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Abstract

Personalised medicine, facilitated by the growing capacity to collect comprehensive patient
data, aims to provide personalised therapies for each individual. Computational models
are boosting the capacity to draw diagnosis and prognosis, and future treatments will be
tailored not only to current health status and data, but also to an accurate projection of
the pathways to restore health by model predictions. These models, which are based on
physiology and physics rather than on population statistics, enable computational simulations
to reveal diagnostic information that would have otherwise remained concealed and to predict
treatment outcomes for individual patients. The inherent need for patient-specific models in
cardiology is clear and is driving the rapid development of tools and techniques for creating
personalised methods to guide pharmaceutical therapy, deployment of devices and surgical
interventions.

For computational models to have clinical utility, we must be able to provide a quantification
of the risk associated with any predictions or interpretations which are made from the model.
Lumped parameter models (LPM) represent the cardiovascular system as a series of electrical
segments, each characterised by parameter values that offer insights into the associated health
status. Given one can constrain the model with patient specific data such that the parameter
values are updated, one obtains a digital representation of a patient’s cardiovascular system.

This research investigates the crucial offline stage of uncertainty quantification for models,
primarily employing sensitivity analysis, with the goal of achieving personalisation. As
such, this work first examines the process of performing a global sensitivity analysis of a
cardiovascular LPM, establishing some best practices to ensure accurate model interpreta-
tions. Then we assess the impact of the chosen outputs of a model when looking to quantify
uncertainty. We demonstrate how variation in the chosen outputs can significantly impact
one’s interpretation of a model. Following the enhanced understanding of the best practices
around sensitivity analysis, we extend a method for obtaining a personalised subset of input
parameters, acknowledging the inherent variability among individuals in medicine. Along-
side this, a novel examination of the sensitivity indices is proposed within the context of
personalised medicine to provide insight associated with the calibration of model parameters.
Finally, we investigate a data assimilation technique and explore the method’s effectiveness
for model personalisation. The primary outcome of this research is the development of an
offline model personalisation workflow, designed to reduce the uncertainty associated with
calibrating models to patient data to the greatest extent possible.





Table of contents

List of figures xvii

List of tables xxix

Nomenclature xxxv

1 Introduction 1
1.1 The Cardiovascular System . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1.1 Cardiac Tissue . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1.2 Coronary Arteries . . . . . . . . . . . . . . . . . . . . . 4
1.1.1.3 Heart Chambers . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1.4 Heart Valves . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Volume Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Blood Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 The Cardiac Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Personalised Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Standard Clinical Diagnosis . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Cardiovascular Research . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 A Patient Specific Outlook . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background 19
2.1 Modelling Human Hæmodynamics . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 3D Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 1D Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 Lumped Parameter Models . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3.1 Heart Models . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.3.2 Valve Models . . . . . . . . . . . . . . . . . . . . . . . 34



xii Table of contents

2.1.3.3 LPM Applications . . . . . . . . . . . . . . . . . . . . . 35
2.1.3.4 Why LPMs? . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Uncertainty & Sensitivity Analysis . . . . . . . . . . . . . . . . . 38

2.3 Aims and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Literature Review 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Personalised Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Local Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Global Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Derivative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Variance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1 Structural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Theoretical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3 Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Model Sloppiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Methods & Materials 63
4.1 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 3D Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 1D Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Cardiovascular LPMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.1 Heart Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1.1 Double Cosine Activation Function . . . . . . . . . . . . 75
4.2.1.2 Double Hill Activation Function . . . . . . . . . . . . . 76
4.2.1.3 Single Fibre Elastance Model . . . . . . . . . . . . . . . 76
4.2.1.4 Exponential Functions . . . . . . . . . . . . . . . . . . . 79

4.2.2 Heart Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2.1 Diode valve . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2.2 Orifice vale . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2.3 Shi valve . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2.4 Mynard valve . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 Circulation Systems . . . . . . . . . . . . . . . . . . . . . . . . . 85



Table of contents xiii

4.3 Local Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Global Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.1 Morris Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.2 eFAST Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3 Sobol Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.3.1 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Hyperspace Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 Sampling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7.1 Monte-Carlo Sampling Methods . . . . . . . . . . . . . . . . . . . 97
4.7.1.1 Uniform sampling . . . . . . . . . . . . . . . . . . . . . 97
4.7.1.2 Latin hypercube sampling . . . . . . . . . . . . . . . . . 97

4.7.2 Quasi Monte-Carlo Sampling Methods . . . . . . . . . . . . . . . 98
4.7.2.1 Golden ratio sampling . . . . . . . . . . . . . . . . . . . 98
4.7.2.2 Rank-1 lattice rule sampling . . . . . . . . . . . . . . . . 99
4.7.2.3 Sobol sequence sampling . . . . . . . . . . . . . . . . . 100

4.8 Computation of Sobol Indices . . . . . . . . . . . . . . . . . . . . . . . . 100
4.9 Identifiability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.9.1 Structural Identifiability . . . . . . . . . . . . . . . . . . . . . . . 102
4.9.2 Practical Identifiability . . . . . . . . . . . . . . . . . . . . . . . . 103
4.9.3 Theoretical Identifiability . . . . . . . . . . . . . . . . . . . . . . . 103

4.10 Average Parameter Influence . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.11 Orthogonality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.12 Extended Subset Selection Method . . . . . . . . . . . . . . . . . . . . . . 106
4.13 Model Sloppiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.14 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.15 Computational Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.16 Summary of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Convergence, Sampling and Total Order Estimator Effects on Parameter Or-
thogonality in Global Sensitivity Analysis 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Convergence and Uncertainty . . . . . . . . . . . . . . . . . . . . 122
5.2.2 1-chamber Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.3 2-chamber Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



xiv Table of contents

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Investigating the Impact of Experimental Designs on the Personalisation Process:
a Cardiovascular Perspective 153
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1.1 Clinical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.1.1.1 Discrete Measurements . . . . . . . . . . . . . . . . . . 156
6.1.1.2 Continuous Measurements . . . . . . . . . . . . . . . . 156
6.1.1.3 Mixed Measurement Levels . . . . . . . . . . . . . . . . 157

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2.1 Discrete Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2.2 Continuous Measures . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2.3 Mixed Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7 Assessing Input Parameter Hyperspace Structure and Parameter Identifiability
in a Cardiovascular System Model using Sensitivity Analysis. 173
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2.1 Local Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.2.2 Global Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2.2.1 Morris Method . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.2.2 eFast Method . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.2.3 Sobol indices . . . . . . . . . . . . . . . . . . . . . . . 178

7.2.3 Input Parameter Influence Comparisons . . . . . . . . . . . . . . . 179
7.2.4 Orthogonality Analysis . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.5 Indentifiability Analysis . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.6 Rank Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.7 Hypercube dimension . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8 Personalised Parameter Estimation of the Cardiovascular System: Leveraging
Data Assimilation and Sensitivity Analysis. 191
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.2 Parameter Perturbations & Synthetic Data . . . . . . . . . . . . . . . . . . 192



Table of contents xv

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.3.1 Base State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.3.2 Parameter Perturbations . . . . . . . . . . . . . . . . . . . . . . . 196

8.3.2.1 τes & τep . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.3.2.2 Emin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3.2.3 Csa & τep . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3.2.4 Rs & Emin . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.3.2.5 τes, τep & Emin . . . . . . . . . . . . . . . . . . . . . . . 203
8.3.2.6 Csv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9 Discussion 211

10 Conclusions & Future Work 221
10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10.2.1 Model Redundancy Investigation . . . . . . . . . . . . . . . . . . 223
10.2.2 Application of the uncertainty quantification framework . . . . . . 224
10.2.3 Graphics processing unit investigation . . . . . . . . . . . . . . . . 224
10.2.4 Universal differential equations . . . . . . . . . . . . . . . . . . . 224

References 227

Appendix A 1D Model Derivation 261
A.1 Numerical Scheme Derivation . . . . . . . . . . . . . . . . . . . . . . . . 261
A.2 Conservation Relations in the Presence of Leak . . . . . . . . . . . . . . . 261

A.2.1 Volume Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
A.2.2 Streamwise Momentum Balance . . . . . . . . . . . . . . . . . . . 262

A.3 Hughes and Lubliner Result . . . . . . . . . . . . . . . . . . . . . . . . . 264
A.4 Viscous Boundary Force After Olufson . . . . . . . . . . . . . . . . . . . . 265
A.5 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267





List of figures

1.1 The human vasculature: Schematic of the human vascular system display-
ing both the systemic (red) and pulmonary (blue) circulations. Reproduced
from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The human heart: Diagram highlighting the main heart chambers, valves
and veins. Reproduced from [2]. . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The coronary arteries: Diagram highlighting the main coronary arteries of
the heart. Reproduced from [3]. . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Cardiovascular pressure profiles: Pressure profiles across the main blood
vessels and chambers. The shaded regions represent the pressure ranges
founded in such vessels. Reproduced with permission from [4]. . . . . . . . 8

1.5 The cardiovascular cycle: Arterial, atrial, and ventricular pressures and
ventricular volumes during the cardiac cycle. (A) Right heart. (B) Left
heart. Ventricular pressures (blue lines) rise during isovolumetric contraction
exceeding atrial pressures (orange lines), initiating the opening of the semi-
lunar valves. Arterial pressures (red lines) rise during ventricular ejection and
then decrease below ventricular pressure, causing the semi-lunar valves to
shut and begin isovolumetric relaxation. AV valves open once atrial pressures
exceed ventricular pressure. Reproduced with permission from [5]. . . . . . 10



xviii List of figures

1.6 A pressure-volume relationship: This diagram illustrates the four phases
of the cardiac cycle: (1) isovolumetric contraction, (2) systolic relaxation,
(3) isovolumetric relaxation, and (4) diastolic filling (comprising rapid filling
and reduced filling phases). Key events such as the opening and closing of the
mitral and aortic valves are indicated. The loop demonstrates the relationship
between left ventricular pressure and volume throughout the cardiac cycle.
End-systolic volume (ESV) and end-diastolic volume (EDV) are marked,
with the difference representing the stroke volume (SV). The figure also
depicts how changes in contractility, preload, and afterload affect the PV
loop. Increased contractility results in increased SV, decreased ESV, and
increased ejection fraction (EF). Increased preload leads to increased stroke
volume. Increased afterload causes decreased stroke volume and increased
end-systolic volume. Reproduced with permission from [6]. . . . . . . . . 11

1.7 Personalised cardiovascular models: A visual representation of how com-
putational models of the cardiovascular system, when constrained by patient
data, can improve patient care. Reproduced with permission from [7]. . . . 16

2.1 Multidimensional model representation: A schematic representation of a
typical coupling between 3D,1D and LPM models, designed to investigate
coupled flow and wall motion in an arterial bifurcation. Reproduced with
permission from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Example CFD workflow: Here, the authors treat an intracranial berry
aneurysm. Panel (A) demonstrates the reconstructed surface mesh (defining
a hydrodynamic no-slip boundary condition) Panels (B) and (C) demonstrate
the CFD simulated pressure (B) and wall shear stress (C) acting upon the
aneurysm wall. The latter are hypothesised to provide useful risk stratification
for rupture, on a patient-specific basis. Reproduced under CC 4.0 BY from
[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 1D model example: Centerlines extracted from a 3D geometry for a 1D
model simulation. Reproduced under CC 4.0 BY from [10]. . . . . . . . . 27



List of figures xix

2.4 The Windkessel models: The two-element Windkessel, the three-element
Windkessel, and the four-element Windkessel presented in hydraulic and
electrical form Zc is aortic characteristic impedance, L is the blood inertia,
C is the compliance of the large arteries and R is the resistance from the
distal vasculature- the cardiologist’s systemic vascular resistance. Here the
capacitances are represented as in parallel, this is due to the assumption of
zero distal pressure which in reality is not true. Reproduced under CC 2.0
BY from [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Example LPM: A closed-loop LPM model of the human circulation; all 4
heart chambers, heart values and the systemic and pulmonary circulations are
explicitly represented. Note, the variable elastance functions which introduce
pulsatility into the model. Reproduced from [12]. . . . . . . . . . . . . . . 37

2.6 Model uncertainty representation: Schematic diagram showing relation-
ship among model input parameter uncertainty and sensitivity to model
output variable uncertainty. Reproduced under CC 4.0 BY from [13]. . . . . 40

4.1 Simple cardiovascular models: The 1 chamber model (A) and 2 chamber
model (B) utilised in this work. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Complex cardiovascular models: The 4 chamber models which are utilised
in this work. The 36 parameter model in section A and the 44 parameter
model in B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Double cosine activation function: The double cosine activation function is
represented over a single heart cycle. The timing parameters of the chamber
are also represented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Double Hill Elastance: The Double Hill activation function is represented
over a single heart cycle. With chamber timing parameters represented also. 77

4.5 Single Fibre Elastance: The single fibre activation function is represented
over a single heart cycle. The dynamics of the sarcomere fibres are also
represented. Reproduced with permission from [14] . . . . . . . . . . . . . 79

4.6 Exponential Elastance: The exponential activation function is represented
over a single heart cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Example model response surfaces: Two prototype response surfaces, left
: exhibiting complex non-linear behaviour, right : exhibiting less complex
structure, with a clear global minimum. Reproduced with permission from
[15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xx List of figures

4.8 The curse of dimensionality: In k = 3 dimensions the volume of the sphere
internal to a cube and tangent to its face is r = 0.5. r goes rapidly to zero
with increasing k. Reproduced with permission from [16]. . . . . . . . . . 90

4.9 Various response surface structures: Subfigures (A), (B) and (C) show
contour optimisation plots as well as the profile likelihood versus the param-
eter below. Lighter colours in the contour plots signify a lower value of a
specified cost function. Thresholds for confidence intervals corresponding to
a confidence level of 95% are shown in red and plotted both in the contour
plots and the profile likelihood plots. The lowest value of the cost function is
denoted by a gray asterisk in both the contour plot and the profile likelihood
plot. For the identifiable parameter (A), the profile likelihood reaches both
an upper and lower threshold, thus leading to a finite confidence interval.
For the structurally nonidentifiable parameter (B), the profile likelihood is
completely flat, thus yielding infinite confidence intervals. In the contour
plot, this translates to a flat path, along which the cost function does not
change. The practically nonidentifiable parameter (C) shows an infinite
extension of the low cost function region for lower values of the parameter,
never reaching the 95% confidence interval threshold. In contrast, a finite
upper confidence bound can be derived. Reproduced under CC 4.0 BY from
[17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.10 A two dimensional sloppy model schematic representation: A two dimen-
sional contour plot displayed as a blue curve, with the minimum contour
value displayed in red for input parameters θ1 and θ2. Moving up and left
in the direction of θ2 would lead to rapid changes in the contour whereas
moving up and right in the direction of θ1 would lead to slower changes per
unit distance moved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



List of figures xxi

4.11 Sloppiness vs. identifiability: Although sloppiness and parameter identifia-
bility are closely related, strictly they are distinct. Sloppiness is disclosed
by an approximate uniform spacing of FIM eigenvalues spread over many
orders of magnitude. In the most common case (first column) many eigenval-
ues are small and also correspond to unidentifiable parameter combinations.
However, it is possible (in principle) for all the eigenvalues to be large (sec-
ond column) so that sloppy models can be identifiable. It is also possible
for model parameters to be unidentifiable and not sloppy (third column) or
identifiable and not sloppy (fourth column). We here take λ ∼ 1 as the cutoff
between identifiable and unidentifiable designations, after the arguments in
[18]. Reproduced under CC 4.0 BY from [18]. . . . . . . . . . . . . . . . . 111

5.1 Convergence and uncertainty of indices associated with the minimum
ventricular elastance Emin: Figure A displays the convergence and uncer-
tainty of the Sobol indices ST calculated on discrete measurements for the
1-chamber model against increasing sample size. Here, the vertical line
signifies the chosen sample size for the 1-chamber model at N = 10,000.
Figure B presents the continuous Sobol indices with uncertainty bounds,
calculated at a sample size N = 10,000, on continuous measurements over
a single cardiac cycle. Figure C displays the convergence and uncertainty
of ST calculated on discrete measurements for the 2-chamber model against
increasing sample size. Again, the vertical line signifies the chosen sample
size for this model, at N = 20,000. Figure D shows the continuous Sobol in-
dices with uncertainty bounds for N = 20,000, on continuous measurements
over a single cardiac cycle. The measurements shown in blue, yellow and
green denote the left ventricular pressure, the systemic arterial pressure and
the left ventricular volume, respectively. In the discrete settings (i.e., A and
C), the measurements are the mean left ventricular pressure, the maximum
systemic arterial pressure and the maximum left ventricular volume. . . . . 123



xxii List of figures

5.2 Total order Sobol indices ST of the arterial compliance Csa for the 1-
chamber model with continuous measurements: Panels A - T show ST

of Csa, for 3 continuous measurements - left ventricular pressure, systemic
arterial pressure and the left ventricular volume (represented in blue, yellow
and green curves, respectively), over a single cardiac cycle with differing
estimators and sampling methodologies. Measurements are evaluated with
N = 10,000 samples, using B = 1000 bootstrapped samples, to evaluate the
uncertainty of the estimate. The bands represent 95% confidence intervals
associated with specific indices displayed as solid curves. . . . . . . . . . . 125

5.3 Orthogonality distributions of input parameters for the 1-chamber
model with continuous measurements: Histograms A-T show the distribu-
tion of orthogonality returned from examinations of the sensitivity vectors,
calculated from continuous measurements. Here, an orthogonality score of 1
represents total independence, 0 total dependence. Individual diagrams por-
tray a particular combination of sampling methodology and estimator type.
The frequency of each histogram is normalised such that it is comparable
between plots, i.e., the larger the frequency of a bin, the larger the number of
orthogonality scores calculated from the original sensitivity vectors. . . . . 126

5.4 Total order Sobol indices ST of the mitral valve resistance Rmv for the
1-chamber model with discrete measurements: Panels A - T show ST of
Rmv, for 3 discrete measurements: mean left ventricular pressure, maximum
systemic arterial pressure and maximum left ventricular volume (represented
in blue, yellow and green, respectively), evaluated at increasing sample sizes
(N ∈ [2000,40000] using B = 1000 bootstrapped samples), with differing es-
timators and sampling methodologies. The bands represent 95% confidence
intervals associated with specific indices displayed as solid curves. The red
solid vertical lines represent the point (N = 10,000) at which the sample size
is taken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



List of figures xxiii

5.5 Orthogonality distributions of input parameters for the 1-chamber
model with discrete measurements: Histograms A-T show the distribution
of orthogonality returned from examinations of the sensitivity vectors, cal-
culated from continuous measurements. Here, an orthogonality score of 1
represents total independence of input parameters, 0 total dependence. Each
individual diagram denotes a specific combination of sampling methodology
and estimator type. The frequency of each histogram is normalised such
that it is comparable between plots, i.e., the larger the frequency of a bin,
the larger the number of orthogonality scores calculated from the original
sensitivity vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 Total order Sobol indices ST of the maximal left ventricular elastance
Emaxlv for the 2-chamber model with continuous measurements: Panels A
- T show ST of Emaxlv , for 3 continuous measurements - left ventricular pres-
sure, systemic arterial pressure and the left ventricular volume (represented
in blue, yellow and green curves, respectively), over a single cardiac cycle
with differing estimators and sampling methodologies. Measurements are
evaluated with N = 20, 000 samples, using B = 1000 bootstrapped samples to
evaluate the uncertainty of the estimate. The bands represent 95% confidence
intervals associated with specific indices displayed as solid curves. Note all
axes are equal for easy comparison however the maximum values for the
Homma and Sobol estimators are 0.4. . . . . . . . . . . . . . . . . . . . . 135

5.7 Orthogonality distributions of input parameters for the 2-chamber
model with continuous measurements: Histograms A-T show the distribu-
tion of orthogonality returned from examinations of the sensitivity vectors,
calculated from continuous measurements. Here, an orthogonality score of
1 represents total independence of input parameters, whereas 0 represents
total dependence. Each diagram denotes a specific combination of sampling
methodology and estimator type. The frequency of each histogram is nor-
malised such that it is comparable between plots, i.e., the larger the frequency
of a bin, the larger the number of orthogonality scores calculated from the
original sensitivity vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xxiv List of figures

5.8 Total order Sobol indices ST of the venous compliance Csvn for the 2-
chamber model with discrete measurements: Panels A - T show ST of
Csvn, for 3 discrete measurements: mean left ventricular pressure, maximum
systemic arterial pressure and maximum left ventricular volume (represented
in blue, yellow and green, respectively), evaluated at increasing sample sizes
(N ∈ [10000,30000] using B = 1000 bootstrapped samples), with different
estimators and sampling methodologies. The bands represent 95% confi-
dence intervals associated with specific indices displayed as solid curves.
The red solid vertical lines represent the point (N = 20,000) at which the
sample size is taken. Note the axes are equal for easy comparison, the range
for the Sobol and Homma estimators is [0.4, 1.2]. . . . . . . . . . . . . . . 140

5.9 Orthogonality distributions of input parameters for the 2-chamber
model with discrete measurements: Histograms A-T show the distribu-
tion of orthogonality returned from examinations of the sensitivity vectors,
calculated from continuous measurements. Here, an orthogonality score of
1 represents total independence of input parameters, whereas 0 represents
total dependence. Each individual diagram denotes a specific combination of
sampling methodology and estimator type. The frequency of each histogram
is normalised such that it is comparable between plots, i.e., the larger the
frequency of a bin, the larger the number of orthogonality scores calculated
from the original sensitivity vectors. . . . . . . . . . . . . . . . . . . . . . 141

5.10 Estimator comparisons with larger samples for the 2-chamber model
with discrete measurements: The Sobol and Homma estimators results
are based on 100k samples, compared to the Jansen and Janon estimators
using 40k samples both with 95% confidence. The input parameter effect is
displayed against the maximum left ventricular volume as an example here. 147

6.1 Discrete measures - sloppy analysis: The eigenvalues of the Fisher infor-
mation matrix for increasing discrete measurements are displayed here on a
log10 scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Continuous measures - sloppy analysis: The eigenvalues of the Fisher
information matrix for increasing continuous measurements, displayed on a
log10 scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Mixed measures - sloppy analysis: The eigenvalues of the Fisher informa-
tion matrix for every other increasing mixed measurements, displayed on a
log10 scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



List of figures xxv

7.1 Local relative sensitivity matrix: Shows the local relative sensitivity matrix,
measuring input parameters’ (column headings) influence on specific model
outputs (row headings). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2 Morris’ method scatter plots: Each plot displays a normalised mean value
plotted against the variance value for each input parameter using a log 10
scale. Panel A: Morris’ method results for the stroke volume of the left
ventricle. Panel B: Morris’ method results for the pulse pressure. Panel C:
Morris’ method result for the pulse pressure in the left ventricle. Panel D:
Morris’ method results for the mean systemic flow. . . . . . . . . . . . . . 177

7.3 eFAST sensitivity matrices: Each matrix, with input parameters as column
headings and specific model outputs as row headings, shows an influence
value for an input parameter against a specific output. Panel A: the first order
indices. Panel B: the total order indices. Panel C: the difference sensitivity
matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.4 Sobol sensitivity matrices: Each matrix, with input parameters as column
headings and specific model outputs as row headings, displays an influence
value for an input parameter against a specific output. Panel A: the first order
indices. Panel B: the total order indices. Panel C: the difference sensitivity
matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.5 Second order Sobol indices: The second order Sobol indices are presented
as lower triangular matrices, due to their symmetric nature. Each matrix
element displays the influence an interaction between two input parameters
have on a selected output. Panel A: the second order indices stroke volume
for the left ventricle. Panel B: the second order indices for the pulse pressure
for the left ventricle. Panel C: the second order indices pulse pressure for
the systemic artery. Panel D: Displays the second order indices for the mean
systemic flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.6 First order Sobol indices’ convergence: Panel A,B,C and D display, for
each individual input parameter, the first order convergence for the stroke
volume of the left ventricle, the pulse pressure of the left ventricle, the pulse
pressure of the systemic artery and the mean systemic flow, respectively. . . 181

7.7 Total Order Sobol indices’ convergence: Panel A,B,C and D display, for
each individual input parameter, the total order convergence for the stroke
volume of the left ventricle, the pulse pressure of the left ventricle, the pulse
pressure of the systemic artery and the mean systemic flow, respectively. . . 181



xxvi List of figures

7.8 Orthogonality matrix and histograms: panels A-F show the orthogonality
matrices for the local, Morris, eFAST first order, eFAST total order, Sobol
first order and Sobol total order methods, respectively. A value of 1(0) indi-
cates that the two input parameters have orthogonal effects on across all the
outputs (contribute the same effect on the output). Panels G-L are histograms
of the respective orthogonality matrices, indicating the distribution of or-
thogonality present within the input parameters, when computed through the
different sensitivity measures. . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1 Parameter Perturbation : the perturbation applied to the minimal con-
tractility parameter Emin. From t > 8, the perturbation becomes positive,
demonstrating an increase in minimal ventricular contractility. . . . . . . . 193

8.2 Systemic arterial pressure : the arterial pressure for a base state simulation
(blue) and when blood volume is halved and systemic resistance is doubled
(orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.3 Single Ventricle Base State Estimation : figures A - I display the parameter
estimations over the 15 cardiac cycles. The yellow and blue line represent
the true and estimated parameter values respectively. Figures J - R display
the parameter covariances over the 15 cardiac cycles. . . . . . . . . . . . . 195

8.4 Single Ventricle Base State Sensitivity - Figures A - I display the continuous
parameter sensitivities with respect to the arterial pressure. All parameters
which returned 0 for sensitivity are set to a value of 10−6 in order to plot a
log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.5 τes & τep : Figures A - I show parameter estimations over 15 cardiac cycles
with varying values for τes and τep. The yellow and blue line represent the
true and estimated parameter values respectively, the blue dots represent the
perturbed values on the input parameters. Figures J - R display the parameter
covariances over the 15 cardiac cycles. . . . . . . . . . . . . . . . . . . . . 198

8.6 Emin. Figures A - I show the parameter estimations over the 15 cardiac
cycles with perturbed Emin. The yellow, blue and green line represent the
true, estimated and perturbed parameter values respectively. Figures J - R
display the parameter covariances over the 15 cardiac cycles. . . . . . . . . 200

8.7 Csa & τep - Figures A - I show the parameter estimations over 15 cardiac
cycles with perturbed Csa and τep. The yellow and blue line represent the
true and estimated parameter values respectively. The blue dots and green
line represent the perturbed parameter values for τep and Csa. Figures J - R
show the parameter covariances over the 15 cardiac cycles. . . . . . . . . . 201



List of figures xxvii

8.8 Rs & Emin - Figures A - I show the parameter estimations over the 15 cardiac
cycles with perturbed Emin and Rs. The yellow and blue line represent the
true and estimated parameter values respectively. The green lines represent
the peturbed input parameter values. Figures J - R display the parameter
covariances over the 15 cardiac cycles. . . . . . . . . . . . . . . . . . . . . 202

8.9 τes,τep & Emin - Figures A - I exhibit parameter estimations over 15 cardiac
cycles with perturbed timing parameters τes and τep and Emin. The yellow
and blue lines represent the true and estimated parameter values respectively.
The blue dots represent the perturbed values of the timing parameters τes

and τep. The green line represents the continuous parameter perturbation.
Figures J - R display the parameter covariances over the 15 cardiac cycles. . 204

8.10 Csv: Figures A - I show parameter estimations over the 15 cardiac cycles with
perturbed Emin. The yellow and blue line represent the true and estimated
parameter values respectively. The green line represents the perturbed value
of Csv. Figures J - R display the parameter covariances over the 15 cardiac
cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9.1 A schematic representation of the personalisation process : this represents
the stages which a lumped parameter cardiovascular model must go through,
to ensure unique personalisation. . . . . . . . . . . . . . . . . . . . . . . . 220





List of tables

1.1 Human blood distributions: Total blood volume distributions and stressed
volumes in the cardiovascular system. The stressed blood volume percentage
is displayed as the percentage of the total blood volume of a compartment. . 7

