
Document clustering with evolved multi-word search
queries

HIRSCH, Laurence <http://orcid.org/0000-0002-3589-9816>, HIRSCH, Robin
and OGUNLEYE, Bayode

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/34931/

This document is the Published Version [VoR]

Citation:

HIRSCH, Laurence, HIRSCH, Robin and OGUNLEYE, Bayode (2025). Document
clustering with evolved multi-word search queries. Evolutionary Intelligence, 18: 37.
[Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Vol.:(0123456789)

Evolutionary Intelligence (2025) 18:37
https://doi.org/10.1007/s12065-025-01018-w

RESEARCH PAPER

Document clustering with evolved multi‑word search queries

Laurence Hirsch1 · Robin Hirsch2 · Bayode Ogunleye3

Received: 25 November 2024 / Revised: 23 January 2025 / Accepted: 2 February 2025
© The Author(s) 2025

Abstract
Text clustering holds significant value across various domains due to its ability to identify patterns and group related infor-
mation. Current approaches which rely heavily on a computed similarity measure between documents are often limited in
accuracy and interpretability. We present a novel approach to the problem based on a set of evolved search queries. Clusters
are formed as the set of documents matched by a single search query in the set of queries. The queries are optimized to
maximize the number of documents returned and to minimize the overlap between clusters (documents returned by more than
one query). Where queries contain more than one word they are interpreted disjunctively. We have found it useful to assign
one word to be the root and constrain the query construction such that the set of documents returned by any additional query
words intersect with the set returned by the root word. Not all documents in a collection are returned by any of the search
queries in a set, so once the search query evolution is completed a second stage is performed whereby a KNN algorithm
is applied to assign all unassigned documents to their nearest cluster. We describe the method and present results using 8
text datasets comparing effectiveness with well-known existing algorithms. We note that as well as achieving the highest
accuracy on these datasets the search query format provides the qualitative benefits of being interpretable and modifiable
whilst providing a causal explanation of cluster construction.

Keywords  Document clustering · Search query · Genetic algorithm · Machine learning · Apache Lucene

1  Introduction

Clustering algorithms group a collection of documents
into subsets or clusters to enable users to explore, organ-
ise, summarise, curate and visualise large volumes of text.
Documents within a cluster should be similar to each other
(cohesion) whilst documents in different clusters should be
dissimilar (separation). Text clustering is a central compo-
nent of text mining and plays a crucial role in enhancing
search engine performance and user experience, for example
in organising search results, providing personalised search

and organising document indexes. Text clustering can be
used to analyse search queries and group them based on the
intended user meaning. This helps search engines understand
the underlying context and nuances of the query, leading to
more relevant results that match the user’s true information
needs [1].

For automated clustering, documents are traditionally
represented by a multi-dimensional feature vector where
each dimension corresponds to a weighted value of a term
within the document collection [2]. Various similarity or dis-
tance measures have been proposed and are a central compo-
nent of text clustering algorithms. Using such a method it is
often difficult for a human to understand how the clustering
is performed and there has been some criticism of the black
box nature of many successful machine learning models,
particularly where large datasets may contain human biases
and prejudices [3, 4]. As a result of the risks associated with
relying on sophisticated machine learning text clustering
models which are not completely comprehensible, signifi-
cant efforts have been made to create explainable systems.
Work has been done on alternative models which recog-
nise word order such as using lexical chains to preserve the

 *	 Laurence Hirsch
	 l.hirsch@shu.ac.uk

	 Robin Hirsch
	 r.hirsch@ucl.ac.uk

	 Bayode Ogunleye
	 b.ogunleye@brighton.ac.uk

1	 Sheffield Hallam University, Sheffield, UK
2	 University College London, London, UK
3	 University of Brighton, Brighton, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-025-01018-w&domain=pdf

	 Evolutionary Intelligence (2025) 18:37 37   Page 2 of 15

semantic relationships between words, for example by using
WordNet [5, 6]. Efforts have also been made to generate a
set of human interpretable rules from ‘black box’ systems
such as support vector machines as in [7]. Word embed-
dings have been used to improve the accuracy of cluster-
ing together with a system to learn interpretable labels [8].
Another effective approach has involved combining neural
network models with symbolic representations [9]. Hierar-
chical clustering produces a dendrogram, a tree-like diagram
that visually depicts the clustering process and cluster rela-
tionships and has the advantage or not requiring the exact
number of clusters to be specified in advance [10].

1.1 � Motivation

When constructing a search query, a human user will nor-
mally try to find a word or combination of words that returns
the documents they are interested in but will not return other
documents. In their seminal work Manning et al. assert that
the ‘fundamental assumption’ of information retrieval is
what they term the ‘cluster hypothesis’:

Documents in the same cluster behave similarly with
respect to relevance to information needs. The hypoth-
esis states that if there is a document from a cluster
that is relevant to a search request, then it is likely
that other documents from the same cluster are also
relevant.1” [11]

Following this hypothesis, we have developed a system
called eSQ (evolved Search Queries), which uses a Genetic
Algorithm (GA) for evolving a set of search queries where
a cluster is the documents returned by a single query in the
set. The overall objective is to develop an effective clustering
system with a natural fit for information retrieval needs and
with the following desirable characteristics:

1.	 Easily interpreted by a human.
2.	 Modifiable by a human.
3.	 Provide a causal explanation of cluster construction.

1.2 � Contribution

We believe this is the first attempt to produce effective docu-
ment clustering based on simple, explainable multi-word
search queries. Unlike other clustering algorithms the query-
based algorithm does not rely on distance metrics in its ini-
tial phase. The techniques presented should be useful in both
text mining, information retrieval and the development of
new methods of clustering. The simple disjunctive search
queries produced by the eSQ system are accurate, easy to

understand, highly scalable and are potentially modifiable
by a human analyst. The eSQ system presented here also
has a novel fitness test based entirely on the count of unique
query hits.

