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Abstract 
Inter-individual cognitive variability, influenced by genetic and environmental factors, is crucial 

for understanding typical cognition and identifying early cognitive disorders. This study inves-

tigated the association between serum protein expression profiles and cognitive variability 

in a healthy Thai population using machine learning algorithms. We included 199 subjects, 

aged 20 to 70, and measured cognitive performance with the Wisconsin Card Sorting Test. 

Differentially expressed proteins (DEPs) were identified using label-free proteomics and 

analyzed with the Linear Model for Microarray Data. We discovered 213 DEPs between lower 

and higher cognition groups, with 155 upregulated in the lower cognition group and enriched 

in the IL-17 signaling pathway. Subsequent bioinformatic analysis linked these DEPs to 

neuroinflammation-related cognitive impairment. A random forest model classified cognitive 

ability groups with an accuracy of 81.5%, sensitivity of 65%, specificity of 85.9%, and an AUC 

of 0.79. By targeting a specific Thai cohort, this research provides novel insights into the link 

between neuroinflammation and cognitive performance, advancing our understanding of cog-

nitive variability, highlighting the role of biological markers in cognitive function, and contribut-

ing to developing more accurate machine learning models for diverse populations.

Introduction
Cognitive function denotes the higher-order mental processes in the brain that gather and 
process information, reflecting brain activity. In adults, inter-individual cognitive variabil-
ity is pervasive [1], influenced by both genetic and environmental factors [2,3], including 
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gender, age [4], and lifestyle choices [3]. For example, variability in cognitive trajectories has 
been observed in community-dwelling older adults across different cognitive domains, such 
as episodic memory, vocabulary, executive function, attention, and psychomotor speed [5]. 
Differences in cognitive responses to the same physical exercise among individuals are also 
apparent [6,7]. Studying normal cognitive variability is essential for establishing a baseline 
understanding of typical cognition, which is crucial for identifying anomalies that may signal 
early cognitive disorders [8]. Additionally, understanding normal cognitive differences aids in 
developing strategies and educational practices that ensure the society is tailored to support 
diverse cognitive strengths [9].

Genetic and environmental factors may exhibit complex direct and indirect interactions 
that influence normal cognitive variability. Genetic factors contribute approximately 50% to 
70% of cognitive variability at the population level. However, genetic influences on cognitive 
function increase from birth to maturity, with these effects being pronounced in more advan-
taged socioeconomic groups [10]. Previous research indicates that differences in cognitive 
flexibility between healthy Thai males and females fluctuate across age, with such cognitive 
sex differences notable in subjects over 60 years [11]. Additionally, experiences and knowledge 
gained through education alter activity in cholinergic pathways, leading to an attenuation of 
these sex-dependent cognitive differences [12]. This complexity poses a significant challenge 
for researchers attempting to unravel the contributing elements and their interactions that 
influence normal cognitive variability. Thus, using information technology and computer- 
based algorithms to probe these various complex interconnections offers great potential for 
enhancing our understanding of cognitive variability.

Machine learning (ML) algorithms serve as robust approaches for processing large-scale 
datasets and detecting intricate patterns that conventional statistical methods might fail to 
reveal [13,14]. ML models have been employed to classify cognitive profiles [15–17] and to 
predict cognitive health in the global population [18–20]. When using ML algorithms, the 
racial and ethnic background of subjects is an essential issue to consider [21], since racial bias 
is a prevalent challenge facing ML in human studies [22], with consequences that can lead to 
racial disparities in healthcare access and outcomes [23].

Given that cognitive function reflects brain activity, alterations in molecular factors such 
as neuronal and neurotransmission-related proteins may offer valuable insights into cognitive 
variability in healthy individuals. Indeed, previous studies have demonstrated that biomarkers 
related to brain activity can serve as indicators of cognitive function [24–26]. Accordingly, 
this study aims to investigate the association between serum protein expression profiles and 
one measure of cognitive variability, as assessed by the Wisconsin Card Sorting Test (WCST), 
in a healthy Thai population using ML algorithms. By targeting a specific Thai cohort, this 
research contributes to the development of ML models tailored to diverse populations in 
cognitive studies.

