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Abstract
Text clustering holds significant value across various domains due to its ability to identify patterns and group related infor-
mation. Current approaches which rely heavily on a computed similarity measure between documents are often limited in 
accuracy and interpretability. We present a novel approach to the problem based on a set of evolved search queries. Clusters 
are formed as the set of documents matched by a single search query in the set of queries. The queries are optimized to 
maximize the number of documents returned and to minimize the overlap between clusters (documents returned by more than 
one query). Where queries contain more than one word they are interpreted disjunctively. We have found it useful to assign 
one word to be the root and constrain the query construction such that the set of documents returned by any additional query 
words intersect with the set returned by the root word. Not all documents in a collection are returned by any of the search 
queries in a set, so once the search query evolution is completed a second stage is performed whereby a KNN algorithm 
is applied to assign all unassigned documents to their nearest cluster. We describe the method and present results using 8 
text datasets comparing effectiveness with well-known existing algorithms. We note that as well as achieving the highest 
accuracy on these datasets the search query format provides the qualitative benefits of being interpretable and modifiable 
whilst providing a causal explanation of cluster construction.
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1  Introduction

Clustering algorithms group a collection of documents 
into subsets or clusters to enable users to explore, organ-
ise, summarise, curate and visualise large volumes of text. 
Documents within a cluster should be similar to each other 
(cohesion) whilst documents in different clusters should be 
dissimilar (separation). Text clustering is a central compo-
nent of text mining and plays a crucial role in enhancing 
search engine performance and user experience, for example 
in organising search results, providing personalised search 

and organising document indexes. Text clustering can be 
used to analyse search queries and group them based on the 
intended user meaning. This helps search engines understand 
the underlying context and nuances of the query, leading to 
more relevant results that match the user’s true information 
needs [1].

For automated clustering, documents are traditionally 
represented by a multi-dimensional feature vector where 
each dimension corresponds to a weighted value of a term 
within the document collection [2]. Various similarity or dis-
tance measures have been proposed and are a central compo-
nent of text clustering algorithms. Using such a method it is 
often difficult for a human to understand how the clustering 
is performed and there has been some criticism of the black 
box nature of many successful machine learning models, 
particularly where large datasets may contain human biases 
and prejudices [3, 4]. As a result of the risks associated with 
relying on sophisticated machine learning text clustering 
models which are not completely comprehensible, signifi-
cant efforts have been made to create explainable systems. 
Work has been done on alternative models which recog-
nise word order such as using lexical chains to preserve the 
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semantic relationships between words, for example by using 
WordNet [5, 6]. Efforts have also been made to generate a 
set of human interpretable rules from ‘black box’ systems 
such as support vector machines as in [7]. Word embed-
dings have been used to improve the accuracy of cluster-
ing together with a system to learn interpretable labels [8]. 
Another effective approach has involved combining neural 
network models with symbolic representations [9]. Hierar-
chical clustering produces a dendrogram, a tree-like diagram 
that visually depicts the clustering process and cluster rela-
tionships and has the advantage or not requiring the exact 
number of clusters to be specified in advance [10].

1.1 � Motivation

When constructing a search query, a human user will nor-
mally try to find a word or combination of words that returns 
the documents they are interested in but will not return other 
documents. In their seminal work Manning et al. assert that 
the ‘fundamental assumption’ of information retrieval is 
what they term the ‘cluster hypothesis’:

Documents in the same cluster behave similarly with 
respect to relevance to information needs. The hypoth-
esis states that if there is a document from a cluster 
that is relevant to a search request, then it is likely 
that other documents from the same cluster are also 
relevant.1” [11]

Following this hypothesis, we have developed a system 
called eSQ (evolved Search Queries), which uses a Genetic 
Algorithm (GA) for evolving a set of search queries where 
a cluster is the documents returned by a single query in the 
set. The overall objective is to develop an effective clustering 
system with a natural fit for information retrieval needs and 
with the following desirable characteristics:

1.	 Easily interpreted by a human.
2.	 Modifiable by a human.
3.	 Provide a causal explanation of cluster construction.

1.2 � Contribution

We believe this is the first attempt to produce effective docu-
ment clustering based on simple, explainable multi-word 
search queries. Unlike other clustering algorithms the query-
based algorithm does not rely on distance metrics in its ini-
tial phase. The techniques presented should be useful in both 
text mining, information retrieval and the development of 
new methods of clustering. The simple disjunctive search 
queries produced by the eSQ system are accurate, easy to 

understand, highly scalable and are potentially modifiable 
by a human analyst. The eSQ system presented here also 
has a novel fitness test based entirely on the count of unique 
query hits.