2 � Background

2.1 � Common algorithms

Many algorithms have been proposed to achieve document
clustering but the most popular is the k-means algorithm.
K-means begins with k arbitrary centres, typically chosen
uniformly at random from the data points. Each point is
then assigned to the nearest centre, and each centre is rec-
omputed as the centre of mass of all points assigned to it.
These two steps are repeated until the process stabilizes.
K-means +  + is an enhanced version of the k-means algo-
rithm and uses a randomised seeding technique which is a
specific way of selecting initial centres [12, 13]. K-means
(and its variants) is still widely used and an active topic of
current research [14]. The main disadvantage of k-means is
that we must provide the desired number of clusters to the
algorithm in advance. Furthermore, clustering algorithms
such as k-means are limited in their ability to capture con-
textual information and semantically explain the reasoning
behind the clustering results. Attempts have been made to
determine the optimal value of k using genetic algorithms
[15].

Agglomerative clustering is a popular alternative to
k-means which can determine a suitable value for k.
Agglomerative clustering is the bottom-up form of hier-
archical clustering which treats each data point or object
as cluster at the initial stage [16]. In subsequent iterations,
using a linkage function the cluster joins the nearest cluster
at distance D. The distance D is calculated using metrics
such as Euclidean distance. The iteration continues until
a large cluster with all the objects is formed [16]. There
have been attempts to combine agglomerative clustering and
k-means [17].

One of the most commonly used method to represent
textual data is term frequency inverse document frequency
(TFIDF). However, TFIDF cannot consider the position and
context of a word in a sentence. Word embeddings which
incorporate the position and context of a word in a sentence
have been used to improve the accuracy of clustering results
[18].

2.2 � Clustering with GA

The system we propose uses a GA which is a stochastic
global optimisation technique which mimics the process
of Darwinian evolution whereby the search for solutions 1  Our emphasis.

Evolutionary Intelligence (2025) 18:37 	 Page 3 of 15  37

is guided by the principles of selection and heredity [19].
GAs have proved to be an effective computational method,
especially in situations where the search space is un-charac-
terized (mathematically), not fully understood, or/and highly
dimensional [20]. Clustering a large volume of text is an
example of unsupervised problems that fits all these char-
acteristics and GAs have been used here, often as a means
of optimizing the allocation of cluster centres [21–23]. Fre-
quently, each chromosome represents a combination of cen-
tres which represent the candidate solution to the clustering
problem [14]. A ratio of the intra-cluster distance of clus-
ters against the inter-cluster distances between the cluster
is often used. Document clustering using a fitness function
based on the concept of nearest neighbour separation has
also been proposed [24].

GAs have also been in use for some time to generate rules
for text classification [25–27] and clustering [28, 29], which
have the advantage of being explainable.

2.3 � Topic modelling

The system we propose has some similarities to topic mod-
elling which aims to automatically discover latent topics
from a collection of documents [30]. Topic modelling and
text clustering are both unsupervised machine learning
techniques used to analyse, organize and understand large
collections of text data. Topics of documents can be found
by searching for groups of words that frequently occur
together in documents across the collection or by using
semantic information in the documents [31–33]. The query
words produced automatically by eSQ can be used as topic
words. The system differs in that it requires no prior seman-
tic information.

3 � Materials and methods

3.1 � Document collections

Different clustering algorithms can produce divergent results
when compared to each other on different datasets with dif-
ferent types of text. We, therefore, ran our experiments on
8 different datasets selected from 3 document collections
containing very different types of document. Each dataset
is labelled in bold.

3.1.1 � CrisisLex

An increasing number of short texts are being generated and
it has been noted that this environment is complicated by
sparsity and high-dimensionality, meaning that the vector

space model and normal text clustering methods may not
work well [34, 35]. CrisisLex.org is a repository of crisis-
related social media data and tools [36]. The ‘CrisisLexT6’
collection2 contains tweets collected in 2012–13 in different
crisis situations. We use 1000 of the tweets from each of
the categories. Crisis3 is created from: Colorado wildfires,
Boston bombings and Queensland floods. Crisis4 is cre-
ated from Colorado wildfires, Boston bombings, Queensland
floods and LA airport shootings.

3.1.2 � Newsgroups

In the 20 Newsgroups collection [37] documents are mes-
sages posted to Usenet newsgroups, and the categories are
the newsgroups themselves. The data on this set is con-
sidered particularly noisy and as might be expected does
include complications such as duplicate entries and cross
postings. We create three datasets from this collection by
randomly selecting 400 documents from each of the catego-
ries. NG3 is created from: rec.sport.hockey, sci.space and
soc.religion.christian. NG5 is from: comp.os.ms-windows.
misc, misc.forsale, rec.sport.hockey, sci.space, soc.religion.
christian. NG6 is from: comp.graphics, rec.sport.hockey, sci.
crypt, sci,space, soc.religion.christian, talk.politics.gun as
in [22].

3.1.3 � Reuters‑21578

Reuters-21578 news collection contains news articles col-
lected from the Reuters newswire in 1987. We create three
datasets using 200 documents from each category. R4 con-
tains documents from crude, earn, grain, money-fx. R5 con-
tains documents from: coffee, crude, interest, sugar, trade.
R6 contains documents from acq, crude, earn, grain, money-
fx and ship as used in [22].

3.2 � Method

We use a GA to specify a set of search queries in Apache
Lucene format. The documents returned by each query is a
cluster. We use a simplified example based on the problem
of clustering documents in the Newsgroup 5 (NG5) dataset
to assist the explanation. To begin we assume the simpler
case of evolving single word queries. We will then go onto
to explain the extra requirements needed when building mul-
tiword queries.

