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Abstract: This study compares three machine learning and deep learning models—Support
Vector Regression (SVR), Recurrent Neural Networks (RNN), and Long Short-Term Memory
(LSTM)—for predicting market prices using the NGX All-Share Index dataset. The models
were evaluated using multiple error metrics, including Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE),
and R-squared. RNN and LSTM were tested with both 30 and 60-day windows, with
performance compared to SVR. LSTM delivered better R-squared values, with a 60-day
LSTM achieving the best accuracy (R-squared = 0.993) when using a combination of
endogenous market data and technical indicators. SVR showed reliable results in certain
scenarios but struggled in fold 2 with a sudden spike that shows a high probability of
not capturing the entire underlying NGX pattern in the dataset correctly, as witnessed
by the high validation loss during the period. Additionally, RNN faced the vanishing
gradient problem that limits its long-term performance. Despite challenges, LSTM’s ability
to handle temporal dependencies, especially with the inclusion of On-Balance Volume, led
to significant improvements in prediction accuracy. The use of the Optuna optimisation
framework further enhanced model training and hyperparameter tuning, contributing to
the performance of the LSTM model.

Keywords: deep learning; hybrid model; LSTM; logistic regression; market price forecasting;
Recurrent Neural Network; Support Vector Regression; FinBERT

1. Introduction
The prediction of stock market prices has been a long-standing challenge for financial

analysts and investors. The intrinsic volatility and complexity of financial markets make it
difficult to accurately forecast future trends. Traditional models such as linear regression
and time-series models such as ARIMA are often limited in their ability to capture non-
linear and sequential dependencies within the data [1]. This has led to the growing use of
machine learning (ML) and deep learning (DL) techniques for stock market forecasting. The
NGX All-Share Index, a key indicator of stock market performance in Nigeria, provides a
robust dataset for evaluating the effectiveness of different forecasting models. In this study,
we compare three models: Support Vector Regression (SVR), Recurrent Neural Networks
(RNN), and Long Short-Term Memory (LSTM), to identify the most effective model for
predicting market prices. Each model is uniquely suited to different types of data and
prediction tasks, and understanding these differences is crucial for financial time-series
forecasting. SVR is known for its robustness in small datasets and simple tasks, while
RNN and LSTM excel in handling sequential data due to their inherent architecture. SVR
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operates by mapping input features into two-dimensional spaces using kernel functions,
allowing it to capture market relationships. However, it can struggle with time-series data
where past information strongly influences future trends. RNN is a type of deep learning
model that is designed to capture sequential data, but it suffers from the vanishing gradient
problem, which limits its ability to retain long-term dependencies. LSTM, an extension of
RNN, solves this issue by introducing memory cells that store relevant information over
longer periods [2]. This makes it ideal for time-series forecasting.

According to Fama’s Efficient Market Hypothesis (EMH), asset prices completely
represent all available information at any given time in financial markets, which are said
to be informationally efficient [3]. This paradigm suggests that price changes follow
a “random walk”, which implies that utilising historical data to predict future prices is
virtually futile. The market’s capacity to swiftly respond to new data negates any advantage
obtained from analysing previous patterns since new information is absorbed into pricing
fast and unpredictably. The EMH would posit for this study that using historical data to
predict future stock prices with advanced algorithms such as Support Vector Regression
(SVR), Recurrent Neural Networks (RNN), or Long Short-Term Memory (LSTM) would
ultimately be unsuccessful. This theoretical stance poses significant challenges for time-
series forecasting in financial markets. However, the aim of this study was not to challenge
the validity of EMH but rather to examine how these artificial intelligence models perform
in real-world scenarios, particularly in the context of recent financial theories such as the
Adaptive Markets Hypothesis. The conventional theory of markets as perfectly efficient
is challenged by Andrew Lo’s Adaptive Markets Hypothesis (AMH), which presents a
more dynamic viewpoint in which market efficiency fluctuates over time [4]. AMH claims
that rather than being constantly totally efficient, markets adjust and evolve as a result of
investors’ reactions to the assimilation of new information. This could be perceived as a
blend of principles from classical economics (recognition of market efficiency most of the
time) and behavioural finance that recognise the irrational acts of humans. This framework
recognises the possibility of using historical patterns, such as trends and anomalies, for short
periods of time, especially when there are market inefficiencies. AMH suggests that market
participant’s behaviour can change depending on a variety of circumstances, including
experience, the state of the market, and the availability of information. Therefore, machine
learning approaches such as SVR, RNN, or LSTM that are included in price prediction
models may be able to capture these inefficiencies at certain times. As a result, AMH offers
a theoretical justification for this study methodology. This implies that, while financial
markets are generally efficient, there are instances in which prediction models outperform
others, most especially during market transitions or when specific market inefficiencies
emerge. This is essential for understanding why artificial intelligence models succeed in
forecasting prices under certain conditions, such as volatile markets or during periods of
economic uncertainty as seen in this study. The behaviour of market participants deviates
from rational expectations, which creates opportunities for artificial intelligence algorithms
to capture patterns that would otherwise be hidden in more stable, efficient markets. The
outperformance of LSTM, compared to SVR and RNN, in its ability to capture long-term
dependencies and market complexities may be particularly useful during periods of market
adaptation. This superior performance of LSTM suggests that the model is more adept
at identifying and leveraging market inefficiencies, especially when compared to SVR or
RNN, which may not handle temporal dependencies or complex patterns as effectively. The
positioning of this study within the AMH framework shows the relevance and applicability
of these models in real-world financial forecasting.