2 � Background

2.1 � Common algorithms

Many algorithms have been proposed to achieve document 
clustering but the most popular is the k-means algorithm. 
K-means begins with k arbitrary centres, typically chosen 
uniformly at random from the data points. Each point is 
then assigned to the nearest centre, and each centre is rec-
omputed as the centre of mass of all points assigned to it. 
These two steps are repeated until the process stabilizes. 
K-means +  + is an enhanced version of the k-means algo-
rithm and uses a randomised seeding technique which is a 
specific way of selecting initial centres [12, 13]. K-means 
(and its variants) is still widely used and an active topic of 
current research [14]. The main disadvantage of k-means is 
that we must provide the desired number of clusters to the 
algorithm in advance. Furthermore, clustering algorithms 
such as k-means are limited in their ability to capture con-
textual information and semantically explain the reasoning 
behind the clustering results. Attempts have been made to 
determine the optimal value of k using genetic algorithms 
[15].

Agglomerative clustering is a popular alternative to 
k-means which can determine a suitable value for k. 
Agglomerative clustering is the bottom-up form of hier-
archical clustering which treats each data point or object 
as cluster at the initial stage [16]. In subsequent iterations, 
using a linkage function the cluster joins the nearest cluster 
at distance D. The distance D is calculated using metrics 
such as Euclidean distance. The iteration continues until 
a large cluster with all the objects is formed [16]. There 
have been attempts to combine agglomerative clustering and 
k-means [17].

One of the most commonly used method to represent 
textual data is term frequency inverse document frequency 
(TFIDF). However, TFIDF cannot consider the position and 
context of a word in a sentence. Word embeddings which 
incorporate the position and context of a word in a sentence 
have been used to improve the accuracy of clustering results 
[18].

2.2 � Clustering with GA

The system we propose uses a GA which is a stochastic 
global optimisation technique which mimics the process 
of Darwinian evolution whereby the search for solutions 1  Our emphasis.
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is guided by the principles of selection and heredity [19]. 
GAs have proved to be an effective computational method, 
especially in situations where the search space is un-charac-
terized (mathematically), not fully understood, or/and highly 
dimensional [20]. Clustering a large volume of text is an 
example of unsupervised problems that fits all these char-
acteristics and GAs have been used here, often as a means 
of optimizing the allocation of cluster centres [21–23]. Fre-
quently, each chromosome represents a combination of cen-
tres which represent the candidate solution to the clustering 
problem [14]. A ratio of the intra-cluster distance of clus-
ters against the inter-cluster distances between the cluster 
is often used. Document clustering using a fitness function 
based on the concept of nearest neighbour separation has 
also been proposed [24].

GAs have also been in use for some time to generate rules 
for text classification [25–27] and clustering [28, 29], which 
have the advantage of being explainable.

2.3 � Topic modelling

The system we propose has some similarities to topic mod-
elling which aims to automatically discover latent topics 
from a collection of documents [30]. Topic modelling and 
text clustering are both unsupervised machine learning 
techniques used to analyse, organize and understand large 
collections of text data. Topics of documents can be found 
by searching for groups of words that frequently occur 
together in documents across the collection or by using 
semantic information in the documents [31–33]. The query 
words produced automatically by eSQ can be used as topic 
words. The system differs in that it requires no prior seman-
tic information.

3 � Materials and methods

3.1 � Document collections

Different clustering algorithms can produce divergent results 
when compared to each other on different datasets with dif-
ferent types of text. We, therefore, ran our experiments on 
8 different datasets selected from 3 document collections 
containing very different types of document. Each dataset 
is labelled in bold.

3.1.1 � CrisisLex

An increasing number of short texts are being generated and 
it has been noted that this environment is complicated by 
sparsity and high-dimensionality, meaning that the vector 

space model and normal text clustering methods may not 
work well [34, 35]. CrisisLex.org is a repository of crisis-
related social media data and tools [36]. The ‘CrisisLexT6’ 
collection2 contains tweets collected in 2012–13 in different 
crisis situations. We use 1000 of the tweets from each of 
the categories. Crisis3 is created from: Colorado wildfires, 
Boston bombings and Queensland floods. Crisis4 is cre-
ated from Colorado wildfires, Boston bombings, Queensland 
floods and LA airport shootings.