Methods

Participants and data
This study included 199 healthy Thai subjects, ranging in age from 20 to 70 years, with sam-
ples collected and cognitive tests conducted from October 20, 2014, to August 25, 2018, as 
previously reported [27]. The researchers assessed the archived samples and data from July 6, 
2022, to July 6, 2023, for the preparation of this publication; all subjects were assigned a study 
ID that concealed individual identities. The cognitive performance of each participant was 
evaluated using the WCST, a test that measures cognitive flexibility [28,29]—the capacity to 
adapt the behavioral response mode to changing conditions—which is commonly employed 
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to assess frontal lobe function, especially the prefrontal cortex [30]. 3 ml of blood was collected 
from the cubital vein of each subject immediately following the completion of the WCST. 
The serum protein expression profiles of the subjects were then analyzed using the label-free 
proteomics method, as previously described [11].

The mean and standard deviation (SD) of the percentage of total errors (%Errors) in 
WCST were computed in male and female subjects separately, covarying for age [11]. A 
negative correlation has been observed between WCST %Errors and the Full-Scale Intel-
ligence Quotient (FSIQ) [31,32], a metric used to assess a person’s overall level of general 
cognitive and intellectual functioning [33]. Male and female subjects with %Errors > 1SD 
above their sex-specific mean were considered to have poor cognitive performance and 
were assigned to the lower cognitive ability group [34]. All methods were performed in 
compliance with relevant guidelines and regulations (Declaration of Helsinki). The Institu-
tional Review Board (IRB) of Naresuan University, Thailand approved this research (COA 
No. 0262/2022). Participation was voluntary, and written informed consent was obtained 
from each subject.

Bioinformatic analysis
Differentially expressed proteins (DEPs) between the two cognition groups were identified 
using the Linear Model for Microarray Data (LIMMA) approach in R version 4.2.3. The 
LIMMA approach applies linear modeling to the expression data and employs empirical 
Bayesian techniques to adjust the standard errors of the estimated log-fold changes [35]. The 
significance of the differential expression was determined using the adjusted P-value, with a 
threshold set at P ≤ 0.01 [36]. This statistical rigor enhances the validity of our findings, ensur-
ing that the results are both robust and biologically meaningful.

Pathway analysis and Gene Ontology (GO) enrichment analysis were performed on the 
website of Annotation, Visualization, and Integrated Discovery (DAVID). DAVID utilizes 
Fisher’s Exact Test to assess the enrichment of GO terms and pathways among the DEPs, 
ensuring that these results are statistically significant and reliable [37,38]. The protein- 
protein interaction network of the identified DEPs was studied using Pathway Studio version 
12.5 [39]. DEP expression levels were displayed by Multi-Experiment Viewer (MeV) version 
4.9.0 [40]. P ≤ 0.05 was considered significant.

Preprocessing
The training and testing datasets were respectively proportioned at 0.6 (n = 119) and 0.4 
(n = 80) of the total sample to optimize the balance between training and validation sets. This 
approach is designed to enhance the model’s generalization capability and minimize the risk 
of overfitting. By allocating a sufficient portion of the data to the training set while preserv-
ing a substantial validation set, we can achieve more reliable and robust model performance, 
consistent with best practices in ML [41].

To address the relatively small proportion of subjects defined as having poor cognitive 
performances, the synthetic minority over-sampling technique (SMOTE) was employed [42]. 
SMOTE was applied exclusively to the training dataset during cross-validation to minimize 
overfitting. The testing dataset, excluded from SMOTE or cross-validation procedures, was 
used to evaluate the final performance metrics of the model [18].