1.2 Comparison of Experimental Approaches: A comparison of in-vivo exper-
iments and mathematical modelling in cardiovascular research. . . . . . . . 15

4.1 Input parameters for our 1 chamber model (figure 4.1A): Each input
parameter’s unit is stated alongside a chosen initial value for the 9 parameter,
single ventricle model. τ is the cardiac cycle length and is fixed such that
τ = 1s. The ventricular shift parameter Eshift = 0 s, as no atrium is present. . 71

4.2 Input parameters for our 2 chamber model (figure 4.1B): Each input
parameter’s unit is stated alongside a chosen initial value for the 20 parameter,
2-chamber model. τ is the cardiac cycle length and is fixed such that τ = 1s.
The ventricular shift parameter Eshift = 0.92 s as an atrium is present in this
advanced 20 parameters model. . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Input parameters for our 4 chamber model (figure 4.2A): Each input
parameter is again stated along with the respective units and valves. Here we
fix the heart period cycle to τ = 0.81(s). . . . . . . . . . . . . . . . . . . . 73

4.4 Total order estimators: Formulae to compute ST , where f0 and V represent
the mean and variance of the outputs respectively, as defined in Eqs. (4.108)
and (4.109). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Computational comparison: A table displaying the relative speed compar-
ing languages for the 4 chamber model found in figure 4.2B. . . . . . . . . 116

4.6 Model and Methods Summary: Below a tabulated version of the models
and methods which are used in each of the results chapters. . . . . . . . . . 117



xxx List of tables

5.1 Input parameter ranking for the 1-chamber model with continuous
measurements: Here, input parameters are ranked based on the averaged
orthogonality score returned from the calculated total order sensitivity matrix.
In addition, the ranking is stratified by both sampling and estimator types. . 127

5.2 Input parameter ranking for the 1-chamber model with continuous
measurements: The ranges of input parameters across 5 sampling types for
a specific estimator for the 1-chamber model with continuous measurements. 127

5.3 Input parameter ranking for the 1-chamber model with continuous
measurements: The ranges of input parameters across 4 estimator types
for a specific sampling method for the 1-chamber model with continuous
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Input parameter ranking for the 1-chamber model with discrete mea-
surements: Again, input parameters are ranked based on the averaged or-
thogonality score returned from the calculated total order sensitivity matrix.
The ranking is also stratified by both sampling and estimator types. . . . . . 132

5.5 Input parameter ranking for the 1-chamber model with discrete mea-
surements: The range of parameter ranking across 5 sampling types for a
specific estimator for the 1-chamber model with discrete measurements. . . 132

5.6 Input parameter ranking for the 1-chamber model with discrete mea-
surements: The ranges of input parameters across 4 estimator types for
a specific sampling method for the single ventricle model with discrete
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Input parameter ranking for the 2-chamber model with continuous
measurements: Here, input parameters are ranked based on the averaged
orthogonality score returned from the calculated total order sensitivity matrix.
In addition, the ranking is stratified by both sampling and estimator types. . 134

5.8 Input parameter ranking for the 2-chamber model with continuous
measurements: The ranges of input parameters across 5 sampling types, for
a specific estimator for the 2-chamber model with continuous measurements. 137

5.9 Input parameter ranking for the 2-chamber model with continuous
measurements: The ranges of input parameters across 4 estimator types
for a specific sampling method for the 2-chamber model with continuous
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of tables xxxi

5.10 Input parameter ranking for the 2-chamber model with discrete mea-
surements: Here, input parameters are ranked based on the averaged orthog-
onality score returned from the calculated total order sensitivity matrix. In
addition, the ranking is stratified by both sampling and estimator types. . . . 142

5.11 Input parameter ranking for the 2-chamber model with discrete mea-
surements: The ranges of input parameters across 5 sampling types for a
specific estimator for the systemic circulation model with discrete measure-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.12 Input parameter ranking for the 2-chamber model with discrete mea-
surements: The ranges of input parameters across 4 estimator types for a
specific sampling method for the 2-chamber model with discrete measurements.144

6.1 Table of Discrete Measurements: Each discrete level (top row) declares
which new measurement is added to an increasing model target outputs set.
For example, set 2D is the union of all data in sets 1A to 2D; Vra augments
the set of all preceding measurements. Each discrete measurement equates
to a single point extracted from the cardiovascular cycle. . . . . . . . . . . 157

6.2 Continuous Measurements: Each continuous level shows which new time
series measurement is added to the expanding set of outputs which also
contains all measurements previous measurements. Each continuous mea-
surement relates to a single converged cardiovascular cycle, consisting of
150 time points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Table of Mixed Measurement: Each level declares which new measurement
is added to the increasing output set (apart from Level 2 which replaces Level
1) along with the accumulation of all previous measurements. Each discrete
measurement added corresponds to a single cardiovascular cycle. For each
continuous measurement added this is a converged cardiovascular cycle
resolved on 150 equispaced time points. . . . . . . . . . . . . . . . . . . . 159

6.4 Input parameter ranking for discrete measurements: Averaging across all
output space, the input parameter rank and its influence value are displayed,
for increasing discrete measurements. Here P represents the parameter and E
the corresponding average influence value. . . . . . . . . . . . . . . . . . . 161

6.5 Input parameter rankings for continuous measurements: Averaging
across all output space, we declare input parameter rankings and their respec-
tive influence value, for increasing continuous measurements. . . . . . . . . 164



xxxii List of tables

6.6 Input parameter ranking for mixed measurements: The input parameter
ranking and its influence value, averaging across all outputs, for increasing
mixed measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 Parameter influence ranking: A table displaying the ranking of each input
parameter influence, averaged across all 4 measurements. Rankings are
displayed for both local, global, first order and total order sensitivity measures.180

7.2 Parameter orthogonality ranking: the rank of input parameters based on
their average orthogonality score, calculated by taking the mean orthogonality
score for each input parameter across all outputs for each sensitivity measure. 182

7.3 Identifiable input parameters: the identifiable input parameters calculated
using the global subset selection method. Parameters in red indicate an
unidentifiable input parameter utilising a cut off of I < 0.05. . . . . . . . . 184

7.4 Rank stability test: Table showing the stability of the rank associated with
the extended subset selection. Parameter fixed indicates the parameter which
is taken to be identifiable and the extended subset algorithm is then performed.185

7.5 Hyperspace dimension: input parameter rankings for varying sizes of input
parameter space explored when computing total order Sobol indices. Both
the ranking and the value of the influence are displayed. . . . . . . . . . . . 186

7.6 The mean rank and range of the input parameters: The effect of different
parameter subset methodologies (influence, orthogonality and our extended
Li methodology [19]) when we stratify across all sensitivity metrics . . . . 186

7.7 The mean rank and the range of input parameters: Across all subset
selection methodologies when we stratify by different sensitivity methods. . 187

8.1 Normal (Gaussian) distribution parameters of the single ventricle model:
θ - Initial mean from [20] . σ - Standard deviation from [21, 22]. . . . . . 193

8.2 Single Ventricle Base State RMSE : first row shows the RMSE values of
input parameters for t ≤ 8s. The second row displays the RMSE values of
the input parameters for t > 8s. . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3 τes & τep RMSE : first row, RMSE values of input parameters for t ≤ 8,
second row, displays the RMSE values of the input parameters for t > 8 after
a continuous perturbation has been applied to . . . . . . . . . . . . . . . . 198

8.4 Emin RMSE - The first row shows the RMSE values of input parameters for
t ≤ 8. The second row displays the RMSE values of the input parameters for
t > 8 after a continuous perturbation has been applied to Emin. . . . . . . . 199



List of tables xxxiii

8.5 Csa & τep RMSE : first row, RMSE values of input parameters for t ≤
8. Second row : RMSE values of the input parameters for t > 8 after a
continuous perturbation has been applied to Csa and discretely we perturb τep 201

8.6 Rs & Emin RMSE : first row, RMSE values of input parameters for t ≤
8. Second row : RMSE values of the input parameters for t > 8 after a
continuous perturbation has been applied to Emin and Rs. . . . . . . . . . . 203

8.7 τes,τep & Emin RMSE : first row, RMSE values of input parameters for
t ≤ 8. Second row : the RMSE values of the input parameters for t > 8
after a continuous perturbation has been applied to Emin and then a discrete
perturbation to the timing parameters τes and τep. . . . . . . . . . . . . . . 203

8.8 Csv RMSE : first row RMSE values of input parameters for t ≤ 8. Second
row : the RMSE values of the input parameters for t > 8 after a continuous
perturbation has been applied to Csv. . . . . . . . . . . . . . . . . . . . . . 205

A.1 Boundary normal unit vectors and notations: Expressed here within
cylindrical polar co-ordinates, using accepted notation, relative to the co-
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Chapter 1

Introduction

Above all, don’t lie to yourself.
FYODOR DOSTOYEVSKY, The Brothers Karamazov

Summary
This chapter introduces and surveys cardiovascular physiology and describes the concept of
personalised medicine. Section 1.1 provides a brief overview of the vasculature and the heart,
describes the volume and pressure distributions in the body and the phases of the cardiac
cycle. Section 1.2 reviews a standard clinical workflow, typical cardiovascular research
methodologies and begins to formulate a commentary on the role of personalised medicine.
Then in section 2.3 we state the main aims and contributions of this work and, to finish
section 1.3 provides an outline of the future chapters.
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1.1 The Cardiovascular System

The cardiovascular system comprises the heart, the systemic (oxygen rich blood) and pul-
monary circulation (deoxygenated blood) as displayed in figure 1.1. Blood vessels are
grouped into three categories: arteries, capillaries, and veins. Arteries carry oxygenated
blood from the left heart to the organs, veins carry deoxygenated blood back from the organs
to the right heart, and the capillaries connecting the arteries and veins facilitate the exchange
of oxygen and carbon dioxide [23]. The circulatory system also transports nutrients and
metabolites through the blood. The major blood vessels can be grouped as follows

1. Systemic Arteries: Transport oxygenated blood from the left side of the heart to the
organs both lower and upper body. The main systemic artery is the aorta.

2. Systemic Capillaries: Facilitate the exchange of oxygen in the blood for carbon
dioxide generated by the tissue.

3. Systemic Veins: Transport the now deoxygenated carbon dioxide rich blood back to
the right side of the heart. The aggregation systemic veins is the venae cavae.

4. Pulmonary Arteries: Transport the deoxygenated blood from the right ventricle into
the lungs.

5. Pulmonary Capillaries: Facilitate gaseous exchange between the alveoli of the lungs
and the blood in the pulmonary capillaries, leading to re-oxygenated blood.

6. Pulmonary Veins: Move the blood from the lungs and drain into the left atria for
redistribution around the body.

1.1.1 The Heart

The heart is a muscular, periodic pump, driven by mechanical, electrical and chemical
processes, that generates the pressure needed to drive blood through the circulatory system. It
is located between the lungs, slightly left of the sternum, and surrounded by the pericardium
membrane [24]. We will discuss in the below sections, a few relevant internal anatomical
features of the heart, including the walls, the arteries which provide blood to the muscle,
chambers, and valves.
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1.1.1.1 Cardiac Tissue

The heart’s walls, delineating its four chambers, consist of cardiac muscle tissue, which
rhythmically contracts and relaxes to propel blood throughout the body. Structurally, these
walls consist of three distinct layers: the epicardium, myocardium, and endocardium. Starting
from the outside, the epicardium forms the innermost layer of the pericardium and the outer
surface of the heart. Comprised of mesothelial cells, fat, and connective tissue, it provides
protection and support to the heart. Next, the myocardium, situated in the middle and
being the thickest layer, is predominantly composed of cardiac muscle cells and fibroblasts.
Its pivotal role lies in contracting and relaxing, to modulate ventricular volume, thereby
facilitating blood circulation throughout the body. The innermost layer, the endocardium, is
constituted of endothelial cells and subendothelial connective tissue layers. It lines the four
heart chambers and extends over the valves, ensuring smooth blood flow within the heart.
Notably, the ventricles have thicker walls compared to the atria, owing to their heightened
workload necessitated for generating blood pressure [25]. Among the ventricles, the left
ventricle possesses the most robust muscular wall, reflecting its increased workload in
pumping blood through the systemic circulation.

1.1.1.2 Coronary Arteries

Coronary arteries supply blood to the heart muscle (see figure 1.3). Like all other tissues in
the body, the heart muscle needs oxygen-rich blood to function. Also, oxygen-depleted blood
must be carried away. The coronary arteries wrap around the outside of the heart. Small
branches dive into the heart muscle to bring it blood. There are two main coronary arteries -
the left and right main coronary arteries. The left main coronary artery supplies blood to the
left side of the heart muscle (the left ventricle and left atrium). The left main coronary divides
into branches: The left anterior descending artery branches off the left coronary artery and
supplies blood to the front of the left side of the heart. The circumflex artery branches off the
left coronary artery and encircles the heart muscle. This artery supplies blood to the outer
side and back of the heart. The right coronary artery supplies blood to the right ventricle and
atrium. The right coronary artery divides into smaller branches, including the right posterior
descending artery and the acute marginal artery. Together with the left anterior descending
artery, the right coronary artery helps supply blood to the middle or septum of the heart [26].
Since coronary arteries deliver blood to the heart muscle, any coronary artery disorder or
disease can have serious implications by reducing the flow of oxygen and nutrients to the
heart muscle.
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Fig. 1.3 The coronary arteries: Diagram highlighting the main coronary arteries of the
heart. Reproduced from [3].

1.1.1.3 Heart Chambers

The heart has four chambers; the left and right atria, and the left and right ventricles. The
atria are responsible for the filling of the ventricles, where as the ventricles, which operate
at a higher pressure, are responsible for the distribution of blood. The septum is a wall of
muscular tissue (often considered part of the left ventricle), which separates the deoxygenated
blood on the right side of the heart and the oxygenated blood on the left side [27]. As seen in
figure 1.1 and 1.2, flow into and out of the two ventricles is facilitated by four heart valves:
the tricuspid, mitral, pulmonary, and aortic valves.

1.1.1.4 Heart Valves

To understand the flow characteristics of valves, one must begin with some appreciation of
their anatomy and physiology.

Atrioventricular valves, mitral and tricuspid, control flow between the atria and ventri-
cles, while semi-lunar valves, aortic and pulmonary, control flow between the ventricles and
the aortic and main pulmonary artery. The valves, shown in figure 1.2, act like trap doors,
with opening and closing controlled by pressure differentials. In this manner, the valves only
allow blood to flow in one direction. However, in reality back flow of the blood is observed
in a healthy patient due to the dynamics of the valve, if there is large amounts of back flow
this is often associated with pathophysiology.

Atrioventricular valves: The tricuspid valve, located between the right atrium and right
ventricle, consists of three cusps (leaflets) known as the anterior, septal, and posterior cusps.
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The tricuspid and mitral valves open when the pressure in the right atria exceeds the right
ventricular pressure. The mitral valve, located between the left atrium and left ventricle, con-
sists of only two cusps, anterior and posterior, and is commonly referred to as the bi-cuspid
valve. Fibrous ligaments secure the two atrioventricular valves called the chordae tendineae,
originating from the papillary muscles on the ventricles’ inner surface. During ventricular
ejection, the cusps are closed shut, and the papillary muscles contract, securing the cusps
from collapsing into the atria [28].

Semi-lunar valves: The pulmonary valve is between the right ventricle and the main
pulmonary artery. The pulmonary valve consists of three cusps, the left, right, and anterior
cusps. The aortic valve is between the left ventricle and the aorta and consists of three cusps:
the left, right and posterior. Unlike the atrioventricular valves, the semi-lunar valves have no
chordae tendineae. Instead, the valves are attached to the wall of their corresponding artery
and close when the arterial pressure exceeds the ventricular pressure. Thus, open when the
pressure in the ventricles exceeds the pressure in the arteries [29].

1.1.2 Volume Distribution

For a healthy adult, the total blood volume is roughly 5 L. Approximately 1 L is in the
systemic arteries, 3.5 L in the systemic veins, and 0.5 L in the pulmonary circulation. The
total blood volume cannot be easily measured but can be variously estimated from e.g.
Hidalgo’s formula [30], Nadlers’ formula or using Du Bois’ [31] definition of body surface
area [32, 33].

VT,H =

24.637h0.725w0.425 −1954 (ml), if male

23.359h0.725w0.425 −1229 (ml), if female
(1.1)

VT,N =

0.3668h3 +0.03219w+0.6041 (ml), if male

0.3561h3 +0.03308w+0.1833 (ml), if female.
(1.2)

Where VT,H and VT,N represent total blood volume, in millilitres (ml), when using the Hidalgo
and Nadler formula respectively. Height h is expressed in centimetres (cm) and weight w in
kilogram (Kg). Of course, processes like capillary filtration and excretion mean that total
blood volume is not conserved on intermediate timescales but for most modelling applications
- certainly those considered in this work - it is.
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The portion of total blood volume (VT ) that exerts a force on, and causes the stretching, of
vessel walls is known as the stressed blood volume (Vs). The remaining volume inside a
vessel or heart chamber is denoted the unstressed blood volume Vu. The two quantities are
related as follows [34]:

VT =Vs +Vu. (1.3)

It is not possible to compare stressed and unstressed volumes by measurements and significant
variation exists in determining values. Here, we try to maintain physiological relationships
between blood volume [35, 36] where possible, as shown in table 1.1.

Table 1.1 Human blood distributions: Total blood volume distributions and stressed
volumes in the cardiovascular system. The stressed blood volume percentage is displayed as
the percentage of the total blood volume of a compartment.

Blood Vessel Total Blood Volume (ml) Stressed Blood Volume (ml)

Systemic Arteries 13% 27%
Systemic Veins 65% 7.5%

Pulmonary Arteries 3% 58%
Pulmonary Veins 11% 11%

Left Atrium 1.5% 62%
Left Ventricle 2.5% 70%
Right Atrium 1.5% 62%

Right Ventricle 2.5% 70%

1.1.3 Blood Pressure

Blood pressure is determined by the amount of stressed blood volume flowing through a
vessel or heart chamber and the chambers ability to extend and increase volume, without
increased resistance, this is known as vessel compliance. In physiology, blood pressure is
stated in mmHg (1mmHg = 133.322 Pa = 0.00075 dyne/cm2). Pressure waves generated by
the left and right sides of the heart are propagated throughout the circulatory system all the
way to the veins and thus the high pressure waves found in the heart suffer high dissipation
thus pressure in the veins is minimal. Example profiles in different parts of the circulatory
system are shown in figure 1.4, depicting the approximate maximum and minimum pressures
in the pulse wave throughout the cardiac cycle. Broadly, the systemic arteries exhibit the
largest pressures at approximately 120 mmHg in brachial systole and 80 mmHg in brachial
diastole, for a healthy young person. In fact, the pulse wave sharpens like a breaking ocean
gravity wave, as it propagates with the result that brachial systolic pressure actually peaks
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higher than central aortic systolic pressure. The pressure drops nearly to absolute zero as
blood passes through the arterioles passing the capillaries, venules, and veins. The maximum
pressure in the right ventricle is about 25 mmHg and remains low, with maximum and
minimum pressures in the pulmonary arteries at approximately 30 mmHg and 10 mmHg,
respectively. Pulmonary capillary and venous pressures are also near zero; pressure begins to
rise in the left ventricle to approximately 120 mmHg [37].

Fig. 1.4 Cardiovascular pressure profiles: Pressure profiles across the main blood vessels
and chambers. The shaded regions represent the pressure ranges founded in such vessels.
Reproduced with permission from [4].

1.1.4 The Cardiac Cycle

A cardiac cycle is defined by pressure and volume changes occurring during systole, the
contraction phase, and diastole, the relaxation phase of the heart. The blood is pumped out
of the heart at very high pressure, approximately 120 mmHg, and transported through the
arteries to the capillaries for oxygen and nutrients exchange. The cardiac output (or blood
flow) is about 5L/min, i.e., the total blood volume is pumped through the body in about 1
minute. The duration of the cardiac cycle is the reciprocal of the heart rate,

Duration
(
s/beat

)
=

60 ( s
min)

HR
(beats

min

) . (1.4)

The opening and closing of the valves delimit the four main phases of the cardiac cycle.
These four phases from the point of view of the ventricles are defined in [5] as:

1. Inflow Phase: When the atrioventricular valve is open, and the semilunar valve is
closed.

2. Isovolumetric contraction: When both valves are closed, there is no blood flow, but
ventricular pressure increases.
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3. Outflow Phase: When the semilunar valve is open and the atrioventricular valve is
closed.

4. Isovolumetrtic Relaxation: When both valves are closed, there is no blood flow, but
ventricular pressure decreases.

Isovolumetric contraction and outflow phases correspond to systole while the inflow and
isovolumetric relaxation phases correspond to diastole. Maximum and minimum blood
pressures correlate with systole and diastole phases of the cardiac cycle.

As shown in figure 1.5 (which is a form of the famous Wigger’s diagram [38]), the car-
diac cycle begins at diastole with the atrioventricular (AV) valves (mitral and tricuspid)
opening and ventricular volume increasing rapidly, beginning the inflow phase. While the
AV valves are still open, the ventricle continues to fill with atrial contraction ejecting more
blood at the end of the filling. Then the AV valves close. With both the AV and semi-lunar
(SL) (aortic and pulmonary) valves shut, isovolumetric contraction begins and the ventricular
pressure increases rapidly. When, the ventricular pressure exceeds arterial pressure this
triggers the opening of the SL valves. The ventricles begin ejecting blood, beginning the
outflow phase, into the aorta and main pulmonary artery. Ventricular pressure continues
rising throughout this phase since contraction is still occurring. When arterial pressures
exceed ventricular pressure, the SL valves close. Isovolumetric relaxation also begins, with
both sets of valves shut, here the ventricular pressure decreases rapidly, and the cycle repeats
itself.

1.2 Personalised Medicine

1.2.1 Standard Clinical Diagnosis

Providing accurate and accessible diagnoses is a fundamental challenge for global healthcare
systems. In the UK alone an estimated 5% of outpatients receive the wrong diagnosis every
year [39]. These errors are particularly common when diagnosing patients with serious
medical conditions, with an estimated 20% of these patients being misdiagnosed at the
level of primary care and one in three of these misdiagnoses resulting in serious patient
harm [40]. In medicine, a substantial bumper of decisions are made based on statistical
and numerical data. To make a diagnosis, prescribe a treatment or a medical procedure,
or evaluate a prognosis, clinicians have to reason and decide based on parameters such as
disease prevalence, test results, cost/benefit ratio of each intervention, etc [41]. Thus, one
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Fig. 1.5 The cardiovascular cycle: Arterial, atrial, and ventricular pressures and ventricular
volumes during the cardiac cycle. (A) Right heart. (B) Left heart. Ventricular pressures
(blue lines) rise during isovolumetric contraction exceeding atrial pressures (orange lines),
initiating the opening of the semi-lunar valves. Arterial pressures (red lines) rise during
ventricular ejection and then decrease below ventricular pressure, causing the semi-lunar
valves to shut and begin isovolumetric relaxation. AV valves open once atrial pressures
exceed ventricular pressure. Reproduced with permission from [5].
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the cardiac cycle: (1) isovolumetric contraction, (2) systolic relaxation, (3) isovolumetric
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events such as the opening and closing of the mitral and aortic valves are indicated. The
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end-systolic volume. Reproduced with permission from [6].
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of the biggest challenges is how to translate a knowledge of pathophysiology into clinical
decision-making that prioritises the patient above the clinician or service. Initially this is
accomplished by matching the patient’s presenting problem to the best fit condition, known
to the doctor.

Thus, a typical diagnostic process proceeds as follows [42]: First, a patient experiences
a health problem. The patient is likely the first person to consider their symptoms and may
choose at this point to engage with the health care system. Once a patient seeks health care,
there is an iterative process of information gathering, information integration and interpre-
tation, and determining a working diagnosis. Reviewing a clinical history and performing
an interview, conducting a physical exam, performing diagnostic testing, and referring or
consulting with other clinicians are all ways of accumulating information that may be relevant
to understanding a patient’s health problem. Different information-gathering approaches can
be employed at different times, and diagnostic information can be obtained in different orders.
Such an iterative process of information gathering, integration, and interpretation involves
hypothesis generation (and rejection) and the clinician drawing on their experience of exam-
ining previous patients with similar conditions and the statistical success rate of interventions.

The working diagnosis may be either a list of potential diagnoses (a differential diagnosis) or
a single diagnosis. Typically, clinicians will consider more than one diagnostic hypothesis
or possibility as an explanation of the patient’s symptoms and refine this list as further
information is obtained in the diagnostic process. As the diagnostic process proceeds, a
fairly broad list may be narrowed into fewer options. As the list is narrowed to one or two
possibilities, refinement of the working diagnosis transitions to diagnostic verification, in
which the lead diagnosis is checked for its adequacy in explaining the signs and symptoms, its
coherency with the patient’s context (physiology, risk factors), and whether a single diagnosis
is appropriate. When considering invasive or risky diagnostic testing or treatment options, the
diagnostic verification step is particularly important to avoid exposure to these risk without a
reasonable chance that the testing or treatment options will be informative improve patient
outcomes.

Throughout the diagnostic process, there is an ongoing assessment of whether sufficient
information has been collected. If the diagnostic team members are not satisfied that the
necessary information has been collected or that the information available is not consistent
with a diagnosis, then the process of information gathering, information integration and
interpretation, and developing a working diagnosis continues. When the diagnostic team
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members judge that they have arrived at an accurate and timely explanation of the patient’s
health problem, they communicate that explanation to the patient as the diagnosis.

1.2.2 Cardiovascular Research

Perhaps more than other fields of medicine, cardiovascular research involves experimental
studies with mathematical/computational modelling studies. While models are derived (typ-
ically from physical and physiological principles), using mathematics, the final equations
which express the model are rarely amenable to analytical solution. This necessitates the use
of computational methods to solve the equations numerically. Accordingly, we will use the
term "computational" henceforth.

Cardiovascular research is dominated by three classes of investigation: in-silico studies
[43], which are conducted on mathematical models of cardiovascular systems, and in-vivo
studies [44], which are carried out in animal and human bodies. In in-silico studies, mathe-
matical models of various dimensions are developed conceptually to mimic cardiovascular
function, aiding the fundamental study of blood flow physics. Examples of this type of
research include pulse wave dynamics simulations, whole heart modelling, full body cir-
culation dynamics, and the evaluation of cardiac assist devices for mechanical circulation
support [45–48]. In-vitro cardiovascular research involves studying cardiovascular systems
in controlled laboratory environments outside of a living organism. This approach typically
uses biological samples, such as heart cells or blood vessel tissues, grown in culture or
tissue-engineered models. By simulating physiological conditions, in-vitro research allows
scientists to investigate heart functions, test responses to drugs, and understand disease
mechanisms, providing valuable insights that can lead to improved treatments and therapies
without immediate risks to living subjects. While in-silico & in-vitro studies provide sig-
nificant quantitative insights into cardiovascular physiology, the current gold standard of
cardiovascular research remains in-vivo studies using animal and human subjects [9, 49].
Such studies measure various cardiac, biochemical, and haemodynamic processes to clarify
the mechanisms of cardiovascular disease pathogenesis and to unveil the underlying biologi-
cal processes involved.

In recent years, with the advancement of numerical mathematical science and high per-
formance computing technology, cardiovascular mathematical modelling has developed into
a mature research technique [50, 51]. The focus in recent years has been attempting to
combine both in-silico and in-vivo investigations. At the time of writing, the community
speaks of "leveraging the model" [52]. This synthesis of approaches allows one to begin to
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validate mathematical models by comparing their response to the system dynamics observed
through the in-vivo investigations [53], or by leveraging the model, by comparing their results
at cohort scale, with patient data. Typical modelling studies grapple with the mathematical
equations that describe the relevant bio-physical and bio-chemical dynamics in the living
system, such that the mathematical solution can predict cardiovascular system responses
which are similar to what is observed in-vivo [54, 55]. The specific approach varies with
biological application and the dimensionality of the model. The latter varies from 3 dimen-
sional computational fluid dynamics models which solve the Navier - Stokes, continuity and
wall mechanics equations [52] (see section 4.1) providing detailed insight into specific vessel
dynamics, to lumped parameter models (LPMs) (also known as 0D, compartmental or elec-
trical analogue models), which compress the physical space within the cardiovascular system
into discrete compartments but leverage this simplification -or coarse-graining- to achieve
a quantitative description of global heamodynamics [56, 57]. In this work we shall utilise
LPMs which are fully introduced, qualitatively, in Chapter 2 and mathematically in Chapter 4.