3.1.2 � Newsgroups

In the 20 Newsgroups collection [37] documents are mes-
sages posted to Usenet newsgroups, and the categories are 
the newsgroups themselves. The data on this set is con-
sidered particularly noisy and as might be expected does 
include complications such as duplicate entries and cross 
postings. We create three datasets from this collection by 
randomly selecting 400 documents from each of the catego-
ries. NG3 is created from: rec.sport.hockey, sci.space and 
soc.religion.christian. NG5 is from: comp.os.ms-windows.
misc, misc.forsale, rec.sport.hockey, sci.space, soc.religion.
christian. NG6 is from: comp.graphics, rec.sport.hockey, sci.
crypt, sci,space, soc.religion.christian, talk.politics.gun as 
in [22].

3.1.3 � Reuters‑21578

Reuters-21578 news collection contains news articles col-
lected from the Reuters newswire in 1987. We create three 
datasets using 200 documents from each category. R4 con-
tains documents from crude, earn, grain, money-fx. R5 con-
tains documents from: coffee, crude, interest, sugar, trade. 
R6 contains documents from acq, crude, earn, grain, money-
fx and ship as used in [22].

3.2 � Method

We use a GA to specify a set of search queries in Apache 
Lucene format. The documents returned by each query is a 
cluster. We use a simplified example based on the problem 
of clustering documents in the Newsgroup 5 (NG5) dataset 
to assist the explanation. To begin we assume the simpler 
case of evolving single word queries. We will then go onto 
to explain the extra requirements needed when building mul-
tiword queries.

Step 1: pre-processing.
Before we start evolving queries, all the text is placed 

in lower case and a small stop set is used to remove com-
mon words with little semantic weight. For each dataset, 
an inverted index is constructed from the collection of 
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documents so that for each term in the collection the list of 
documents where the term occurs is recorded. Each docu-
ment is also labelled according to its pre-set category. Of 
course, the GA has no access to the category label which is 
only used to evaluate the effectiveness of the clustering once 
all the stages have completed.

Step 2: create a wordlist.
In the second step, we create an ordered list of significant 

words (terms) which is used by the GA for building queries. 
To construct the list, the TF*IDF (term frequency * inverse 
document frequency) value for each term in the collection 
is calculated. TF is the number of occurrences of a term in 
a document and IDF is the inverse of the number of docu-
ments in which the term occurs. TF*IDF (often used in term 
weighting) is used to identify terms that are concentrated 
in particular documents and may therefore be of more sig-
nificance in a collection. For each term in the index, we 
determine TF*IDF values occurring in each document as 
indicated below, where terms is the set of terms and docu-
ments is the set of documents in the index. We have modi-
fied the basic TF*IDF calculation to give extra weighting to 
uncommon words.

For Documents D, Terms T. For t�T , d�D if t occurs in 
document d and write #(t, d) for the number of occurrences 
of t in d

The value for each term is computed and the list of terms 
is sorted by this value. The top 100 words are selected 
from the list for use in GA query building. This step is only 
required once for each index and is calculated before the 
start of the evolution, after which the list is fixed. The index 
is simply the words place in the TF*IDF ordering. In the 
example shown in Table 1 the length of the list is only 8.

Step 3: Create generation 0.

DF(t) = |{d ∈ D ∶ t ∈ d}|

IDF(t) = log

(
1 +

|D|
DF(t)

)

TFIDF(t) =
�

d∈D
(
√
#(t, d) ∗ (2 − IDF(t)))

Table 2 shows a sample chromosome from the population 
of generation 0. Chromosomes have an integer represen-
tation where the values can be in the range [0.. 100] (the 
maximum size of the wordlist).

Step 4: determine k (the number of categories).
If k is predefined, then this step can be omitted. In the 

example in Table 2 k is genome defined as 5 An int value 
in the inclusive range [2.. 9] (8 possible cluster sizes) is 
used.

Step 5: build a set of k queries.
In the example shown in Table 2 each gene defines 

a single word search query (SQ) and each search query 
defines the cluster as the set of documents which contain 
that word.

Step 6: fire each query in the set.
In our example, five single word search queries are 

generated for the NG5 dataset. For each individual in the 
population, fire each of the search queries and determine 
its fitness by examining the clusters of documents returned 
by the queries and counting the total number of documents 
returned which occur in only 1 cluster (see fitness calcula-
tion below).

Step 7: repeat.
Repeat steps 4–6 for 100 generations (termination cri-

teria) and select the individual with the highest fitness.
Step 8: apply genetic operators.
Apply genetic operators to create a new generation.
Step 9: create initial document clusters.
The selected individual at the end of a run will produce 

a set of single word search queries. Fire each of these que-
ries and save the document clusters produced for the KNN 
stage. Remove any documents which are returned by more 
than 1 query.