In this research, we used the NGX dataset, which contains historical price data along
with technical indicators such as moving averages and On-Balance Volume. These indica-
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tors are essential in understanding market behaviour and enhancing predictive accuracy.
Additionally, the performance of these models was evaluated using a variety of error
metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Percentage Error (MPE), and R-squared. Among these, R-
squared is a crucial metric as it measures how well a model explains the variance in the data,
providing an overall indication of each model’s performance. In this study, we employed
Optuna, an optimisation framework, to fine-tune the hyperparameters of the models for bet-
ter accuracy. The training process involved time-series cross-validation, which ensures that
models are trained and tested on temporally consistent data. This respects the chronological
order of the data and prevents data leakage between training and testing sets. Python and
its libraries were used for implementing and training the models. This provided flexibility
and efficiency in managing the computational requirements. The results reveal that LSTM
outperforms SVR and RNN in both 30-day and 60-day time windows, particularly when
exogenous factors such as On-Balance Volume are included. The 60-day LSTM model
achieved the best R-squared value of 0.993, indicating its superior ability to predict future
stock prices. Despite RNN’s good performance, the vanishing gradient issue limited its
effectiveness for longer time windows. SVR delivers good results for smaller datasets but
showed sudden drops in performance in the second fold during cross-validation. This
highlights SVR’s limitation in handling larger and more complex datasets.

1.1. Research Contributions

The specific contributions of this research include:

- Comparative Analysis of SVR, RNN, and LSTM: This study provides a detailed com-
parison of three widely used models for time-series forecasting in financial markets,
highlighting their strengths and limitations.

- Demonstration of LSTM Superiority: This research demonstrates that LSTM, with its
ability to handle long-term dependencies, outperforms both SVR and RNN in longer
time windows and also confirms its suitability for financial forecasting.

- Inclusion of Exogenous Variables: The incorporation of On-Balance Volume (OBV)
as an exogenous variable in this study shows how the inclusion of technical indicators
can significantly enhance predictive accuracy in stock price forecasting.

- Application of Advanced Hyperparameter Tuning: The use of Optuna for hyperpa-
rameter tuning illustrates the importance of optimisation in improving the model’s
performance. This framework enables a more systematic and efficient search for the
best hyperparameters compared to manual tuning.

- Evaluation with Time-Series Cross-Validation (TimeSeriesSplit): This study em-
phasises the importance of time-series cross-validation in ensuring robust model
evaluation, as it respects the temporal structure of financial data and prevents infor-
mation leakage, leading to more realistic performance estimates.

- Comprehensive Error Metrics: A broad range of evaluation metrics, including MAE,
MSE, RMSE, MPE, and R-squared, are used to provide a thorough assessment of each
model’s performance. The inclusion of R-squared highlights the models’ ability to ex-
plain variance in the data, which is particularly relevant for financial prediction tasks.

- Diagnostic Evaluation: Further diagnostic evaluation tools such as scatter plot, Loss
over Epoch plot, and residual plot are used to provide a comprehensive analysis of
how artificial intelligence models behave and assist in diagnosing issues, fine-tuning
the model, and ensuring generalisation.



Analytics 2025, 4, 5 4 of 22

1.2. Significance of the Study

The practical significance of this study is evident in its

- Improved Financial Forecasting: This study’s identification of LSTM as the most
effective model for the time-series forecasting of stock prices enables traders and
investors to make more informed decisions about buying or selling stocks, and other
financial assets.

- Enhanced Algorithmic Trading Strategies: The findings support the use of LSTM
models in algorithmic trading, where predictive models are used to automate trades
based on real-time data. This can lead to more profitable trading strategies, allowing
algorithms to respond to market movements faster and more accurately.

- Risk Management and Financial Planning: This study contributes to better risk
management as financial institutions can use the findings to develop more accurate
models that anticipate market downturns or periods of high volatility.

- Application of Technical Indicators: The incorporation of technical indicators such as
On-Balance Volume (OBV) in machine learning models provides traders and analysts
with a competitive edge in identifying market opportunities.

- Supporting Quantitative Finance and Machine Learning in Finance: The findings of
this study provide a valuable benchmark for model selection in financial forecasting
and have practical significance for quantitative finance professionals who develop
machine learning models to predict market trends.

- Educational Value for Financial Data Science: This research provides a clear and
practical example of how machine learning models can be applied to real-world
financial data and offers educational value for students, researchers, and professionals
learning about financial data science and its practical applications. It also contributes
to the growing body of knowledge on applying machine learning to financial markets,
thereby providing a case study that can be expanded upon by future researchers
or practitioners.

This could lead to better tools and methods for predictive analytics in financial institu-
tions, improving the overall accuracy of forecasting systems used in asset management,
risk assessment, and trading.

Risk management and quantitative finance. By demonstrating the effectiveness of
LSTM models and optimising predictive models with technical indicators and hyperpa-
rameter tuning, this research equips financial professionals with tools to improve their
forecasting accuracy, automate trading strategies, and manage risk more effectively. These
insights are highly valuable to both academic researchers and industry practitioners, offer-
ing real-life benefits in the field of finance.

To provide a clearer understanding of the current research and position of this study
within the academic field, a detailed Literature Review Table (Table 1) was created. This
table presents the various data analysis techniques previously used in stock price prediction
research, highlighting their pros and cons. Furthermore, the performance of the three
models will be compared with these established methods, showing their ability to capture
market trends effectively and improve prediction accuracy.



Analytics 2025, 4, 5 5 of 22

Table 1. Summary of previous work.

Author Algorithms Used Study Procedure Outcome Study Limitation

Abuein, QQ. et al.
[2]

LSTM and Support
Vector Regression

(SVR)

LSTM showed lower
MSE, RMSE, and MAE

values compared to SVR.

LSTM outperformed and
captured complex trends
while SVR struggled with
capturing the underlying

complex trend.