In the present context, a mathematical modelling approach can not only predict physio-
logical responses (like arterial pressure and cardiac output) that are measurable in-vivo; it
can also provide wider information (including venous pressure and flow, vascular impedance
etc.) that are important but difficult or impossible to measure in the human cardiovascu-
lar system, facilitating augmented diagnoses and deeper insights into the mechanisms of
the cardiovascular system which otherwise would be impossible to observe. Table 1.2 sur-
veys and compares the mathematical modelling and the in-vivo experimental techniques in
cardiovascular medicine.

1.2.3 A Patient Specific Outlook

The above commentary converges on the observation that in modern practice, diagnosis
operates on a population averaged approach- the team relies on combined experience to
ensure a patient’s symptoms and personal information gleaned from diagnostic tests are
consistent with some pathophysiology, as observed in previous individuals. Then, when
prescribing treatment a clinician effectively predicts a patient response to treatment based
upon how previous, similar patients have responded - clinicians are trained on the success of
previous interventions.

Recognising the variability between patients and the uncertainty associated with diagnostic
data and treatment response, there is a shift in the community towards personalised care
informed by computational models, given that the computational model in question, which is
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Table 1.2 Comparison of Experimental Approaches: A comparison of in-vivo experiments
and mathematical modelling in cardiovascular research.

In-Vivo Experiment

• Risk of harm to a patient, making ethics approval time-
consuming.

• Experiments may alter the baseline response of a hu-
man subject.

• Challenging to attribute system response to a single
variable.

• Provides gold-standard pathophysiological data.

• Enables testing of new drugs and treatments.

• The signal generated includes all physiological factors
contributing to system response.

Mathematical Modelling

• No risk to a patient; simulations can often be run
within minutes.

• Enables systematic alteration of model parameters to
study impact.

• Can examine any compartment of the human body and
predict responses.

• May lack clinical data for validation.

• Mathematical formulations may be challenging for
clinicians.

• Detailed models of specific vessels can require weeks,
delaying interpretation.
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representative of a patient’s physiology, can ingest (i.e. be constrained by) data taken from a
patient. This computational model can then, in theory, make predictions and provide insight
into a specific patient’s health [7, 58–62]. See figure 1.7 for a visual encapsulation of the
patient specific outlook - the method in which computational models are personalised to a
patient. Henceforth, this will be referred to as the personalisation process.

Fig. 1.7 Personalised cardiovascular models: A visual representation of how computational
models of the cardiovascular system, when constrained by patient data, can improve patient
care. Reproduced with permission from [7].

1.3 Thesis Outline

This thesis contains 9 additional chapters summarising the physiological and mathematical
insights relevant to addressing the main aims as specified in the next chapter.

• Chapter 2 articulates the key terms associated with the personalisation process, details
a brief review of cardiovascular modelling and introduces the cardiovascular LPMs
used in this work. Here we also state the main aims of this work given the provided
justification in chapter 2.

• Chapter 3 provides a current review of the literature, emphasising the personalisation
of LPMs.

• Chapter 4 describes mathematically the model personalisation and analysis methods
used.

• Chapter 5 examines the statistical properties associated with Sobol indices (introduced
in chapter 4) and examines how convergence of global sensitivity analysis can impact
one’s interpretation of a model.
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• Chapter 6 investigates the impact that varying experimental design (different model
outputs used as a surrogate for clinical data) has on the personalisation process.

• Chapter 7 assesses the stability of obtaining personalised subsets of input parameters
when different sensitivity methods are used (as introduced in chapter 4). Here, we
also define a new methodology leveraging Sobol indices to examine the non-linearity
associated with the model response surface providing insight into the personalisation
process.

• Chapter 8 considers the unscented Kalman filter and the potential this tool may have
for constraining cardiovascular models with patient data.

• Chapter 9 discusses the conclusions drawn in previous chapters and the impact that
this may have on the personalisation process.

• Chapter 10 summarises the outcomes of the thesis and discusses future work.





Chapter 2

Background

Books are no more threatened by Kindle than stairs by elevators.
STEPHEN FRY

Summary
This chapter gives an overview of different cardiovascular modelling methodologies and
highlights the advantages associated with lumped parameter modelling. Then we proceed
to introduce the concepts which are embedded within the personalisation process, covering
uncertainty analysis, sensitivity analysis and identifiability.
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2.1 Modelling Human Hæmodynamics

In 13th century, Ibn Al-Nafis (1213-1288) was the first physician who described correctly the
pulmonary circulation [63]. Before him the prevailing theory of blood circulation was that
food is converted into blood in the liver, then that blood operated as fuel which would deplete
over time. Later on, in 1628, William Harvey (1578-1657) demonstrated experimentally that
the blood is pumped from the heart and circulates. He published “An anatomical study of
motion of the heart and of the blood of animals". This was the first publication in the Western
world advancing the theory that the heart is responsible for the blood circulation. In 1738,
Daniel Bernoulli (1700-1782) investigated the laws governing blood pressure, leading to the
well-known Bernoulli invariant, a first integral of the Euler equation [52], which relates blood
pressure to blood velocity and potential energy (gravitational forces) [64]. The first pulse
wave propagation model for inviscid fluid was introduced by Leonhart Euler (1707-1783) in
1775 [65]. After Euler, Thomas Young (1773-1829) presented a mathematical model describ-
ing the wave-like nature of blood flow, that was not recognised in the Euler’s model [66]. In
1838, Jean Léonard Marie Poiseuille (1797-1869) and in 1839, Gotthilf Heinrich Ludwig
Hagen (1797-1884), independently derived a physical law that explained the relationship
between the pressure drop and blood flow under steady flow conditions within a cylindrical
pipe. Later on, the physical law, known as the Hagen - Poiseuille law was published by
Poiseuille in 1840 and 1846 [67]. To complicate attribution even further, it seems that Stokes
also derived the now eponymous Poiseuille law by solving the Navier–Stokes equation, [52]
as early as 1845 but did not publish his work, because he was unsure of the validity of the
no-slip condition at the tube walls [68]- a question that persists to the present. The question
of the propagation speed of waves in elastic tubes was studied theoretically by Wilhelm
Eduard Weber (a noted physicist who is best known for his work on another field theory-
electromagnetism) and experimentally by his brother Ernst-Heinrich Weber (an equally noted
physiologist who is considered by many to be the founder of experimental psychophysics)
and published in 1866 [69, 70]. The theoretical results are based on an independently derived
linearised form of Euler’s conservation equations and the assumption of a constant distensi-
bility of the tube. They arrived at the same equation for wave speed as Young proposed 50
years earlier.

In the field of cardiac physiology, several important contributions were made by Otto Frank
(1865-1944). Of these, the “Windkessel effect” (that explains how the elastic properties of
the arteries help to smooth the pulsatile flow of blood originating in intermittent contractions
of the heart) and the “Frank-Starling law of the heart” (the greater the initial length or
stretch of the cardiac muscle fibres, or preload, at the end of diastole, preceding systole,
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the greater the force of contraction) are undoubtedly the most important. The clergyman
Stephen Hales was the first to recognise the importance of the elasticity of the arteries, in
1733. But it was left to Frank, more than a century later, to formalise matters. In 1899,
O. Frank published “Fundamental form of arterial pulse”, which was first recognisably
modern theory of “Windkessel effect” in the field of blood circulation [71]. He considered
the arteries as a single compliant compartment and used the conservation of mass to analyse
their change of volume during diastole. The solution for pulsatile flow in rigid tubes was first
given by Witzig in 1914 in his doctoral thesis [72]. However, in 1955, John R. Womersley
(1907-1958) derived the exact solution of viscous fluid in a circular tube under a periodic
pressure gradient [73]. Womersley in 1957 went on to provide solutions for pulsatile flow in
tubes with elastic walls and to include wall viscoelasticity and longitudinal constraints [74].
Important early work in the time domain was also published by Ling & Atabek [75]. Unlike
Womersley’s theory, which was formulated in the frequency domain, and allows for analytical
solutions, time-domain formulations can only result in approximate solutions obtained by
numerical integration. Since the middle of the last century, a steady increase in computer
power [76] has provided impetus and focus on creating more complex mathematical models
of cardiovascular flow, that can be solved computationally. The first real three-dimensional
cardiovascular models were published in the early 1980s, when it became possible to solve
the Navier-Stokes and continuity equations on sufficiently large 3D meshes. At the time
of writing, fully 3D solutions are still restricted in scope to specific vessel scales while
most cardiovascular pathophysiology requires the address of whole system scales such as
the systemic circulation. Consequently, there still is - and we believe will remain for the
foreseeable future - a pressing need, especially in application-driven research, for alternative
models of blood flow. Below we discuss 3-dimensional (3D), one-dimensional (1D) and
lumped parameter models (LPMs). Figure 2.1 gives an example of how all 3 modelling
methods could be used together. Below we aim to describe their main characteristics with
the mathematical definitions given in chapter 4.

2.1.1 3D Models

3D fluid-structure interaction (FSI) models of haemodynamics are recognised as the most
insightful models, and several highly complex FSI models exist. See e.g. [77]. However,
these models are very computationally expensive, and hence are generally only applied to
a small number of vessels or chambers; recent state-of-the art or landmark studies address
the whole heart [78, 79], venous valves [80, 81], or coronary arteries [82, 83]. Furthermore,
these FSI models require large amounts of input data ranging from but not limited to:
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Fig. 2.1 Multidimensional model representation: A schematic representation of a typical
coupling between 3D,1D and LPM models, designed to investigate coupled flow and wall
motion in an arterial bifurcation. Reproduced with permission from [8].

1. Vessel geometry extracted using 3D or 4D radiographic imaging techniques, such as
rotational angiography [84], computed tomography (CT) [85] or magnetic resonance
imaging (MRI) [86].

2. Haemodynamic quantities such as volumetric flow rate, which often require an assump-
tion of a velocity profile at the inlet and of laminar flow.

3. Pressure measurements, which would generally require the invasive surgical technique
of catheterisation.

Material properties of the vessel wall would also be required, to accurately estimate vessel
wall motion (compliance) for example. However this is not feasible or ethical, since it would
require a sample of a patient’s artery. In addition a sample taken outside of the body would
exhibit significantly different conditions than the environment in-vivo. The mechanical prop-
erties may be estimated from a cadaver but again this step would also be under significantly
different conditions than in-vivo. Due to lack of experimental testing, the majority of FSI
models assume uniform material properties in a vessel and consider the wall to have isotropic
properties [87–89], whereas significant anisotropy has been observed experimentally [90]
and computational investigations have shown the vital importance of a compliant vessel wall
[91]; or from expensive four-dimensional imaging data such as 4D flow MRI, which can
track the three dimensional wall motion and/or blood velocity [92, 93]. This wall motion
can be used to either estimate the elastic moduli of the material, or to define wall motion of
the vessels during the simulation, essentially avoiding the fluid-structure interface problem
as the boundary/interface of the fluid and vessel wall is defined, allowing the vessel wall
(solid) model to be neglected. Vessel compliance can also be estimated from the pulse wave
speed, by finding the time difference between two measurable waveforms (normally pressure)
for specific wave features, such as the initial rise of pressure at the beginning of diastole;
however such a method can only be performed non- invasively for a small subset of vessels,
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and is typically used to find the overall/average wave speed in the cardiovascular network,
rather than the wave speed in a single vessel [94]. Overall 3D FSI models provide us with
the intricate details associated with blood flow at vessel scale; despite the scale limitation,
these calculations have influenced the clinical workflow for coronary artery disease treatment
e.g. the use of virtual fractional flow reserve [95] and the guidelines for coronary artery
revascularisation [96, 97]. That said, the need for an address of global heamodynamic scales
is of vital clinical importance where the focal effects of hemodynamics perturbations (like
stenoses) impact the whole system. To reach a suitable description, one must reduce the
dimensionality of the model, to reduce the computational time associated with simulation.
In passing we remark that, due to the high degree of detail associated with a 3D simulation
investigations, a 3D model is typically subjected to thousands of possible sources of uncer-
tainty. A CFD calculation is only as good as the boundary conditions associated with it.

The simulation of blood flow and red blood cell (RBC) dynamics within complex vas-
cular geometries is essential for advancing our understanding of haematological behaviours
in both healthy and diseased states [98, 99]. While traditional 3D computational fluid dynam-
ics (CFD) methods focus on solving the Navier-Stokes equations to model fluid behaviour,
multi-component lattice Boltzmann (LB) methods offer a distinct approach, particularly
well-suited for capturing the multiphase and particulate nature of blood [100, 101]. Unlike
3D CFD, which relies on continuum assumptions and often requires complex meshing, the
LB method represents fluids as collections of particles on a lattice grid, allowing for a more
straightforward treatment of complex, deformable structures like RBCs. This approach is
ideal for modelling cellular mechanics, aggregation, and plasma-cell interactions within blood
flow. Below are examples of 3D RBC or blood flow simulations, along with descriptions
of the LB methodology developments that support these sophisticated simulations [102–104].

Two-dimensional (2D) simulations of red blood cells (RBCs), droplets, and other deformable
particles provide a streamlined, computationally efficient alternative to more complex three-
dimensional lattice Boltzmann (LB) and computational fluid dynamics models. While 3D
simulations are essential for capturing detailed spatial interactions and full vascular geometry,
2D models allow researchers to focus on fundamental behaviours like cell deformation, parti-
cle collisions, and flow-induced shear stress without the intensive computational demands of
3D frameworks. In 2D, the LB method excels at simulating multiphase flows and interac-
tions within a simpler, planar domain, making it especially valuable for examining isolated
dynamics and core behaviours in a controlled environment. This approach offers an effective
way to investigate essential haemodynamic characteristics and particle interactions, making
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it ideal for rapid, preliminary assessments and cases where full 3D detail is unnecessary.

Two-dimensional (2D) simulations of RBCs, droplets, and other deformable particles provide
a streamlined, computationally efficient alternative to more complex 3D LB and CFD models
[105, 106]. While 3D simulations are essential for capturing detailed spatial interactions and
full vascular geometry, 2D models allow researchers to focus on fundamental behaviours
like cell deformation, particle collisions, and flow-induced shear stress without the intensive
computational demands of 3D frameworks [107]. In 2D, the LB method excels at simulating
multiphase flows and interactions within a simpler, planar domain, making it especially
valuable for examining isolated dynamics and core behaviours in a controlled environment
[108, 109]. This approach offers an effective way to investigate essential haemodynamic
characteristics and particle interactions, making it ideal for rapid, preliminary assessments
and cases where full 3D detail is unnecessary.

There are still significant advantages associated with 3D fluid in cardiovascular research due
to their capacity to capture complex flow dynamics and spatial variations that are unattainable
with lower-dimensional models. Unlike two-dimensional models, 3D simulations can account
for the full geometry of blood vessels and chambers, which is crucial for accurately modelling
factors like wall shear stress—a key parameter influencing endothelial cell function, vascular
remodelling, and atherosclerosis development. These models allow for a detailed assessment
of blood flow patterns, including secondary flows and vortices, which are important in
regions of complex anatomy, such as arterial bifurcations and the cardiac chambers. This
level of detail is essential for evaluating the localised impact of blood flow on vessel walls,
making 3D fluid models invaluable in predicting disease progression and designing medical
devices, such as stents, with greater precision. By providing a closer approximation of real
physiological conditions, 3D models enable researchers to conduct more accurate simulations
that enhance our understanding of cardiovascular health and pathology.

2.1.2 1D Models

Propagation of the pressure and flow waves in the vessel network is an intriguing problem
in the study of cardiovascular physiology. It is believed that information regarding cardiac
function, the elastic properties of the vessels, and the pathophysiological conditions of the im-
portant organs (brain, liver, kidney etc.) is encoded in two forward and reflected waveforms,
and their relationship. Thus, pulse wave studies have received extensive attention in cardio-
vascular research [110–112]. 1D models are used to describe vascular components in which
distribution of quantities along the vessel axis -the streamwise flow direction- are important,
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Fig. 2.2 Example CFD workflow: Here, the authors treat an intracranial berry aneurysm.
Panel (A) demonstrates the reconstructed surface mesh (defining a hydrodynamic no-slip
boundary condition) Panels (B) and (C) demonstrate the CFD simulated pressure (B) and
wall shear stress (C) acting upon the aneurysm wall. The latter are hypothesised to provide
useful risk stratification for rupture, on a patient-specific basis. Reproduced under CC 4.0
BY from [9].

and account for wave effects, including transmission and reflection characteristics. Typically,
the dynamics of vessel pressure and flow (the transverse integration of streamwise velocity)
are described by two coupled first order partial differential equations in time and a single
spatial dimension, representing the curvilinear streamwise coordinate. Often one can find
a third equation representing the relationship between transmural pressure, cross-sectional
area and vessel wall mechanical properties. Seminal works by Lambert (1958) [113] and
Barnard (1966) [114] provided a description of flow in a compliant tube in 1D theory. Later
work by e.g. Hughes and Lublinear (1973) [115] derived a set of equations to represent fluid
flow in a tapering leaky vessel. Perhaps the most popular 1D model utilised for nearly all
of the most recent works is that summarised coherently Mette Olufsen (1998) [116], who
reformulated the earlier work by Hughues and Lubliner [115], simplifying to a non-leaky,
non-tapering vessel. We defer further discussion of the 1D formulation to chapter 4.

We return to the consideration of the several complications in the study of 1D pulse wave
propagation - the tapering of the vessel (causing fluctuation in the convective acceleration),
vessel branching, nonlinear pressure/cross-sectional area relationships for the vessel wall
axial tension and bending in the vessel wall, boundary slip, vessel leak, transmural pres-
sures, numerical scheme discretisation, collapse of veins and pulmonary vessels inter alia
[111, 117–125]. The use of 1D blood flow models has become more common, as they
have gained traction for analysis of haemodynamic waveforms in the cardiovascular system.
One-dimensional modelling provides a computationally viable alternative to the 3D CFD
with fluid-structure interaction models, which is able to address the entire circulation while
taking considerably less time to run compared 3D model equivalents. The main drawback
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with 1D models is that they cannot fully capture local flow fields, as they consider flow
only in the axial direction. This has led to several studies coupling 1D and 3D models,
enabling the 1D model to act as boundary (inlet) condition, providing some representation
of heamodynamics away from the vessel of immediate interest, which is of course covered
by 3D model [126–128]. 1D blood flow models have also been used to model particular
systemic function e.g.the calf muscle pump [111], cerebral artery flow [129], ductus venosus
[130], coronary circulation dynamics [117, 131], the systemic circulation [132], the liver
system [133] and -note - the entire human cardiovascular system [47, 134, 135]. Overall,
1D models offer a nice alternative and an ally to 3D models, due almost entirely to their
reduction in computational cost and an ability to examine global heamodynamics while
preserving a description of wave propagation phenomena. In the clinical setting, where data
are constrained, 1D models can be as accurate as an insufficiently parameterised 3D model
e.g. in the diagnosis of coronary artery disease [136]. While 1D models lead to a considerable
reduction in computational time (to a few minutes, from days) this class of model is still
very dependent on the need for a patient specific geometry and it still can contain hundreds
of sources of uncertainty, particularly if multiple vessels within the circulatory system are
investigated.

2.1.3 Lumped Parameter Models

0D, electrical analogue, compartmental or lumped parameter models divide the circulatory
system into compartments within which the primitive problem variables are assumed to
be uniformly distributed and to vary only with time. They can be used to represent the
whole cardiovascular system physiology, or any portion of it. The physiological variables
of compartmental pressure, inter-compartmental flow and compartmental volume can be
considered to be formally equivalent to voltage, current and charge, in the electrical analogy
of the hydraulic circuit. Blood flow within 0D models is minimally described by:

1. An integrated form of the continuity equation for physical mass conservation.

2. Poiseuille’s Law for the steady state momentum equilibrium, derived of course from
from the Navier-Stokes equation.

3. A compliance (capacitance) equation accounting for the distensibility, mainly of the
great vessels.

4. Then (when necessary) an inertance equation accounting for the inertial of flow.

As we now discuss, using the concepts and terminology which are traditional in the field.
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Fig. 2.3 1D model example: Centerlines extracted from a 3D geometry for a 1D model
simulation. Reproduced under CC 4.0 BY from [10].
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After the electric flow concept of current conservation, the hydraulic circuit is assumed
to be governed by Kirchhoff’s current law for current balance, Ohm’s law for the steady
state voltage-current relation and the transmission line equation for the high frequency
voltage-current relation. By associating blood pressure and flow with voltage and current
respectively, we represent the effects of friction and inertia in hemodynamics by a resistance
R and inductance L. Vessel elasticity, compliance or distensibility can be represented by a
capacitance C. Thus the well-established methods for analysis of electric circuit transients
can be mapped across and applied to the investigation of cardiovascular dynamics. LPMs of
the cardiovascular system begin, as we have discussed above, with the modelling of arterial
flow using the famous Windkessel model. This was subsequently expanded to cover the
modelling of other organs such as the heart, heart valves, and other vasculature networks.

Frank introduced what is now termed the two-element Windkessel model in 1899 [71],
to relate arterial flow to pressure in a circuit with a resistor and capacitor in parallel (rep-
resenting arterial ventricular after load) [71]. In 1943, Landes presented a three-element
Windkessel model introducing an additional resistor, representing the impedance of the
proximal arterial network, in series with the two-element model [137]. Burattini, in 1982,
then recognised the 3 element model’s inability correctly to capture vessel impedance, and
so added an inductor in parallel to the proximal resistor [138]. Several subsequent iteration
of these Windkessel models have been proposed, and the reader is directed to the extensive
review by Westerhof, Segers and a review by Capoccia for further detail [11, 139, 140].
Interestingly, the term “Windkessel” was derived based on observations that the heart and
the arteries behave like an old fire engine in which the pulsatile pumping (equivalent to the
heart) is dampened by an air chamber (Windkessel in German) - conceptually equivalent to
the large arteries. The 3 most commonly used Windkessel models are displayed below in
figure 2.4.

One can relate the Windkessel models as seen in figure 2.4 through a set of coupled ODEs
relating pressure and flow. Let Qa and Pa be flow and pressure at the inlet of the Wind-
kessel model representing the aorta. Q and P then represent the the pressure and flow of the
downstream vessels. For the two element Windkessel

Qa = Q+
P
R
, Q =C

dP
dt

(2.1)
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Combining these equations and applying Kirchhoff’s laws

Qa =C
dP
dt

+
P
R
, Pa −P = 0 (2.2)

Rearranging to one equation we reach a coupled ODE which may be solved using an
integrating factor (IF), analytically

dPa

dt
+

Pa

RC
=

Qa

C
, IF → e

∫ 1
RC dt (2.3)

d(Pae
t

RC )

dt
=

Qa

C
e

t
RC (2.4)

Integrating both sides and utilising when t = 0, Pa(0) = P0, we obtain:

Pa = P0e
−t
RC +QaR(1− e

−t
RC ) (2.5)

Note during diastole Qa = 0.

For the 3 element Windkessel model where Zc is the proximal resistance, applying the
constitutive equations and Kirchhoff’s laws

Pa −P = ZcQa, Qa =C
dP
dt

+
P
R

(2.6)

Replacing the vessel pressure P we obtain

Qa =C
d(Pa −ZcQa)

dt
+

Pa −ZcQa

R
, (2.7)

C
dPa

dt
+

Pa

R
= ZcC

dQa

dt
+

(
1+

Zc

R

)
Qa. (2.8)

The four element Windkessel model over comes the inconsistency resulting from the ap-
proximation of the characteristic impedance as a resistance by adding an inertial element L
either in series or in parallel with RC. The inertance term in Windkessel models represents
the overall inertia of the arterial system, effectively capturing the mass-related resistance to
changes in blood flow velocity. This approach offers a distinct advantage by focusing on the
low-frequency response of the circulatory system, which is crucial for accurately reflecting
long-term pressure and flow oscillations due to inertia. At the same time, the resistance and
compliance components of the model are dominant at medium-to-high frequencies, where
they respond more directly to changes in blood flow and pressure pulses. By separating
the frequency contributions of inertance and RC elements, the Windkessel model provides
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a comprehensive, frequency-sensitive representation of arterial dynamics. This makes it
an efficient choice for applications where the detailed spatial information of 3D models is
unnecessary, yet an accurate description of frequency-dependent behaviours, such as pulse
pressure propagation and wave reflections, is essential. The 4 elements gives a relative
accurate estimation of total arterial compliance from pressure and flow. When L is placed in
series we obtain the equations:

Pa −P = ZcQa +L
dQa

dt
, Qa =C

dP
dt

+
P
R

(2.9)

Replacing the P terms in the second equation and simplifying we obtain the following second
order ODE

LC
d2Qa

dt2 +
(
ZcC+

L
R

)dQa

dt
+
(
1+

Zc

R

)
Qa =C

dPa

dt
+

Pa

R
(2.10)

When adding L in parallel to Zc the same pressure drop applies however new Kirchhoff laws
are now obtained

Pa −P = L
dQL

dt
, Qa −QL =

Pa −P
Zc

(2.11)

Replacing P in the equation Qa =C dP
dt +

P
R we obtain

Qa =C
d
dt
(Pa −L

dQL

dt
)+

1
R
(Pa −L

dQL

dt
) (2.12)

LC
d2QL

dt2 +
L
R

dQL

dt
+Qa =C

dPa

dt
+

Pa

R
(2.13)

Replacing QL in the equations above and rearranging we obtain

LC
d2

dt2 (Qa −
Pa

Zc
+

P
R
)+

L
R

d
dt
(Qa −

Pa

Zc
+

P
R
)+Qa =C

dPa

dt
+

Pa

R
(2.14)

LC
d2Qa

dt2 +
L
R

dQa

dt
+Qa +

L
Zc

(C
d2P
dt2 +

1
R

dP
dt

) =
LC
Zc

d2Pa

dt2 +(
L

ZcR
+C)

dPa

dt
+

Pa

R
. (2.15)

Utilising the identity
dQa

dt
=C

d2P
dt2 +

1
R

dP
dt

(2.16)

Substituting in and rearranging we obtain

ZcRCL
dQ2

a
dt2 +L(Zc +R)

dQa

dt
+ZcRQa = RCL

dP2
a

dt2 +(L+ZcRC)
dPa

dt
+ZcPa. (2.17)

In Figure 2.4, much of the distal systemic vasculature is represented as a single compartment,
thus the internal distribution of pressure and flow-rate in the different segments of the filtered
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Fig. 2.4 The Windkessel models: The two-element Windkessel, the three-element Wind-
kessel, and the four-element Windkessel presented in hydraulic and electrical form Zc is aortic
characteristic impedance, L is the blood inertia, C is the compliance of the large arteries and
R is the resistance from the distal vasculature- the cardiologist’s systemic vascular resistance.
Here the capacitances are represented as in parallel, this is due to the assumption of zero
distal pressure which in reality is not true. Reproduced under CC 2.0 BY from [11]

.
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output i.e. not computed. Multi-compartment models address these shortcomings. There
the systemic vasculature is partitioned into a number of compartments, each described by
its own resistance R, compliance C and inductance L, depending on the local vessel group’s
characteristics. These vessel segments are connected together to form the complete model of
the whole vessel network. Depending on the specific aims of any particular study, and the
requirement for model anatomical fidelity, the vasculature can be appropriately partitioned
to provide detail in the region(s) of interest, whilst other segments can be lumped together
using less sophisticated model elements. Clearly, this approach provides a convenient
platform for physiological intuition and a flexible and simple description of the vasculature.
Accordingly, it is a powerful tool for cardiovascular simulation. In constructing the multiple
compartment models for the vessel network, it is necessary to first derive suitable "RLC"
(say) models for a vessel segment, as a building block in the development of the whole
vessel network model. Formaggia and Veneziani [141] and Milisic and Quarteroni [142]
provided detailed derivations of four typical compartment model configurations appropriate
for the description of a vessel segment. These include CRL, RLC, RLCLR, CRLC alternaties.
Using these network elements as building blocks, several multi-compartment models of the
circulatory network have been developed, with various levels of complexity, upwards from
the single branch models mentioned above. Most workers take the approach of partitioning
the vasculature into segments representing aorta, artery, arteriole, capillary and vein [143–
146], characterising the network element to suit local flow features, and then connecting the
segments to form the circulation loop. In the aorta and the main arteries the blood vessels are
quite elastic, the blood flow is pulsatile, thus the full resistance, compliance and inductance
effects (the "RLC" combination) need to be considered. In the arterioles and capillaries, the
vessel wall is relatively rigid and flow is steady and frictional loss is the dominant factor,
thus the local flow dynamics is adequately described by a pure resistance element. The
general veins and vena cava are highly compliant and the blood flow is relative steady, thus
the inertial effect is often neglected in venous compartments and an RC combination is
considered sufficient to describe their flow characteristics. It might be argued that a model
consisting of a series of 0D compartments is, in the limit, a representation of a 1D system,
and indeed Milisic and Quarteroni [142] have offered a formal proof that 0D models for
the vessel network can be regarded as first order discretisations of 1D linear systems. As
discussed earlier, such models are readily interpreted in terms of electrical analogues. In
practice the biggest difference between multiple linear LPM and published 1D models is that
the latter tend to include the (nonlinear) convective acceleration effects whereas the former
cannot which is a significant limitation. One clinical advantage of LPMs is that in clinic the
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majority of measurements which are available to us are on the organ scale (pressure and flow
with no spatial dependence).

