removed (Shuai et al., 2024). 486 

Observed differences across performances of PLSR, SVMR, and TCNA bear important effects from a 487 

practical point of view from actual applications in the CBF treatment industry. Among them, the strength provided by 488 

PLSR may perfectly suffice to tackle difficult multilinearity and linear relationships for routine quality control-type 489 

demands where the rapid and reliable computation of chemical components is mostly required as routine tasks with 490 

minimum computational cost involvement (Aulia et al., 2022). While this may be a limitation, the capability of SVMR 491 

to model nonlinear relationships provides an added advantage in applications where a complex dataset needs to be 492 

handled, for instance, property prediction influenced by intricate interactions of several variables, provided the feature 493 

selection is optimized carefully to avoid loss of information (Yin et al., 2023; Peng et al., 2024, Luo et al., 2024). 494 

TCNA may turn out much more precise and robust in such cases when high-dimensional datasets and complicated 495 
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relationships are involved. For some tasks requiring high accuracy-like formulation optimization or the design of 496 

products with special nutritional or functional features-TCNA could become of real value. Model selection depends 497 

on a particular task and should be done with regard to the desired accuracy, available computational resources, and 498 

data relationship complexity (Qi et al., 2023; Luo et al., 2023; Wang et al., 2024). 499 

3.4. Visualization of carbohydrate distribution 500 

Visual prediction maps portrayed concentration changes between samples and even inside one sample, which 501 

the naked eye and conventional industrial color cameras cannot do. Furthermore, the visualisation findings indicated 502 

that HSI has a significant advantage over traditional spectroscopy in chemical composition and spatial contaminant 503 

identification of various products (Aulia et al., 2022; Zhang et al., 2023). Figure 4 illustrates the best OSC-CARS-504 

TCNA model to predict distribution of carbohydrate content. The image with the linear colour scale on the right 505 

intuitively showed the distribution of carbohydrate in CBF samples. Variations of the ingredients were allocated on a 506 

linear colour scale. The carbohydrate content in the CBF was obviously differentiated from the color, and the 507 

distribution was uneven. It is concluded the change of carbohydrate content in CBF would be distinguished through 508 

color changes, and the visualization detection of carbohydrate content in CBF was realized. Therefore, the 509 

visualization images from HSI could be easily used for the detection of carbohydrate. That was a simple and useful 510 

method used for a fast and accurate non-destructive visible system. As compared to single point detection technology, 511 

HSI technology could accomplish the visualization of carbohydrate content in any local area of CBF and contribute 512 

to the integrated assessment for the quality of CBF. 513 
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Figure 4. Visualization map of carbohydrate content in CBF. (a) IT-134 (b) IT-206 (c) IT-380 (d) IT-449 (e) IT-874 519 

(f) SP-171 (g) SP-496 (h) GR-430 (i) GR-833 (j) AL-924 (k) AL-1237 (l) CR-1417 (m) IT-134 treated (n) IT-206 520 

treated (o) IT-380 treated (p) IT-449 treated (q) IT-874 treated (r) SP-171 treated (s) SP-496 treated (t) GR-430 521 

treated (u) GR-833 treated (v) AL-924 treated (w) AL-1237 treated (x) CR-1417 treated 522 

4. Conclusion 523 

In this work, we contribute to the use of HSI for quality detection of common bean’s flour. A new quality 524 

detection model for CBF that combines HSI, ML, and physiological experiments was proposed. Our results support 525 

the feasibility of using ML algorithms for accurate quality detection of CBF to guide the establishment of future 526 

inspection methods. The hyperspectral of CBF was processed to convert the high-dimensional image data into a 527 

column vector with only a few spectral features. Image dimensionality reduction, spectral preprocessing, and spectral 528 

feature extraction methods were used to achieve this. Cross-modeling of each method was then performed to obtain a 529 

highly accurate model for quality detection and variety identification of CBF. The outputs demonstrated although deep 530 