Step 1: pre-processing.
Before we start evolving queries, all the text is placed

in lower case and a small stop set is used to remove com-
mon words with little semantic weight. For each dataset,
an inverted index is constructed from the collection of

	 Evolutionary Intelligence (2025) 18:37 37   Page 4 of 15

documents so that for each term in the collection the list of
documents where the term occurs is recorded. Each docu-
ment is also labelled according to its pre-set category. Of
course, the GA has no access to the category label which is
only used to evaluate the effectiveness of the clustering once
all the stages have completed.

Step 2: create a wordlist.
In the second step, we create an ordered list of significant

words (terms) which is used by the GA for building queries.
To construct the list, the TF*IDF (term frequency * inverse
document frequency) value for each term in the collection
is calculated. TF is the number of occurrences of a term in
a document and IDF is the inverse of the number of docu-
ments in which the term occurs. TF*IDF (often used in term
weighting) is used to identify terms that are concentrated
in particular documents and may therefore be of more sig-
nificance in a collection. For each term in the index, we
determine TF*IDF values occurring in each document as
indicated below, where terms is the set of terms and docu-
ments is the set of documents in the index. We have modi-
fied the basic TF*IDF calculation to give extra weighting to
uncommon words.

For Documents D, Terms T. For t�T , d�D if t occurs in
document d and write #(t, d) for the number of occurrences
of t in d

The value for each term is computed and the list of terms
is sorted by this value. The top 100 words are selected
from the list for use in GA query building. This step is only
required once for each index and is calculated before the
start of the evolution, after which the list is fixed. The index
is simply the words place in the TF*IDF ordering. In the
example shown in Table 1 the length of the list is only 8.

Step 3: Create generation 0.

DF(t) = |{d ∈ D ∶ t ∈ d}|

IDF(t) = log

(
1 +

|D|
DF(t)

)

TFIDF(t) =
�

d∈D
(
√
#(t, d) ∗ (2 − IDF(t)))

Table 2 shows a sample chromosome from the population
of generation 0. Chromosomes have an integer represen-
tation where the values can be in the range [0.. 100] (the
maximum size of the wordlist).

Step 4: determine k (the number of categories).
If k is predefined, then this step can be omitted. In the

example in Table 2 k is genome defined as 5 An int value
in the inclusive range [2.. 9] (8 possible cluster sizes) is
used.

Step 5: build a set of k queries.
In the example shown in Table 2 each gene defines

a single word search query (SQ) and each search query
defines the cluster as the set of documents which contain
that word.

Step 6: fire each query in the set.
In our example, five single word search queries are

generated for the NG5 dataset. For each individual in the
population, fire each of the search queries and determine
its fitness by examining the clusters of documents returned
by the queries and counting the total number of documents
returned which occur in only 1 cluster (see fitness calcula-
tion below).

Step 7: repeat.
Repeat steps 4–6 for 100 generations (termination cri-

teria) and select the individual with the highest fitness.
Step 8: apply genetic operators.
Apply genetic operators to create a new generation.
Step 9: create initial document clusters.
The selected individual at the end of a run will produce

a set of single word search queries. Fire each of these que-
ries and save the document clusters produced for the KNN
stage. Remove any documents which are returned by more
than 1 query.

Step 10: KNN.
Some documents in the collection may not contain any

of the query words or are returned by more than one query
and are therefore not included in any of the initial clus-
ters produced by the GA. We use the K-Nearest Neigh-
bour (KNN) algorithm to add any unassigned document
to its closest cluster (see Sect. 3.7 below for a detailed
explanation).

Table 1   Word list 0 1 2 3 4 5 6 7

Space Nasa God Orbit Hockey File Sale Game

Table 2   Creating single word
search queries

k SQ0 SQ1 SQ2 SQ3 SQ4

Chromosome: 5 0 4 5 1 7
Query words: Space Hockey File Nasa Game

Evolutionary Intelligence (2025) 18:37 	 Page 5 of 15  37

Step 11: evaluation.
If evaluation is required, measure the final V Measure

and Adjuster Rand Index value of the expanded clusters
with reference to the original category labels.

The steps are summarised in Fig. 1

A GA contains many random elements, so we therefore
repeat each run 11 times.

3.2.1 � Parameters

We used a fixed set of standard GA parameters in all our
experiments which are summarised in Table 3. We use an
island model with 4 subpopulations as a means to increase
diversity and exchange 3 individuals every 30 generations.

3.2.2 � Multi‑word queries

We can build multiword queries by extending the length of
the genome, for example doubling the length of the genome
to allow for two-word queries and taking the modulus of k to
determine which query each gene relates to. A word can only
be added once to a set of queries: if the genome specifies

Fig. 1   eSQ steps

Table 3   GA parameters

Parameter Value

Selection type Tournament
Subpopulations 4
Population size 512
Generations 100
Crossover probability 0.8
Mutation probability 0.1
Elitism Best 2

	 Evolutionary Intelligence (2025) 18:37 37   Page 6 of 15

two or more occurrences of a particular word, only the first
occurrence is used. Where a query is made of two or more
words they are connected with a logical OR (disjunction)
such that documents are returned which contain any of the
words in the query.

When building a query specified by a chromosome, we
have found it useful to add a requirement for queries made
of two or more words. Each word in a multi-word query can
also be used as a single word query. Before we add a new
word (newWord) to a query already containing a word (root-
Word), we must first check that the intersect requirement is
met by calculating the following:

andCount: count of documents containing the newWord
AND the rootWord

newWordCount: count of documents containing the newWord
intersectRatio: andCount/newWordCount

We have experimented with various values for the min-
imum intersectRatio and have found 0.5 to be a suitable
value (see results section below). If intersect Ratio >  = 0.5
the word is added to the query otherwise nothing is added.
To put it another way, before we add a new word to a query,
we check that at least 50% the documents which contain the
new word also contain the root word. This method also has
the advantage of making the first word in a query more likely
to be a good cluster label.