2.1.3.1 Heart Models

Windkessel models are termed passive- they can compute a compartmental pressure (flow)
response to a known flow (pressure). For a self-initiating, closed loop model, one must -to
exploit the electrical analogue- include the power source i.e. the heart. There have been
numerous studies on quantitative characterisation of the heart as a pump, using a range of
low order models, all of which attempt in some way to capture the essential biomechanics.
As we shall see, these models are independent of LPM representations of passive circulation
hemodynamics. But to be useful in the present work, they must clearly be compatible with
the LPM description and capable of delivering an integrated description- a self-initiating
"closed loop" model.

Leefe and Gentle [147] discuss the characteristics of the left ventricle, exploring whether it
was better described as a pressure or as a flow source: of course in truth it is a combination of
the two. In the 1974, Suga et al. [148] proposed a varying elastance model for the ventricle.
Here, ventricular pressure is presented as a function of a ventricular elastance and the change
of the ventricular volume from its unstressed value. The change of ventricular volume is
determined by the blood flow into and out of the chamber, and the ventricular elastance
is defined as a time-varying function based on the in-vivo measurement of the ventricular
activity over the cardiac cycle further mathematical details are given in chapter 4. This
model is easy to understand and to implement, and it has been widely adopted, especially
within the physiological community and by researchers in general e.g. [149–151]. Various
alternatives to the varying elastance model have been developed. Žáček and Krause [152]
derived a heart model in which muscle mechanics were based on Hill’s three parameter
model. The ventricular pressure was calculated from the computed muscle force and the
volume calculated from the change of muscle length. Werner et al. [153] proposed equations
to calculate the myocardial wall tension in systole and diastole by using Hill’s model and
considering the Frank-Starling effect, and then calculated the ventricular pressure based
on the Laplace law by assuming the heart chamber to be spherical in shape. Bovendeerd
et al. [154] described the chamber pressure as a function of the muscle fibre contraction
in the ventricle, and called this model single fibre model. A simpler model for the heart
which does not capture pulsatility is an exponential equation to define the cardiac output as a
function of the atrial pressure, with ventricular dynamics details completely neglected [155].
Nevertheless, due to the time varying elastance’s concise model structure, pulsatility, clear
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physical meaning and intuitive appeal, it remains the most popular [156–160]. In addition to
its original use as a descriptor of left ventricle performance, the variable elastance model has
also been extended to the simulation of atrial dynamics [48, 161, 162].

We will see in forthcoming chapters that there are several plausible, purely algebraic (polyno-
mial and trigonometric) representations of chamber variable elastance, which are suitable
partners to the LPM hemodynamic vessel description.

2.1.3.2 Valve Models

There are four heart valves in the normal heart, the mitral, tricuspid, aortic and pulmonary
valves. The valves prevent retrograde flow of blood from the ventricles to the atria during
systole (mitral and tricuspid valves) or from the aorta and pulmonary arteries into the ventri-
cles during diastole (the aortic and pulmonary valves). These valves close and open passively
under various external effects of pressure gradient across the valve, vortex flow near the
valve, shear force acted on the valve leaflet surfaces [163].

The simplest models of the heart valve used in 0D studies represent the valve as a diode
with a linear or nonlinear resistance [164–166]. The valve has little resistance to the flow
when the pressure gradient across it is positive, while the flow is totally stopped when the
pressure gradients across it is negative. This idealised description ignores the more complex
features of valve dynamics. Clearly the heart valves have a much more complex dynamics
[167]. Žáček and Krause [152] considered the change of heart valve resistance during valve
motion by using the concept of a time- dependent drag coefficient. In their work, the drag
coefficient was a prescribed function of the valve open area, and it approached infinity when
the valve was closed. The drag coefficients were added to the losses of the conduit in which
the valve was situated. Werner et al. [153] described the valve behaviour by including the
volume of the retrograde flow during the closure phase: in their study this was referred
to as the dead space volume, which was a function of the valve leaflet opening angle and
became zero when the valve was fully closed. Shi et al. [168] modelled valve dynamics by
considering the local flow resistance and the blood inertial effect. The valve was described
with an orifice model, and its opening change was prescribed based on previous experimental
observations. To further improve the valve dynamics modelling, Korakianitis and Shi [169]
proposed a more advanced heart valve model, in which the valve dynamics were described
by an ordinary differential equation that considered the different effects of pressure gradient
across the valve, vortex flow near the valve, and shear force acting on the leaflet surfaces.
In this model, the relative importance of these factors was determined by referring to the
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results of previous two dimensional and three dimensional computational fluid dynamics
studies. With these improvements, the model could effectively simulate the valve opening
and closing procedures, and the numerical results agreed well with the published results
on in-vivo measurement of valve motions. Mynard et al. [170] presented a simpler valve
function based on the work by Korakianitis and Shi, in this work they formulated the valve
opening driven by a differential equation based on the pressure gradient. In this formulation
they applied a dampening factor to eliminate the flow oscillations present in the previous
model which were attributed to a dicrotic notch. More recently, Laubscher et al. [159]
developed a new model for the aortic valve in which the parameters representing forces
acting on the valves are derived from the geometrical features such as valve cusp thickness,
cusp height, valve opening angle and instantaneous valve flow rate.

2.1.3.3 LPM Applications

System models constructed from 0D components generally feature the major components
of the system, such as the heart, the heart valves and compartments of the vasculature, and
are suitable for examination of global distributions of pressure, flow and blood volume over
a range of physiological conditions, including study of interactions between the modelled
components. The applications of LPMs are varied. As we have seen, LPMs are used as
boundary conditions for 1D and 3D models, to represent the distal vasculature of the vessel
of interest, which may be a simple vascular bed [171] or the whole circulatory network, if
coupled with a 3D heart model [172]. Independently LPMs have been created to model
the systemic, pulmonary, coronary, venous, cerebral, baroreflex regulation, sex differences,
ventricular interactions and the whole human circulation [139, 173–179]. A representative
LPM can be found in figure 2.5.

Canonically, LPMs can be as parsimonious as possible, given their intended purpose and the
difficulty attending their paramterisation (the essential motive of this work, recall). They
span a space from simple single ventricle models, up to the complex models of Guyton,
which contain not only the mechanical aspects of the heart but also the majority of chemical
and biological pathways associated with the human system [180]. This question of the level
of detail needed in creating a LPM is central to this work but we defer further discussion to
chapter 9. LPMs find applications in examining the impact of cardiovascular disease such as
limb amputation, diabetes, pulmonary hypertension, valve stenosis, venous reflux, ischaemic
stroke, tachycardia, coronary artery disease, heart disease, vessel collapse, congenital defects,
orthostatic stress intolerance and Norwood physiology [159, 181–192].
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2.1.3.4 Why LPMs?

Closed-loop LPMs are encapsulated mathematically by a set of simultaneous differential-
algebraic equations (DAEs). In representations of the vasculature, there are typically two
ordinary differential equations (ODEs) for each compartment, representing the conservation
of mass and the conservation of momentum. These are complemented by an algebraic
compliance or elastance equation, relating compartment pressure to volume or its time deriva-
tive, flow. Due to their relatively simple coupled, first order ODE formulation closed-loop
LPMs can be solved much more rapidly than 1D and 3D models. Typically, the problem is
expressed in state-space form [193]. As we shall discuss further below, this speed is essential
for the problem of personalised medicine. Additionally, LPMs suppress the uncertainty
associated with patient geometry, which is a significant issue in the personalisation of 1D and
3D models. Therefore, the only unknowns and sources of uncertainty in the model are the
system input parameters that characterise the model and patient e.g the resistance, inductance,
and compliance of the LPM’s compartments, as well as heart elastance (inverse compliance)
function and valve parameters.

Given that we can constrain the model with patient data to provide updated model pa-
rameters that characterise a patient, we can develop a virtual representation and personalised
model from which we can make predictions and gain insights. For the aforementioned rea-
sons, we choose to investigate the properties associated with personalising lumped parameter
models of the cardiovascular system.

2.2 Uncertainty Quantification

Cardiovascular science and medicine are inherently uncertain; each patient differs, resulting
in significant variability in medication dosages, treatment reactions, physiological responses
and risk [194]. The goal of personalising cardiovascular models is to quantify and suitably
communicate these risk to clinicians. A quantification may relate to the risk of making a
prediction from a model which contains error or deriving insights from an incomplete model
i.e. a corrupted understanding of the mechanisms contributing to a pathophysiological state.
Below, we outline the uncertainties which be devil 3D, 1D, and LPMs.

1. 3D models: Mesh element O(100000), element size and shape, vessel wall mechanics
model, terminal boundary conditions, inlet boundary conditions, essentially originat-
ing in vessel imaging methodology, image segmentation, vessel reconstruction, flow
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Fig. 2.5 Example LPM: A closed-loop LPM model of the human circulation; all 4 heart
chambers, heart values and the systemic and pulmonary circulations are explicitly represented.
Note, the variable elastance functions which introduce pulsatility into the model. Reproduced
from [12].
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properties (Newtonian and non-Newtonian models), closure term equation parameters
to link larger to smaller scales (turbulence) and missing physics.

2. 1D models: Mesh elements O(100), wall mechanics model, terminal boundary condi-
tions, inlet boundary conditions, originating in vessel imaging methodology, image
segmentation, vessel reconstruction, and missing physics.

3. LPMs: Initial volumes, pressures, and flows, missing physics, model input parameters
e.g. compartment resistance, compliance, inductance, heart parameters.

LPMs offer a mechanism for quantifying and explaining the uncertainty of cardiovascular
responses through a small, countable set of identified input parameters that all have an
intuitive physiological interpretation.

2.2.1 Uncertainty & Sensitivity Analysis

Uncertainty analysis (UA), also known as uncertainty propagation, involves generating an
ensemble model output distribution (pressures/flows/volumes) within - here - a clinical LPM
setting, given some uncertainty in the model input parameters. This process considers possi-
ble model output values, considering the input uncertainty [13]. Clinically, this is useful as it
informs how changes in model inputs impact the model outputs, which are often surrogates
for patient responses. For example one may be able to observe the pressure range which may
be expected from a patient given this uncertainty.

There are several definitions of sensitivity analysis (SA). Pathmanathan et al. define SA
as “the quantification of the uncertainty in model inputs," where inputs are the parameters
characterising an LPM [195]. In this context, the parameters include the resistance, com-
pliance, and inductance values, as well as heart chamber parameters. Saltelli et al. provide
an expanded definition of SA as the “study of how uncertainty in the output of a model
can be apportioned to different sources of uncertainty in model inputs" [196]. The primary
reasons for uncertainty in model inputs are measurement uncertainty (e.g., the inability to
measure a quantity exactly) and natural variability (e.g., physiological variability across
individuals). Given the significant variability in our cardiovascular models’ inputs, it is
important to examine which inputs, within a prescribed range of values, contribute the most
to the uncertainty in output quantities of interest (QOIs). From a cardiovascular perspective,
QOIs are potential clinical metrics that aid the diagnostic process. For example, ejection
fraction can be used to diagnose heart failure, and SA could reveal which model parameters
indicate heart failure. Performing SA on a model can highlight the influential mechanisms
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contributing to a patient’s pathophysiological state.

The aforesaid method is known as global sensitivity analysis (GSA), which considers the
entire range of permissible parameter values. Conversely, local sensitivity analysis (LSA)
examines how model outputs are affected when parameters are perturbed from a nominal
base state. GSA, using empirically derived input ranges, provides a fundamentally different
measure of sensitivity compared to LSA, not least because it leverages experimental data
(parameter ranges) not considered in LSA. For a detailed introduction to SA, see [196, 197].
Consider the simple model

y(x1,x2) = x1 +10x2.

LSA would conclude that y is ten times more sensitive to x2 than to x1. However, GSA lever-
ages information on the distributions of the inputs. Suppose x1 ∼ N(0,1) and x2 ∼ N(0,0.01).
GSA would reveal that 91% of the variance in y can be attributed to the uncertainty in x1,
and 9% to the uncertainty in x2.

Personalised medicine is a global process that requires identifying model parameter values
that best represent patient physiology as well as quantifying the risk associated with model
output interpretation, given the input uncertainties. Compared to UA, GSA allows us to
identify the primary input parameters that influence the model outputs. These are diagnos-
tically relevant simply in view of their impact on QOIs. UA and SA are complementary
investigations with different purposes: SA identifies influential inputs without considering
specific output values, while UA generates probability distributions of outputs based on input
uncertainties, enabling clinical predictions about system responses to input changes. Figure
2.6 schematically represents the relationship between UA and SA.

In this work, we focus on SA and the practicalities associated with identifying a set of
influential, identifiable (to be rigorously defined in Chapter 4), and unique input parameters
given a set of model outputs.

2.3 Aims and Contributions

The broad objectives of this work and its contribution to knowledge revolve around the mod-
elling and simulation, quantification of uncertainty through sensitivity analysis (introduced
in this chapter), and examination of the personalisation process in cardiovascular LPMs.
The focus is on the critical, offline steps of model development where sensitivity analysis (a
method for quantifying uncertainty) is employed to understand the behaviour and properties
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Fig. 2.6 Model uncertainty representation: Schematic diagram showing relationship among
model input parameter uncertainty and sensitivity to model output variable uncertainty.
Reproduced under CC 4.0 BY from [13].

of LPMs, in particular their suitability for personalisation. The key novelty of this work is
the development and definition of best practices surrounding global sensitivity analysis and
uncertainty quantification. While the application in this work is mostly concerned with the
cardiovascular system the work and methods developed here can be applied to any dynamical
system in which one looks to quantify uncertainty. The specific aims of this work and the
associated contribution to the knowledge can be stated explicitly in five, progressive tiers:

1. Investigate the impact of different statistical estimators, sampling methodologies and
convergence when performing a global sensitivity analysis of LPMs.

• We apply our newly developed computational framework efficiently to investigate
methodological choices when computing a global sensitivity analysis, aiming to
investigate how different methodological choices impact one’s interpretation of
LPMs and the consequences of this on the personalisation process.

2. Examine the impact that varying model outputs have on the personalisation process.

• Having defined best practices for global sensitivity analysis in 1, this work aims
to investigate how different model outputs -a proxy for different clinical patient
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measurements- can change the interpretation of input parameters in a model and,
again, the larger impact this may have on the personalisation process.

3. Investigation of the stability of personalisable/identifiable subsets of input parameters,
given varying sensitivity methods and the development of a new methodology which
provides insight into the non-linearity associated with a model response surface.

• The insight provided by 2 above. Is that model interpretation is constrained by the
chosen model outputs. Now we aim to extended a subset selection methodology
to encapsulate the global nature of the personalisation process and to examine
how consistent model interpretation is - given that one varies the sensitivity
methodology which is utilised - and develop a method using sensitivity analysis
which provides insight into the non-linearity associated with the model response
surface, which should aid personalisation when one constrains the model with
patient data.

4. Examine the unscented Kalman filter as a method for parameter estimation in the
personalisation process.

• Given the understanding of sensitivity analysis and model interpretation devel-
oped from 1,2 and 3, we aim, in this step to investigate a promising data assimi-
lation method for constraining a model (with synthetically generated "forward"
patient data) better to personalise the LPM parameters.





Chapter 3

Literature Review

The thing that I fear discriminating against is humour and truth.
— CHARLES BUKOWSKI

Summary
This chapter reviews and critically examines the current literature surrounding the personali-
sation of cardiovascular LPMs. We end the chapter by highlighting the open questions based
on the current literature.
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3.1 Introduction

This thesis is concerned with the personalisation of cardiovascular models. We are agnostic
towards the structure, application, and methodology by which these models are created and
are concerned with uncertainty quantification methods, of both statistical and mechanistic
models, as interpretation remains consistent across these types.

In Section 3.2, we review the concept of personalised medicine. We highlight the main chal-
lenges in creating cardiovascular models, how to quantify the risk in making predictions with
these models, and, most importantly, what is needed for their translational application. We
then examine some examples of LPMs that apply sensitivity analysis to identify influential
parameters from local (Section 3.3) and global (Section 3.4) bases. While multiple methods
exist to assess the global sensitivity of a model, we prioritise global methods that utilise
derivative-based measures (Section 3.4.1) and variance-based measures (Section 3.4.2). Then,
we review the concept of parameter identifiability, focusing on different methods applied
to achieve a personalised cardiovascular model. Section 3.5.1 examines structural identifi-
ability, a theoretical precursor to ensure the possibility of unique parameter identification.
We then address practical identifiability in Section 3.5.3. The latter examines the ability to
recover unique input parameters in the presence of noisy experimental data. We conclude
by discussing identifiability informed by sensitivity analysis or sensitivity-informed identi-
fiability. This process examines which input parameters could theoretically be identified,
given a specific set of outputs, without accounting for the noise present within clinical data.
Theoretical identifiability is reviewed in Section 3.5.2. The concept of model sloppiness is
considered in Section 3.6.

Common in pharmacokinetic modelling, sloppiness provides insight into the structure of
the input parameter space. We then explore the methods associated with model calibration,
examining how parameter values are adjusted to best represent a patient’s physiology when
experimental data is introduced to a model. Methods for calibrating model parameters
through data assimilation are detailed in Section 3.7. The final section, Section 3.8, identifies
the gaps in knowledge that this thesis aims to address.

3.2 Personalised Medicine

The last several decades have witnessed lifestyle modifications and evidence-based interven-
tions aimed at decreasing the burden of cardiovascular diseases (CVDs). Despite their success
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CVDs continue to place a considerable burden on the healthcare system. At the time of
writing, 92.1 million adults in the United States suffer from some form of CVD [198, 9]. Con-
sequently, CVDs dominate healthcare costs and are projected to surpass 1 trillion dollars by
2035, according to the American Heart Association [199, 200]. The methods for diagnosing
and preventing CVDs remain largely elusive due to the broad heterogeneity in patient profiles
and clinical outcomes, necessitating deeper phenotyping of patient physiology. This gap has
paved the way for personalised cardiovascular computational modelling approaches in both
basic and clinical cardiovascular research [201]. These models are designed to incorporate
the unique anatomy and physiology of a patient to define model parameters, predict patient
outcomes, and devise optimal treatment strategies. The application of computational models
in other areas of medicine has been incredibly successful, such as in the human immune
system, oncology, liver function, and the brain [202–205].

The clinical acceptance of physics-based models in cardiovascular medicine have been
accelerated by the work found in [206–210]. The underlying reason for clinical acceptance
is augmented diagnosis- a wealth of information provided by physiological flow data, in
addition e.g. to the anatomic information which accrues from medical diagnostic imaging
data. Patient physiology is the foundation of clinical decision-making and computational
models help uncover the complex relationship between patient anatomy and outcomes. Sev-
eral clinical studies have demonstrated -perhaps unsurprisingly- that anatomy alone does
not reveal the underlying pathophysiological mechanisms [211–213]. Physiology-guided
interventions have become the cornerstone of modern cardiology practice. However, inter-
ventional procedures are generally invasive and expensive, limiting their widespread use
[214]. Avoiding invasive procedures not only reduces patient discomfort but also lowers
procedural costs and saves time and costs. These factors have inspired the development of
physics-based models as fundamental tools in cardiovascular research and motivate efforts
to integrate such computational methods into routine cardiovascular practice. Numerous
physics-based principles of electromechanics, solid mechanics, and fluid dynamics are cur-
rently applied to study cardiovascular electrophysiology and hemodynamics and cellular
mechanics [215–219].

Clinical decisions are built on evidence gathered from bench to bedside. Regulatory de-
cisions, however, are often based on heterogeneous, limited, or incomplete human data.
Computational model results are now accepted for some regulatory submissions [220, 221].
Digital evidence obtained using computer simulations can be used to ensure the safety of
therapies prior to first-in-human use or under scenarios not ethically possible in humans [222].
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Computational models play an increasingly important role in overall medical product/drug
lifecycle management, proving useful in design optimisation for development and testing,
supplemental non-clinical testing, and post-market design changes and failure assessment
[223]. The development process for medical devices involves manufacturing and testing
samples under a wide range of scenarios, which is often time-consuming and financially over-
whelming. Additionally, pre-clinical testing conditions are often very simplified compared to
the actual patient environment. Statistical and mechanistic models synergistically streamline
this process: statistical models collect a representative virtual patient cohort, while mechanis-
tic models simulate device behaviour under defined scenarios. In this way, new devices can
be tested in a representative virtual patient population, decreasing risk before clinical trials.
One of the first examples where digital evidence (i.e., an in silico trial) replaced additional
clinical evidence was the approval of the Advisa MRI SureScan pacemaker (Medtronic, Inc.)
[224]. Another important example is a computer simulator of type 1 diabetes mellitus [225],
which the FDA accepted as a substitute for animal trials, for pre-clinical testing of control
strategies in artificial pancreas studies. Later, the FDA granted an investigational device
exemption, solely based on model testing, for a closed-loop control clinical trial assessing
the safety and effectiveness of the proposed artificial pancreas algorithm.

Despite such promising results using cardiovascular models to inform clinical practice,
one of the professional barriers reported in [226] is generating trust in these models. Im-
proving the reliability of models through validation and sensitivity analysis is crucial to
scaling the application of cardiovascular models [227, 228]. This undertaking depends on
the amount of data available and the time and cost of the simulations. A lack of validation
in computational models has also been noted by Mourato et al. [229] in one context - the
modelling of aortic aneurysms. Mourato et al. reported that only 12% of the articles per-
formed numerical validation with patient-specific in vivo data, and 76% did not present a
meaningful validation process. Regarding UQ and SA, Mourato et al. concluded that there is
a paucity of studies of the impact of several parameters in numerical simulations. Rodero
et al. recently conducted a systematic review of cardiovascular in silico trials and again
found a distinct lack of local or global SAs in 81% of the studies analysed. Galappaththige et
al. [230] suggested a system to report the different degrees of validation for studies using
patient-specific models and virtual cohorts of patient-specific models. Using this system, in
silico clinical trials could be more aware of limitations concerning validation. Combining
conventional clinical trials with modelling tools, as in [231], where in silico clinical trial
predictions were compared with clinical decisions, can generate trust. Further, combining in
silico clinical trials with physical and experimental evidence can also build stronger evidence,
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as one approach compensates for the limitations of the other [232]. These studies can help
spread understanding of computational modelling, provided the corresponding validation
and SAs are performed to ensure model robustness.

In the development and application of computational models, especially within the medical
field, ensuring credibility is paramount. Verification and validation (V&V) provide essential
frameworks to assess the accuracy and reliability of these models, helping to establish their
suitability for critical applications, such as medical device design and testing. Through
verification, the model’s consistency and alignment with its intended purpose are evaluated,
while validation examines its accuracy in representing real-world physiological conditions.
This paper focuses on employing V&V principles to assess the credibility of computational
models in the context of medical devices. By rigorously verifying and validating these
models, we can help support their safe and effective implementation in healthcare, where
predictive accuracy can have a profound impact on patient outcomes. For validated standards
please refer to [233, 234].

Models of natural systems involve parameters either directly measured or indirectly in-
ferred (calibrated) using experimental data. However, even the most carefully conducted
experiments exhibit intrinsic variability in their temporal behaviour and extrinsic variability
between individual samples. For example, variability is reflected in the intrinsic beat-to-beat
fluctuation of action potential duration (APD) in a single cell [235] and extrinsic cell-to-cell
differences in APD. Intrinsic and extrinsic variability describe fluctuations due to inherent
randomness or natural differences between individuals. Variability is one cause of uncertainty,
which is the confidence or precision with which a quantity can be assigned a value. Uncer-
tainty can arise from variability or a lack of knowledge. Natural variation is characterised as
aleatory uncertainty, while uncertainty from a lack of knowledge is epistemic uncertainty.
Uncertainty is important not only for model calibration, where inputs such as parameter val-
ues are derived from experimental data, but also for model validation (where model outputs
are evaluated against experimental data not used in the calibration stage) and prediction.
Most models treat inputs as fixed values and generate outputs as single values or a time
series of single values. However, model parameters and other inputs are usually uncertain
because of possible variability and the inherent limitations of experiments and calibration.
Uncertainty does not focus solely on model parameters; representing a biological process
means that the model may not fully represent it, leading to model discrepancy [236]. Model
discrepancy can be seen as the difference between the mathematical description and the true
biological process. Thus, as one will always have a simplified model compared to reality, this
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discrepancy between the model and the relationship can induce uncertainty into predictions
or conclusions drawn from a model. Additionally, as models increase in size to represent
more complex processes, how does one choose a set of parameters to calibrate a patient
to provide insight? The model’s chosen dimension can significantly impact understanding
the uncertainty within a model. Do we include uncertainty in image segmentation? Do we
include the uncertainty associated with numerical solvers? We formulate some of the main
practical questions surrounding the uncertainty of cardiovascular models below:

1. How reliable are cardiovascular models?

2. How do we compare between cardiovascular models rigorously?

3. What type of model should be used?

4. How should uncertainties be communicated to clinicians?

To achieve clinical translation experts (Hose, Holmes, Huberts, Acero, Gray, Viceconti,
Peirlinck, Vardhan, Mirams, and Johnstone [237–246]) opine that one needs to account for
the uncertainty in cardiovascular models through rigorous sensitivity analysis. Additionally,
reducing models to a subset of parameters interpretable by clinicians is essential for making
clinical choices. Lumped parameter models (LPMs) of the cardiovascular system currently
are the only modelling method with a quick simulation time (avoiding the use of statistical
emulation), that have input parameters that are directly clinically relevant, and can provide
an examination of global haemodynamics. As stated in the articles above, a global virtual
representation of a patient is likely to come from the application of an LPM.