Step 10: KNN.
Some documents in the collection may not contain any 

of the query words or are returned by more than one query 
and are therefore not included in any of the initial clus-
ters produced by the GA. We use the K-Nearest Neigh-
bour (KNN) algorithm to add any unassigned document 
to its closest cluster (see Sect. 3.7 below for a detailed 
explanation).

Table 1   Word list 0 1 2 3 4 5 6 7

Space Nasa God Orbit Hockey File Sale Game

Table 2   Creating single word 
search queries

k SQ0 SQ1 SQ2 SQ3 SQ4

Chromosome: 5 0 4 5 1 7
Query words: Space Hockey File Nasa Game
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Step 11: evaluation.
If evaluation is required, measure the final V Measure 

and Adjuster Rand Index value of the expanded clusters 
with reference to the original category labels.

The steps are summarised in Fig. 1

A GA contains many random elements, so we therefore 
repeat each run 11 times.

3.2.1 � Parameters

We used a fixed set of standard GA parameters in all our 
experiments which are summarised in Table 3. We use an 
island model with 4 subpopulations as a means to increase 
diversity and exchange 3 individuals every 30 generations.

3.2.2 � Multi‑word queries

We can build multiword queries by extending the length of 
the genome, for example doubling the length of the genome 
to allow for two-word queries and taking the modulus of k to 
determine which query each gene relates to. A word can only 
be added once to a set of queries: if the genome specifies 

Fig. 1   eSQ steps

Table 3   GA parameters

Parameter Value

Selection type Tournament
Subpopulations 4
Population size 512
Generations 100
Crossover probability 0.8
Mutation probability 0.1
Elitism Best 2
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two or more occurrences of a particular word, only the first 
occurrence is used. Where a query is made of two or more 
words they are connected with a logical OR (disjunction) 
such that documents are returned which contain any of the 
words in the query.

When building a query specified by a chromosome, we 
have found it useful to add a requirement for queries made 
of two or more words. Each word in a multi-word query can 
also be used as a single word query. Before we add a new 
word (newWord) to a query already containing a word (root-
Word), we must first check that the intersect requirement is 
met by calculating the following:

andCount: count of documents containing the newWord 
AND the rootWord

newWordCount: count of documents containing the newWord
intersectRatio: andCount/newWordCount

We have experimented with various values for the min-
imum intersectRatio and have found 0.5 to be a suitable 
value (see results section below). If intersect Ratio >  = 0.5 
the word is added to the query otherwise nothing is added. 
To put it another way, before we add a new word to a query, 
we check that at least 50% the documents which contain the 
new word also contain the root word. This method also has 
the advantage of making the first word in a query more likely 
to be a good cluster label.

3.3 � Example generating 3 search queries (SQ0, SQ1, 
SQ2)

Table 4 shows and example where k is determined in the first 
gene of the chromosome and the rest of the chromosome is 
used to build up a multi-word query.

In this case the chromosome specifies a k value of 3 
meaning that 3 clusters will be created. The 3 queries shown 
in Table 5 will be created.

3.4 � Fitness calculation

Text clustering aims to return sets of documents which are 
related to each other but not related to documents in other 
clusters. We have created and tested two fitness functions 
that aim to partition a document collection into clusters by 
generating a set of search queries. The first fitness function 
is for the case where the desired number of clusters (k) is 
known in advance. In the second case, the GA will attempt 
to determine the optimal value for k.

When calculating fitness from a set of queries gener-
ated by a chromosome, we define uniqueHits as the count 
of documents returned by exactly one query in the set of 
queries.

Let Q be a set of queries, let D be a set of documents. 
Let M ⊆ Q X D be the set of pairs (q, d) where query qϵQ 
matches document dϵD:

uniqueHits: |{d ϵ D ∶ ∃ !q ϵ Q, (q,d) ϵ M}|
For the case where k is known in advance, we have 

found that uniqueHits is a good fitness measure where the 
higher the value (the number of documents returned by 
exactly one query) the better the fitness.

We have noticed that in the case where k is defined in 
the chromosome the GA often produces solutions with too 
many categories with respect to the labelled collections. 
In fact, this is to be expected since overlapping clusters 
do not lead to a reduction in fitness. We found that intro-
ducing a small penalty for more clusters, as in the second 
fitness test (below), improved effectiveness.

uniqueHits * (1 - (k * penalty))
We have found a suitable value for penalty to be 

0.02. This value is examined in the results section. In 
algorithm  2 below we show pseudo code to calculate 
uniqueHits.