learning presents more accuracy than ML models, the applied ML models not only provided acceptable and reliable 531 

accuracy but also affect significantly in time-analyzing. Therefore, the online and real-time systems can use ML 532 

models by considering optimization process. In addition, visualization output of the current research revealed that the 533 

developed models and system can integrate to some intelligent sensors for internet of things (IoT) and digitalization 534 

aims. 535 

However, some limitations still need to be overcome in the future. First, the spectral and chemical content 536 

data can be further normalized and denoised to reduce the impact of individual differences. Meanwhile, various 537 

detection methods such as mass spectrometry imaging should be jointly applied to determine whether the distribution 538 

uniformity of prediction compounds and their characteristic structural differences affect the prediction accuracy and 539 

selection of effective wavelengths. Moreover, as portable HSI devices can better meet the market demand, it will be 540 

the primary task to develop convenient HSI devices based on the optimal ML model to achieve more effective and 541 

comprehensive quality evaluation of food materials in the future. 542 
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Figure S1. Changes in spectral profiles before and after preprocessing. (a) Original Spectra (b) mean 

centering (c) probabilistic quotient normalization (d) generalised least squares (e) orthogonal signal 

correction (f) standard normal variate (g) External parameter orthogonalization 

 

 

Figure2- The structure of TCNA mechanism in the current research 
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Table1S. Selection of best kernel for SVMR 

Kernel C γ PP R2 

RBF 0.1 0.01 N 0.885 

      MC 0.868 

      PQN 0.873 

      SNV 0.908 

      OSC 0.915 

      EPO 0.895 

      GLS 0.898 

     0.1 N 0.886 

      MC 0.865 

      PQN 0.874 

      SNV 0.909 

      OSC 0.934 

      EPO 0.893 

      GLS 0.899 

     1 N 0.884 

      MC 0.871 

      PQN 0.872 

      SNV 0.914 

      OSC 0.937 

      EPO 0.896 

      GLS 0.898 

    1 0.01 N 0.883 

      MC 0.873 

      PQN 0.874 

      SNV 0.913 

      OSC 0.939 

      EPO 0.895 

      GLS 0.901 



     0.1 N 0.882 

      MC 0.872 

      PQN 0.877 

      SNV 0.924 

      OSC 0.941 

      EPO 0.899 

      GLS 0.903 

     1 N 0.882 

      MC 0.871 

      PQN 0.876 

      SNV 0.924 

      OSC 0.941 

      EPO 0.895 

      GLS 0.905 

    10 0.01 N 0.924 

      MC 0.919 

      PQN 0.92 

      SNV 0.955 

      OSC 0.958 

      EPO 0.925 

      GLS 0.928 

     0.1 N 0.881 

      MC 0.873 

      PQN 0.876 

      SNV 0.923 

      OSC 0.936 

      EPO 0.894 

      GLS 0.903 

     1 N 0.883 



      MC 0.871 

      PQN 0.878 

      SNV 0.922 

      OSC 0.932 

      EPO 0.893 

      GLS 0.904 

Polynomial    0.1  N 0.788 

      MC 0.763 

      PQN 0.771 

      SNV 0.845 

      OSC 0.882 

      EPO 0.789 

      GLS 0.798 

    1  N 0.789 

      MC 0.765 

      PQN 0.772 

      SNV 0.855 

      OSC 0.887 

      EPO 0.792 

      GLS 0.792 

    10  N 0.787 

      MC 0.764 

      PQN 0.774 

      SNV 0.851 

      OSC 0.891 

      EPO 0.793 

      GLS 0.796 

Gaussian      N 0.788 

      MC 0.762 



      PQN 0.769 

      SNV 0.841 

      OSC 0.869 

      EPO 0.788 

      GLS 0.796 

Pearson Universal   N 0.785 

      MC 0.752 

      PQN 0.765 

      SNV 0.834 

      OSC 0.867 

      EPO 0.789 

      GLS 0.795 

 

 

 