3.3 Local Sensitivity Analysis

Local sensitivity analysis (LSA) varies parameters one at a time, around a base parameterisa-
tion for a computational model. Saltelli et al. [196] note that if the model under investigation
is linear, then an LSA provides adequate information on the input parameters given a set of
inputs. LPMs of cardiovascular systems normally contain a non-linear representation of a
heart chamber, while the circulation is represented by linear differential equations and Ohm’s
law [247]. However, there are exceptions to this. Tang et al. applied non-linear compliance
to represent pulmonary hypertension [183]. Pant et al. utilised non-linear resistance to model
the effects of a vascular shunt in children with single ventricle physiology [248]. Thus, any
interpretation from an LSA outside of an operating point in a model with any non-linearity
must be undertaken with caution. Where LSA has been compared to global methods, dis-
cussed below and more suitable for non-linear models, researchers have regularly shown
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that when a model is linear LSA and GSA results align. However for non-linear models,
comparisons between LSA and GSA can lead to misleading conclusions. A majority of the
work comparing LSA and GSA has been focused on non medical examples [249–251]. In
other systems biology investigations, such as physiologically-based pharmacokinetic (PBPK)
modelling, LSA is widely performed. Johnson et al. state that in PBPK modelling, often a
drug operating point is known, so LSA is adequate in parameter interpretation [252].

A review by Saltelli et al. [253] highlighted that in medicine, 30% of modelling stud-
ies still utilise LSA to make interpretations about model parameters, even in the presence of
non-linearity. Another reason for utilising LSA is the complexity of models; the number of
input parameters is often too large for any global analysis. In PBPK modelling, Felmlee et al.
[254] utilised LSA to obtain clinical markers to look for drug activation markers. In a system
with over 250 state variables and 500 parameters, this method has since been utilised many
times.

In cardiovascular modelling, Sher et al. [255] performed an LSA on a cardiovascular
ionic channel model containing 14 parameters to identify non-influential input parameters
which could then be fixed to reduce the parameter space dimensionality, for optimisation.
A similar motive is ascribed to Paulsen et al. [256], who to reduce the dimensionality of
a complex LPM of the systemic circulation. Ellwein et al. [257] took a complex LPM of
the whole human circulation to categorise the sensitive and insensitive parameters against
outputs of the human body. An important point regarding LSA studies is that they can
be characterised into two distinct categories: some examine parameter influence against a
wide range of model outputs; others restrict to particular model outputs, to understand the
influence of parameters there.

A good example of trying to understand the general behaviour of parameter influence is the
work of Otta et al. [175], who took a 50-parameter resistive model of the venous circulation
and applied an LSA to inform potential model reduction. Levin et al. [258] applied LSA to an
LPM of the coronary arteries to identify (and subsequently exploit) the impactful parameters
in the pressure and flow in the vessels. Sato et al. [259] utilised a multi-scale model of
the systemic circulation, including arteries, veins, and peripheral circulation, informed by
nutritional and clinical pathways, to investigate the most influential parameters impacting
cardiovascular output. Khan et al. [260] sought to personalise a 34-parameter LPM of
the carotid artery. Khan was investigating which input parameters of the model are most
influential in the case of a stenosis proximal to the bifurcation. By reducing the parameter
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space of a specific pathology, Khan proposed a set of inputs that could be used as bio-markers,
indicative of the specific pathology. The latter is an example of a model approaching the role
of a diagnostic support tool.

3.4 Global Sensitivity Analysis

Global sensitivity analysis (GSA) is a method in which input parameter effect is quanti-
fied between prescribed parameter value bounds. Effect is quantified through derivatives,
or by examining from the statistical perspective, variation associated with model outputs
[196]. In the cardiovascular sciences and biology, sensitivity analysis (SA) is important for
several reasons. Biological processes are inherently stochastic [261], and collected data
are subject to uncertainty [262]. Additionally, while mathematical models are important
tools for formulating and testing hypotheses about complex biological systems [263, 264], a
major obstacle confronting such models is that they typically have a large number of free
parameters whose values can affect model behaviour and its interpretation. It has been
observed that although high-throughput methods are well-suited for discovering interactions,
they remain of limited use for the measurement of biological and biochemical parameters
[265]. Model parameters can also be approximated collectively through data fitting, rather
than direct measurement. However, this often leads to large parameter uncertainties, if
the model is unidentifiable. SA methods can be used to ensure identifiability, a property
which the model must satisfy for accurate and meaningful (i.e. unique) parameter infer-
ence, given the measurement data. Below will review the literature associated with global
sensitivities, which can be understood as taking the sensitivities at multiple points in the
input space, before taking some measure of the average of these sensitivities. This averaged
value then represents the influence that the input in question exerts on the outputs’ uncertainty.

While there are many reviews on global sensitivity analysis methods [196, 197, 266, 267],
few have emphasised cardiovascular problems. Qian et al. [268] provide a comprehensive
review of the global sensitivity methods that exist. They highlight how variance-based
measures provide the most intuitive and deep understanding of parameter influence compared
to other sensitivity measures. However, Qian makes no comment on how one ensures the
sensitivity metric obtained is reflective of the problem under investigation. Gul et al. [269]
published a guide to performing SA on a cardiovascular system. In this work, they also
advocate for variance-based measures, on the grounds of interpretability.

Olsen et al. [270] examined SA methods in mathematical biology. In this work, they
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advocated, in the presence of a highly parameterised model, utilising a derivative-based
measure to fix the non-influential parameters, then performing a more extensive variance-
based global sensitivity analysis (GSA) to obtain the remaining parameters’ true influence.
This approach was leveraged by Donders et al. [271], who suggested using derivative-based
methods to reduce the parameter space, again by fixing non-influential parameters. They
suggested using polynomial chaos expansion to create an emulation of the system, to increase
the speed of execution. They argue that an emulator facilitates a larger sample size so one
can be more confident in the result of the variance-based method. Eck et al. [272] proposed
a guide to uncertainty quantification in cardiovascular models, in which they suggest one
should not utilise derivative methods. Instead, these authors recommend focusing efforts on
training an emulator, to ensure quick computation. This device means one can perform a
variance- based analysis directly; these authors make no quantifiable claims about ensuring
convergence (ensuring the estimate one obtains of a sensitivity index is the correct one) other
than examining a larger sample size to see if the ranking of input parameters changes. The
notion of utilising a larger sample size to ensure convergence was first formalised by Yang
[273], who related sensitivity convergence to the central limit theorem. Simply put, the more
samples one utilises, the more likely it is to converge on single value, coupled with a small
standard deviation value, for the sensitivity. A recent work by Saltelli et al. [253] highlighted
how many sensitivity indices fail to utilise variance measures and focus on derivative-based
measures, which leads to insufficient exploration of input space which in turn can cause
incorrect parameter interpretations.

3.4.1 Derivative Methods

The most popular derivative-based method for biological sciences is the Morris method [274],
which is primarily applied to reduce the computation associated with evaluating sensitivity
indices [275], or as a screening technique to fix non- influential input parameters. Morris’
method has featured heavily in cardiovascular modelling, since the turn of the century. Sher
et al. [276] applied it to a 30-parameter cardiovascular cell model to reduce the subset of
parameters for optimisation. Once the parameter space was reduced, they then coupled
the reduced cell model to a simple lumped parameter model (LPM). Taconne et al. [277]
developed a new model for aortic stenosis and implemented this within a four-chamber
circulation model. Taconne then utilised the Morris method to reduce the input parameter set,
feasibly to optimise against some clinical data. Gul et al. [278] applied the Morris method to
study the impact of vessel abnormalities within the systemic circulation. The reason for this
was that they needed to compute for numerous different vessel abnormalities, thus the Morris
method offered an efficient solution to the problem of obtaining initial insights about the
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input parameters. Olsen et al. [279] applied the Morris method and compared these results
to the sensitivity indices obtained through a variance- based method, for a baroreceptor
model. They highlighted that the Morris method often presented computational challenges
in the implementation of the derivatives and attributed to numerical instability their differ-
ent results, compared to the variance-based methods. Rolle et al. [280] utilised Morris’
method to identify biomarkers of heart failure; similar work has been done with the Mor-
ris method, to identify pathophysiology in the pulmonary and coronary circulation [281, 282].

There has been a decline in use of Morris’ method with the advent of more powerful
computation. However, it is still used in some instances where a model contains many
parameters. Colebank et al. [283] utilised Morris’ method to obtain a subset of parameters to
which to apply the profile likelihood method. Colebank also noted how the Morris method
sometimes did not return consistent results under different model conditions. Osta et al.
[284] applied it to the CircAdapt model [285] to reduce parameters for optimisation, to create
a patient-specific model of arrhythmogenic cardiomyopathy-related mutation carriers. When
utilising Morris’ method to examine parameter effects all scenarios are different and thus
the outputs on which the sensitivity metrics are computed on vary significantly between
studies. However, in the work to examine biomarkers, it is common to claim parameters’
effects are built into the model, the implication here being that the biomarkers of a model are
an invariant of the output set utilised. Within Morris’ workflow, no rigorous convergence
analysis has yet been performed to check the validity of the sensitivity indices obtained.

3.4.2 Variance Methods

Sobol indices, which involve a decomposition of parameter effects into contributions to the
total output variance, are widely regarded as the gold standard global sensitivity measure
[196, 270, 286–288]. Qian et al. [268] state that Sobol indices are widely used in the life
sciences, due to their ease of interpretation by clinicians. As Sobol indices encapsulate a
decomposition of the variance, a variety of estimators have been developed for them. For
first-order indices (input parameters’ independent effects on the output), Saltelli et al. [289]
derived a first-order estimator that is now the most commonly used. Recently, a first-order
estimator developed by Azzini et al. [290] appeared to give promising results; however,
it required twice as many model executions, and thus has not received sufficient attention.
The total-order indices (a parameter’s complete effects, not just it’s independent effect) are
commonly used for input parameter fixing [291, 292], to reduce the dimensionality of the
input parameter space. Recently, Puy et al. [293] compared eight total-order estimators
using non-linear test functions, to examine which estimator could most closely obtain the



3.4 Global Sensitivity Analysis 53

analytical sensitivity values. Puy determined that only three out of eight tested obtained the
correct values and speculated that this was due to the estimator structure, although this was
not explored further.

As stated above, in section 3.4, the most common form of sensitivity convergence is the
application of the central limit theorem. However, Archer et al. [294], applied the concept of
bootstrapping (resampling with replacement [295]) to show how one could create quantifiable
confidence intervals for any Sobol indices calculated. In this work they recommended that
one utilises 1000 bootstrapped samples. Another question surrounds how many samples one
should utilise; a seminal work by Saltelli et al. [289] recommended that one use 500 samples,
which seems, regrettably, to have become canonical- irrespective of model properties. Despite
a recommendation by Archer regarding the interaction with sample size, often the majority
of works use no bootstrapping at all or utilise a sample size as large as possible. This sample
size is often restricted by the affordable computational power [296].

Nossent et al. [297] applied 1000 bootstraps and 2500 samples to a 26-parameter envi-
ronmental linear model. He noted that 500 parameter samples would have led to very
different and uncertain interpretations of parameters’ influence. Randall et al. [298] applied
Sobol analysis to a non-linear model of the Valsalva manoeuvre containing 27 parameters
and demonstrated convergence by considering increasing sample sizes of 103,104 and 105.
To analyse the impact of Sobol indices, Randall considered all state variables of the model as
outputs, to gain a general understanding of the model. Sala et al. [299] developed a model to
simulate the cardiovascular effects of liver surgery. Here, Sala selected 10 input parameters
and 12 pressure and flow measurements in the model to conduct a Sobol analysis. Sala
used 10,000 samples and ensured the total-order indices were larger than the first to ensure
convergence. Sala then claimed that the sensitive parameters were biomarkers providing
insight into the health of a person’s liver. Bjordalsbakke et al. [300] performed a Sobol
analysis with 2500 samples on a one-chamber, 10-parameter cardiovascular model while
examining outputs available in an ICU setting, aiming to reduce the parameter space, so the
model could be calibrated to data. Bjordalsbakke utilised aortic blood pressure to rank the
parameters for optimisation. No convergence studies or ranking the parameters by other
outputs were considered. Karabelas et al. [301] utilised a Gaussian process to create an
emulator of a whole-heart, four-chamber model, coupled to the Circ-Adapt LPM. They
selected six parameters and 16 outputs to perform a sensitivity analysis, using 1600 samples
and no bootstraps. Strocchi et al. [302] utilised a whole-organ to cell-scale model to identify
influential parameters on heart function, using 1000 samples across 45 parameters.
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The above literature overview provides insight into applications of Sobol indices within
cardiovascular modelling. In the sequel, we aim to identify inconsistencies exhibited between
the studies performed. In traditional CFD mesh convergence studies are expected- to ensure
the accuracy of one’s results [303]. In striking contradistinction, in model sensitivity analysis,
it appears that despite having the tools (bootstrapping), there is a notable indifference to the
certification of results. Furthermore, nobody appears to examine the shift in impact if one
changes the set of outputs which parameters are ranked against - which, if the parameter
ranking changes, could show impactful clinical interpretations. Our final criticism is that
there is little to no interpretation of what the Sobol indices tell the investigator about the
structure of the response surface- aside from basic input parameter influence.

3.5 Identifiability

There is a tension in cardiovascular modelling, between the need to incorporate mathematical
descriptions of complex physiology, ranging from the cellular to the organ scale, and the
necessity of developing robust, predictive, and well-constrained models. Additionally, there
is no “gold standard" for model development and assessment. This lack of standardisation
can lead to confusion over terminology such as model and parameter identifiability, complex
and simple models, virtual populations, and other concepts, which results in potential mis-
communication and misapplication of methodologies within modelling communities.

Sher et al. [304] state that the concept of parameter identifiability should be relaxed. They
propose that a parameter of a model can be considered identifiable if, when optimised to
experimental data, it yields sensible model parameter values. An equally pragmatic definition
of identifiability was applied by Nasopoulou et al. [305], who focused on estimating the my-
ocardial material properties. Hui et al. [306] also claimed to have developed an identifiable
ionic channel cardiovascular model, as their optimised input parameters were judged to make
clinical sense by medical professionals.

However, if one takes the approach outlined above, there is no guarantee that the model
parameters are specific to a patient, which is of course important when making clinical strati-
fications. In our review of the identifiability literature, we split the concept of identifiability
into the three conventional parts of the systems biology literature [307]: structural, practical,
and theoretical. See Section 4.9 for further details.
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3.5.1 Structural

Model parameters, estimated from experimentally measured data illuminate biological pro-
cesses that are not directly measurable. The relevance of an optimised parameter set to
experimental data hinges on its uniqueness—a property known as structural global identifia-
bility. However, conducting a global structural identifiability analysis is not standard practice
in biological sciences, due to the lack of user-friendly tools [308].

Performing a global structural identifiability analysis means proving that a model formulation
gives a unique model output for any given parameter vector θ . However, a model can also be
designated locally structurally identifiable. For strictly local structural identifiability, multiple
but discretely different vectors of parameters can generate the same model outputs, which
clearly raises additional concerns for practical parameter estimation (there may be multiple
parameter sets which recreates the output). However, it is not certain that the system has more
than one solution within the domain for practical implementation. Practical identifiability
analysis needs to be performed to assess this. Given that a model is locally identifiable,
it can still be globally identifiable, unless it is explicitly proven not to be. Where locally
identifiable is taken to mean there exits a finite number of possible parameter values. This
is a common approach within systems biology and by extension cardiovascular models, as
often one can utilise expert advice to provide insight into the obtained parameter values, with
the reassurance there is a finite number of possible combinations [309–313].

Structural identifiability analysis can be performed by software packages such as STRIKE-
GOLD [314] and DAISY [315], which both apply differential algebraic methods to inves-
tigate the identifiability of parameters. Structural identifiability is often limited in use for
cardiovascular modelling. Kirk et al. [316] utilised DAISY to investigate the identifiability
of Windkessel models. However they found that any additional added complexity to the
models often led to the parameters becoming only locally identifiable. This observation was
confirmed by Bahnsawy et al. [317], who utilised a simple one-chamber model and simulated
the effects of insulin in the model. They utilised the STRIKE-GOLD software to highlight
the parameters of the model were only locally identifiable. In section 4.2 we consider the
one-chamber model, on which a lot of the work in this thesis is based. The one-chamber
model developed by Bjordalsbakke et al. [300] was found to only be locally identifiable
when the STRIKE-GOLD software was applied to the model. In contradistinction, there have
been direct proofs of global identifiability. Pironet et al. [318], directly proved the global
identifiability of a simple one-chamber model. Where as Cheung et al. [319], showed that
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they have a structurally unidentifiable model to start with but after reparameterizing, found
they could make the model parameters identifiable.

3.5.2 Theoretical

Theoretical identifiability is concerned with the situation that, given one has a complex model
that is highly parametrised and only a few measurements describing the dynamics of the
system. How does one obtain a subset of parameters that, when the model is constrained by
clinical (presumably) data the subset obtained will be identifiable [320, 17]? Multiple meth-
ods have been developed to address this problem, with a majority based on the formulation
of the Fisher information matrix (FIM) [321], see section 4.4. The FIM is a square matrix
of n× n size, where n is the dimension of the input parameter space, and contains all the
information about the input parameters’ influence, constrained by model outputs.

Shotwell et al. [322], formulated the FIM through local sensitivities, and prescribed a
variance between the input parameters based on expert knowledge. Shotwell then examined
the condition number of the FIM. They state an estimation problem is ill-conditioned when
the condition number of the information matrix is large, and well-conditioned when the con-
dition number is near one. This is then denoted K-optimal criteria of a problem [323]. Arias
et al. [324], applied a similar principle of examining the condition number of the FIM. Arias
took a more principled approach. They evaluated local sensitivities at many different points
in input space to determine which point in parameter space provided the smallest condition
number. This was then denoted their base operating point. Pant [325] developed so-called
information sensitivity functions, to assess parameter information gain and identifiabilty. The
aim of Pant’s work was that, given a prescribed covariance matrix for a dynamical system one
could relate the evaluation of the covariance matrix to the evaluation of the local sensitivity
matrix. This new class of function could then be utilised to identify time intervals or regions
in dynamical system behaviour where information on the parameters is concentrated, assess
the effect of measurement noise on the information gain for the parameters, assess whether
sufficient information in an experimental protocol (input, measurements and their frequency)
is available to identify the parameters to identify the sets of parameters that are likely to be
indistinguishable then assess identifiability problems for particular sets of parameters.

While the above methods provide insight into the expected difficulty in the calibration
of model parameters, we are concerned to reduce input parameter space dimension to an
identifiable subset- to reduce the model order. One of the earliest subset reduction methods
-and most clearly documented- was developed by Li et al. [19] who presented a simple
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parameter selection method, which accounts for input parameter influence derived through
local sensitivities and parameter orthogonality. The magnitude of each parameter effect on the
measured variables is quantified by applying principal-component analysis to the FIM matrix
derived from local sensitivities. The uniqueness of each parameter effect is determined by
computing the minimum distance between the sensitivity vector of the particular parameter
and the vector spaces spanned by sensitivity vectors of the parameters already selected for
estimation. This recursive algorithm provides a trade-off between the magnitude and linear
independence of parameter effects and yields a ranking of the parameters according to their
inherent ease of estimation. It is important to note here that the main assumption within the
algorithm is independence of input parameters so no variance function is prescribed between
the parameters. Since the method’s development it has only been applied a few times to
simple problems in which local sensitivities were also utilised [326–328]. Note here that we
hypothesise that the Li method will generalise almost trivially but very productively, based
on global sensitivity metrics.

The most utilised method for parameter subset reduction is the structured correlations
method (SCM) developed by Olufsen and Ottesen [329]. The SCM has the same philosophy
as that of Li et al., in that they wish to obtain a subset of uncorrelated linearly independent
input parameters, for calibration to experimental data. The SCM first formulates the FIM
with a constant variance which denotes relationships between input parameters. One then
inverts the FIM to obtain the correlations matrix. Note that the FIM must be of full rank to
accomplish this, thus one must fix insensitive parameters first before the inversion can happen.
One then implements an iterative scheme examining the correlations between parameters,
once the largest correlation is below some set threshold the algorithm is complete. This
scheme has been applied widely with local sensitivities [263, 330, 331]. Recently there
have been applications of this method to Sobol sensitivities [332, 333]; while the method
appeared to provide promising results the assumption of a constant variance is violated by
the Sobol method which assumes no correlations between parameters at all. Olsen et al.
[270], compared the Li method of orthogonal sensitives to the SCM method utilising local
sensitivities on a LPM and found a consistent subset of input parameters.

3.5.3 Practical

Practical identifiability (PI) has emerged as an effective but infrequently employed tool, to
support model-based analysis [334, 335]. PI acknowledges variation in parameter estimates
resulting from experimental conditions and the model structure, and it is focused on providing
useful quantification of parameter uncertainty. The literature contains numerous definitions
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of PI that are similar yet ultimately contrasting. The various iterations of measurement inac-
curacy are intended to mimic the expected experimental precision. Lam et al. [336] provided
a well-cited review of all methods which are "branded" as PI. As stated by Wieland et al. [17],
PI can often conflate two ideas: an offline procedure to understand parameter uncertainty
and an online procedure to obtain updated parameter values from noisy experimental data. In
this section, we denote practical identifiability as the task of obtaining personalised input
parameters, given noisy experimental data. This can be viewed as addressing the following
question. Can we obtain unique and personalised input parameters given the presence of
noisy clinical data?

To assess PI, one performs concurrent parameter optimisations by fixing all parameters
except one, for which a cost function is then minimised. This method, denoted practical
likelihood method (PL) [307] (see section 4.9.2 for more details), provides an indication of a
parameter’s identifiability by providing marginalised 1D slices through a response surface
where a globally identifiable parameter is denoted by a global minimum cost function value.
Simpson et al. [337] developed a Python workflow in which this process is automated. They
demonstrated that the PL was the only method that provided interpretable information about
model parameters, given experimental data. Casas et al. [338] personalised models of the
systemic circulation by utilising non-invasive arterial flow and 4D MRI flow measurements.
Applying the PL method, they found that 60% of model parameters were non-identifiable;
however, due to their use of only model data, there was no possible explanation of whether
the problem was associated with the model formulation or the noise in the experimental data
used. Colebank et al. [339] utilised a 49-parameter 4-chamber model to investigate right
ventricular dysfunction. Colebank first performed a Morris analysis to reduce the parameter
space to 17, then performed a PL analysis on four different output sets commonly collected
in clinic to investigate right heart dysfunction. Unsurprisingly, Colebank found that the more
data is available, the more the parameters are found to be identifiable. Hardly less intuitive
is their observation that output sets should describe different processes in the system; for
example volume and flow data from the same model segment describe the same essential
model process and so do not associate well. If one has a larger output set, this does not nec-
essarily aid the parameter identification process. Pironet et al. [340] performed a PL analysis
on a 7-parameter single chamber model that was previously shown to be globally structurally
identifiable. Despite having shown that all parameters of the model could theoretically be
found given an output set, the PL revealed that three parameters could not be obtained due to
the low quality of the clinical data utilised. Interestingly, when they fixed the unidentifiable



3.6 Model Sloppiness 59

parameters, it did not make all the inputs identifiable, indicating a geometrically complex
input parameter space response surface.

3.6 Model Sloppiness

System "sloppiness" refers to anisotropy in the structure of the input parameter space, given
a set of model outputs [341]. The insight provided by a sloppy analysis means one can
make greater inference about the ease associated with obtaining a personalised subset of
parameters. For a full definition see section 4.13.

When seeking to constrain the model parameters with clinical data after obtaining a personal-
isable subset, as discussed above, one needs insight into the structure of the response surface
and thus the complexity of the optimisation one needs to use to calibrate a model. White et
al. [18] showed that with increasingly complex biochemical models, the model sloppiness
became so great that it was impossible correctly to identify any input parameters within the
model when using conventionally simple optimisation methods. The issues surrounding
model sloppiness were then further highlighted by Jagadeesan et al. [342] who stated that
the impact of model sloppiness and its susceptibility to varying model outputs is still an open
question. Jagadeean also then tried to formalise model sloppiness as it is still very much a
qualitative analysis method.

In cardiovascular research to date, we could not find any literature examining the slop-
piness of cardiovascular LPMs. There have been some works which have examined the
sloppiness of cardiovascular electrophysiology models. For example, Fink et al. [343]
highlighted that in order for models to be reusable, a quantification of their sloppiness has to
be performed to ensure that researchers are not discovering the same things when seeking to
personalise models. Whittaker et al. [344, 345], experimented with different model calibra-
tion methodologies to obtain personalised ionic channel parameters and commented that they
could obtain different results using different optimisation methods. A reason for this was
conjectured to be the model sloppiness, which the selected optimiser may struggle with. They
also noted how, when different measurements were included in a cost function, this changed
the rate at which optimisers were able to obtain the same value for inputs. More recently,
Bravo et al. [346], utilised the concept of model sloppiness to reduce an electrophysiological
model to a subset of non-sloppy parameters to make model calibration as simple as possible.
It is worth noting that model sloppiness is very popular in the life sciences and is often part of
many workflows when looking to calibrate model parameters in the life sciences [347–350].
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3.7 Data assimilation

Sometimes in cardiovascular modelling, we have the luxury of possessing both experimental
data and computational models. However, both have limitations and errors - experimental
data are often of low-resolution and noisy and even high-resolution computational simula-
tions have limitations due to uncertainty in model parameters and/or governing equations.
The field of data assimilation deals with hybrid models that integrate observed experimental
data with computational models. The goal is to use the computational model to advance the
solution in time and based on the availability of experimental data, alter the computational
model’s prediction to improve solution reliability [351]. Kalman filtration methods aim to
provide a simple and computationally inexpensive way to estimate the value of state variables
and input parameters, given a dynamical system’s prediction and experimental data [352].
For a full definition see 4.14.

Arzani et al. [353], state that while Kalman filter methods present a computationally efficient
way to perform parameter optimisation, it is often difficult to estimate the error associated
with the measurements of states of the system. Canuto et al. [22], utilised the ensemble
Kalman filter to estimate the model parameters of a coupled 1D model to a LPM. Canuto
obtained some results which were unphysiological, but reasoned that, as these parameters
were not of interest in the system, they could be discounted. Julier et al. [354, 355] proposed
the unscented Kalman filter (UKF) which is able to cope with the non-linearity found in
many dynamical system models. The majority of Kalman filter methodologies have to resort
to model approximations or linearisation’s, whereas the UKF can adapt to all the features
found in a model. Huang et al. [356], compared the ensemble Kalman filter to the UKF in
the method’s ability to recover the parameters of a 4-element Windkessel model. Huang
found that the UKF recovered the known values of input parameters much more accurately
than the ensemble method. However, Matzuka et al. [357] showed in a model of barore-
flex regulation the ensemble Kalman filter exhibited good properties in recovering patient
parameters during a head up tilt test, while no examination of the UKF was examined they
propose the ensemble method should be utilised for other applications. The original work
that applied the UKF to cardiovascular modelling was conducted by Lombardi [358] who
examined the UKF’s ability to recover the vessel properties of the 55 largest arteries in the
systemic circulation. The application of the UKF to cardiovascular LPMs has been limited
with much of the work been conducted by Pant et al. [14, 21, 248, 359] who focused the
majority of their work on extracting system parameters from clinical data of infants who
exhibited single ventricle physiology. In these works the UKF exhibited exceptional ability
to recover clinically insightful parameter values at an efficient speed. It was suggested with
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Pant’s and Lombardi’s [14, 21, 248, 359, 358] work that the UKF could be applied in clinic
for continuous monitoring of patients due to the small time required to calibrate a model to
data when compared to standard optimisation methods. Pant at al., also mentioned that if this
was to happen the UKF has to be examined for its capability to adapt to rapidly changing
physiological states.

3.8 Research Questions

The above reviewed literature defines some of the most recent methods applied to the
personalisation process, applicable to LPMs. We observe six significant gaps surrounding
the personalisation process as follows.

1. Inconsistency in Best Practices for Sobol Indices: The consensus of the literature
reviewed in section 3.4.2 is that while Sobol indices are acknowledged as the most
clinically interpretable global sensitivity method, there is a lack of consistency in (i)
the sample sizes used and (ii) the validation of the calculated indices. A set of best
practices for Sobol indices could standardise parameter interpretation and provide
the community with updated guidelines, enhancing the reliability and validity of the
results. This is explored in chapter 6.