Table 4   Chromosome to 
determine k and create 3 search 
queries (SQ)

Representation K SQ0 SQ1 SQ2 SQ0 SQ1 SQ2 SQ0 SQ1 SQ2

Chromosome 3 0 7 2 3 3 5 1 4 2

Table 5   Creating multi-word queries

Gene Specified words Final query Comment

SQ0 0,3,1 Space, orbit, nasa Space OR orbit OR nasa Orbit and nasa both have a high intersect ratio with root word space
SQ1 7,3,4 Game, orbit, hockey Game OR hockey Orbit does not meet the intersect requirement for the root word 

game so is not included in the final query
SQ2 2,5,2 God, file, god God File does not meet the intersect requirement for the root word god. 

Repeated word is ignored
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Algorithm 2 

int countUniqueHits(querySet, D)
{
  int uniqueHits = 0 
  for each d in D
  {    
      if there is q in querySet where Match(q, d)
      but for all q’ ≠ q in querySet NOT Match(q’, d) 
      then uniqueHits++  
  } 
return uniqueHits 
}

querySet is the set of queries (of size k) which have been 
generated by a single chromosome in the population. The 
value of uniqueHits will be the number of documents in the 
collection which are returned by exactly one query in the 
querySet.

3.5 � Effectiveness measures

Effectiveness is determined by referring to the original cat-
egory labels (ground truth) from the relevant collection.

3.5.1 � V measure

We use V-measure [38] as the primary method of assigning 
effectiveness. The V-measure is based on a combination of 
homogeneity (h) and completeness (c). A perfectly homo-
geneous clustering is one where each cluster has data-points 
belonging to the same class label. Homogeneity describes 
the closeness of the clustering algorithm to this perfection.

A perfectly complete clustering is one where all data-
points belonging to the same class are clustered into the 
same cluster. Completeness describes the closeness of the 
clustering to this perfection. The V-measure score is the har-
monic mean of homogeneity and completeness as given by

We assign a default value of 1 to beta so that homogeneity 
and completeness are given equal weighting.

3.5.2 � Adjusted rand index

We also provide the adjusted Rand Index (ARI) [12] as a 
secondary performance measure. ARI is a measure of the 
similarity between the clusters produced by the algorithm 

V =
(1 + �) ∗ h ∗ c

(� ∗ h + c)

and the original document labels. The ARI is calculated as 
follows:

where:

•	 Agreement is the number of pairs of points that are 
assigned to the same cluster in both clusters.

•	 Chance is the expected number of pairs of points that 
would be assigned to the same cluster by chance, given 
the number of clusters and the size of the data set.

The ARI can take values between -1 and 1, where -1 indi-
cates perfect disagreement and 1 indicates perfect agree-
ment. A value of 0 indicates that the two clusters are no 
better than random.

3.5.3 � Cluster count error

We also provide the cluster count error which is simply the 
absolute value of the number of classes minus the number 
of clusters. This measure is only relevant for the case where 
k is not known in advance.

3.6 � Definitions

In this section we provide a more formal definition of the 
query-based clustering and link this with the V measure 
described above.

Let W be the set of all words in any document in a col-
lection, so W ⊆ ℘(Σ∗), here ℘(X) is the power set of X, Σ is 
a finite alphabet and Σ∗ is the set of finite strings over Σ.

We consider a document as an unstructured set of words, 
i.e. a document belongs to ℘(W). In this way, we ignore the 
order and multiplicity of the words in the document. Later, 

ARI =
2(agreement − chance)

agreement + chance
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we may consider a document as a multi set of words. Let 
D ⊆ ℘(℘(W)) be a set of documents.

In the simplest case, a query is a single word w ∈ W. By 
membership, each query defines the set δ(w) ⊆ D, of all doc-
uments d such that w ∈ d. More generally, a query q is a set 
of words (i.e. q ∈ ℘(W)). The query q matches the document 
d ∈ D if and only if  q ∩ d ≠ ∅  i.e. if at least one word of 
the query occurs at least once in the document. Again, for 
any query q we define 𝛿�(q) ⊆ D to be the set of documents 
d such that q matches d. Observe that

A chromosome ( qi ∶ i < k) is a sequence of k queries 
(some k > 1). A uniqueHit for a chromosome occurs when a 
document matches exactly one of its k queries. The unique-
Hitcount for a chromosome is the count of documents 
matching exactly 1 query in the set. Let

The symmetric difference of the �
(
qi
)
s, i.e., the set of all 

documents that are matched by exactly one of the k queries.
A class labelling of D is any finite partition of D, so a 

class labelling {Si: i < s} consists of s disjoint non-empty sets 
(some finite s) whose union is the whole of D. s is the size 
of the partition. So, a class labelling belongs to.
℘(℘(D)).
Let C = {Si: i < s} be a class labelling of size s, and let 

K = {qj: j < k} be a set of k queries for some finite k. For j < k 
letQj = 𝛿�(qj) ⊆ D , the set of documents that match qj.