Limited to two
comparative

models (LSTM and SVR)
without comparison

to RNN.

Zulfike, MS. et al.
[5]

LSTM, SVR, and
Vector

Autoregression (VAR)

LSTM had higher
prediction accuracy and a

better R-squared score
than SVR.

Our study includes
technical indicators such
as moving averages and

volatility, as well as
capturing non-linear
relationships better.

Limited to the addition of
a linear statistical model

without technical
indicators or comparison

to RNN.

Lakshminarayanan,
JP. et al. [6] SVM and LSTM

LSTM achieved better
MAPE and R-squared

scores than SVM.

LSTM outperformed due
to the handling of

temporal dependencies.

Limited to SVM that
classifies and cannot
predict continuous

values.

Pashankar, SS. et al.
[7]

Linear regression,
Random Forest, SVR

SVR demonstrated good
short-term predictions

but struggled with
long-term trends.

LSTM had better results
in long-term prediction

accuracy, especially with
large datasets.

Limited to short-term
predictions with

traditional models. Lack
of focus on long-term

dependencies and
non-linear data.

Chhajer P, et al. [8] LSTM, SVM, and
ANN

LSTM outperformed
SVM and ANN for

non-linear time-series
data.

LSTM provided superior
long-term performance
compared to SVM and
ANN when trained on
multiple input features.

Models lacked diverse
input features as

variables.

Shangshang J. [9] LSTM, ARIMA, SVR,
GRU

LSTM significantly
outperformed ARIMA,

GRU, and SVR in
long-term predictions.

LSTM captured both
long-term trends and

non-linear relationships
better than RNN.

Limited focus on
long-term trends, with
ARIMA struggling in

non-linear tasks.

Several studies have compared the effectiveness of SVR, RNN, and LSTM for time-
series forecasting. The authors in [5] investigated the application of Long Short-Term
Memory (LSTM) and Support Vector Regression (SVR) models in time-series forecasting.
Their study focused on comparing the effectiveness of both models, using error metrics such
as MSE, RMSE, and MAE. They found that the LSTM model consistently outperformed
SVR with lower error rates, making it more suitable for capturing complex patterns in stock
data [2]. The study was limited by its scope, comparing only two models without including
RNN. However, the findings were significant in highlighting LSTM’s strength in handling
time-series forecasting when dealing with large datasets. Zulfike, MS et al., extended this
comparison to include Vector Autoregression (VAR) in predicting stock prices but did not
include RNN and technical indicators such as moving averages or volatility measures as
model input features, which are key variables in our study. By comparing these models,
they found that LSTM achieved better prediction accuracy and a higher R-squared score
than SVR. However, the study primarily relied on statistical models such as VAR, which
are based on linear assumptions, and limited the assessment of advanced AI models that
could better capture non-linear relationships. Our study addresses this by including a
wider range of variables as model input features and showing that LSTM performs better
in capturing non-linear relationships in stock data than SVR and VAR. Lakshminarayanan,
JP et al. [6] conducted a comparative study between Support Vector Machine (SVM) and
LSTM models for stock price prediction. They demonstrated that LSTM consistently
outperformed SVM in terms of the Mean Absolute Percentage Error (MAPE) and R-squared
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scores and in handling continuous prediction tasks better than SVM. However, their work
did not include technical indicators as variables, which our study does, further supporting
LSTM’s advantages in stock forecasting. Pashankar, SS. et al. [7] focused on evaluating the
effectiveness of linear regression, Random Forest, and Support Vector Regression (SVR) for
predicting stock prices. While their findings indicated that SVR performed well for short-
term predictions, SVR struggled with long-term dependencies. Our research builds on this
by demonstrating that LSTM achieves better long-term prediction accuracy, especially with
larger datasets and more complex technical indicators. Chhajer P, et al. [8] explored LSTM,
ARIMA, SVR, and GRU models. The study revealed that LSTM significantly outperformed
ARIMA, GRU, and SVR in long-term predictions. However, the research was limited by its
focus on long-term trends, with ARIMA struggling to manage non-linear tasks [9]. Our
study proved the effectiveness of LSTM superiority by capturing both long-term trends
and non-linear relationships, outperforming other models in these aspects.

There is evidence of a gap in the literature regarding the superiority of the approach,
particularly when considering the variables used in this study. While previous studies
have compared SVR and LSTM, there is still a gap when it comes to the inclusion of
multiple technical indicators as model input features, as used in this study, especially
when comparing these models on non-linear, complex financial data. LSTM’s advantage
over both SVR and RNN should be emphasised in handling large datasets with long-
term dependencies. Many studies have highlighted RNN’s ability to handle sequential
data better than SVR, but RNN still falls short compared to LSTM. This is because RNN
struggles with long-term dependencies, while LSTM, with its internal gating mechanisms,
can manage long-term temporal dependencies far more effectively. Furthermore, no study
has thoroughly examined the use of LSTM, RNN, and SVR combined with historical price
data, return, price, and volume technical indicators as input features, which makes this
study a novel contribution to the field.

2. Materials and Methods
This study employs historical price data from the NGX All-Share Index (NGX) to

examine the performance and trajectory of the Nigerian stock market. The NGX is a
comprehensive benchmark index that reflects the total market capitalization of all equities
listed on the NGX.