3.3 � Example generating 3 search queries (SQ0, SQ1,
SQ2)

Table 4 shows and example where k is determined in the first
gene of the chromosome and the rest of the chromosome is
used to build up a multi-word query.

In this case the chromosome specifies a k value of 3
meaning that 3 clusters will be created. The 3 queries shown
in Table 5 will be created.

3.4 � Fitness calculation

Text clustering aims to return sets of documents which are
related to each other but not related to documents in other
clusters. We have created and tested two fitness functions
that aim to partition a document collection into clusters by
generating a set of search queries. The first fitness function
is for the case where the desired number of clusters (k) is
known in advance. In the second case, the GA will attempt
to determine the optimal value for k.

When calculating fitness from a set of queries gener-
ated by a chromosome, we define uniqueHits as the count
of documents returned by exactly one query in the set of
queries.

Let Q be a set of queries, let D be a set of documents.
Let M ⊆ Q X D be the set of pairs (q, d) where query qϵQ
matches document dϵD:

uniqueHits: |{d ϵ D ∶ ∃ !q ϵ Q, (q,d) ϵ M}|
For the case where k is known in advance, we have

found that uniqueHits is a good fitness measure where the
higher the value (the number of documents returned by
exactly one query) the better the fitness.

We have noticed that in the case where k is defined in
the chromosome the GA often produces solutions with too
many categories with respect to the labelled collections.
In fact, this is to be expected since overlapping clusters
do not lead to a reduction in fitness. We found that intro-
ducing a small penalty for more clusters, as in the second
fitness test (below), improved effectiveness.

uniqueHits * (1 - (k * penalty))
We have found a suitable value for penalty to be

0.02. This value is examined in the results section. In
algorithm 2 below we show pseudo code to calculate
uniqueHits.

Table 4   Chromosome to
determine k and create 3 search
queries (SQ)

Representation K SQ0 SQ1 SQ2 SQ0 SQ1 SQ2 SQ0 SQ1 SQ2

Chromosome 3 0 7 2 3 3 5 1 4 2

Table 5   Creating multi-word queries

Gene Specified words Final query Comment

SQ0 0,3,1 Space, orbit, nasa Space OR orbit OR nasa Orbit and nasa both have a high intersect ratio with root word space
SQ1 7,3,4 Game, orbit, hockey Game OR hockey Orbit does not meet the intersect requirement for the root word

game so is not included in the final query
SQ2 2,5,2 God, file, god God File does not meet the intersect requirement for the root word god.

Repeated word is ignored

Evolutionary Intelligence (2025) 18:37 	 Page 7 of 15  37

Algorithm 2 

int countUniqueHits(querySet, D)
{
 int uniqueHits = 0
 for each d in D
 {
 if there is q in querySet where Match(q, d)
 but for all q’ ≠ q in querySet NOT Match(q’, d)
 then uniqueHits++
 }
return uniqueHits
}

querySet is the set of queries (of size k) which have been
generated by a single chromosome in the population. The
value of uniqueHits will be the number of documents in the
collection which are returned by exactly one query in the
querySet.

3.5 � Effectiveness measures

Effectiveness is determined by referring to the original cat-
egory labels (ground truth) from the relevant collection.

3.5.1 � V measure

We use V-measure [38] as the primary method of assigning
effectiveness. The V-measure is based on a combination of
homogeneity (h) and completeness (c). A perfectly homo-
geneous clustering is one where each cluster has data-points
belonging to the same class label. Homogeneity describes
the closeness of the clustering algorithm to this perfection.

A perfectly complete clustering is one where all data-
points belonging to the same class are clustered into the
same cluster. Completeness describes the closeness of the
clustering to this perfection. The V-measure score is the har-
monic mean of homogeneity and completeness as given by

We assign a default value of 1 to beta so that homogeneity
and completeness are given equal weighting.

3.5.2 � Adjusted rand index

We also provide the adjusted Rand Index (ARI) [12] as a
secondary performance measure. ARI is a measure of the
similarity between the clusters produced by the algorithm

V =
(1 + �) ∗ h ∗ c

(� ∗ h + c)

and the original document labels. The ARI is calculated as
follows:

where:

•	 Agreement is the number of pairs of points that are
assigned to the same cluster in both clusters.

•	 Chance is the expected number of pairs of points that
would be assigned to the same cluster by chance, given
the number of clusters and the size of the data set.

The ARI can take values between -1 and 1, where -1 indi-
cates perfect disagreement and 1 indicates perfect agree-
ment. A value of 0 indicates that the two clusters are no
better than random.

3.5.3 � Cluster count error

We also provide the cluster count error which is simply the
absolute value of the number of classes minus the number
of clusters. This measure is only relevant for the case where
k is not known in advance.

3.6 � Definitions

In this section we provide a more formal definition of the
query-based clustering and link this with the V measure
described above.

Let W be the set of all words in any document in a col-
lection, so W ⊆ ℘(Σ∗), here ℘(X) is the power set of X, Σ is
a finite alphabet and Σ∗ is the set of finite strings over Σ.

We consider a document as an unstructured set of words,
i.e. a document belongs to ℘(W). In this way, we ignore the
order and multiplicity of the words in the document. Later,

ARI =
2(agreement − chance)

agreement + chance

	 Evolutionary Intelligence (2025) 18:37 37   Page 8 of 15

we may consider a document as a multi set of words. Let
D ⊆ ℘(℘(W)) be a set of documents.