The DEPs that were significantly enriched in cognition-related pathways, as identified by 
GO enrichment analysis, pathway analysis, and protein-protein interaction network analysis, 
were selected as model variables. Age was also included in the model since it is strongly con-
nected to cognitive impairment in the healthy population [43,44].
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Machine learning model
The ML processes were conducted using the tidy models meta-package in R [45]. This 
approach facilitated the creation of a unitary preprocessing dataset, enabling reliable compar-
isons across various ML models, including K-nearest neighbors, regression, decision tree, and 
random forest (RF). The RF model was selected for this study due to its superior performance. 
The analysis code can be found in S1 File.

The principles and procedures of the RF model are well-documented [46–48]. In brief, the 
RF is an ensemble learning method based on decision tree algorithms and is applicable to both 
classification and regression analysis [49]. The significance of each variable in the final model 
is assessed using a ranked measure of variable importance.

Model validation
Cross-validation is a technique employed to evaluate the performance and generalizability of 
an ML model. It involves dividing the data into multiple subsets, training the model on certain 
subsets, and validating it on others. This method minimizes overfitting and yields a more 
accurate estimate of model performance [50]. In this study, a 10-fold cross-validation was 
conducted on the training dataset to evaluate the models’ performances.

In addition, model hyperparameters were tuned during the cross-validation [45]. Specifi-
cally, the following hyperparameters were tuned in this study: the number of trees was 1000, 
the minimum number of data points required for a node further splitting was 2, and 10 pre-
dictors were randomly sampled at each split when building the tree models.

Performance metrics
In this study, we utilized several performance metrics to evaluate the RF model comprehen-
sively. Overall accuracy measures the proportion of correctly classified instances among all 
instances. Matthews correlation coefficient (MCC) is a balanced measure that accounts for 
true and false positives and negatives, providing a comprehensive understanding of model 
performance [51]. The F1-score, which is the harmonic mean of precision and recall, offers 
insight into the balance between the precision and the completeness of the model [52]. Finally, 
the Area Under the Receiver Operating Characteristic Curve (AUC) assesses the model’s abil-
ity to distinguish between classes, offering a summary of performance across all classification 
thresholds [53]. Fig 1 shows the overall working procedure of this study.

Results

Demographic data of the study population
The demographic characteristics of the study population are detailed in Table 1 (see full data 
set in S1 Table). The mean age of the participants was 45.6 ± 19.3 years, with 55.3% being 
female (n = 110). The cutoff point as defined by %Errors > 1SD from the mean in males was 
62.3, whereas in females, it was 67.4.

Bioinformatic analysis
There were 213 differentially expressed proteins identified between the poor and higher 
cognition groups, with 155 DEPs being upregulated in the poor cognition group and the 
remaining 58 DEPs being downregulated (see Fig 2). Data from the subsequent GO enrich-
ment analysis demonstrated that DEPs were substantially enriched in the following biological 
pathways: regulation of protein stability (P = 0.01), macromolecule methylation (P = 0.03), 
regulation of neuron projection development (P = 0.04), and retinoic acid catabolic process 
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(P = 0.04), as shown in Table 2. Regarding the pathway analysis [54–56], these DEPs showed 
significant enrichment in the IL-17 signaling pathway (P = 0.05); see Table 3.

Furthermore, protein-protein interaction (PPI) network analysis indicated that most of the 16 
DEPs enriched in the aforementioned pathways were linked to neuroinflammation-related cogni-
tive impairment (see full data set in S1 Table). The other four DEPs found to be involved in this PPI 
network were serotonin receptor 7 (HTR7), metabotropic glutamate receptor 4 (GRM4), choline 
transporter-like protein 2 (SLC44A2), and pro-adrenomedullin (ADM) (see Fig. 3). Glutamatergic 
[57], serotonergic [58], and cholinergic [59] systems have been shown to have a role in cognitive 
impairment. Additionally, ADM has been suggested as a potential biomarker for cognitive impair-
ment [60,61]. As a result, all those 20 proteins were included as variables in the RF model.