2. Application of Model Sloppiness to Cardiovascular LPMs: As stated in section
3.6, the theory of model sloppiness has yet to be applied to cardiovascular LPMs. A
consideration of sloppiness could yield new insights into the structure of the response
surface associated with this class of models, guiding parameter optimisation and
addressing the complexities involved in this process. This gap is explored in chapter 5

3. Impact of Varying Model Outputs in Sensitivity Analysis: Literature reviewed in
sections 3.4.1 & 3.4.2 highlight a lack of scrutiny regarding the impact of changed
model outputs, when conducting sensitivity analysis. It is crucial to understand how
parameter interpretations from SA are influenced by the choice of outputs, as parameter
interpretations often marginalise the impact of model outputs. This gap is explored in
chapter 6.

4. Subset Selection Methods for Personalisation: Section 3.5.2 highlights how current
methods for identifying subsets of parameters for personalisation have predominantly
focused on local sensitivities, or have required researchers to prescribe correlations
between parameters based on expert knowledge. Developing a subset selection method
that respects the scope of clinical endeavour and minimises researchers’ intervention
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is needed. Additionally, there is a lack of comparison examining the stability of
personalised parameters across different global sensitivity methodologies. This gap is
explored in chapter 7.

5. Interpretation of Sobol Indices for Optimisation: Literature reviewed in section
3.4.2 highlights how Sobol indices have been used to interpret the influence of input
parameters. Developing a suitable interpretation of Sobol indices to facilitate insights
into the response surface’s geometrical complexity can aid the optimisation stage,
thereby enhancing the efficiency of the personalisation process. This gap is explored
in chapter 7.

6. Robustness of the Unscented Kalman Filter: From section 3.7, it is clear that data
assimilation methods, particularly the Unscented Kalman Filter (UKF), has received
inappropriately limited attention, considering its potential ability to calibrate model
input parameters to experimental data. Further investigation into the robustness of the
UKF, to perturbations in input parameters and its applicability in a clinical scenario is
necessary. This gap is explored in chapter 8.

Addressing these six points will clarify and enrich our perspective on the offline stage of
uncertainty quantification, which is, of course, the essential precursor for personalising a
model.



Chapter 4

Methods & Materials

Blessed is the man, who having nothing to say, abstains from giving wordy evidence of the
fact.

— GEORGE ELIOT, Impressions of Theophrastus Such

Summary
This chapter provides mathematical descriptions of the models and methods used. We outline
the theoretical foundations of LPMs and declare the various models used in this work.
Proceeding to model analysis, we derive the local and global methods tested in this work,
define de facto model sloppiness, and describe our extended input parameter subset selection
method and the unscented Kalman filter approach.
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4.1 Navier-Stokes Equations

4.1.1 3D Formulations

The three-dimensional (3D) incompressible Navier-Stokes (momentum) equations describe
the flow of viscous fluid with a constant density, when supplemented with the continuity
equation (a principle ensuring that mass is neither created nor destroyed in a fluid flow. For
incompressible flow, it simplifies to the condition that the divergence of the velocity field is
zero):

∇ ·u =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂ z
= 0 (4.1)

where u = (ux,uy,uz) is the fluid velocity in the x,y,z directions. The momentum equations
is a principle that states the change in momentum of a fluid particle is equal to the sum of
forces acting on it. The Navier-Stokes equation itself is a momentum conservation equation,
incorporating both external forces (such as gravity) and internal forces (like pressure and
viscous stresses. The equations in three directions are expressed as
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See [52]. Above, fx, fy, fz are external source/sink body force terms, e.g. gravitational
acceleration. ρ is fluid density, τ the fluid viscous stress tensor and P the pressure. The
viscous stress tensor is related to the Cauchy stress tensor σ as

σi j =−Pδi j + τi j (4.5)

Where P is the pressure, δi j is the Kronecker delta and τi j is the viscous stress tensor.

We aim to reduce the equations down to a lumped parameter formulation. This is achieved
by first reducing to a one-dimensional (1D) description of the Navier stokes equations. To
reduce the 3D system into a 1D system suitable for hemodynamics, the 3D incompressible
Navier-Stokes equations are first transformed into cylindrical coordinates i.e.

x = x, y = r sin(θ), z = r cos(θ) (4.6)
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Function ur(x,r,θ) is the radial component of motion, uθ (x,r,θ)) the circumferential com-
ponent of motion and ux(x,r,θ) the dominant axial, or streamwise component. Making an
assumption of a Newtonian fluid, the 3D continuity equation becomes

1
r

∂ (rur)

∂ r
+

1
r

∂uθ

∂θ
+

∂ux

∂x
= 0. (4.7)

Under the above transformation, the radial component of the momentum equation becomes

ρ
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∂ t
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(4.8)

the circumferential component becomes
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(4.9)

and the axial component becomes

ρ

[
∂ux

∂ t
+ur

∂ux
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+

uθ
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(4.10)

Above µ represents the dynamic viscosity of the fluid. There are multiple (of course
equivalent) ways to derive the 1D blood flow equations from the above 3D formulation [360]:

1. An asymptotic analysis can be performed on the 3D Navier-Stokes equations, under
the assumption that the ratio of the vessel radius to length is small. This reduces
the dimensionality of the system of equations, and allows higher-order terms to be
neglected [114]; one then assumes that vessels are axially-symmetric (an assumption
which, strictly, eliminates vessel centre line in-plane curvature, note) and that axial
flow is much larger than the flow in the radial and circumferential directions [361].

2. The 1D blood flow equations governing blood flow can be derived directly from first
principles on a control volume [115].
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In the next subsection, we will approach the 1D formulation in a little more detail, using the
mathematically satisfying approach 1, above.

4.1.2 1D Formulations

We follow process (1) declared in the previous subsection, to derive the 1D Navier-Stokes
equations. Explicitly then, we make the following assumptions to obtain the well-known 1D
Navier-Stokes formulation:

1. Axial symmetry means the solution must be independent of the angle θ .

2. Radial displacement is restricted to the radial direction (no circumferential or axial
displacement occurs).

3. The pressure is constant in each cross-section so no radial pressure derivatives are
considered

4. Axial velocity is considered much larger than radial velocity allowing radial compo-
nents of velocity to be neglected.

The momentum equation then becomes

∂ux

∂ t
+ux

∂ux

∂x
+

1
ρ

∂P
∂x

− µ

ρ

[
1
r

∂

∂ r

(
r

∂ux

∂ r

)
+

∂ 2ux

∂x2

]
= fx. (4.11)

Integrating over a section of the vessel gives the accepted form of the 1D momentum equation
as

∂Q
∂ t

+
∂

∂x

(
χ

Q2

A

)
+

A
ρ

∂P
∂x

−
∫

CS

µ

ρ

(
1
r

∂

∂ r

(
r

∂ux

∂ r

))
dσ +

∂ 2Q
∂x2 = A fx, (4.12)

Above, Q = Au is the volumetric flow rate in a cross sectional area A and u is the average
cross-sectional velocity. The quantity χ is a momentum flux correction factor

χ ū2
x =

1
A

∫∫
A(x)

u2
xdA, (4.13)

Above, A(x) is the luminal area of a vessel, ūx =
Q
A is the averaged fluid velocity. χ accounts

for the non-uniform velocity distribution (called the Boussinesq co-efficient), and depends
on the choice of velocity profile. The continuity equation becomes

∂A
∂ t

+
∂Q
∂x

+ψ = 0, (4.14)
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where A is the cross sectional area and ψ accounts for any source and sink terms, such as leak.

Proceeding, now, through straightforward manipulations of 4.12 and 4.14, then making
the assumptions that the vessel has no taper (a cylindrical tube) and no fluid is lost or leaked
from the vessel [116], we reach the accepted 1D model for arterial flow [125, 283, 362–364]:

∂A
∂ t

+
∂Q
∂x

= 0, Continuity (4.15)

ρ

A
∂Q
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+
ρ

A
∂

∂x

(
χ

Q2

A

)
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∂P
∂x

− f
A
= 0, Momentum. (4.16)

We remark that we have recently modified the 1D Navier-Stokes equation declared above
consistently to account for boundary leak, at the expense of introducing an empirical slip
boundary condition, consistently to account for an efflux at the luminal boundary (see the
section below and appendix A). This formulation is suited to the coronary arteries and it
introduces an improved level of self-consistency into recent work [198, 365, 366]. This
formulation is as follows.

∂A
∂ t

+
∂Q
∂x

+ψ = 0, (4.17)
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Q
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ψ = 0, (4.18)

Q(0) = Q0, P(0) = P0, α ∈ [0.4,1.0], χ =
ζ +2
ζ +1

, f = 2(ζ +2)πµ, (4.19)

Above, R is the vessel radius, ψ represents the outflow from the vessel, ζ is a velocity profile
shape parameter and α is the level of slip experienced on the boundary. For a full derivation
see appendix A. The transverse velocity profile is controlled by the choice of ζ . ζ = 2 is a
parabolic flow where as ζ = 9 is a plug flow.

ux(x,r) = u(x)
(

ζ +2
ζ

)[
1−
( r

R(x)

)ζ
]
, 0 ≤ r ≤ R(x), ζ ∈ [1,9]. (4.20)

4.2 Cardiovascular LPMs

Further reducing the 1D formulation to remove the axial direction variation, which can be
split the compartments, we arrive at 0D formulations (see section 4.2.3 for further details).
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Take continuity and integrate over length of vessel

∫ L

0

∂A
∂ t

dx+
∫ L

0

∂Q
∂x

dx =
d
dt

∫ L

0
A(x)dx+[Q(x)]L0dx =

dV
dt

+Q(L)−Q(0) = 0 (4.21)

One can undertake equivalent processes of compartmentalisation on momentum equations.
In this way, we retain only the time variable and our chosen set of inter-compartmental flows
and compartmental volumes. These equations for these compartments straightforwardly
form a coupled system of ( non-linear) ODEs. For present purposes, all our LPMs can be
conveniently expressed in the state-space form [193]

d
dt

X(t) = f (X(t);θ) , Y (t) = h(X(t)), (4.22)

in which θ denotes an input parameter vector, X represents the set of state variables of the
system f is a function describing the system dynamics, h is the measurement function where
e.g. forward model synthetic measurements are generated, using the computed state variables
X and Y are the measurements of interest. In this work X(t) is constituted as follows

X(t) = (V (t),P(t),Q(t)), θ = (θ1, ...,θn), Y = (y1, ...,ym). (4.23)

Above θi and y j represent an input parameter i ∈ [1, ...,n] and model output j ∈ [1, ...,m]. n
and m represent the number of input parameters and the number of model outputs in the
system of interest respectively. V,P and Q represent volumes, pressures and flow rates of the
system and are the state variables of the system. Below, the LPMs utilised in this work are
declared. Broadly, the models were all solved in-silico, as state space coupled ODE problems
or as the closely-related differential algebraic equation DAE system.

In figure 4.1A, parametrised by 9 inputs declared in table 4.1 we see our simplest testbench, a
single ventricle representation of the systemic circulation without pulmonary representation.
The model first proposed by Stergiopulos et al. [367], examined the determinants in aortic
pulse pressure and left ventricular stroke volume and showed how such a simple model could
be personalised to the in-vivo data obtained from dogs. More recently Bjordalsbakke et
al, [300, 368] utilised this parsimonious example, first to perform a parameter optimisation
investigation and second to show the surprising capability of this model in conjunction
with exercise data. The one chamber single ventricle model serves as a test bench for a
majority of our investigations. Figure 4.1B, first proposed by Shi et al., [369, 370] is again a
representation of the systemic circulation however there is a greater level of detail included
with the left atrium and additional vessels. This time there is also explicit representation of
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the inertia associated with the blood. The 20 parameters in this LPM are declared in table 4.2.

Fig. 4.1 Simple cardiovascular models: The 1 chamber model (A) and 2 chamber model
(B) utilised in this work.

The 4 chamber models utilised in this work are displayed in figure 4.2. Comunale et
al. [162], proposed the 4 chamber model in figure 4.2A and demonstrated its ability to
represent human physiology. Thus, this model serves as a test bench with precedent, to
facilitate the different measurements which would be available in the clinic. The 36 parameter
model values are given in table 4.3. The largest model examined in this work (originally
proposed Shi et al, [370]), is a 44 parameter model (figure 4.2B) which serves as popular,
detailed model with systemic and pulmonary circulations. Parameters are omitted from this
work as this model will serve for computational calibration between programming languages.
Full parameterisation can be found in [370].
Below we declare which model was used in the following results chapters and provide a
rationale for this choice.

1. Chapter 4: This chapter utilises the full complex 4-chamber 44-parameter model
in figure 4.2B, first due to its popularity, but also it allows us to demonstrate the
computational ability of the Julia language.

2. Chapter 5: This chapter uses the 1-chamber 9-parameter model (figure 4.1A) and
the 2-chamber 20-parameter model (figure 4.1B), because this choice allows us to
compare computationally expensive convergence behaviours between a simple and
more complex model with similar properties and (presumably) non-linearities.
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Fig. 4.2 Complex cardiovascular models: The 4 chamber models which are utilised in this
work. The 36 parameter model in section A and the 44 parameter model in B.
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Table 4.1 Input parameters for our 1 chamber model (figure 4.1A): Each input parameter’s
unit is stated alongside a chosen initial value for the 9 parameter, single ventricle model.
τ is the cardiac cycle length and is fixed such that τ = 1s. The ventricular shift parameter
Eshift = 0 s, as no atrium is present.

Parameter θ (units) Description Initial Value

Emax

[
mmHg

ml

]
Maximal ventricular contractility 1.5

Emin

[
mmHg

ml

]
Minimal ventricular contractility 0.03

τes [s] End systolic time 0.3τ

τep [s] End pulse time 0.45τ

Zao

[
mmHg s

ml

]
Aortic valve resistance 0.033

Rmv

[
mmHg s

ml

]
Mitral valve resistance 0.006

Rs

[
mmHg s

ml

]
Systemic resistance 1.11

Csa

[
ml

mmHg

]
Systemic compliance 1.13

Csv

[
ml

mmHg

]
Venous compliance 11.0

3. Chapter 6: This chapter utilises the 4-chamber 34-parameter model in figure 4.2A
because a realistic 4-chamber model facilitates the examination a large variety of
cardiovascular measurements, which would not be available with the simpler models.

4. Chapter 7: This chapter utilises a parsimonious 1-chamber 9-parameter model, to
allow us to address the development of new methodologies and their testings and also
to leverage prior art.

5. Chapter 8: We conclude our results chapters by utilising the 1-chamber 9-parameter
model to demonstrate the capability of the unscented Kalman filter, where a simple
model allows us again to focus on the methodological development.

The models presented above represent a small fraction of the prior art and showcase different
ways to represent the cardiovascular system. Below, we explain the choices and definitions
for each compartment of the circulatory system. We emphasise at this point that the outputs
generated from these cardiovascular models are utilised as a surrogates for plausible clinical
measurements. See section 4.9 for further discussion about the different types of data
available from the clinic and how these data can be used to provide different levels of insight.
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Table 4.2 Input parameters for our 2 chamber model (figure 4.1B): Each input parameter’s
unit is stated alongside a chosen initial value for the 20 parameter, 2-chamber model. τ

is the cardiac cycle length and is fixed such that τ = 1s. The ventricular shift parameter
Eshift = 0.92 s as an atrium is present in this advanced 20 parameters model.

Parameter θ (Units) Description Initial Value

Eminlv

[
mmHg

ml

]
Minimal Ventricular Contractility 0.1

Emaxlv

[
mmHg

ml

]
Maximal Ventricular Contractility 2.5

τeslv (s) Ventricular Contraction 0.3
τeplv (s) Ventricular Relaxation 0.45

Eminla

[
mmHg

ml

]
Minimal Atrium Contractility 0.15

Emaxla

[
mmHg

ml

]
Maximal Atrium Contractility 0.25

τesla (s) Atrium Contraction 0.045τ

τepla (s) Atrium Relaxation 0.09τ

Zao

[
mmHg s

ml

]
Aortic Valve Resistance 0.033

Rmv

[
mmHg s

ml

]
Mitral Valve Resistance 0.06

Csas

[
ml

mmHg

]
Sinus Compliance 0.08

Rsas

[
mmHg s

ml

]
Sinus Resistance 0.06

Lsas

[
mmHg s

ml

]
Sinus Inertia 6.2 ·10−5

Csat

[
ml

mmHg

]
Arterial Compliance 1.6

Rsat

[
mmHg s

ml

]
Arterial Resistance 0.05

Lsat

[
mmHg s2

ml

]
Arterial Inertia 0.0017

Rsar

[
mmHg s

ml

]
Arteriole Resistance 0.5

Rscp

[
mmHg s

ml

]
Capillary Resistance 0.52

Rsvn

[
mmHg s

ml

]
Venous Resistance 0.075

Csvn

[
ml

mmHg

]
Venous Compliance 20.5
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Table 4.3 Input parameters for our 4 chamber model (figure 4.2A): Each input parameter
is again stated along with the respective units and valves. Here we fix the heart period cycle
to τ = 0.81(s).

Heart Parameters
Parameter Name Symbol LV RV LA RA

Maximal
Elastance [mmHg/ml] Emax 2.8 0.45 0.13 0.09

Minimal
Elastance [mmHg/ml] Emin 0.07 0.035 0.09 0.045

Unstressed
Volume [ml] V0 20 30 3 7

End Systolic
Time [s] τes 0.269τ 0.269τ 0.11τ 0.11τ

End Diastolic
Time [s] τep 0.452τ 0.452τ 0.18τ 0.18τ

Atrial Activation
Time [s] Eshi f t 0 0 0.85τ 0.85τ

Valve Resistance [mmHg · s/ml] Rval 0.01 0.01 0.005 0.005
Circulation Parameters Initial Volume Values

Resistance Systemic
Arteries [mmHg · s/ml] Rsa 0.0448

Initial Volume
Systemic Arteries [ml] Vsa,0 98.3

Resistance Systemic
Vascular Bed [mmHg · s/ml] Rsvb 0.824

Initial Volume
Systemic Veins [ml] Vsv,0 117.996

Resistance Systemic
Veins [mmHg · s/ml] Rsv 0.0269

Initial Volume
Pulmonary Arteries [ml] Vpa,0 100.5

Resistance Pulmonary
Arteries [mmHg · s/ml] Rpa 0.003

Initial Volume
Pulmonary Veins [ml] Vpv,0 126.4

Resistance Pulmonary
Vascular Bed [mmHg · s/ml] Rpvb 0.0552

Initial Volume
Left Ventricle [ml] Vcv,0 149.6

Resistance Pulmonary
Veins [mmHg · s/ml] Rpv 0.0018

Initial Volume
Right Ventricle [ml] Vrv,0 189.2

Compliance Systemic
Arteries [ml/mmHg] Csa 0.983

Initial Volume
Left Atrium [ml] Vca,0 71

Compliance Systemic
Veins [ml/mmHg] Csv 29.499

Initial Volume
Right Atrium [ml] Vra,0 67

Compliance Pulmonary
Arteries [ml/mmHg] Cpa 6.7

Compliance Pulmonary
Veins [ml/mmHg] Cpv 15.8
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4.2.1 Heart Chambers

Recall, to characterise the contractile state of the heart chambers over the cardiac cycle,
we used the concept of time-varying elastance formalised by Suga et al. [148]. This is a
well-established formulation quantitatively to describe the filling and the contraction patterns
of the chambers. The time-varying elastance relates chamber pressure and volume along the
cardiac cycle:

E(t) =
P(t)

VT (t)−Vu
=

P(t)
Vs(t)

(4.24)

where Vu & Vs represent the unstressed and stressed volumes of the heart chamber. Note that
the primitive variables which define elastance are exactly those which define the PV loop.
The time varying elastance E(t) may be written as parameterised mono-variate function of
time as follows [169]:

t̃ = Mod(t +(1−Eshi f t)τ,τ)

E(t̃) = (Emax −Emin) · e(t̃)+Emin,
(4.25)

where e(t) is the activation function and describes the contraction and relaxation of the heart
chamber muscle. Eshi f t is an atrial activation parameter controlling atrial contraction, thus
in the case where we model a ventricle Eshi f t = 0. Put simply Eshi f t can be interpreted as
the delay between ventricular and atrial contraction. τ is the cardiac cycle length, Emax and
Emin are the values of maximal and minimal elastance (i.e., stiffness of the chamber). Emax

corresponds to the end systolic elastance (the cardiologist’s contractility )and Emin to the
passive diastolic elastance of the chamber (the cardiologist’s compliance). Several different
elastance functions have been evolved to describe chamber contractility, below we identify
the most common, usable variants (i.e. those which can be reliably parameterised). Alongside
those presented below other methods exist for generating patient specific heart chamber
curves. Senzaki et al. [371], utilised 72 PV loops from patients measured invasively, by
conductance catheter to generate a normalised elastance curve which accurately represented
the majority of pressure volume relationships. Pironet et al. [340], fit 11 Fourier coefficients
to measured ventricular volumes and pressures to model the patient specific elastance function.
For a full review of other fitting and function based elastance curves see [372]. Within this
work we utilise the double cosine activation function for reasons discussed in chapter 9.
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4.2.1.1 Double Cosine Activation Function

Here we utilise the popular double cosine function, first publicised by Shi et al. [370, 373].
We choose to utilise this function due to the simple formulation in terms of understandable
input parameters:

e(t̃) =


1
2

[
1− cos( π t̃

τes
)
]
, 0 ≤ t̃ < τes,

1
2

[
1+ cos(π(t̃−τes)

τep−τes
)
]
, τes ≤ t̃ < τep,

0, τep ≤ t̃ < τ,

(4.26)

where e(t;τes,τep,Eshi f t) is the activation function for the heart chamber and is parameterised
by the end systolic and end pulse timing parameters τes and τep, respectively. While in the
original work an additional function described the addition of the the atrial kick parameter,
Eshi f t allows for both ventricles and atria to be described within the same framework. This
activation is represented in figure 4.3.

Fig. 4.3 Double cosine activation function: The double cosine activation function is
represented over a single heart cycle. The timing parameters of the chamber are also
represented.
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4.2.1.2 Double Hill Activation Function

Another commonly used activation function is the double-Hill function, an extension of the
Hill function in quantitative systems pharmacology [367]:

e(t̃) = α

(
( t̃

αsτ
)Rc

1+( t̃
αsτ

)Rc

)(
1

1+( t̃
αdτ

)Rr

)
. (4.27)

Here the non-dimensional parameter αs,Rc,αd and Rr determine the shape of the curve
within each cardiac period. The rate of chamber contraction, reflected as the slope of the
ascending part of the curve, is represented by the parameter Rc. Rr corresponds to the
rate of chamber relaxation (i.e., the steepness of the descending part of the curve). The
systolic and diastolic time constants (τs and τd respectively) are defined as a function of
t̃ and the dimensionless shape parameters αs and αd (τs = αsτ and τd = αdτ). αs and αd

determine the length of systole and diastole relative to each cardiac cycle each cardiac
cycle, thereby controlling the time of end-systole. An increase in αd and/or a decrease in
αs yield an increase in end-systole (i.e., a reduction of the duration of diastole), and vice
versa. α = α(Rc,Rr,αc,αd) is a normalisation constant, which is determined numerically,
such that max(e(t)) = 1. While this activation function provides an arguably more intuitive
description of chamber contraction, the calculation of α must be repeated each time the input
parameters change value. Thus, as we shall show later a sensitivity analysis requires many
model evaluations and this recalculation slows down the calculation process. Finally, we
remark on a discontinuity in the e(t) at the time origin. which can create numerical problems
with insufficiently careful characterisations. The double Hill elastance is represented in figure
4.4.

4.2.1.3 Single Fibre Elastance Model

A heart chamber can be conceived as a single fibre enveloping the cavity [374, 154]. This
model is particularly suitable for lumped modelling as it was shown that under rotational
symmetry the shape of the chamber and other geometric parameters had little effect on the
relationship between the cavity pressure and fibre stress. This relationship is dominated by
the ratio of the cavity volume V to cavity wall volume Vw as follows

σ f

P
= 1+

3V
Vw

, (4.28)

where P identifies the pressure of the chamber and σ f is the stress in the fibre. The fibre
stress is composed of two components: an active component σa and a passive component σp



4.2 Cardiovascular LPMs 77

Fig. 4.4 Double Hill Elastance: The Double Hill activation function is represented over a
single heart cycle. With chamber timing parameters represented also.
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such that
σ f = σa +σp. (4.29)

If V0 and l0 represent the unstressed cavity volume and sarcomere length respectively, at zero
transmural pressure, then at a general state of cavity volume V , the sarcomere [375] length, l,
can be written as

l
l0

= λ =

( 1+ 3V
Vw

1+ 3V0
Vw

)1/3

, (4.30)

where λ is the dimensionless fibre stretch ratio. The sarcomere shortening velocity, vs, is
given by

vs =−dl
dt

=− l
Vw

(
1+

3V
Vw

)−1 dV
dt

. (4.31)

The active component of stress can be described as

σa = Ta0 f (l)g(ta)h(vs), (4.32)

f (l) =



0, if l < la0,

l−la0
lam−la0

, if la0 < l ≤ lam,

1, if lam < l ≤ lae,
la f−l

la f−lae
, if l > lae,

(4.33)

g(ta) =

(1
2(1− cos(2πta

tmax
)))Ea, if ta < tmax,

0, otherwise,
(4.34)

h(vs) =
1− vs

v0

1+ cv
vs
v0

, (4.35)

where ta is the time since activation of the cavity, tmax is the total time of activation in a
cardiac cycle, v0 is the initial sarcomere shortening velocity, Ta0 is the maximum active
sarcomere stress, and cv is a prescribed shape parameter. The l parameters are scaromere
lengths at different parts of chamber contraction.

The passive stress is given by

σp =

0, if λ < 1,

Tp0(exp(cp(λ −1))−1), if λ ≥ 1,
(4.36)
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where Tp0 and cp are sarcomere material constants. This formulation of chamber contraction
is well utilised in the field of elctromechanics (see the book [376]) which model the calcium
and ion channels driving ventricular contraction however is outside the scope for this work
[343, 377–379]. There have been extensions to the single fibre model, such that sarcomere
contraction for segments of the ventricular wall can be computed. For the extensions see
[285, 380]. A representation of the single fibre elastnace is given in figure 4.5.

Fig. 4.5 Single Fibre Elastance: The single fibre activation function is represented over a
single heart cycle. The dynamics of the sarcomere fibres are also represented. Reproduced
with permission from [14]

4.2.1.4 Exponential Functions

Smith et al. [179], proposed a time varying elastance function by relating the end systolic
pressure-volume relationship (ESPVR) and the end diastolic pressure-volume relationship
(EDPVR), which define the upper and lower limits of the cardiac cycle. For reference see the
PV loop in figure 1.6.

The equations approximating the ESPVR and EDPVR are:

Pes(V ) = Ees(V −Vu) (4.37)

Ped(V ) = A(exp(λ (V −Vu))−1), (4.38)

Clearly, the end systolic pressure Pes stands in a linear relationship with volume V with the
elastance Ees and unstressed volume Vu. A weighted combination of the above pressures
produces an equation for the instantaneous pressure volume relationship in a single chamber
in terms of pressure P, volume V and time t and the activation function, which controls the
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weight.

P(V, t) = e(t)Ees(V −Vu)+A(1− e(t))(exp(λ (V −Vu))−1) (4.39)

e(t) =
N

∑
i

Ai exp(−Bi(t −Ci)
2). (4.40)

Above Ai,Bi,Ci and N determine the shape of the activation function. A representation of the
exponential elastance function can be seen in figure

Fig. 4.6 Exponential Elastance: The exponential activation function is represented over a
single heart cycle.