In the simplest case, a query is a single word w ∈ W. By
membership, each query defines the set δ(w) ⊆ D, of all doc-
uments d such that w ∈ d. More generally, a query q is a set
of words (i.e. q ∈ ℘(W)). The query q matches the document
d ∈ D if and only if q ∩ d ≠ ∅ i.e. if at least one word of
the query occurs at least once in the document. Again, for
any query q we define 𝛿�(q) ⊆ D to be the set of documents
d such that q matches d. Observe that

A chromosome ( qi ∶ i < k) is a sequence of k queries
(some k > 1). A uniqueHit for a chromosome occurs when a
document matches exactly one of its k queries. The unique-
Hitcount for a chromosome is the count of documents
matching exactly 1 query in the set. Let

The symmetric difference of the �
(
qi
)
s, i.e., the set of all

documents that are matched by exactly one of the k queries.
A class labelling of D is any finite partition of D, so a

class labelling {Si: i < s} consists of s disjoint non-empty sets
(some finite s) whose union is the whole of D. s is the size
of the partition. So, a class labelling belongs to.
℘(℘(D)).
Let C = {Si: i < s} be a class labelling of size s, and let

K = {qj: j < k} be a set of k queries for some finite k. For j < k
letQj = 𝛿�(qj) ⊆ D , the set of documents that match qj.

The following definitions, used to compute the V-measure
of a set of clusters and a set of categories, are standard, see
for example [38] for a fuller motivation and explanation of
terms and the measure. We may define the V-measure of (C,
K) as shown in Eq. 3.

where

(1)��(q) =
⋃

w∈q

�(w)

(2)u(qi ∶ i < k) =
⋃

i<k

(𝛿�
(
qi
)
�

⋃

j≠i,j<k

𝛿�
(
qj
)
)

(3)V(C,K) =
2hc

h + c

h = 1 −
H(C|K)
H(C)

c = 1 −
H(K|C)
H(K)

H(C|K) = −
∑

i<s,j<k

(|Si ∩ Qj|
D

.log

(|Si ∩ Qj|
|Qj|

))

3.7 � Cluster expansion using KNN

The clusters produced by the GA generated search queries
have a drawback in that many of the documents are not
returned by any query; on average only 70% of the docu-
ments are clustered. If we discard the documents which are
not in any cluster and then analyse the remaining documents
which are clustered with reference to the original class labels
the clusters have a high V-measure, mostly above 0.8 and
sometimes approaching 1. However, it is usually the case
that we need to add every document to a cluster. To achieve
this, we include a second stage whereby the query generated
clusters are used as labelled training sets for a classifier.
We use a KNN classifier to assign each of the unassigned

H(K|C) = −
∑

i<s,j<k

(|Si ∩ Qj|
D

.log

(|Si ∩ Qj|
|Si|

))

H(C) = −
∑

i<s

(
Σj<k|Si ∩ Qj|

s
.log

(
Σj<k|Si ∩ Qj|

s

))

H(K) = −
∑

j<k

(
Σi<s|Si ∩ Qj|

s
.log

(
Σi<s|Si ∩ Qj|

k

))

Fig. 2   KNN expansion

Table 6   Clusters generated with no intersect requirement

Cluster Query words Document hits

1 Hockey nhl game players 208
2 Sale please mail windows god space

high work apr anyone
1357

Evolutionary Intelligence (2025) 18:37 	 Page 9 of 15  37

documents to their nearest cluster. Figure 2 shows the NG3
collection where an X represents a document which has been
assigned to a category. For example, cluster A shows all the
documents which contain the word ‘god’. Y indicates a doc-
ument which does not contain any of the search query words
(‘god’, ‘hockey’ or ‘nasa’) and are therefore not included in
any cluster. The arrows represent the process whereby the
Lucene implementation of KNN assigns documents y0–y3
to the nearest cluster. We use a Euclidean distance measure
with a K value of 10.

4 � Results and discussion

4.1 � Intersect requirement

The intersect requirement was developed to support multi
word query building for the case where k is not known
in advance. In this situation, if the intersect constraint is
not included the GA will almost always select a value of
2 for the number of clusters (k). For example, a typical
clustering for the NG5 set is shown by the set of 2 queries
is shown in Table 6.

The fitness test is based on the count of documents
returned by exactly one query, so the query set shown
achieves a high fitness, but the number of clusters (2) does
not match the number of labelled classes (5), and the sec-
ond query is returning documents from multiple classes.
Completeness is high (0.852) but homogeneity low (0.212)
and the V-measure for this clustering is also low (0.340).

We can improve things by restricting the GA to using
one word per cluster. In this case, using more queries can
result in more unique hits and higher fitness. A typical
result is shown with the set of queries below:

The correct number of categories has been identified,
and the evaluation metrics show a distinct improvement (v:
0.773, h: 0.773, c: 0.774) (Table 7).

The intersect constraint allows an individual to add more
words to a single term query, but only when the set of docu-
ments retrieved by the first term (root term) in a query inter-
sects with the set of documents retrieved by any new term
added to the query. In the results shown below we require
that 50% of the documents retrieved by the new term are

Table 7   Single word queries (NG5)

Query word Document hits

1 Space 204
2 Windows 278
3 Team 176
4 Sale 192
5 God 205

Table 8   Multi-word queries with intersect requirement (NG5)

Query words Document hits

1 Sale 192
2 Windows files 295
3 Game players hockey games 299
4 God christ jesus church 294
5 Space moon nasa 262

Fig. 3   Average V, H and C
scores across all 8 datasets for
different values of the minimum
intersect ratio where k is discov-
ered, and multi-word queries are
enabled

	 Evolutionary Intelligence (2025) 18:37 37   Page 10 of 15

found in the set retrieved by the root term. The rationale for
the intersect requirement is to create a mechanism which
allows GAs to produce queries with multiple terms, but
only retrieving related documents ideally from a single cat-
egory. Using the intersect requirement we see an even bigger
improvement. A typical result of a run using the intersect
constraint is shown in Table 8.

The GA can add more keywords to queries provided the
intersect requirement is met for each new term. The set of
queries above has correctly created 5 clusters with (v: 0.882,
h: 0.880, c: 0.883).

We ran the GA across all the indexes with various values
between 0 and 1 for the intersect requirements and present
the results in Fig. 3.

Following these results, we use an intersect ratio of 0.5 in
the experiments described below.