Model performance
The RF model achieved a test classification accuracy of 81.5% (see Table 4). The model’s sensi-
tivity (true positive rate) was estimated to be 65%, while the specificity (true negative rate) was 
85.9%. The AUC (0.79) indicates good binary classification performance [62] (see Fig. 4).

Fig 1. Overall working procedure of this study.

https://doi.org/10.1371/journal.pone.0313365.g001

Table 1. Demographic data of the study population.

Lower cognitive ability (n = 41) Higher cognitive ability (n = 158)
Age, years 51.5 ± 17.5 44.0 ± 19.6
Sex, female 22 (53.7%) 88 (55.7%)
Education, secondary & tertiary 14 (34.1%) 93 (58.9%)
WCST %Errors 69.6 ± 4.78 48.6 ± 10.0

Data is shown as mean ± SD

https://doi.org/10.1371/journal.pone.0313365.t001

https://doi.org/10.1371/journal.pone.0313365.g001
https://doi.org/10.1371/journal.pone.0313365.t001
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Fig 2. Volcano plot of DEPs between poor and normal cognition groups. Color blue represents DEPs that are 
downregulated in the poor cognition group, red represent DEPs unregulated in poor cognition group.

https://doi.org/10.1371/journal.pone.0313365.g002

Table 2. Gene Ontology analysis of DEPs between lower and higher cognitive ability groups.

Number Pathway ID Pathway Mapped DEPs Fold Enrichment P-value
1 GO:0031647 Regulation of protein stability GET4, CCAR2, KAT2A, UPS25, INSC 5.84 0.01
2 GO:0043414 Macromolecule methylation FTSJ3, METTL4 55.5 0.03
3 GO:0010975 Regulation of neuron projection development NCS1, BRSK2, NTNG1 8.99 0.04
4 GO:0034653 Retinoic acid catabolic process CRABP1, CYP2W1 44.3 0.04

https://doi.org/10.1371/journal.pone.0313365.t002

Table 3. Pathway analysis of DEPs between lower and higher cognitive ability groups.

Number Pathway ID Pathway Mapped DEPs Fold Enrichment P-value
1 hsa04657 IL-17 signaling pathway MAPK6, CCL7, MAPK9, UPS25 4.56 0.05

https://doi.org/10.1371/journal.pone.0313365.t003

https://doi.org/10.1371/journal.pone.0313365.g002
https://doi.org/10.1371/journal.pone.0313365.t002
https://doi.org/10.1371/journal.pone.0313365.t003
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Importance of the model variables
Fig 5 depicts the 10 most influential variables. MAPK9 (P45984) had the strongest influence 
on the classification model, and this DEP was significantly enriched in the IL-17 signaling 
pathway. Age, ADM (P35318), HTR7 (P34969), SLC44A2 (Q8IWA5), and GRM4 (Q14833) 
are among the most important variables, as expected. The remaining four variables are 
NTNG1 (Q9y2I2), FTSG3 (Q8IY81), CCAR2 (Q8N163), and UPS25 (Q9UHP3), in descend-
ing order of importance. In the poor cognition group, 7 of those 9 DEPs were upregulated, 
whereas SLC44A2 and GRM4 were downregulated (see Fig. 6).

Discussion
This study built a classification model using ML algorithms to detect healthy Thai subjects 
with poor cognitive performance based on proteomic data. The RF model showed good 
performance with an accuracy of 0.815, a specificity of 0.859, and an AUC of 0.790, despite a 

Fig 3. Protein-protein interaction network of selected DEPs.

https://doi.org/10.1371/journal.pone.0313365.g003

Table 4. Performance metrics of the RF model.