Market Capitalization = Current Share Price × Total Number of Outstanding Share (1)

The NGX Index value is given by the formula:

(Current Market Value)/(Base Market Value) × 100 =
∑n

i = 1 PaQa
∑n

i = 1 PbQb
× 100 (2)

The dataset spans from 4 January 2010 to 7 June 2024 and consists of 3573 observations.
Each observation represents a daily record of stock prices and volume. Technical indicators,
such as returns, moving averages, On-Balance Volume (OBV), etc, which are crucial for
predicting market trends, were calculated from the initial observation. The NGX dataset
pre-processing involved eliminating leading spaces, converting and sorting dates, excising
commas, discarding NaN values, converting data to float, and normalising closing price
values. The Min–Max scaling technique from Scikit-learn was employed to normalise the
NGX dataset. This considers its specific attributes as capital market data. The mathematical
formula of Min–Max scaler is shown below:

Xscaled =
X − Xmin

Xmax − Xmin
(3)
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where X = Original value, Xmin = Feature minimum value, Xmax = Feature maximum value,
and Xscaled = Scaled value.

The NGX dataset was divided into an 85% dataset for training and validation purposes
(i.e., from 4 January 2010 to approximately mid-2023) and a 15% dataset (i.e., from mid-2023
to 7 June 2024), the latter of which was reserved for testing the model’s performance on
unseen data. Two approaches were employed for running the algorithm: i.e., the classic
approach (with 8 input features) and the OBV inclusion approach (which has 9 input
features). The splitting ratio for the training and test data is shown in Table 2:

Table 2. NGX data training and test data.

Dataset Split Split% Per Feature Dataset/Observations Per Feature

Training and Validation Set 85% of 3573 3037
Testing Set 15% of 3573 536

The division was performed chronologically to respect the temporal structure of the
data. This ensured that no future data were used to train the model. It mirrors real-world
conditions where future data are unknown at the time of prediction. The model was
trained and validated using TimeSeriesSplit. TimeSeriesSplit, a specific Scikit-learn (version
1.6.0) time-series cross-validation (TSCV), was used on the chronologically sorted NGX
dataset with five folds (n = 5). In this method, the dataset is iteratively split into training
and validation sets, where each fold uses a progressively larger portion of the dataset for
training, and the subsequent fold acts as the validation set. The cross-validation sequence
is provided in Supplementary S1.

2.1. Feature Re-Engineering

The NGX dataset was re-engineered to generate technical indicators using cleaned
NGX market data in order to improve predicted accuracy and gain insight into market
dynamics. The multi-dimensional approach of including technical indicators to assess
price fluctuations, patterns, and trading signals improves the ability of models to detect
market swings and provide accurate forecasts [10]. The technical indicators that were
added to the historical price and return series for market prediction included the Simple
Moving Average (SMA-15 and SMA-45), Relative Strength Index (RSI), Moving Average
Convergence Divergence (MACD), Bollinger Band (Middle, High, and Low), and OBV.
Bollinger Bands represent regions of high or low prices, while RSI confirms whether the
market is overbought or oversold. Systematic Moving Averages (SMAs) show the direction
of market trends, MACD validates momentum, and OBV uses volume flow to forecast
fluctuations in stock prices.

Return series is a classic input feature for predicting stock prices. It is the financial
gain or loss derived from an investment or stock portfolio within a certain timeframe. Rates
of return are determined by calculating the percentage change in market price between two
time periods [11]. The equation is shown below:

Return =
Current Price − Previous Price

Previous Price
× 100 (4)

The SMA-15 and SMA-45 are statistical moving average measures employed to detect
patterns in market data. These figures are derived by computing the average closing prices
across time periods of 15 and 45. The combination of the indications can identify crossings,
which are useful for making selections into purchasing or selling. The equation is shown
as follows:
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For a 15-period SMA:
P1 + P2 + . . . P15

15
(5)

For a 45-period SMA:
P1 + P2 + . . . P45

45
(6)

where “P” is the closing price, and the rolling window period (n) is 45 and 15.
The Relative Strength Index (RSI) is a technical indicator used to measure the speed

and extent of price changes. It is often used to identify situations when a market is showing
either excessive buying or selling [12]. In this study, the RSI values were computed using a
window duration of 14 days, as shown below.

Average gain =
∑n

i = 14 Gain
n

and Average loss =
∑n

i = 14 loss
n

(7)

Relative Strength (RS) is given by:

Average Gain
Average Loss

(8)

RSI = 100 − (100/(1 + RS)) (9)

where

Gain = Positive price change between the closing prices of two consecutive periods (only
positive changes are considered).
Loss = The absolute value of the negative price change (only negative changes are
considered).
n = Number of periods (commonly 14).
Average Gain: The sum of all gains (positive price changes) divided by the number of
periods being considered (often 14 periods).
Average Loss: The sum of all losses (negative price changes) divided by the number
of periods.

The MACD is a momentum indicator applied to detect trends and monitor the correla-
tion between two moving averages of stock prices. The computation of MACD entails the
utilization of exponential moving averages (EMAs), which are often shown with a signal
line, as illustrated below:

EMA12 (Short term) = Market PriceCurrent ×
(

2
12 + 1

)
+ Market PricePrevious×

(
1 − 2

12 + 1

)
(10)

EMA26 (Long term) = Market PriceCurrent×
(

2
26 + 1

)
+ Market PricePrevious×

(
1 − 2

26 + 1

)
(11)

MACD = EMA12 − EMA26 (12)

Signal Line = MACDCurrent x ×
(

2
9 + 1

)
+ Signal LinePrevious ×

(
1 − 2

9 + 1

)
(13)

MACD Histogram = MACD − Signal Line (14)

Bollinger Bands provide a visual representation of market volatility. This indicates a
period of instability characterised by substantial price fluctuations and identifies instances
of excessive stock purchasing or selling. The gradient between the upper and lower bands
varies in response to market volatility. The Bollinger Mid, Upper, and Lower variables
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utilised in this study indicate the mean, maximum, and minimum levels of volatility in
technical analysis. They are computed using the following formula:

Mid Band = SMA20 (15)

Standard Deviation (SD) =

√
1
n ∑n

i = 1 (P − SMA)2 (16)

Upper Band = Mid Band + (SD × k) (17)

Lower Band = Mid Band − (SD × k) (18)

where k = 2 (Bollinger Band standard).
The use of OBV in this analysis provides a unique approach to using the cumulative

total volume, which modulates the volume in response to price fluctuations by either
adding or deleting it. This method is employed to validate pricing trends and provide
insights into the magnitude of price swings by analysing variations in volume [13]. The
algorithm for OBV is shown below:

Price Difference Calculation (∆P) = Pclose(t) − Pclose(t−1) (19)

where
∆P = Price difference
Pclose(t) = Current closing price
Pclose(t−1) = Previous closing price.
Volume Adjustment Based on Price Movement:

• Increase in price (Pclose(t) > Pclose(t−1)):

# Add the current volume V(t) to the previous OBV:

OBV(t) = OBV(t−1) + V(t) (20)

• Decrease in price (Pclose(t) < Pclose(t−1)):

# Subtract the current volume V(t) from the previous OBV:

OBV(t) = OBV(t−1) − V(t) (21)

• Unchanged price (Pclose(t) = Pclose(t−1)):

# Subtract the current volume V(t) from the previous OBV:

OBV(t) = OBV(t−1) (22)

• Cumulative Calculation: OBV starts with an initial value, set to zero, and the volume
is then added or subtracted based on price changes at each time step, which leads to
the cumulative OBV over time.

The dataset was used in two different approaches to define the input features for the
model, i.e., the classic and OBV inclusion approaches. The classic approach involves the
usage of return, historical price, and price technical indicators as input features, while the
OBV inclusion approach includes all the features of the classic approach with the addition
of the OBV indicator as input feature integration into the model.
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2.2. Algorithm Selection for NGX Market Data

The selection of a specific algorithm type depends on the computational requirements
necessary to generate a desired outcome [14]. Various machine and deep learning models
are commonly used for regression analysis, but this comparative study used the SVR,
RNN, and LSTM models due to their unique adaptability, strength, and high performance
on different data types in several research contexts [15,16]. An evaluation of the RNN
and LSTM showed their effectiveness in capturing intricate temporal relationships in
comparison to other machine learning methods [17].

2.2.1. Model Architecture, Development and Training

SVR is a variant of the Support Vector Machine (SVM) technique that is specifically
employed for regression tasks [18]. The architectural components of SVR are kernel func-
tion, regularisation parameter (C), epsilon (ε) and support vectors. The model separates
higher-dimensional data points using the kernel function. In this study, we used the linear
kernel for final model training. This is simple, quick, and effective when the input charac-
teristics and target variables are linearly related. The model balances a wide class margin
and low error rates with the regularization parameter (C). The “epsilon” (ε) specifies the
area where the model does not penalise errors. This makes the model less sensitive to small
data changes and improves performance. Support vectors are the margin-boundary data
points that determine the decision boundary (the line or curve separating the data points).

For the SVR model used in our work, the objective function was created and hyperpa-
rameter ranges were selected, as shown in Table 3.

Table 3. Hyperparameters selected for SVR.

Hyperparameter Value Range

C 0.001, 1000
Epsilon 0.001–10
Kernel Linear, Poly, RBF, Sigmoid
Degree 2, 5 (for kernel = Poly), 3

The recurrent neural network (RNN) model was developed and trained using Ten-
sorFlow and Keras API. The model architecture comprises two recurrent neural network
(RNN) layers with alternating dropout layers, as well as a dense layer with a single unit
specifically designed for the regression task [19,20]. The dense layer of the feed-forward
neural network (RNN) generates prediction output, while the dropout layer introduces
noise during training to reduce overfitting. The input layer shape rotates between time
steps of 30 and 60. The hyperparameters selected for the training of the RNN network are
provided in Table 4 below.

Table 4. Hyperparameters selected for RNN.

Hyperparameter Value Range

Units 32, 128
Dropout rates 0.1 to 0.5

Batch size 32, 64, 128
Learning rate 0.00001 to 0.01

Optimiser Adam
Loss function Mean Squared Error
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The Long Short-Term Memory (LSTM) model used in our study is composed of
two input layers, a dropout layer, and a dense output layer. The decision to use two
input layers instead of the classical one-input LSTM layer was made to effectively handle
long-term sequence dependencies, address the complexity of market data, and improve
the performance of the model [21]. Using a dropout layer as a regularization technique
enhances the generalisation of the model. The adaptability and non-linearity of the dense
output layer, achieved via activation functions, effectively capture intricate data patterns
and connections. These features are utilised to produce continuous values in regression
tasks. The dense layer reduces the dimensionality of information, makes predictions,
integrates, and translates learning features to facilitate decision formation. The LSTM
model was trained using the same hyperparameters as the RNN model described in
Table 4.

The hyperparameters were evaluated using fold-specific Mean Squared Error. The
algorithm finds optimal hyperparameters using Optuna and TimeriesSplit. This improves
model performance on unknown test data. The training data and target variable were
used to fit the SVR, RNN, and LSTM models with the optimal hyperparameters during
final training. Regression metrics were used on a test dataset not used during training to
evaluate model prediction accuracy and dependability. The model development can be
accessed in the following GitHub repository: https://github.com/Sidikat123/Model-Data-
Analytics-/tree/main (accessed on 13 December 2024).

The performance of the machine learning and deep learning models was evaluated
using various regression metrics, including Mean Absolute Error (MAE), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE),
and R-squared (R2), after the training process. These metrics were selected because of their
simplicity, wide acceptance, and ability to provide robust evaluations [22].