The following definitions, used to compute the V-measure 
of a set of clusters and a set of categories, are standard, see 
for example [38] for a fuller motivation and explanation of 
terms and the measure. We may define the V-measure of (C, 
K) as shown in Eq. 3.

where

(1)��(q) =
⋃

w∈q

�(w)

(2)u(qi ∶ i < k) =
⋃

i<k

(𝛿�
(
qi
)
�

⋃

j≠i,j<k

𝛿�
(
qj
)
)

(3)V(C,K) =
2hc

h + c

h = 1 −
H(C|K)
H(C)

c = 1 −
H(K|C)
H(K)

H(C|K) = −
∑

i<s,j<k

(|Si ∩ Qj|
D

.log

(|Si ∩ Qj|
|Qj|

))

3.7 � Cluster expansion using KNN

The clusters produced by the GA generated search queries 
have a drawback in that many of the documents are not 
returned by any query; on average only 70% of the docu-
ments are clustered. If we discard the documents which are 
not in any cluster and then analyse the remaining documents 
which are clustered with reference to the original class labels 
the clusters have a high V-measure, mostly above 0.8 and 
sometimes approaching 1. However, it is usually the case 
that we need to add every document to a cluster. To achieve 
this, we include a second stage whereby the query generated 
clusters are used as labelled training sets for a classifier. 
We use a KNN classifier to assign each of the unassigned 

H(K|C) = −
∑

i<s,j<k

(|Si ∩ Qj|
D

.log

(|Si ∩ Qj|
|Si|

))

H(C) = −
∑

i<s

(
Σj<k|Si ∩ Qj|

s
.log

(
Σj<k|Si ∩ Qj|

s

))

H(K) = −
∑

j<k

(
Σi<s|Si ∩ Qj|

s
.log

(
Σi<s|Si ∩ Qj|

k

))

Fig. 2   KNN expansion

Table 6   Clusters generated with no intersect requirement

Cluster Query words Document hits

1 Hockey nhl game players 208
2 Sale please mail windows god space 

high work apr anyone
1357
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documents to their nearest cluster. Figure 2 shows the NG3 
collection where an X represents a document which has been 
assigned to a category. For example, cluster A shows all the 
documents which contain the word ‘god’. Y indicates a doc-
ument which does not contain any of the search query words 
(‘god’, ‘hockey’ or ‘nasa’) and are therefore not included in 
any cluster. The arrows represent the process whereby the 
Lucene implementation of KNN assigns documents y0–y3 
to the nearest cluster. We use a Euclidean distance measure 
with a K value of 10.

4 � Results and discussion

4.1 � Intersect requirement

The intersect requirement was developed to support multi 
word query building for the case where k is not known 
in advance. In this situation, if the intersect constraint is 
not included the GA will almost always select a value of 
2 for the number of clusters (k). For example, a typical 
clustering for the NG5 set is shown by the set of 2 queries 
is shown in Table 6.

The fitness test is based on the count of documents 
returned by exactly one query, so the query set shown 
achieves a high fitness, but the number of clusters (2) does 
not match the number of labelled classes (5), and the sec-
ond query is returning documents from multiple classes. 
Completeness is high (0.852) but homogeneity low (0.212) 
and the V-measure for this clustering is also low (0.340).

We can improve things by restricting the GA to using 
one word per cluster. In this case, using more queries can 
result in more unique hits and higher fitness. A typical 
result is shown with the set of queries below:

The correct number of categories has been identified, 
and the evaluation metrics show a distinct improvement (v: 
0.773, h: 0.773, c: 0.774) (Table 7).