4.2 � Penalty for more clusters

In the situation where k is not known in advance, the number
of clusters produced by the GA is typically higher than the
number of categories existing in the original collection. This

Fig. 4   Average values for V and
Adjusted Rand Index across all
8 datasets for different values of
k penalty where k is discovered,
and multi-word queries are
enabled

0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75

0 0.01 0.02 0.03 0.04 0.05 0.06

v measure Adjusted Rand

V
m

ea
su

re
k penalty

Fig. 5   Average cluster count
error across all 8 datasets for
different values of k penalty

Evolutionary Intelligence (2025) 18:37 	 Page 11 of 15  37

higher fragmentation leads to weaker results, and we found
effectiveness could be improved by introducing in the fitness
a small penalty based on the number of clusters:

We investigated various values for the penalty (k pen-
alty) as shown in Fig. 4

We also investigated how the cluster count error responds
to different values of k penalty as shown in Fig. 5.

V measure and Adjusted Rand peak with a k penalty of
0.02 and the cluster count error is at its lowest for this value.
Following these results, we selected a penalty of 0.02 in the
experiments described below for the case where k is not
known in advance.

Fitness = uniqueHits ∗ (1.0 − (kPenalty ∗ k))

4.3 � KNN expansion

There may be cases where it is useful to return more accu-
rate clusters by excluding the documents where we are
less confident of cluster membership. Figure 6 shows the
effect of cluster expansion on the v measure. For all indexes
the v measure is reduced after the expansion. This is to be
expected as we are now including all documents in the col-
lection rather than only the documents returned by at least
one query in the set of queries. The average v measure where
we use only documents matching a query is 8.64.

4.4 � Overview

Multi-word queries perform better than single word queries.
Where k is given in advance results are slightly improved
(Fig. 7).

Fig. 6   v measure for KNN
expansion

Fig. 7   Results overview

	 Evolutionary Intelligence (2025) 18:37 37   Page 12 of 15

Fig. 8   v measure for eSQ (k discovered) and k-means +  + 

Fig. 9   ARI for eSQ (k discovered) and k-means +  + 

Evolutionary Intelligence (2025) 18:37 	 Page 13 of 15  37

4.5 � Comparison with k‑means +  + 

We present a basic comparison across the 8 datasets for
the eSQ (multi-word) system and the implementation of
k-means +  + in scikit-learn [12]. The value of k is given in
advance for k-means +  + but we show the results for eSQ
where k is discovered (a harder problem). 11 runs were
obtained for both systems and the average value of the V
measure and ARI is shown. We use a tf-idf based vectorizer
and a feature size of 1000 for k-means +  + .

These results are visualized in Fig. 8 and Fig. 9 showing
that eSQ (k discovered) outperforms k-means +  + in every
dataset (Tables 9 and 10).

Table 11 compares the standard deviation of the results
across the 11 runs.

Table 12 show the time in milliseconds to achieve the
clustering for each index. All programs were run on an Intel
i7-10,700 CPU running at 2.90GHz. GAs are known as a
resource intensive approach and the eSQ system is signifi-
cantly slower when compared to k-means +  + . We should
note that although we have tried to optimize the eSQ code
this has not been the focus of the development, and we
believe there is plenty of room for improvement (Table 13).

4.6 � Comparison with agglomerative clustering
and spectral clustering

We also applied agglomerative clustering and spectral clus-
tering [39], using the implementation available in scikit
learn [12] with tf-idf vectorization. Agglomerative cluster-
ing also has the advantage of not requiring the number of
clusters to be provided in advance, however both methods
performed quite poorly compared to k-means +  + or eSQ.

Spectral clustering is often performing better than
agglomerative clustering but is failing to effectively cluster
the short text (tweet) data in the crisis datasets. Our find-
ings suggest that agglomerative clustering struggled due
to the inter-relation of documents between the classes. For

Table 9   Average across all indexes

Query type v-measure ARI

k-discovered Multi-word 0.730 0.728
Single-word 0.677 0.650

k-predefined Multi-word 0.731 0.749
Single-word 0.697 0.710

Table 10   Comparison of eSQ and k-means +  + 

v ARI

eSQ k-means +  +  eSQ k-means +  + 

Crisis3 0.600 0.451 0.580 0.322
Crisis4 0.682 0.565 0.673 0.421
NG3 0.910 0.865 0.944 0.9
NG5 0.731 0.718 0.734 0.632
NG6 0.733 0.657 0.744 0.524
R4 0.841 0.632 0.864 0.5
R5 0.709 0.529 0.720 0.444
R6 0.633 0.607 0.568 0.459
Average 0.730 0.628 0.728 0.525

Table 11   Standard deviation of V and ARI

v ARI

eSQ k-means +  +  eSQ k-means +  + 

Crisis3 0.007 0.121 0.008 0.157
Crisis4 0.005 0.081 0.005 0.106
NG3 0.002 0.025 0.002 0.030
NG5 0.009 0.070 0.009 0.116
NG6 0.005 0.041 0.005 0.069
R4 0.028 0.071 0.035 0.126
R5 0.012 0.062 0.015 0.071
R6 0.029 0.081 0.040 0.125
Average 0.099 0.138 0.109 0.194

Table 12   Time in milliseconds eSQ k-means +  + 

Crisis3 524 15
Crisis4 717 20
NG3 523 18
NG5 1024 39
NG6 1440 51
R4 703 18
R5 932 19
R6 1220 25
Average 885 26

Table 13   v measure for agglomerative and spectral clustering

Agglomerative Spectral

Crisis3 0.243 0.040
Crisis4 0.293 0.067
NG3 0.309 0.813
NG5 0.364 0.610
NG6 0.403 0.639
R4 0.446 0.433
R5 0.474 0.302
R6 0.467 0.326
Average 0.375 0.404

	 Evolutionary Intelligence (2025) 18:37 37   Page 14 of 15

example, in the NG6 dataset, the graphic class comprises
documents related to graphics, programming, and comput-
ing. The agglomerative (bottom-up) clustering algorithm is
somewhat rigid as once two data points are joined together
to form a cluster, they may not rejoin another cluster at a
later stage. This also contributed to the performance of spec-
tral clustering because the algorithm attempts to model the
local neighbourhood relationships between the data points
[40].