2.2.2. Hardware and Computational Resources:

A premium Google Colab, a cloud-based computational resource, with Python 3 run
type, was employed for running the machine and deep learning tasks [23]. The laptop
hardware specifications used for uploading data to the Google Colab include: Device Name:
LENOVO-ALSA01, Processor: Intel(R) Core(TM) i5-7200U, CPU @ 2.50 GHz, 2.71 GHz,
Installed RAM: 8.00 GB (7.79 GB usable), System Type: 64-bit operating system, x64-based
processor. Furthermore, a premium NVIDIA T4 GPU hardware accelerator on Google
Colab was employed for running the RNN and LSTM due to its suitability for deep learning
tasks. The SVR model was initially run on CPU on Google Colab but this was changed to
NVIDIA T4 GPU. However, it was observed that there was no significant benefit in the
optimization and training time of using T4 GPU on SVR in the cloud environment. This
could be attributed to sequential processing and time complexity (O(n2) to O(n3)) of SVR,
where n is the number of data points. The optimization and training time for the SVR classic
approach with linear kernel was around 90 min, while it took longer (around 105 min) for
the OBV inclusion approach with rbf (radial basis function) kernel. The inference time for
SVR was within one minute for the test set. RNNs tend to optimise and train faster than
LSTMs with around 55 min per run. The inference time was much faster than the training
time and it took within a minute to process the entire dataset. LSTM optimisation and
training time took around 70 min, while the inference time was within a minute.

3. Results and Discussion
The evaluations of the predictive models are discussed below. The SVR, RNN, and

LSTM models were trained and tested using historical data from the Nigerian Stock Ex-
change, with a particular focus on forecasting the NGX All-Share Index.

https://github.com/Sidikat123/Model-Data-Analytics-/tree/main
https://github.com/Sidikat123/Model-Data-Analytics-/tree/main
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3.1. Support Vector Machines for Regression (SVR)

The NGX dataset’s features were converted into a two-dimensional matrix format for an
SVR model. Table 5 below shows the evaluation result of the SVR using regression metrics.

Table 5. Evaluation result of SVR.

Best Hyperparameters (Without OBV) Best Hyperparameters (with OBV)

{‘C’: 0.2520357450941616, ‘Epsilon’:
0.027026985756138284, ‘Kernel’:

‘Linear’}

{‘C’: 1.1625895249237326, ‘Epsilon’:
0.005801399787450704, ‘Kernel’:

‘Rbf’}

Cross-Validation Training Loss 0.0011 0.00133
Average Final Validation Loss 0.00197 0.0136

Test MAE 0.0143 (1231.61) 0.027 (2318.66)
MSE 0.000459 (3,396,945.36) 0.00242 (17,878,018.81)

RMSE 0.0214 (1843.08) 0.0491 (4228.24)
MAPE (%) 2.03 3.4
R-Squared 0.99 0.95

The results in Table 5 reveal that the classic approach (training loss: 0.00110) out-
performs the OBV inclusion method (training loss: 0.00133), with a lower validation loss
(0.00197 vs. 0.0136), indicating better generalisation to unseen data. The training and
validation plots are provided in Supplementary S2.

The classic approach also demonstrates superior predictive accuracy with lower MAE
(0.0143 vs. 0.027), MSE (0.000459 vs. 0.00242), RMSE (0.0214 vs. 0.0491), and MAPE (2.03%
vs. 5.36%), alongside a higher R-squared value (99% vs. 95%). These metrics suggest the
classic approach achieves more reliable, accurate predictions with fewer errors compared
to the OBV inclusion method. The inclusion of OBV added complexity without improving
model performance, potentially leading to overfitting. While incorporating additional
features such as OBV can enhance predictions in some cases, it may hinder non-linear
models such as SVR if the added information is not effectively utilised. These findings
align with prior research and additional diagnostics conducted on NGX stock data [24].
The predicted and actual values plot for the classical approach with and without OBV is
shown in Figure 1a,b.

As observed in Figure 1a,b, the exclusion of OBV closely aligns with predicted and
actual NGX Index values, effectively capturing market trends, particularly in the early and
mid-segments. However, it diverges slightly during peak periods. However, when OBV
is included, there is greater divergence. This shows SVR struggles with high volatility,
reducing predictive accuracy. It is also worth noting that removing outliers from NGX
time-series data is challenging due to temporal dependencies, potential data loss, and its
impact on model performance. Unlike non-temporal data, perceived outliers in time-series
data may represent significant events, such as market crashes, which are critical for analysis.
Traditional outlier detection methods, such as Z-scores, often fail due to the dynamic nature
of stock market trends and seasonal patterns. Investigating a spike in validation loss in
fold 2 revealed high market volatility and non-linearity that the Radial Basis Function
(RBF) kernel of SVR struggled to capture [25,26]. Stock prices, influenced by diverse factors
such as economic events and investor sentiment, are highly volatile and non-stationary.
Research highlights that financial time-series data can exhibit unique characteristics, such
as volatility clustering and regime transitions, which can lead to increased validation errors.
Despite using regularisation and smoothing techniques, such as moving averages, SVR
exhibited higher validation loss (see Supplementary S2) during periods of market shocks
and trend reversals. However, the actual vs. predicted scatter plot demonstrates a strong
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linear relationship, indicating that the SVR model is generally accurate in predicting NGX
price indices, with only a few extreme outliers affecting performance [27]. These findings
align with prior research on model instability in non-stationary financial time series [28].
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3.2. Recurrent Neutral Network

For the RNN model, we compared six different variations of the model, as shown
in Table 6. We compared the NGX unnormalised and normalised datasets, both with an
optimised RNN model (based on the default values from Keras), and an optimised RNN
model, based on the folds and cross-validation as selected by Optuna. We also compared
the 30-day and 60-day time steps for the optimised model, but only the 30-day time steps
for the unoptimised model due to the unsatisfactory shape of the 60-day time step.
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Table 6. Evaluation metrics for the RNN model variations.