accuracy sensitivity specificity MCC F1-score AUC
0.815 0.65 0.859 0.478 0.595 0.790

https://doi.org/10.1371/journal.pone.0313365.t004

https://doi.org/10.1371/journal.pone.0313365.g003
https://doi.org/10.1371/journal.pone.0313365.t004
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limited sensitivity of 0.65. Overall, the screening performance of our classifier is considered 
acceptable [62,63]. This performance surpasses previous studies that utilized ML algorithms 
to study cognitive function in a Thai population. For example, a study using cardiovascular 
risk factors to compute the probability of mild cognitive impairment (MCI) in the Thai pop-
ulation reported AUCs ranging from 0.58 to 0.61 [64]. Another study applied phonemic ver-
bal fluency (PVF) tasks combined with ML techniques to predict MCI in Thai participants, 
achieving an AUC of 0.73 [65]. Additionally, research on the Thai version of the CERAD 
neuropsychological battery for MCI screening reported the best model performance with 
an AUC of 0.77 [66]. Our integration of serum proteomic data provided a deeper insight 
into the value of biological markers for enhancing model precision for cognitive outcomes 
in the Thai population. However, a recent study leveraging high-dimensional neuroimag-
ing data to classify cognitive performance in Portuguese individuals achieved an accuracy 
of 86.67% [67]. Their higher accuracy compared to our RF model may be attributed to the 

Fig 4. Receiver operating characteristic curve of the RF model.

https://doi.org/10.1371/journal.pone.0313365.g004

https://doi.org/10.1371/journal.pone.0313365.g004
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direct relevance of neuroimaging features to cognition, while proteomic data reflects broader 
systemic processes that may introduce additional variability. Nevertheless, due to its limited 
sensitivity and moderate F1-score [68], the performance of the RF model should be inter-
preted with caution. The low sensitivity was anticipated owing to the dataset’s skew toward 
the negative cases (higher cognitive ability) [69,70] and the moderate sample size [71,72].

MAPK9 had the most impact on the RF model; it was enriched in the IL-17 signaling 
pathway along with another key variable, UPS25, with both DEPs being upregulated in the 
lower cognitive ability group. IL-17 signaling regulates inflammation by modulating inflamma-
tory gene expression [73]. These proinflammatory factors, if unrestrained, may contribute to 
the pathology of a variety of autoimmune and chronic inflammatory conditions [74]. Dys-
functional and persistent inflammatory processes have been suggested as potential causative 
drivers of impaired cognitive functioning [75,76]. This is consistent with previous findings that 
proinflammatory molecules can cause the progression of brain deficits [77], and IL-17 report-
edly initiates the onset of synaptic and cognitive impairments in the early stages of Alzheimer’s 
disease [78], a process that may be mediated by activation of IL-17 receptors and MAPK [79].

Fig 5. Significance of variables in the RF model.

https://doi.org/10.1371/journal.pone.0313365.g005

https://doi.org/10.1371/journal.pone.0313365.g005
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Furthermore, serotonin receptor 7 (HTR7), metabotropic glutamate receptor-4 (GRM4), 
and choline transporter-like protein 2 (SLC44A2) were also among the most influential 
variables. It has been demonstrated that inhibiting HTR7 modulates immune responses 
and decreases the severity of intestinal inflammation [80]. Serotonin stimulation of HTR7 
activates downstream signaling modules such as MEK/MAPK [81]. This suggested that 
HTR7 may be positively connected with IL-17-mediated neuroinflammation and the poor 
cognitive functioning resulting from brain inflammation. This notion is supported in part 
by a prior result that HTR7 antagonism may have positive effects on schizophrenia-like 
cognitive deficits [82].

According to previous animal research, GRM4 controls adaptive immunity and 
restrains neuroinflammation [83]. Another study found that mutant mice lacking GRM4 

Fig 6. Heat map of the top 9 protein variables.