The intersect constraint allows an individual to add more 
words to a single term query, but only when the set of docu-
ments retrieved by the first term (root term) in a query inter-
sects with the set of documents retrieved by any new term 
added to the query. In the results shown below we require 
that 50% of the documents retrieved by the new term are 

Table 7   Single word queries (NG5)

Query word Document hits

1 Space 204
2 Windows 278
3 Team 176
4 Sale 192
5 God 205

Table 8   Multi-word queries with intersect requirement (NG5)

Query words Document hits

1 Sale 192
2 Windows files 295
3 Game players hockey games 299
4 God christ jesus church 294
5 Space moon nasa 262

Fig. 3   Average V, H and C 
scores across all 8 datasets for 
different values of the minimum 
intersect ratio where k is discov-
ered, and multi-word queries are 
enabled
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found in the set retrieved by the root term. The rationale for 
the intersect requirement is to create a mechanism which 
allows GAs to produce queries with multiple terms, but 
only retrieving related documents ideally from a single cat-
egory. Using the intersect requirement we see an even bigger 
improvement. A typical result of a run using the intersect 
constraint is shown in Table 8.

The GA can add more keywords to queries provided the 
intersect requirement is met for each new term. The set of 
queries above has correctly created 5 clusters with (v: 0.882, 
h: 0.880, c: 0.883).

We ran the GA across all the indexes with various values 
between 0 and 1 for the intersect requirements and present 
the results in Fig. 3.

Following these results, we use an intersect ratio of 0.5 in 
the experiments described below.

4.2 � Penalty for more clusters

In the situation where k is not known in advance, the number 
of clusters produced by the GA is typically higher than the 
number of categories existing in the original collection. This 

Fig. 4   Average values for V and 
Adjusted Rand Index across all 
8 datasets for different values of 
k penalty where k is discovered, 
and multi-word queries are 
enabled

0.64
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0.7
0.71
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0.73
0.74
0.75

0 0.01 0.02 0.03 0.04 0.05 0.06

v measure Adjusted Rand

V 
m

ea
su

re
k penalty

Fig. 5   Average cluster count 
error across all 8 datasets for 
different values of k penalty
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higher fragmentation leads to weaker results, and we found 
effectiveness could be improved by introducing in the fitness 
a small penalty based on the number of clusters:

We investigated various values for the penalty (k pen-
alty) as shown in Fig. 4

We also investigated how the cluster count error responds 
to different values of k penalty as shown in Fig. 5.

V measure and Adjusted Rand peak with a k penalty of 
0.02 and the cluster count error is at its lowest for this value. 
Following these results, we selected a penalty of 0.02 in the 
experiments described below for the case where k is not 
known in advance.

Fitness = uniqueHits ∗ (1.0 − (kPenalty ∗ k))

4.3 � KNN expansion

There may be cases where it is useful to return more accu-
rate clusters by excluding the documents where we are 
less confident of cluster membership. Figure 6 shows the 
effect of cluster expansion on the v measure. For all indexes 
the v measure is reduced after the expansion. This is to be 
expected as we are now including all documents in the col-
lection rather than only the documents returned by at least 
one query in the set of queries. The average v measure where 
we use only documents matching a query is 8.64.

4.4 � Overview

Multi-word queries perform better than single word queries. 
Where k is given in advance results are slightly improved 
(Fig. 7).

Fig. 6   v measure for KNN 
expansion

Fig. 7   Results overview
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Fig. 8   v measure for eSQ (k discovered) and k-means +  + 

Fig. 9   ARI for eSQ (k discovered) and k-means +  + 
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4.5 � Comparison with k‑means +  + 

We present a basic comparison across the 8 datasets for 
the eSQ (multi-word) system and the implementation of 
k-means +  + in scikit-learn [12]. The value of k is given in 
advance for k-means +  + but we show the results for eSQ 
where k is discovered (a harder problem). 11 runs were 
obtained for both systems and the average value of the V 
measure and ARI is shown. We use a tf-idf based vectorizer 
and a feature size of 1000 for k-means +  + .

These results are visualized in Fig. 8 and Fig. 9 showing 
that eSQ (k discovered) outperforms k-means +  + in every 
dataset (Tables 9 and 10).

Table 11 compares the standard deviation of the results 
across the 11 runs.

Table 12 show the time in milliseconds to achieve the 
clustering for each index. All programs were run on an Intel 
i7-10,700 CPU running at 2.90GHz. GAs are known as a 
resource intensive approach and the eSQ system is signifi-
cantly slower when compared to k-means +  + . We should 
note that although we have tried to optimize the eSQ code 
this has not been the focus of the development, and we 
believe there is plenty of room for improvement (Table 13).

4.6 � Comparison with agglomerative clustering 
and spectral clustering

We also applied agglomerative clustering and spectral clus-
tering [39], using the implementation available in scikit 
learn [12] with tf-idf vectorization. Agglomerative cluster-
ing also has the advantage of not requiring the number of 
clusters to be provided in advance, however both methods 
performed quite poorly compared to k-means +  + or eSQ.