RNN Model Variations

Evaluation
Metrics

30-Day Step-Time
(Unnormalised

Value) Unoptimised
RNN Model

Transformed
Original Value
(Unoptimised
RNN Model)

Optimised RNN
(30-Day Time
Step Without

OBV) *

Optimised RNN
(60-Day Time
Step Without

OBV) **

Optimised RNN
(30-Day

Time-Stamp with
OBV) ***

Optimised RNN
(60-Day

Time-Stamp with
OBV) ****

MAE 0.07483 6434.68 0.011321
(973.52)

0.012490
(1074.05)

0.019642
(1689.04)

0.017465
(1501.84)

MSE 0.01043 77,130,110.92 0.000388
(2,870,386.08)

0.000613
(4,533,240.36)

0.000872
(6,447,080.45)

0.000982
(7,264,937.75)

RMSE 0.10213 8782.37 0.019702
(1694.22)

0.024760
(2129.14)

0.029528
(2539.11)

0.031345
(2695.35)

MAPE (%) 11.27 11.27 1.57 1.65 2.72 2.17
R-Squared 0.78613 ∼0.79 0.992 0.987 0.982 0.980

* Based on best hyperparameters where {units = 122, Dropout rate = 0.21057927576994717, Batch size = 32,
Learning rate = 0.00045995847308281305}. ** Based on best hyperparameters where {units = 105, Dropout
rate = 0.15860460902099602, Batch size = 64, Learning rate = 0.004964007144265714}. *** Based on
best hyperparameters where {units = 94, Dropout rate = 0.39808512912645366, Batch size = 32, Learn-
ing rate = 0.0033264056797172536}. **** Based on best hyperparameters where {units = 79, Dropout
rate = 0.28896636206794524, Batch size = 64, Learning rate = 0.009618218785212735}.

The unnormalised and transformed original value shows high training and validation
loss (see Supplementary S2), and high error of the NGX test datasets using evaluation
metrics such as MAE (0.0748), MSE (0.010), MRSE (0.10), MAPE (11%), and the suboptimal
result of 0.79 of R-squared. However, MSE is a differentiable function unlike MAE, but
the high error of other metrics shows the inaccuracy of the regression model. MAPE is a
percentage error between the model-fitted values and the observed data values. However,
the acceptability depends on the industry, application, and specific context [29]. For the
NGX stock market, a MAPE above 10% is considered inaccurate because of the financial
implications and loss on the investment.

For the optimised model, the prediction was performed using the classic and OBV
inclusion approaches. The financial market has several endogenous variables, such as
volatility, dividend yield, bid-ask spread, and market sentiment, but the main endogenous
variables are price, volume, and returns [30]. Training loss for the classic method increased
with longer time steps, highlighting the vanishing gradient problem without optimising the
RNN model [31–33]. However, adding OBV reduced training loss for the medium to long
term, potentially mitigating this limitation. Validation loss decreased in both methods as the
time steps increased, demonstrating robust model performance without overfitting. MAE
for the classic approach increased slightly, while OBV inclusion showed reduced absolute
errors over longer periods, despite starting higher. RMSE increased with more features and
time steps, reflecting difficulties in modelling specific data segments. R-squared values
remained high, between 0.98 and 0.99, across methods. The predicted and actual value
plots for the optimised RNN variations are shown Figure 2a–d.

As seen from Figure 2a–d, the inclusion of OBV in the optimised RNN models en-
hances its sensitivity to price movements, improving its responsiveness to market volatility.
This enables the model to dynamically react to significant price changes, potentially in-
creasing prediction accuracy during volatile periods. However, it also introduces noise
during stable periods, resulting in slightly higher deviations toward the end of predictions.
The comparison with the classic approach reveals that OBV integration adds depth and
adaptability to the model, making it more effective for volatile markets. The training loss
(Supplementary S2) of the classic 30-day time step model shows a rapid decline, reaching
a minimum loss of 0.002479, indicating quick learning and good generalisation without
overfitting. The 60-day time step model follows a similar pattern but faces challenges with
longer sequences, achieving a slightly lower minimum loss of 0.002 and a stable validation
loss of 0.00008. The OBV inclusion for 30-day time steps starts with higher initial complexity
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but quickly reduces to a minimum training loss of 0.0055 and a validation loss of 0.000138,
demonstrating the ability to capture more complex patterns. Similarly, the OBV 60-day
time step model achieves a minimum training loss of 0.0036 and validation loss of 0.0001,
indicating robustness and good generalisation [34]. Scatter plots (Supplementary S2) reveal
a strong linear relationship between actual and predicted values, with the classic models
tightly aligned along the diagonal. OBV inclusion slightly improves predictive accuracy,
particularly in the 60-day model, complementing price data with volume information. The
results suggest robust RNN performance across configurations, validating their use in
financial forecasting. OBV adds depth to predictions, aligning with the findings in [35].
The residual plots are also shown in Supplementary S2, with values centred around zero,
and a positive skew [36] also validates the inclusion of OBV for the RNN model.
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3.3. Long Short-Term Memory Network

LSTM followed a similar procedure to the RNN architecture, and the result obtained
is shown in Table 7.