4.2.2 Heart Valves

We account for the 5 different valve functions which have applications to LPMs. Here, we
utilise a diode valve, however the other valves could be applied to diseased valve situations.
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4.2.2.1 Diode valve

The simplest formulation of blood flow in and out of the ventricles and atria is modelled
as diodes, with Ohmic resistance under a forward pressure drop bias and infinite resistance
under reverse bias. Thus, a diode valve has a slope discontinuity at the pressure origin
which has the potential to excite numerical instability. Straightforward cubic polynomial
interpolation (smoothing) near the pressure origin can overcome this but in the work reported
here this has not been necessary. A diode valve was first implemented by Segers et al. [20]
and, as mentioned in the introduction, it is still the most common approached when modelling
healthy heart valves. The popular formulation is as follows:

Qk =


Pk−1−Pk+1

Rval
, Pk−1 > Pk+1,

0 Pk−1 ≤ Pk+1,
(4.41)

where Rval = (Rav,Rmv,Rpv,Rtv) represent the resistances across aortic, mitral, pulmonary
and tricuspid valves. The subscripts (k − 1),k,(k + 1) respectively represent the valve’s
proximal, present and distal system compartments. As there is no pressure associated with
the heart valve it effectively constrains the pressure difference across (k− 1) and (k+ 1)
compartments. To exemplify our subscript notation,consider the flow across the mitral valve;
the valve equation becomes

Qmv =


Pla−Plv

Rmv
, Valve Open,

0 Valve Closed,
(4.42)

where (k-1) = la (left atrium), k = mv and (k+1) = lv (left ventricle) and the mitral valve is
taken to have an infinite reverse bias resistance i.e. permit no regurgitation whatsoever.

4.2.2.2 Orifice vale

Consider some physiological features exhibited by the valves, first introduced by Shi et al.
[370]. These authors consider the basic pressure–flow relation in the pulmonary valve and
introduce an orifice model:

Qk =

CQk ·ARk · (Pk−1 −Pk+1)
1
2 , Pk ≥ Pk+1,

0 Pk−1 < Pk+1.
(4.43)

For the simple model, the valve opening area (ARk) is calculated as for a simple diode
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ARk =

1, Pk−1 ≥ Pk+1,

0 Pk−1 < Pk+1,
(4.44)

where AR = 1 represents the valve at its maximum opening angle. In the orifice model we
designate CQ([ ml

s·mmHg0.5 ]) to be the flow coefficient (which is different for both the semilunar
and atrioventricular valves) and can be written

CQ =

√
2A2

base
ρK

, (4.45)

where ρ is blood density k is the flow coefficient, (this is explored in more detail in the next
section), and Abase is the base area of the inlet conduit to the valve. These values were tuned
manually, to produce near physiological cardiovascular behaviour over a range of mitral
stenosis and aortic regurgitation cases analysed in [169].

4.2.2.3 Shi valve

We consider a more physiologically realistic model developed in [169]. As above the flow
rate depends on the valve flow coefficient CQ but now also the valve opening AR. The valve
opening is decided by the angular position of the valve leaflets

AR =
(1− cos(θ))2

(1− cos(θmax))2 (4.46)

θ = 0 corresponds to the valve leaflet fully closed and θmax corresponds to the specified
fully open position of the valve. The leaflet angular position is computed by considering the
various factors that affect the leaflet motion. This leaflet is governed by

d2θ

dt2 =
F p−F f +Fb−Fv

I
, (4.47)

where F p,F f ,Fb,Fv represent the pressure, frictional, velocity, vortex effects and I is the
moment of inertia prescribed to the valve, the following consideration of which relates
specifically of the mechanics of the pulmonary valve.

The pressure effect is proportional to the pressure on the valve leaflet surface:

F pk = (Pk−1 −Pk+1)kp,k cos(θ). (4.48)
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The fluid velocity effect is proportional to the flow rate normal to the leaflet surface

Fbk = kb,kQk cos(θ). (4.49)

The frictional effect due to resistance in the tissue at the valve root is assumed to be propor-
tional to the leaflet angular velocity

F fk = k f ,k
dθ

dt
. (4.50)

Shi et al. initially developed the valve opening angle considering only pressure force
[373, 370] however in their 2006 they work added these additional forces, most notably
the vortex force behind the leaflet which was shown to be influential in a number of works
[381–383]. The product of the effect of the leaflet angular position and the flow rate is
constructed to represent the vortex effect in the heart valve dynamics. We argue that the
bigger the flow rate in the valve, the stronger the vortex intensity near the valve. Also, it
is assumed that vortex intensity reaches the maximum value when the leaflet is at about π

4
opening angle. Below π

4 , the smaller the valve opening angle, the more likely it is for the
flow to pass the valve as laminar flow. Similarly, above π

4 , the bigger the valve opening angle,
the more likely the leaflet will cover the valve root area and restrict vortex formation. A
suitable Fv is:

Fvk =

kv,k sin(2θ)Qk, Qk ≥ 0,

0 Qk < 0.
(4.51)

Combining the above effects and substituting K = k
I , the equation for the opening angle of

the pulmonary valve is :

Fvk =

Kp,k(Pk−1 −Pk+1)cos(θ)−K f ,k
dθ

dt +Kb,kQk cos(θ)−Kv,k sin(2θ)Qk, Qk ≥ 0,

Kp,k(Pk−1 −Pk+1)cos(θ)−K f ,k
dθ

dt +Kb,kQk cos(θ). Qk < 0.
(4.52)

This very detailed consideration of valve dynamics, considering additional forces and regur-
gitant flow improves the physical fidelity of the simulation. Modelling of the remaining two
valves is implemented in a similar way, with different parameterisation to reflect the changed
physiology.

We comment in passing on an implementation issue. Given θ represents the valve opening
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angle we define dθ

dt = ω to be the angular velocity. The change in ω is acceleration (relative)
(i.e. the quotient force/moment) when leaflets are at min/max; this will be zero unless the
force direction is away from the min/max position.

4.2.2.4 Mynard valve

The next valve model created by Mynard et al. [170] relates both the flow and pressure
difference ∆P using the a relaxed form of the Bernoulli invariant, to form an approximation:

∆P = BQ|Q|+L
dQ
dt

(4.53)

Here the Bernouill resistance, B, controls the dynamic pressure loss to dissipation with
decelerating distal flow to the vena contracta and pressure differences related to convective
acceleration. Of course, in the inviscid theory which underpins the Bernoulli invariant, there
would be complete recovery of pressure. We write:

B =
ρ

2A2
e f f

, (4.54)

where ρ is the constant blood density and Ae f f is an effective cross sectional area on the
valve. L[mmHg · s2/ml], the blood inertia accounts for the pressure difference ∆P related to
blood acceleration and is defined as

L =
ρle f f

Ae f f
, (4.55)

where le f f [cm] is an effective length from the previous compartment to the valve. To control
valve dynamics we define a variable, ψ(t) which damps the effective opening area Ae f f ,
which is controlled by

Ae f f (t) = [Amax −Amin]ψ(t)+Amin, (4.56)

where Amax and Amin represent the maximum and minimum cross sectional area of the
respective valve. To add extra physics to the model which will allow for stenosis and
regurgitation we can express these maximum and minimum areas as

Amin = KrgAann, Amax = KstAann, (4.57)
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where Aann represents the annulus area, held to be constant in the literature [248, 14, 359],
and Krg and Kst characterise the fitness of a particular patient’s valve.

The parameters Krg and Kst take values between 0 and 1, where a healthy valve is char-
acterised by Krg = 0 and Kst = 1. Krg > 0 corresponds to the level of regurgitation present
within the heart valve. In contrast, Kst < 1 corresponds to a stenosed valve. This valve model
is one of a simpler approach only relying on the pressure difference to be the most influential
factor on the valve. We therefore say valve opening and closing depends on two variables:

1. The pressure difference ∆P.

2. The damping variable ψ(t).

Assuming that the valve opens/closes when the pressure difference ∆P exceeds a threshold
opening/closing pressure value ∆Po,∆Pc. We therefore define the rate of opening and closing
as:

dψ

dt
= (1−ψ)Ko(∆P−∆Po) (4.58)

dψ

dt
= ψKc(∆P−∆Pc), (4.59)

where Ko and Kc are the opening and closing rate coefficients respectively.

In implementation we define two valve functions one for the semilunar and one for the
atrioventricvular. Due to le f f = 0 for the atrioventricular valves, this causes a singularity
when calculating the flow rate of the mitral and tricuspid valve. To accommodate for this
we define a valve function in which we assume there are no inertial effects, L. Hence the
flow rate is totally dependent on the Bernoulli resistance in the equation below. We set
the minimum opening area to eps() which allows us to simulate the smallest regurgitation
possible:

∆p = Bq|q|. (4.60)

4.2.3 Circulation Systems

The lumped parameter model equations can be derived using first principles, or can be found
by linearising the 1D system in equation 4.15 and then averaging physical properties over
the domain length. In order to reduce the 1D system of equations to 0D, the 1D system is
linearised around its reference state, which means the non-linear convection term ∂

∂x(χ
Q2

A ) is
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first neglected. This leads to the system of equations:
C0D

∂P
∂ t +∆Q = 0, continuity

L0D
∂Q
∂ t +∆P+R0DQ = 0, momentum

C0D = ∂A0
∂P0

∆x, L0D = ρ

A0
∆x, R0D = 8µπ

A2
0

∆x,

. (4.61)

Separating the above equations out into their explicit electrical analogue components we
obtain

Lk
dQk

dt
= Pk−1 −Pk (4.62)

Ck
dPk

dt
= (Qk −Qk+1) (4.63)

Qk =
Pk−1 −Pk

Rk
(4.64)

dVs,k

dt
= Qk −Qk+1. (4.65)

Here Lk,Ck,Rk are the model parameters for a compartment of interest k. Here, we assume
all chambers in the system have a constant compliance (C = 1/E).

4.3 Local Sensitivity Analysis

Local, derivative based sensitivities are essentially partial derivatives, evaluated at a base
state in input parameter space, θ 0. To compare a parameter i’s influence evenly against the
output j, we scale the absolute sensitivity metric by θi

y j
. The result is a relative sensitivity

matrix S, of size (m× n), with entries S j,i. For input parameters i ∈ (1, ...,n) and outputs
j ∈ (1, ...,m):

S j,i(t) =
[

θi

y j

∂y j(t)
∂θi

]
θ 0

. (4.66)

The relative sensitivity index is a normalised measure and this enables comparisons between
input parameters with different units or values at different orders of magnitude.

We define relative sensitivity column vectors associated with a specific model input pa-
rameter, i, as follows:

Si = (Si,1,Si,2, ....,Si,m)
T , i = 1, ...,n (4.67)
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where Si,1 represents the influence of input parameter i against the measurement 1 (say). To
compute the above sensitivity statistics, the inputs are, of course, varied one at a time about a
base physiological state θ 0. LSA is useful in quantifying the impact of input parameters at a
well known base state. However, due to the variation associated with human physiology, it is
important to understand the global nature of an input parameters’ influence.

4.4 Fisher Information Matrix

Another important matrix derived from sensitivity matrices is the square (n× n) Fisher
information matrix (FIM) [270, 321] which was briefly introduced above:

F = ST S. (4.68)

This is a symmetric matrix representing the information one can extract on input parameters,
or factors, from the model outputs which usually correspond to the available measurements
[384]. We note that the FIM can be constructed from either global or local sensitivity
matrices.

4.5 Global Sensitivity Analysis

The point of GSA is best highlighted with figure 4.7 below. Let us imagine a response surface
in figure 4.7 below as describing the physiology of a particular patient - at least in terms of
one particular model output; as we traverse such a response surface (changing parameter
values as we go) this is going to have an impact on all selected outputs.

If one were to perform a LSA, one would be working at single point in parameter space,
observing the rate of change in the output, which amounts to determining the tangent plane to
the response surface. Of course, this knowledge tells us nothing about the structure associated
with such a response surface. GSA allows one to explore response surface within some
sub-space defined by physiological bounds [θ min,θ max] and identify key influential input
parameters, impacting the outputs averaged across input parameter space.

4.5.1 Morris Method

The Morris method [385] can be viewed as an extension of the local derivative-based
sensitivity measures of the previous section. This extension turns the Morris method into



88 Methods & Materials

Fig. 4.7 Example model response surfaces: Two prototype response surfaces, left : ex-
hibiting complex non-linear behaviour, right : exhibiting less complex structure, with a clear
global minimum. Reproduced with permission from [15].

a global technique, making it one of the more widely applied sensitivity methods. Instead
of taking the partial derivative of the output with respect to the input parameter of interest
θi, the Morris method approximates this derivative using a finite difference scheme. The
resultant value is called the elementary effect, EEi of the ith factor:

EE =
f (θ +∆)− f (θ)

∆
, ∆ =

n
2(n−1)

, (4.69)

where the step size is ∆ with n the number of input parameters [196].

Each of the inputs is, first, re-scaled to be uniformly distributed in the interval [0,1]. Starting
from an initial base value, selected at random from a uniform distribution, one random input
is incremented or decremented and its elementary effect calculated. From this next position,
another random input is again incremented, and this inputs’ elementary effect calculated and
so on until we have calculated one elementary effect for each factor. The aim of the Morris
method is to take the average of a number of elementary effects, each calculated at different
points in input parameter space. Denoting this number by r, we would then require a total of
r elementary effects per input. Hence, we repeat the process described above (r−1) times to
generate the remaining elementary effects. Each repetition, called a run, generates a set, or tra-
jectory, of n elementary effects (one per input). The full algorithm can be found in [385, 287].

Having computed these r elementary effects per input, we find the average of their ab-
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solute global values, µ∗
i and the variance of the values σ2

i :

µ
∗
i =

∑
r
k=1 |EEk

i |
r

, σ
2
i =

∑
r
k=1(EEk

i −µi)
2

r−1
, (4.70)

where EEk
i denotes the elementary effect of the ith input during the kth model evaluation.

µ∗
i is the absolute mean of these elementary effects. The greater the value of µ∗

i the more
the ith factor affects the model output, while the greater the σi value, the more the input is
nonlinear or involved with interactions with other inputs; a low σi, by contrast, indicates a
linear, additive input. While Morris’s original paper [385] used only µi, Campolongo et al.
[386] introduced the µ∗

i term. They observed that, by using their absolute values, elementary
effects of different signs would not cancel each other out in. However, the variance of the
elementary effects still use µi to calculate σi. The Morris method is computationally efficient,
requiring r(n+1) model evaluations and can be extended to deal with groups of inputs [196].
The Morris method provides only semi- quantitative information and so is typically used
for input screening [196, 386]. However, being a semi- quantitative method, there is no
definitive boundary separating the important and unidentifiable parameters. With no ability to
check parameter influence convergence this can present significant issues with the reliability
of any model interpretations made. The Morris method is at a disadvantage when dealing
with input interactions. Though able to detect if an input is involved in nonlinearities or
interactions, it cannot determine which of these is present, nor, in the case of interactions, can
it identify which input(s) is/are involved. Instead the Morris method gives only one lumped
measure, σi, of the total magnitude of its interactions and nonlinearities. Despite the Morris
methods popularity Saltelli and Annoni [16] showed that in higher parameter dimensions
the Morris method can suffer from serious problems in the methods ability to explore input
parameter space. This is due to the methods one at a time sampling methodology although
improvements to this have been suggested [387, 388]. A visual representation of this problem
is displayed in figure 4.8. In situations where more clarity is required, we turn to the more
computationally expensive variance-based methods discussed next.

4.5.2 eFAST Method

The extended Fourier amplitude test [389] offers a computationally efficient alternative to
Sobol indices (below). eFAST utilises mono- dimensional Fourier decomposition along a
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Fig. 4.8 The curse of dimensionality: In k = 3 dimensions the volume of the sphere
internal to a cube and tangent to its face is r = 0.5. r goes rapidly to zero with increasing k.
Reproduced with permission from [16].

curve exploring the parameter space. The curve is defined by a set of parametric equations:

θi(s j) = Gi(sin(ωis j)),∀i = 1, ...,n

s j =
2 jπ
N

−π,∀ j = 1, ...,N
(4.71)

where Gi is a transformation function chosen to ensure that the variable is sampled according
to the desired probability density function. ωi is a set of different (angular) frequencies,
to be properly selected, associated with each input parameter. As s varies, all the factors
change simultaneously along a curve that systematically explores input parameter space.
Each θi oscillates periodically at the corresponding frequency ωi, whatever Gi is. The output
Y shows different periodicity, combined with the different frequencies ωi, whatever the
model f is. If the ith factor has strong influence on the output, the oscillations of Y at
frequency ωi will be of high amplitude. This provides a basis for computing a sensitivity
measure, which, for input θi, is founded on the coefficients of the corresponding frequency
ωi and its harmonics. For a full derivation and discussion of frequency choice, see [390, 391].

This GSA methodology allows for parameter interpretations in terms of their independent
effects and their collective impact on the chosen inputs. While this method provides an easy
way to interpret input effects it is highly dependent on the above hyper-parameters. There is
also no known method to evaluate the accuracy of the parameter interpretations. The eFAST
methodology requires k ·n model evaluations where k is the number of chosen samples and n
the number of parameters.
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4.5.3 Sobol Indices

Given the state space equation in (4.22) with input parameters θ = (θ1,θ2, ...,θn) and f the
function of a model. Assume the model is composed of independent random variables, the
joint probability density function of the input is:

P(θ1, ...,θn) =
n

∏
l=1

pl(θl). (4.72)

Where pl is the individual parameter probability distribution. The mean of an output y can
be computed as

E(y) =
∫

· · ·
∫

f (θ1, ...,θn)
n

∏
l=1

pl(θl)dθl. (4.73)

and the variance of an output y

V(y) =
∫

· · ·
∫
( f (θ1, ...,θn)−E(y))2

n

∏
l=1

pl(θl)dθl

=
∫

· · ·
∫

f 2(θ1, ...,θn)
n

∏
l=1

pl(θl)dθl −E2(y).
(4.74)

Assume a particular factor θ j is fixed at value θ̂ j, the resulting variance of y will be equal
to:

V(y|θ j = θ̂ j) =
∫

· · ·
∫
( f (θ1, ..., θ̂ j, ...,θn)−E(y|θ j = θ̂ j))

2
n

∏
l=1
l ̸= j

pl(θl)dθl

=
∫

· · ·
∫

f 2(θ1, ..., θ̂ j, ...,θn)
n

∏
l=1
l ̸= j

pl(θl)dθl −E2(y|θ j = θ̂ j).

(4.75)

When performing sensitivity analysis one is interested in marginalising out the impact of θ̂ j

by integrating V(y|θ j = θ̂ j) over the probability density function of θ̂ j, this gives:

E(V(y|θi)) =
∫

· · ·
∫

f 2(θ1, ..., θ̂ j, ...,θn)
n

∏
l=1
l ̸= j

pl(θl)dθl

−
∫

E2(y|θ j = θ̂ j)p j(θ̂ j)dθ̂ j

(4.76)
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Subtracting equation (4.76) from equation (4.74) one obtains:

V(y)− (E)(V(y|θ j)) =
∫

E2(y|θ j = θ̂ j)p j(θ̂ j)dθ̂ j −E2(y). (4.77)

Utilising the identity below [392]:

V(y)− (E)(V(y|θ j)) = V(E(y|θ j)). (4.78)

The above is a good measure of the sensitivity of y with respect to the input parameter θ j.
Thus we obtain the first order index for an input parameter θ j,

S j =
Vθ j(Eθ c

j
(y|θ j))

V(y)
, (4.79)

where θ c
j denotes the complementary set of input parameters excluding θ j. The inner expec-

tation operator functions such that the mean of y is taken over all possible values of θ c
i while

keeping θi fixed. The outer variance is taken over all possible values of θi.

Sobol indices were first proposed by I.M Sobol [393], whose problem was that of iden-
tifying a subset of the n factors that could account for the most of the variance of an output
y. Imagine that the inputs can be partitioned into two subsets u = (θi1,θi2, ...,θim) and the
remaining set v = (θl1 ,θl2 , ...,θln−m). Then according to Sobol the overall effect of the subset
u on the variance of the output can be estimated from:

Uv =
∫

· · ·
∫

f (u,v) f (u′,v)dudu′dv, (4.80)

V(E(y|v)) =Uv −E2, (4.81)

V(E(y|u))+V(E(y|u,v)) = V(y)−V(E(y|v)). (4.82)

In equation (4.82), V(E(y|u)) is the first order effect of the set u, while V(E(y|u,v)) is the
interaction term between between the sets u and v. If V(y) ≈ V(E(y|v)), then u is non-
influential and all inputs in u would be conventionally fixed in subsequent analysis of the
model.

Equation (4.82) is a particular case of a general variance decomposition scheme proposed by
Sobol whereby the total unconditional variance can be decomposed as

V(y) = ∑
i
Vi +∑

i
∑
j>i

Vi j + ...+V12...n, (4.83)



4.5 Global Sensitivity Analysis 93

where

Vi = V(E(y|θi)) (4.84)

Vi j = V(E(y|θi,θ j))−Vi −V j (4.85)

and so on. Equation (4.83) contains n terms of first order Vi,
n(n−1)

2 terms of second order
Vi j and so on, till the last term of order n, for a total of 2n −1 terms. The Vi j terms are the
second order (or two-way) terms, analogous to the second order effects that capture that part
of the effect of θi and θ j that are not described by the first order terms. Equation 4.83 is based
on the Sobol-Hoeffding decomposition of the model function f into terms of increasing
dimensionality [286].

f (θ1, ...,θn) = f0 +∑
i

fi(θi)+∑
i

∑
j>i

fi j(θi,θ j)+ ...+ f12,...,n. (4.86)

The decompositions in 4.83 and 4.86 are unique, provided that the input factors are indepen-
dent and that the individual terms in 4.86 are square integrable and have zero mean over the
domain existence and have the orthogonality property

∫ 1

0
f1,2,3,..,Kdθk = 0,k = 1,2, ...,K.

One important aspect of Sobol’s development is that similar decompositions can be written
by taking the factors into subsets. Thus from 4.84, Vi = V(E(y|θ c

i )) is the total contribution
to the variance of y due to non θi. This implies that

V(y)−V(E(y|θ c
i )) (4.87)

is equal to the sum of all terms as shown in 4.82 that include θi. By using the relationship in
4.78, we illustrate the case for n = 3:

ST,1 =
V(y)−V(E(y|θ c

1))

V(y)
=

V(E(y|θ c
1))

V(y)
= S1 +S12 +S13 +S123. (4.88)

Writing the general form of the index

ST,i =
V(y)−V(E(y|θ c

i ))

V(y)
=

V(E(y|θ c
i ))

V(y)
. (4.89)

This sensitivity index is termed the total effects as they provide insight into the non-linearity
associated with the model. It is important to note that for a purely linear additive model



94 Methods & Materials

∑
n
i=1 Si = 1. The sensitivity indices can be computed at a cost of k(n+2) model evaluations.

However if we wanted to compute the second order indices also this has an additional associ-
ated cost of k(2n+2) model evaluations [287].

For continuous measurements, calculating the sensitivity index produces waveform data
which demonstrate the sensitivity of each input parameter over (say) the cardiac cycle [394].
In order to quantify the effects continuous measurements have on the calculation of sensitivity
indices, we typically average this sensitivity waveform. Rather than averaging across a time
range (which process regions of low variance equally to those of high variance), one seeks to
expose differential sensitivities by examining variance-weighted averages:

TASi =
∑k Si(Y c(tk))Var(Y c(tk))

∑k Var(Y c(tk))
, (4.90)

where TASi is the time averaged first/total order effect of an input parameter i and Y c(tk)
represents the approximated continuous measurement at time step k. The division is per-
formed component-wise such that TAST,i is of size (m×1) and this vector represents the
time averaged sensitivity indices for an input parameter i against all outputs m.

4.5.3.1 Bootstrapping

A strong advantage of the Sobol indices is supplement of a bootstrap methodology which can
be utilised to produce a confidence interval for the true unknown indices [294]. Clearly, no
estimate of sensitivity can be of any use without an estimate of its variability. Bootstrapping
is a well-known method within statistics (see chapters 12,13,14 and 22 of [395]). The
samples generated for {θi} are resampled (i.e sampled with replacement) B times, at each
stage and each sensitivity index Si is recalculated, leading to a bootstrap estimate of the
sampling distribution of the sensitivity indices, {S̃b

i }B
b=1 for i = 1, ...,n. From this distribution,

confidence intervals can then be constructed utilising the moment method. This provides a
symmetric 95% interval for Si as

Ŝi ±1.96×

√√√√ 1
B−1

B

∑
b=1

(S̃b
i − S̃∗i )2 (4.91)

S̃∗i =
1
B

B

∑
b=1

S̃b
i . (4.92)

Bootstrapping works because sampling with replacement from a set of independent, identi-
cally distributed data is equivalent to sampling from the empirical distribution function of
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the data. A crucial point is that each bootstrap sample is created directly from the original
dataset without needing any further data or model evaluations.

4.6 Hyperspace Investigation

Sobol indices provide the deepest possible insight regarding which input parameters con-
tribute to the variation of the output. They will prove vital in extracting a subset of input
parameters which can be personalised. However, the end goal of personalised medicine is to
constrain the model parameters using patient data. A wide variety of optimisation routines
exist for calibrating models to patient data. The complexity of the optimisation routine which
is needed is often decided by the non-linearity of the model which is under investigation.
Below we propose a methodology utilising Sobol indices which provides insight into the
non-linearity of the model, indicating the complexity of the optimisation routine required.

One can interpret the total order Sobol indices as [297]:

ST,i = Si +∑
i ̸= j

Si j + ∑
i ̸= j ̸=k

Si jk + ...,

i.e., for a given input parameter θi, the total order indices are the first order indices plus all
higher order interactions. Subtracting the first order indices

ST,i −Si = ∑
i̸= j

Si j + ∑
i̸= j ̸=k

Si jk + ...

ST,i −Si = SH,i,

(4.93)

where we nominate the SH,i as the higher order interactions for an input parameter θi. If
SH,i ≈ 0.0, one can deduce that the model inputs impact the model outputs in an independent
way.

Total order sensitivity indices have been shown to exhibit superior ability to recover the truer
sensitivity compared to first order indices [293, 290]. Thus, one can utilise the total order
indices to quantify the complexity of the input parameter space.

With the necessary background in place, we are now able to declare an investigative test
procedure for our models’ sensitivity assessments:
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1. Perform an extensive SA at the maximum bounds for our study: ±15% to compute S1,
S2 and ST . Calculate the respective confidence intervals.

2. Ensure all sensitivity indices exhibit a statistical variation of less than 5% of the mean
value.

3. Calculate SH .

(a) if SH < 0.01, proceed using only ST .

(b) If SH > 0.01, proceed as follows but examine S1 and ST to ensure each sensitivity
index has converged.

4. Ensure consistent sampling density and converged sensitivity indices; reduce the input
parameters hyperspace volume (hypercube’s edge length), recording the ranking and
sensitivity values of each input parameter.

5. Once the hypercube volume investigated corresponds to an edge length of less than
±0.05% from base state, finish the investigation.

6. Once all input parameter rankings and values have been recorded, examine the variation
between the edges of the input parameter hypercube compared to the minimal variation
from the base state.

If a consistent input parameter ranking is exhibited at all hypercube sizes, one can infer a
less complex input parameter space, with obvious consequences for model personalisability.
On the other hand, if we observe large variations in input parameter rankings when the hyper-
cube sizes are varied, one would infer a more complex input parameter space hyper-surface -
a greater encumbrance to personalisation, due to multiple candidate local minima affecting
the input parameter ranking variations.

Here, we examine hypercube sizes of ±15%,±7%,±3%,±0.5% and ±0.01% starting with
a sample size of N = 100,000 at ±15%. See chapter 7 for the results of this methodology.

4.7 Sampling Methodology

We turn to a brief description of the input parameter space sampling methodologies to be
assessed. We concern ourselves with two popular Monte Carlo (MC) sampling method-
ologies: Uniform (U) and Latin Hypercube (LH), and three Quasi-Monte Carlo (QMC)
sampling methods: Golden Ratio (GR), Lattice Rule (LR) and Sobol Sequence (SS). All
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can be generated utilising the QuasiMonteCarlo.jl [396] package provided by Julia lang [397].