5 � Conclusions and future work

We have presented eSQ, a novel system for text clustering
which is based on a set of GA generated search queries.
The system takes a hybrid approach whereby the GA oper-
ates in an unsupervised manner to produce initial clus-
ters from the documents returned by each query in the
set. Unlike existing clustering systems this step does not
require us to compute a similarity measure between docu-
ments. A second supervised step is then taken where KNN
uses the GA clusters as training documents so that each
document is assigned to its nearest cluster.

eSQ is different to most modern clustering systems
which would use a document or a point in a multi-dimen-
sional space as the cluster centre. The eSQ system can pro-
duce effective text clustering by using a search query at the
cluster centre and works well even where the number of
clusters is not known in advance. The search query method
provides an explanation of cluster construction where the
search terms can function as cluster labels and also pro-
vides the possibility of manually modifying the simple
search queries where required. As mentioned in the intro-
duction the cluster hypothesis suggests that search query
method will naturally align with information retrieval
requirements.

5.1 � Limitations

We have used a variety of datasets in our development and
testing, but we cannot be sure that the results obtained here
are generalizable to other types of text data. Furthermore,
the datasets we have used have a maximum number of 8
categories and we have not tested the system where a large
number of clusters would be required for a good solution.

5.2 � Recommendations for future study

We are hoping to investigate how supervised-weighting
schemes might be used to improve the clustering, for

example in the creation of the word list used by the GA.
Currently the algorithm only generates disjunctive que-
ries and is only suitable for clustering text documents.
We would like to experiment with more complex queries
which include conjunction, negation and other search
query types that have successfully been used in text clas-
sification. We are investigating the possibility of apply-
ing the algorithm to cluster other media such as images.
Lastly, we will investigate how the eSQ system could be
combined with existing techniques for topic modelling.

Author contribution  L.H. wrote the main manuscript text and per-
formed the development and programming for the eSQ system R.H
contributed to the mathematical sections of the manuscript B.O. helped
with the programming of the python code to test kmeans +  + and other
existing algorithms.

Data availability  No datasets were generated or analysed during the
current study.

Declarations 

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Ren P, Chen Z, Ma J, Wang S, Zhang Z, Ren Z (2015) Mining and
ranking users’ intents behind queries. Inf Retrieval J 18:504–529

	 2.	 Salton G, Buckley C (1988) Term-weighting approaches in auto-
matic text retrieval. Inf Proc Manage 24(5):513–523

	 3.	 Samek W, Wiegand T, Müller K (2017) Explainable artificial
intelligence: understanding, visualizing and interpreting deep
learning models. ITU J: ICT Discoveries Special Issue The Impact
AI Commun Net Services 1:1–10

	 4.	 Riccardo G, Monreale A, Ruggieri S, Turini F, Giannotti F,
Pedreschi D (2018) A survey of methods for explaining black
box models. ACM comput surveys (CSUR) 51:1

	 5.	 Wei T, Lu Y, Chang H, Zhou Q, Bao X (2015) A semantic
approach for text clustering using WordNet and lexical chains.
Expert Syst Appl 42(4):2264–2275

	 6.	 E. K. Jasila, N. Saleena and K. A. Abdul Nazeer, (2019) Ontol-
ogy based document clustering - an efficient hybrid approach,”
in IEEE 9th International conference on advanced computing(
(IACC), Tiruchirapalli

	 7.	 N. Allahverdi , H. Kahramanli and M. Koklu, (2005) Rule extrac-
tion from linear support vector machines. in Proceedings of the

http://creativecommons.org/licenses/by/4.0/

Evolutionary Intelligence (2025) 18:37 	 Page 15 of 15  37

Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining

	 8.	 M. H. Gad-Elrab, D. Stepanova, T. K. Tran, H. Abdel and G. Wei-
kum, (2020) Excut: Explainable embedding-based clustering over
knowledge graphs. in International Semantic Web Conference

	 9.	 F. Alam, M. Malik and M. Krishnamurthy, (2023) NeuroClustr:
Empowering Biomedical Text Clustering with Neuro-Symbolic
Intelligence. in International Joint Conference on Artificial Intel-
ligence 2023 Workshop on Knowledge-Based Compositional
Generalization

	10.	 Ran X, Yue X, Xiangwen W, Zhenyu L (2023) Comprehensive
survey on hierarchical clustering algorithms and the recent devel-
opments. Artif Intell Rev 56:8219–8264

	11.	 C. D. Manning, R. Raghavan and H. Schultze, (2008) Introduction
to infromation retrieval, Cambridge University Press

	12.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) Scikit-learn: machine learning in python. J Mach Learn
Res 12:2825–2830

	13.	 D. Arthur and S. Vassilvitskii, (2007) k-means++: The advantages
of careful seeding. in Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms

	14.	 Radomirović B, Jovanović V, Nikolić B, Stojanović S, Venka-
tachalam K, Zivkovic M, Strumberger I (2023) Text document
clustering approach by improved sine cosine algorithm. Inf Tech-
nol Control 52(2):541–561

	15.	 A. H. Beg and M. Z. Islam, (2016) Advantages and limitations of
genetic algorithms for clustering records. in IEEE 11th Confer-
ence on Industrial Electronics and Applications (ICIEA)

	16.	 Han X, Zhu Y, Ting KM, Li G (2023) The impact of isolation ker-
nel on agglomerative hierarchical clustering algorithms. Patt Rec-
ogn 139:109517. https://​doi.​org/​10.​1016/j.​patcog.​2023.​109517