https://doi.org/10.1371/journal.pone.0313365.g006

https://doi.org/10.1371/journal.pone.0313365.g006
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were less capable of learning and integrating new spatial information into previously 
generated memory traces [84]. The involvement of spatial information learning in the 
WCST process has been proposed [85]. Choline transporter-like protein 2 (SLC44A2) is 
a high-affinity choline carrier [86]. Choline is an indispensable constituent in the bio-
synthesis of acetylcholine (ACh), and its transportation into the presynaptic terminals 
of cholinergic neurons requires a high-affinity choline transporter [87]. ACh is assumed 
to play an essential role in executive function, and cholinergic decline is related to poor 
WCST performance in healthy individuals [88]. Furthermore, SLC44A2 is a newly discov-
ered plasma membrane and mitochondrial ethanolamine transporter [89], and ethanol-
amine has been linked to anti-inflammatory effects [90]. The downregulation of GRM4 
and SLC44A2 in the lower cognitive ability group samples provides a potential biological 
mechanism for why subjects in this group performed poorly on the WCST. However, the 
weights of SLC44A2 and GRM4 are small, consistent with there being multiple interactions 
across diverse neurotransmitter systems in maintaining central nervous system homeosta-
sis [91,92].

Netrin-G1 (NTNG1) and pro-adrenomedullin (ADM) are the second and third most 
important variables, and both DEPs were upregulated in the lower cognitive ability group 
samples. NTNG1 is a member of the Netrin family that is little studied in the brain but is 
implicated in inflammatory processes, including microglial function [93]. ADM has long 
been thought to be a biomarker for cognitive impairment [60,94]. ADM accumulation in 
the human brain contributes to memory loss with age [61], and blood ADM levels elevate in 
multiple pathological states, such as acute ischemic stroke and vascular cognitive decline with 
white matter alterations [95]. There is evidence indicating that inflammatory states stimulate 
the in vivo production of ADM [96]. These data, together with the evidence shown above, 
suggest that those in the lower cognitive ability group may have higher levels of neuroinflam-
mation, resulting in poor cognitive performance on WCST. Age ranks as the seventh most 
important predictor in the model, with a moderate weight. Although it is widely accepted that 
aging is positively correlated to cognitive decline [44,97], our findings imply that this variable 
did not emerge as an influential factor in classifying cognitive variability among healthy Thai 
subjects.

This study has limitations that should be noted. First, the lower and higher cognitive 
ability groups were defined by their WCST % Errors > 1SD from the mean, but there is 
a controversy about this cutoff for defining an abnormal score on the WCST [34], and 
further study with different cutoff points might be needed to replicate the findings of the 
current study. Second, only age and proteomics data were included in the RF model. Given 
the potential direct and indirect interactions among multiple factors influencing cognitive 
function [98], additional factors such as socioeconomic status, lifestyle factors, and cardio-
vascular risk factors should be included in the model to improve model performance. Third, 
although the WCST has demonstrated validity and reliability as a stand-alone cognitive 
assessment tool for healthy individuals of various ages and educational backgrounds [99], 
and %Errors offers a general measure of performance on the WCST that closely correlates 
with FSIQ [31], variability in different domains of cognition requires a more comprehensive 
battery of cognitive testing. This would have been beyond the scope of the current study. 
Fourth, due to the moderate sample size and imbalanced number of subjects in the lower 
and higher cognitive ability groups, generalizing the current findings should be done with 
caution. Last, although the current statistical analysis outlines its benefits, it does not cover 
additional metrics such as effect size measures and confidence intervals. Including these 
metrics in future research will provide a more comprehensive evaluation and strengthen the 
robustness and interpretability of the findings.
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Conclusion
This study highlights the significant association between serum protein expression profiles 
and cognitive variability in a healthy Thai population using ML algorithms. By identifying 213 
DEPs, with 155 upregulated in the lower cognition group and enriched in the IL-17 signaling 
pathway, our findings indicate a strong link between neuroinflammation and cognitive per-
formance differences. The RF model using this proteomic data demonstrates strong classifi-
cation accuracy and performance, with high specificity, outperforming previous studies that 
employed ML algorithms to examine cognitive function in Thai populations. This research 
underscores the critical role of biological markers in enhancing cognitive prediction and con-
tributes to the development of more accurate ML models for diverse populations. These find-
ings advance our understanding of cognitive variability and pave the way for early detection of 
cognitive disorders, offering promising directions for future research in cognitive health.
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