The results in Table 7 show that LSTM can predict accurately even without optimi-
sation of the model or normalisation of the dataset. However, we experimented with the
normalised and optimised variants and obtained a better R-squared performance [37,38].
This is due to the sequential nature of the time-series data. The evaluation metrics show
improved performance of the LSTM model with increasing time steps and the inclusion of
On-Balance Volume (OBV), as confirmed by studies [39,40]. In the classic approach, MAE
decreases from 0.015 to 0.012 and MSE decreases from 0.000745 to 0.000485 as time steps
increase. Including OBV further lowers MAE to 0.009662, indicating enhanced predictive
accuracy. RMSE and MAPE also decrease, with MAPE reducing from 1.96% to 1.61% in
the classic approach and to 1.33% with OBV inclusion. The R-squared value increases to
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0.993, demonstrating strong alignment between predictions and actual data and confirming
the model’s robustness. Longer time steps improve the LSTM model’s ability to capture
trends, while OBV enhances accuracy by adding volume-related insights, a key factor in
stock price movements [41]. The predicted vs. actual value plot is shown in Figure 3a–d.

Table 7. Evaluation metrics for the LSTM model variations.

LSTM Model Variations

Evaluation
Metrics

60-Day Time Step
(Unnormalised

Value) Unoptimised
LSTM Model

Transformed
Original Value
(Unoptimised
LSTM Model)

Optimised LSTM
(30-Day Time
Step Without

OBV) *

Optimised LSTM
(60-Day Time
Step Without

OBV) **

Optimised LSTM
(30-Day Time

Step with OBV)
***

Optimised LSTM
(60-Day Time

Step with OBV)
****

MAE 0.015733 1352.93 0.015346 (1319.58) 0.012397 (1066.05) 0.014333 (1232.53) 0.009662 (830.84)

MSE 0.000734 5,425,600.48 0.000745
(5,512,396.17)

0.000485
(3,586,624.63)

0.000756
(5,593,662.96)

0.000343
(2,536,732.36)

RMSE 0.027088 2329.29 0.027303 (2347.85) 0.022024 (1893.84) 0.027504 (2365.09) 0.018522 (1592.71)
MAPE (%) 2.02 2.02 1.96 1.61 1.96 1.33
R-squared 0.985 0.980 0.984 0.990 0.984 0.993

* Based on best hyperparameters where {units = 122, Dropout rate = 0.10131318703976958, Batch size = 128,
Learning rate = 0.0038833897789281994}. ** Based on best hyperparameters where {units = 65, Dropout
rate = 0.20445711460250626, Batch size = 32, Learning rate = 0.007529066043550584}. *** Based on
best hyperparameters where {units = 122, Dropout rate = 0.27017135632721034, Batch size = 128, Learn-
ing rate = 0.0033264056797172536}. **** Based on best hyperparameters where {units = 104, Dropout
rate = 0.2657214090579303, Batch size = 32, Learning rate = 0.0036850279954446555}.

The plots in Figure 3a–d show actual versus predicted NGX price indices using LSTM
models with classic and OBV inclusion approaches over 30- and 60-day time steps. The
classic models closely track actual values but lag during rapid price changes, with the
60-day model performing slightly better by capturing upward trends more accurately. In-
cluding OBV improves predictions, especially during significant price changes, as volume
trends help capture market volatility. While all the models exhibit some lag due to LSTM’s
reliance on past data, OBV inclusion reduces this discrepancy. The LSTM model’s learning
curve, scatter plots, and residual values are provided in Supplementary S2. Analysis of the
graphs provides further evidence of the usefulness of the OBV features. The classic LSTM
models show rapid initial loss reduction, with the 30-day model reaching a minimum
loss of 0.002163 and the 60-day model achieving 0.001993. Longer time steps improve
generalisation and capture underlying trends. Including OBV increases initial loss due to
added complexity but improves predictive accuracy as the models adapt. The LSTM 60-day
OBV model demonstrates effective handling of complexity, achieving a validation loss of
0.000076. This confirms that longer sequences help LSTM utilise OBV effectively [42–44].
Analysis of the scatter plots also shows a strong linear relationship between actual and
predicted NGX prices using LSTM models. The LSTM 60-day classic and OBV models ex-
hibit tighter clustering around the diagonal, indicating improved accuracy and consistency
compared to the 30-day models. The inclusion of OBV and longer time steps enhances
predictions by capturing more temporal patterns and market dynamics effectively [45].
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4. Conclusions
This study compared the performance of SVR, RNN, and LSTM models in predicting

NGX market prices. SVR demonstrated strong performance, with an MSE value of 0.00459,
RMSE value of 0.0214, and R-squared value of 0.99 with smaller datasets (without OBV
values) and simpler market conditions, although it struggled to capture the complex
temporal dependencies in stock price data. RNN also performed well with smaller datasets
without the OBV variables, with the best performance obtained for a 30-day time step,
with an MSE value of 0.000388, RMSE value of 0.019702, and R-squared value of 0.992.
However, it showed limitations due to the vanishing gradient problem, resulting in lower
predictive accuracy over long periods. LSTM emerged as the most effective model for stock
price prediction in this study, with an MSE value of 0.000343, RMSE value of 0.018522,
and R-squared value of 0.993 for the optimised model over a 60-day time step. Its ability
to retain information over long time sequences allowed it to outperform both SVR and
RNN, especially when dealing with volatile and unpredictable market trends. The results
demonstrated that LSTM achieved the lowest error results and the highest R-squared values,
highlighting its superior ability to capture both short-term and long-term dependencies in
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stock market data. The research findings suggest that while SVR can be a useful tool for
simple financial forecasting, LSTM provides far more accurate predictions for time-series
data, particularly in complex and volatile markets. The integration of exogenous data, such
as financial news sentiment, could further enhance the accuracy of deep learning models,
offering valuable insights for investors and financial analysts.
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