	17.	 Y. Rong and Y. Liu, (2020) Staged text clustering algorithm based
on K-means. in IEEE International Conference on Artificial Intel-
ligence and Computer Applications (ICAICA)

	18.	 A Subakti, H Murfi and N Hariadi, (2022) The performance of
BERT as data representation of text clustering. Journal of big
Data, vol. 15

	19.	 Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72
	20.	 Hruschka ER, Campello RJ, Freitas AA (2009) A survey of evo-

lutionary algorithms for clustering. IEEE Trans Syst Man Cybern
39(2):133–155

	21.	 Uysal AK, Gunal S (2014) Text classification using genetic
algorithm oriented latent semantic features. Expert Syst Appl
41(13):5938–5947

	22.	 Song W, Qiao Y, Park SC, Qian X (2015) A hybrid evolution-
ary computation approach with its application for optimizing text
document clustering. Exp Syst Appl 42(5):2517–2524

	23.	 Escalante HJ, García-Limón MA, Morales-Reyes A, Montes-y-
Gómez M, Martínez-Carranza A (2015) Term-weighting learning
via genetic programming for text classification. Knowl-Based Syst
83:176–189

	24.	 Mustafi D, Mustafi A, Sahoo G (2022) A novel approach to text
clustering using genetic algorithm based on the nearest neighbour
heuristic. Int J Comput Appl 44(3):291–303

	25.	 C. Clack, J. Farringdon, P. Lidwell and T. Yu, (1997) Autonomous
document classification for business. in Proceedings of the first
international conference on Autonomous agents

	26.	 A. Pietramala , V. Policicchio , P. Rullo and I. Sidhu, (2008) A
genetic algorithm for text classification rule induction. in Proc.
European Conf. Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML/PKDD ’08)

	27.	 Hirsch L, Brunsdon T (2018) A comparison of Lucene search
queries evolved as text classifiers. Appl Artif Intell 32(7):768–784

	28.	 L. Hirsch and A. Di Nuovo, (2017) Document clustering with
evolved search queries. in Evolutionary Computation (CEC),
IEEE Congress on., Donostia - San Sebastián

	29.	 L. Hirsch, A. Di Nuovo and P. Haddela, (2021) Document cluster-
ing with evolved single word search queries. in IEEE Congress on
Evolutionary Computation (CEC)

	30.	 Blei DM (2012) Probabilistic topic models. Commun ACM
4:77–84

	31.	 Geeganage DK, Yue X, Li Y (2024) A semantics-enhanced topic
modelling technique: semantic-LDA. ACM Trans Knowledge Dis-
covery from Data 18(4):1–27. https://​doi.​org/​10.​1145/​36394​09

	32.	 Ogunleye B, Lancho Barrantes BS, Zakariyyah KI (2025) Topic
modelling through the bibliometrics lens and its technique. Artif
Intell Rev. https://​doi.​org/​10.​1007/​s10462-​024-​11011-x

	33.	 Z. Zhang, M. Fang, L. Chen and M. R. Namazi-Rad, (2022) Is
neural topic modelling better than clustering? An empirical study
on clustering with contextual embeddings for topics. in Proceed-
ings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Seattle

	34.	 Jia C, Carson MB, Wang X, Yu J (2018) Concept decompositions
for short text clustering by identifying word communities. Pattern
Recogn 76:691–703

	35.	 E. Maden and K. Pinar, (2023) Recent methods on short text
stream clustering: a survey study. Wiley Interdisciplinary Reviews:
Computational Statistics

	36.	 A. Olteanu, S. Vieweg and C. Castillo, (2015) What to expect
when the unexpected happens: Social media communications
across crises. in Proceedings of the 18th ACM conference on
computer supported cooperative work & social computing

	37.	 K. Lang, (1995) Newsweeder: Learning to filter netnews. in Pro-
ceedings of the Twelfth International Conference on Machine
Learning

	38.	 A. Rosenberg and J. Hirschberg, (2007) V-measure: A conditional
entropy-based external cluster evaluation measure. in Proceedings
of the 2007 joint conference on empirical methods in natural lan-
guage processing and computational natural language learning
(EMNLP-CoNLL)

	39.	 Filippone M, Camastra F, Masulli F, Rovetta S (2008) A survey
of kernel and spectral methods for clustering. Pattern Recogn
41(1):176–190

	40.	 Tekli J (2022) An overview of cluster-based image search result
organization: background, techniques, and ongoing challenges.
Knowledge Inf Syst 64(3):589–642. https://​doi.​org/​10.​1007/​
s10115-​021-​01650-9

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.patcog.2023.109517
https://doi.org/10.1145/3639409
https://doi.org/10.1007/s10462-024-11011-x
https://doi.org/10.1007/s10115-021-01650-9
https://doi.org/10.1007/s10115-021-01650-9

	Document clustering with evolved multi-word search queries
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Background
	2.1 Common algorithms
	2.2 Clustering with GA
	2.3 Topic modelling

	3 Materials and methods
	3.1 Document collections
	3.1.1 CrisisLex
	3.1.2 Newsgroups
	3.1.3 Reuters-21578

	3.2 Method
	3.2.1 Parameters
	3.2.2 Multi-word queries

	3.3 Example generating 3 search queries (SQ0, SQ1, SQ2)
	3.4 Fitness calculation
	3.5 Effectiveness measures
	3.5.1 V measure
	3.5.2 Adjusted rand index
	3.5.3 Cluster count error

	3.6 Definitions
	3.7 Cluster expansion using KNN

	4 Results and discussion
	4.1 Intersect requirement
	4.2 Penalty for more clusters
	4.3 KNN expansion
	4.4 Overview
	4.5 Comparison with k-means +  + 
	4.6 Comparison with agglomerative clustering and spectral clustering

	5 Conclusions and future work
	5.1 Limitations
	5.2 Recommendations for future study

	References