Spectral clustering is often performing better than 
agglomerative clustering but is failing to effectively cluster 
the short text (tweet) data in the crisis datasets. Our find-
ings suggest that agglomerative clustering struggled due 
to the inter-relation of documents between the classes. For 

Table 9   Average across all indexes

Query type v-measure ARI

k-discovered Multi-word 0.730 0.728
Single-word 0.677 0.650

k-predefined Multi-word 0.731 0.749
Single-word 0.697 0.710

Table 10   Comparison of eSQ and k-means +  + 

v ARI

eSQ k-means +  +  eSQ k-means +  + 

Crisis3 0.600 0.451 0.580 0.322
Crisis4 0.682 0.565 0.673 0.421
NG3 0.910 0.865 0.944 0.9
NG5 0.731 0.718 0.734 0.632
NG6 0.733 0.657 0.744 0.524
R4 0.841 0.632 0.864 0.5
R5 0.709 0.529 0.720 0.444
R6 0.633 0.607 0.568 0.459
Average 0.730 0.628 0.728 0.525

Table 11   Standard deviation of V and ARI

v ARI

eSQ k-means +  +  eSQ k-means +  + 

Crisis3 0.007 0.121 0.008 0.157
Crisis4 0.005 0.081 0.005 0.106
NG3 0.002 0.025 0.002 0.030
NG5 0.009 0.070 0.009 0.116
NG6 0.005 0.041 0.005 0.069
R4 0.028 0.071 0.035 0.126
R5 0.012 0.062 0.015 0.071
R6 0.029 0.081 0.040 0.125
Average 0.099 0.138 0.109 0.194

Table 12   Time in milliseconds eSQ k-means +  + 

Crisis3 524 15
Crisis4 717 20
NG3 523 18
NG5 1024 39
NG6 1440 51
R4 703 18
R5 932 19
R6 1220 25
Average 885 26

Table 13   v measure for agglomerative and spectral clustering

Agglomerative Spectral

Crisis3 0.243 0.040
Crisis4 0.293 0.067
NG3 0.309 0.813
NG5 0.364 0.610
NG6 0.403 0.639
R4 0.446 0.433
R5 0.474 0.302
R6 0.467 0.326
Average 0.375 0.404
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example, in the NG6 dataset, the graphic class comprises 
documents related to graphics, programming, and comput-
ing. The agglomerative (bottom-up) clustering algorithm is 
somewhat rigid as once two data points are joined together 
to form a cluster, they may not rejoin another cluster at a 
later stage. This also contributed to the performance of spec-
tral clustering because the algorithm attempts to model the 
local neighbourhood relationships between the data points 
[40].

5 � Conclusions and future work

We have presented eSQ, a novel system for text clustering 
which is based on a set of GA generated search queries. 
The system takes a hybrid approach whereby the GA oper-
ates in an unsupervised manner to produce initial clus-
ters from the documents returned by each query in the 
set. Unlike existing clustering systems this step does not 
require us to compute a similarity measure between docu-
ments. A second supervised step is then taken where KNN 
uses the GA clusters as training documents so that each 
document is assigned to its nearest cluster.

eSQ is different to most modern clustering systems 
which would use a document or a point in a multi-dimen-
sional space as the cluster centre. The eSQ system can pro-
duce effective text clustering by using a search query at the 
cluster centre and works well even where the number of 
clusters is not known in advance. The search query method 
provides an explanation of cluster construction where the 
search terms can function as cluster labels and also pro-
vides the possibility of manually modifying the simple 
search queries where required. As mentioned in the intro-
duction the cluster hypothesis suggests that search query 
method will naturally align with information retrieval 
requirements.

5.1 � Limitations

We have used a variety of datasets in our development and 
testing, but we cannot be sure that the results obtained here 
are generalizable to other types of text data. Furthermore, 
the datasets we have used have a maximum number of 8 
categories and we have not tested the system where a large 
number of clusters would be required for a good solution.

5.2 � Recommendations for future study

We are hoping to investigate how supervised-weighting 
schemes might be used to improve the clustering, for 

example in the creation of the word list used by the GA. 
Currently the algorithm only generates disjunctive que-
ries and is only suitable for clustering text documents. 
We would like to experiment with more complex queries 
which include conjunction, negation and other search 
query types that have successfully been used in text clas-
sification. We are investigating the possibility of apply-
ing the algorithm to cluster other media such as images. 
Lastly, we will investigate how the eSQ system could be 
combined with existing techniques for topic modelling.
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