For inputs θ which range over a bounded region, we consider a functional I[ f ](t), formed
from the integral of f , as defined in equation (4.22), over the unit hypercube In = [0,1]n

where n represents the dimensionality of the input parameter space:

I[ f ](t) =
∫

In
f (X(t;θ),θ)dθ . (4.94)

The effect of sampling model inputs can be assessed with reference to this integral; in doing
so we view the sampling process as an effective quadrature, in which the sampled inputs
define the abscissa. The quality of the sampling can then be measured by the quality of the
quadrature. The important question of how its accuracy is determined in conjunction with
the sampling of the hypercubic region of input parameter space is clearly germane to a robust
and reliable sensitivity analysis.

4.7.1 Monte-Carlo Sampling Methods

4.7.1.1 Uniform sampling

The simplest sampling approach is uniform sampling [398]. Input parameters θ are regarded
as uniformly distributed random variables, within the hypercube In such that:

I[ f ](t) = E[ f (X(t;θ)]≈
∑

N
i f (X(t;θ

i),θ i)

N
for i ∈ [1,N], (4.95)

where E is the expectation operator, θ is a N×n matrix where each row is a parameter vector
θ of length n. Whilst mathematically and algorithmically simple, this is deemed a crude
approximation with poor convergence rates [399].

4.7.1.2 Latin hypercube sampling

The efficiency of MC methods is determined by the properties of the random samples. A
priority for researchers is to develop strategies which ensure points are placed more uniformly,
within In. One response is to use Latin hypercube (LH) [400]- a very common methodology
in life sciences [401–404].

Its main objective is to reduce the variance, and thus the error, associated with evaluating
Eq. (4.94). One decomposes the space of inputs into N sub-spaces typically of equal volume,
to ensure the space is sampled as uniformly as possible. Let {ε i

j}, for j = 1, ...,n, be
independent random permutations of samples i = 1, ...,N, each uniformly distributed over all
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N! possible permutations. One then sets

θ
i
j =

ε i
j +U i

j −1

N
, j = 1, ...,n, i = 1, ...,N, (4.96)

where U i
j are independently randomly sampled points on the [0,1] interval. One can intuit how

only one sample point of the input parameters falls between i−1
N and 1

N for each dimension
j = 1, ...,n. Here, we use the ‘standard’ version of LH, but see [405] for other variations.

4.7.2 Quasi Monte-Carlo Sampling Methods

An improvement on the Monte-Carlo sampling methodologies is the low discrepancy sam-
pling (LDS) methods, coupled with the QMC algorithm, as shown in [406, 407]. Discrepancy
is a measure of the deviation of sampled points from the uniform distribution [408]. Consider
a number of points NR from a sequence {θi}, for i = 1, ..,N, in an n-dimensional rectangle R
centred upon an origin 0, whose sides are parallel to the coordinate axes, which is a subset
of In : R ⊂ In, where R is attached with a measure. A sequence has low discrepancy if the
proportion of points in the sequence falling into an arbitrary set R is close to the measure of
R. LDS satisfies the upper bound condition [409]:

DN ≤ k(n)
[ln(N)]2

N
, (4.97)

where DN is the sample discrepancy and k(n) is a particular constant depending on the
sequence and size of input parameter space. LDS is designed to place sample points as
uniformly as possible within a hypercube, instead of the statistical approach adopted in LH.
The QMC approximation of the integral in Eq. (4.94) has identical form to Eq. (4.95).

I[ f ] =
∑

N
i f (X ,θ i,q)

N
, (4.98)

except in this framework, θ
i,q is a quasi sampled parameter vector which has been generated

from an LDS and the points are distributed uniformly in the unit hypercube In. As a
consequence, the sample points generated on In have a deterministic nature.

4.7.2.1 Golden ratio sampling

Golden ratio sampling is an LDS sampler in which sample points are based on the fractional
part of successive integer multiples of the golden ratio. First introduced by Schretter and
Kobbelt [410], using a simple incremental permutation of a generated golden ratio sequence,
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they demonstrated equal coverage of a two-dimensional space. Let θ = (θ1,θ2, . . . ,θn) be
a n-dimensional parameter vector, where each parameter θi has a lower bound θ min

i and an
upper bound θ max

i . We want to generate N samples of θ .
First, we define a set of n distinct points {xi}n

i=1 in Rn as follows:

xi =

(
cos
(2πi

n

)
−θ min

i

θ max
i −θ min

i
,
sin
(2πi

n

)
−θ min

i

θ max
i −θ min

i
, . . .

)
, for i ∈ [1,n]. (4.99)

Then, we define a set of n weights {wi}n
i=1 using the golden ratio φ :

wi =
φ i

(φ n − (−φ)−n)
. (4.100)

To generate N samples {θ
∗
j}N

j=1, we use the following procedure:

θ
∗
j =

d

∑
i=1

wixi ⊙ (θ max −θ
min)+θ

min, (4.101)

where ⊙ denotes the element-wise product, θ
min and θ

max are the vectors of lower and upper
bounds, respectively. In this work, we will test GR sampling for systems with input parameter
dimensions much higher than two.

4.7.2.2 Rank-1 lattice rule sampling

Another LDS technique is the rank-1 lattice rule. Let an n-dimensional rank-1 lattice Π be a
set of points that contains no limit points and satisfies [411]:

θ
′ ∈ Π =⇒ θ +θ

′ ∈ Π and θ −θ
′ ∈ Π, ∀θ . (4.102)

A general lattice is constructed by a generating matrix G ∈ Rn×n:

Π = {GV |V ∈ Zn}, (4.103)

where V is any integer unimodular vector. A generator matrix is not unique to a lattice Π,
i.e., Π can be obtained from different generator matrices. A rank-1 lattice is a special case of
the general lattice, which has a simple operation for point set construction, instead of directly
using Eq. (4.103). A rank-1 lattice point set can be constructed as

θ i :=
〈 iz

N

〉
, i = 0, ...,N −1, (4.104)
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where z ∈ Zn is the generating vector and the inner product denotes the operation of taking
the fractional part of the input number element-wise. One can then scale θ i as above to
obtain parameter samples between the specified bounds. Compared with the general lattice
rule, the construction form of the rank-1 lattice already ensures the constructed points are
inside the unit cube, without the need for any further checks.

4.7.2.3 Sobol sequence sampling

Our final sampling methodology is the well-known Sobol LDS technique [412]. The Sobol
sequence is widely considered as the optimal sequence for exploration of an input parameter
space [403, 413–415]. The Sobol low-discrepancy sequence is quasi-random, and based on
the following equation:

θi =
∞

∑
j=1

ai, j

2 j v j, for i ∈ [1,n] (4.105)

where ai, j is the j-th digit in the binary representation of i, and v j is the j-th direction vector
in n dimensions.

To ensure that the samples θ i lie within specified bounds for each dimension, we can
modify the equation as follows:

θi = θ
mini +

(
∞

∑
j=1

ai, j

2 j v j ⊙ (θ maxi −θ
mini)

)
. (4.106)

The direction vectors v j are pre-computed and can be obtained from various sources.
One common choice is to use the direction vectors provided by Sobol [412]. Put simply,
the Sobol LDS aims to achieve three requirements: (1) best uniformity as n → ∞; (2) good
distribution even with small parameter sizes; (3) a very fast computational algorithm.

4.8 Computation of Sobol Indices

Given the first and total order Sobol indices of equations 4.79 and 4.89 and the methods
above detailing sample generation for a GSA we now examine how numerically to implement
Sobol index calculation. This leads us to consider so-called estimators. For the first order
index we utilise the most popular estimator [289]

Si =
1
k

k

∑
j=1

f (B) j( f (A(i)
B ) j − f (A) j). (4.107)
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Where A and B are independent sampling matrices to be discussed in more detail shortly.
Inappropriately, there is little effort directed on furthering first order indices. Recently an
impressive estimator authored by Azzini et al. [290, 416] appeared, which had largely
superior convergence properties compared to the standard estimator however this estimator
required more model evaluations which conventionally increases the computational time
(however this apparent failing requires further study).

Here, we shall explore four commonly chosen total order estimators: Homma and Saltelli
[417], Sobol [418], Jansen [419] and Janon et al. [420]. While this list is far from exhaustive,
it represents a selection of total order estimators which have been practically used within the
field and are not costly to execute.

Table 4.4 Total order estimators: Formulae to compute ST , where f0 and V represent the
mean and variance of the outputs respectively, as defined in Eqs. (4.108) and (4.109).

Authors Estimator ST

Homma & Saltelli [417] V(Y )− ∑
k
j=1 f (A) j f (A(i)

B ) j

k + f 2
0

Sobol [418]
∑

k
j=1 f (A) j[ f (A) j− f (A(i)

B ) j]

k

Jansen [419]
∑

k
j=1[ f (A) j− f (A(i)

B ) j]
2

2k

Janon et al. [420] V(Y )− ∑
k
j=1 f (A) j f (A(i)

B ) j

N − f 2
0

For the Homma & Saltelli, Sobol and Janson estimators, their mean and variance take
the following form:

f0 =
∑

k
j=1 f (A) j

k
, V(Y ) =

∑
k
j=1[ f (A) j − f0]

2

k−1
, (4.108)

and for the Janon estimator:

f0 =
∑

k
j=1[ f (A) j + f (A(i)

B ) j]

2k
, V(Y ) =

∑
k
j=1[ f (A)

2
j − f (A(i)

B )2
j ]

2k
− f 2

0 . (4.109)

We imagine having two independent sampling matrices A and B, with a ji and b ji as particular
elements. The index i runs from 1 to n, the number of input parameters. The index j runs
from 1 to k, the number of model samples generated. The A(i)

B is a matrix where all columns
are from A except the ith column which is from B. For a complete estimation of the first and
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total order index 2k simulations are need to compute the outputs Y corresponding to the A
and B matrices. Then an additional kN simulations are needed to compute Y from the A(i)

B

matrices.

4.9 Identifiability Analysis

In addition to the parameters’ influence, it is imperative to determine if parameters are
identifiable. The identifiability issue confronts the possibility that a large distribution of
parameters may exist to describe similar model outputs and behaviours. Within this context,
two concepts exist: structural, practical and theoretical identifiability [336, 337, 421, 422].

4.9.1 Structural Identifiability

The concept of structural identifiability was first introduced by Bellman and Astrom [421].
The aim of structural identifiability is to determine to what extent it is possible to gain
insight into the internal structure of a system from input-output measurements. This question
was studied by identifying “input-output equations” from Laplace transformations of linear
ODEs. The study was the first to mention local and global structural identifiability, which
was defined formally in the study by Ljung and Glad [423] as follows. Given the state space
equation in (4.22), a parameter θi is structurally globally identifiable if

f (X(t),θi) = f (X(t), θ̃i) (4.110)

holds true for θi = θ̃i. An input parameter θi is considered locally identifiable if 4.110 holds
true for θi within a small neighbourhood of θ̃i.

The above statements suggest that if one parameter is structurally unidentifiable, the entire
system is structurally unidentifiable. To demonstrate a case of structural non-identifiability,
consider the system

du
dt

= θ1θ2u(t). (4.111)

Parameters θ1 and θ2 are considered structurally unidentifiable because similar model outputs
can be observed by offsetting changes in one parameter by varying the other. Structural
identifiability assesses whether model parameters can be uniquely inferred based solely
on the model structure without considering actual experimental observations [421]. These
analyses assume that model structures are accurate and that no measurement errors exist,
assumptions that are clearly not valid in practice.
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4.9.2 Practical Identifiability

While structural identifiability captures the maximum possible input parameter information,
additional analysis is needed to examine practical identifiability of a model using real, noisy
data. A structurally identifiable model may still be practically unidentifiable for example,
if the model identifiability is sensitive to measurement error in the data or if measurements
are taken too sparsely and miss key features of the system dynamics. Practical identifiability
analysis takes into account the quality of the reference output signals, namely their sampling
and the measurement and modelling errors. The question is thus whether the input parameters
still can be uniquely determined under real experimental conditions. A practical identifiability
analysis requires actual reference output signals and effectively probes model response to
error. In such cases of noisy data, practically identifiable combinations can often be found.
Unidentifiability refers to model outputs observed for multiple parameter values, i.e., there is
a non-unique minimum during parameter optimisation [337, 331].

Many other methods have been proposed which have focused on the sensitivity matrix
as methods of practical identifiability. However any generated sensitivity matrices are created
from forward model solutions. Thus any interpretations do not account for any noise.

For examining the identifiability of the system in the presence of noise associated char-
acteristic of clinical data, there is, insofar as we are aware, only the profile likelihood method
introduced by Raue et al [424]. This is a general approach for detecting structural and
practical unidentifiabilities not captured by sensitivity approaches. This method “profiles"
each parameter θi, by estimating all other parameters while keeping θi fixed, resulting in
the likelihood profile for the fixed parameter given the maximum value of the likelihood of
each parameter value [425]. Structurally unidentifiable parameters are characterised by a
flat profile likelihood, and practically unidentifiable parameters by a minima of the profile
likelihood. See Figure 4.9 for further information for the different diagnostic profiles.

4.9.3 Theoretical Identifiability

From the perspective of personalised medicine, it is essential that one can obtain a set of
identifiable input parameters. We suppose that practical identifiability should be split into a
third section- theoretical identifiability. This is the class of methods which seeks to obtain
subsets of identifiable input parameters from the sensitivity matrix. If one can obtain a
theoretically identifiable subset of input parameters based on the sensitivity matrix, when
this identifiable subset is shown the clinical data and the identifiability may be assessed
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Fig. 4.9 Various response surface structures: Subfigures (A), (B) and (C) show contour
optimisation plots as well as the profile likelihood versus the parameter below. Lighter
colours in the contour plots signify a lower value of a specified cost function. Thresholds
for confidence intervals corresponding to a confidence level of 95% are shown in red and
plotted both in the contour plots and the profile likelihood plots. The lowest value of the cost
function is denoted by a gray asterisk in both the contour plot and the profile likelihood plot.
For the identifiable parameter (A), the profile likelihood reaches both an upper and lower
threshold, thus leading to a finite confidence interval. For the structurally nonidentifiable
parameter (B), the profile likelihood is completely flat, thus yielding infinite confidence
intervals. In the contour plot, this translates to a flat path, along which the cost function
does not change. The practically nonidentifiable parameter (C) shows an infinite extension
of the low cost function region for lower values of the parameter, never reaching the 95%
confidence interval threshold. In contrast, a finite upper confidence bound can be derived.
Reproduced under CC 4.0 BY from [17].



4.10 Average Parameter Influence 105

using the profile likelihood method. Any inputs which are not found to be identifiable
can be attributed to noise within the data. Several methods exist to obtain a subset of
identifiable input parameters, such as the structured correlations method [426], the singular
value decomposition followed by QR factorisation [427], eigenvalue-eigenvector subset
selection [422, 428] and the rank deficiency method [429].

4.10 Average Parameter Influence

So far, we have not postulated a metric for the overall influence of an input parameter across
all the outputs. In [19], Li et al. derive such a metric based upon the FIM F in equation
(4.68). Li’s method has only been applied to a FIM derived from LSA. Here we extend to an
FIM derived from GSA matrices, to encapsulate the inherent global nature of personalisation
problem which by definition is concerned with de-localised searches in input parameter space.
We regard it as self-evident that sensitivity information should be consistent with this fact.
Put another way, a model personalisation is a search over a hypersurface which is enclosed
within a finite volume of input parameters space - and sensitivity information about a point,
albeit a point within the correct region is clearly unrepresentative except in the trivial case of
an almost featureless hypersurface.

Accordingly, we derive a parameter influence, or effect using principal component anal-
ysis (PCA) [19, 430], based upon global sensitivity measures. The principal components in
question (PCs) are the eigenvectors of the FIM.

Let Q be the matrix of the ordered PC eigenvectors of F , in which the absolute value
of each element Qi j reflects the contribution of the ith parameter to the variance of the jth

output. We follow Li et al. [19], who measure an overall effect for the ith parameter as:

ei =
∑

m
j=1 |λ jQi j|
∑

m
j=1 |λ j|

, (4.112)

where 0 ≤ ei ≤ 1 and λ j represents the non-zero eigenvalues of F . This measure reflects
the difficulty in determining the ith factor when only a single factor is estimated. Accurate
estimation from limited data sets is favoured by large values of ei.
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4.11 Orthogonality Analysis

Using equation (4.67), we can define the orthogonality between two input parameters based
on derived sensitivity vectors. Metric dik ∈ [0,1] is an orthogonality between two input
parameters θi and θk aggregated across all the chosen outputs.

dik = sin
[

cos−1
(

ST
k ·Si

||Sk||||Si||

)]
, i,k = 1, ..,n, dik ∈ [0,1], (4.113)

where, ||.|| denotes a Euclidean norm. This measure of orthogonality will be utilised below,
with vectors Sk based on global sensitivity data, for our extended subset selection method.
It will also be used to rank parameters based on the "most independent" effects when
ignoring influence altogether. To calculate a rank based on orthogonality, we take the mean
orthogonality score for an input parameter with respect to all the others, across all the outputs.

4.12 Extended Subset Selection Method

We require a practical strategy for finding suitable input parameter subsets for the purpose of
model personalisation. Our method is based upon a technique dating from 2004, due to Li et
al., [19], who originally applied local sensitivity to a bioreactor design; it offers an intuitive
balance of parameter influence and orthogonality. We use an aggregated identifiability index,
which is a simple, scalar product of a measure for (i) parameter influence given in equation
(4.112) and (ii) parameter linear independence given in equation (4.113). Essentially, we
want a subset, the members of which are optimally influential and linearly independent,
expressed in the following figure of merit:

Ii = ei ×di, 1 ≤ i ≤ n. (4.114)

ei is our measure of influence, obtained from equation (4.112) and di is our measure of the
linear independence obtained from equation (4.113).

The concept of orthogonality underlies the method of Li et al. [19], as follows. Param-
eter dependence is quantified from the FIM equation (4.68)). The rank of F , defined as the
dimension of the vector space spanned by its columns [431], gives the number of identifiable
combinations of input parameters at any given model operating point (if the sensitivities are
local)[324, 432] or, (if the sensitivities are global) within a physiologically bounded bounded
region of input parameter hyper space, as in the case of our methodological extension.
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Assuming sr, for r = 1, ..,n with n < m are all linearly independent, we find the projec-
tion of another vector, s, into the subspace spanned by sr where r < m, effectively by
removing out its orthogonal projection (which lies outside that subspace). The remaining
part is given by

s∥ =
n

∑
r=1

crsr, n < m. (4.115)

Consider, now, a new candidate sensitivity vector si, for a generic ith input parameter. The
extent to which si is linearly dependent upon the already-chosen sr, is measured by finding
the above projection of si, onto the subspace spanned by the sr, that is, by removing from si

its orthogonal compliment, s⊥i . Accordingly, s∥i is defined by its expansion coefficients, cr.
The latter may, in fact, be efficiently computed in an optimisation process, with solution [19]:

c =

sT
1 s1 . . . sT

n s1
... . . . ...

sT
1 sn . . . sT

n sn


−1

×

sT
i s1
...

sT
i sn

 . (4.116)

We summarise our algorithm for optimal input parameter subset selection as follows.

1. For each parameter, θi, i = 1, ..,n, each having relative sensitivity vector si, calculate
its overall effect, using equation (4.112);

2. Select the parameter with the highest value of ei, i = 1, ..,n, to be the first parameter in
the selected set;

3. For n < m, repeat the following steps until no more parameters can be added to the
accumulating set. For the jth candidate:

(a) Use equation (4.116) to find the nearest vector s∥j , to the present candidate, lying
in the subspace already spanned by the k (say) currently selected parameters.

(b) Use equation (4.113) to calculate the orthogonality between s∥j and s j as follows

d j = sin
[

cos−1
( s j · s∥j
||s j||||s∥j ||

)]
. (4.117)

(Of course, d j is a proxy for the magnitude of the orthogonal projection of ŝ j

which, in turn, measures an overall orthogonality for candidate j relative to the k
already-selected parameters.)
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(c) Attribute to candidate parameter j a simple aggregate identifiability index which
reflects both its sensitivity and orthogonality

I j = e j ×d j. (4.118)

(d) Provided I j > 0.05 [270], include in the set that parameter with max j(I j).

4. If n ≥ m form all (m-1) tuples of the already selected parameters. The number of
possible candidates is

q =
q!

(m−1)!(n−1+m)!
.

Use equation (4.117) to calculate the orthogonality of the input parameter θ j across
all q possible combinations of parameters dq, j. Determine the worst case scenario
(d j = min(dq, j)) and continue with the calculation of I j.

5. Continue until no more parameters (elements) can be added.

The main interpretation for this method is in selecting a subset of input parameters for
personalisation, one seeks the best set of influential input parameters which span the whole
physiology of a patient, available measurements. This set of input parameters are the "team"
that work the best collectively instead of the set of input parameters which are either the most
influential or the most orthogonal. But it is vital to appreciate that this optimally exists under
a constraint of chosen outputs. Were the latter to change one should then repeat the subset
selection process again.

4.13 Model Sloppiness

System "sloppiness" refers to anisotropy in the structure of the input parameter space, given
a set of model outputs [341]. As discussed above, the main aim in many areas of systems
biology is to optimise a dynamical system’s input parameters fit to available experimental
data. This is normally performed by minimising a cost or loss function, to obtain a point in
the input parameter space corresponding to a global minimum of said cost function J [57],
typically of the of the broad form

J(θ) = ∑
i
(yi(θ , t)− ye

i )
2,

where θ is the input parameter set, ye
i represents the ith experimental measurement available

and yi(θ , t) represents the ith dynamical system output (obtained from the model), against
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which the experimental data are compared.

Consider an example dynamical system with two input parameters θ1 and θ2. When opti-
mising such a system to experimental data, contour plots displaying the closeness of fit are
generated as in figure 4.10. Here we see that moving up (in the direction of θ2) and left in
the parameter space rapidly changes the value of the cost function, indicating how good a fit
is obtained by a specific value of θ2. This direction is denoted a stiff direction in the input
parameter space. Conversely, if one was to travel up and right (in the direction of θ1), one
could visit a range of θ1 values without incurring changes of the cost function values. This
means the manifold generated by θ1 is largely linear whereas that generated by θ2 has steeper
gradients, leading to a more easy to identify, unique global minimum. Of course, most real

Fig. 4.10 A two dimensional sloppy model schematic representation: A two dimensional
contour plot displayed as a blue curve, with the minimum contour value displayed in red for
input parameters θ1 and θ2. Moving up and left in the direction of θ2 would lead to rapid
changes in the contour whereas moving up and right in the direction of θ1 would lead to
slower changes per unit distance moved.

models in systems biology and certainly in cardiovascular modelling cannot be visualised
through a two dimensional contour map but Figure 4.10 nevertheless represents a precise
analogy.

It is important to quantify the sloppiness which is present within many cardiovascular
models. The final stage of personalisation is the optimal estimation of selected input pa-
rameters, fitted to patient-specific clinical data. Before this optimisation takes place, if we
can quantify the stiffness or sloppiness present within the systems’ input parameter space,
it would provide perspective on the complexity and facilitate the choice of optimisation
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routine (e.g. gradient descent, particle swarm genetic algorithms, unscented Kalman filter)
[433, 434].

The related concepts of identifiability and sloppiness provide different but -in both cases-
insights on the personalisation process [435]. Identifiability is a binary concept whilst
sloppiness quantifies the difficulty associated with obtaining identifiable input parameters.
The sloppiness analysis of a model can either distinguish stiff and sloppy regions of the
input parameter space, or show that the whole system under investigation can be regarded
as sloppy. Note, most system biology models belong to the latter category. Here, we ex-
amine the sloppiness associated with the sensitivity matrices, which are defined by input
parameter effects on the chosen outputs. Therefore, we also establish a secondary aim of in-
vestigating the effects of differing experimental design on a cardiovascular system sloppiness.

We have introduced the concept of sloppiness by examining the contour lines of the cost
function. To examine sloppiness in an n-dimensional input parameter space, we consider the
eigenvalues of FIM equation (4.68). The eigenvalues of the FIM disclose the variation of
input parameters, constrained by the available data. A model can be regarded as sloppy if the
eigenvalues of the FIM have a uniform spacing on a log scale i.e. are distributed over many
orders of magnitude [341, 18, 436, 437]. On the other hand, if the FIM eigenvalues, denoted
λ , have a non-uniform distribution, the model is regarded as stiff. We can then identify stiff
directions in the input parameter space which correspond to a set of input parameters where
personalisation should occur. See figure 4.11 for a comparison of model sloppiness and
identifiability in an n-dimensional space.

4.14 Unscented Kalman Filter

The unscented Kalman filter (UKF) is a data assimilation method iteratively to reconcile
model results with available measurements, to provide an improved estimation of a dynamical
system’s [438] states and parameters (which may be viewed as states). A full derivation of
the UKF can be found in [352]. In what follows we use traditional notation, which may
conflict with that of the previous section. The UKF consists of two distinct steps, as follows.

First the unscented transform (UT) calculates the statistics of an assumed Gaussian random
variable (GRV) that undergoes a non-linear transformation [354]. Both multiplicative and
additive noise has been investigated with UKF, we assume additive noise throughout the
whole model, which is accepted practice for biological systems [439, 440, 14]. Below we pay
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Fig. 4.11 Sloppiness vs. identifiability: Although sloppiness and parameter identifiability
are closely related, strictly they are distinct. Sloppiness is disclosed by an approximate
uniform spacing of FIM eigenvalues spread over many orders of magnitude. In the most
common case (first column) many eigenvalues are small and also correspond to unidentifiable
parameter combinations. However, it is possible (in principle) for all the eigenvalues to be
large (second column) so that sloppy models can be identifiable. It is also possible for model
parameters to be unidentifiable and not sloppy (third column) or identifiable and not sloppy
(fourth column). We here take λ ∼ 1 as the cutoff between identifiable and unidentifiable
designations, after the arguments in [18]. Reproduced under CC 4.0 BY from [18].
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particular attention to the influence of patient-specific measurements and how this method
could be used to clinical advantage.) We define an augmented vector x = [X ,θ ], where X
and θ are the state variables and input parameters respectively; see (4.22) and assume x
is a Gaussian random variable (GRV) of dimension L where L = dim(X)+dim(θ). Now
consider propagating the augmented state-vector through the non-linear model function f as
given in equation 4.22. Assume our GRV has a mean xµ and a covariance Px. To compute
the statistics on the result of the propagation of the GRV through f , we construct a matrix χ

of 2L+1 so-called sigma vectors χi, or sigma points, where i represents the ith column of
the matrix according to the following, for t ∈ [0,∞):

χ0,t = xA
µ,t ,

χi1,t = xA
µ,t +

(√
(L+λ )PA

x,t

)
j
,

χi2,t = xA
µ,t −

(√
(L+λ )PA

x,t

)
j
,

i1 = j = 1, ...,L, i2 = L+1, ...,2L,

(4.119)

where the superscript A represents the assimilated state-and-parameter vector, λ is now a
scaling parameter and P is the covariance matrix relating the states and input parameters. The
GRV sigma vectors now represent a minimal set of carefully chosen sample points, which
completely capture the true mean and covariance of the GRV. When they are propagated
through the true non-linear system, a posterior mean and covariance are captured accurately,
to the 3rd order (relative to a Taylor series expansion) for any non-linearity. Next, we compute
the set of corresponding weights Wi:

W µ

0 =
λ

L+λ
,

W c
0 =

λ

L+λ
+(1+β −α

2),

W µ

i =W c
i =

1
2(L+λ )

,

i = 1, ...,2L, λ = α
2(L+κ)−L,

(4.120)

where α determines the spread of sigma points around xµ (we use α = 10−1). κ is another
scaling parameter (here κ = 0) and β incorporate prior knowledge of which distribution x
follows. Here β = 2 is used as this is optimal for GRV. The matrix square root is performed
using a Cholesky decomposition [441] which requires the matrix to be positive definite.
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Second we propagate each sigma vector through the ODE system such that ϒi = f (χi)

and determine the mean and covariance of Y , using the weighted sample mean and co-
variance of the propagated sigma vectors. Before we can do this, we must first define the
prediction step in the algorithm

χ̂t+1|t = f (χt),

ϒt+1|t = h(χ̂t+1|t).
(4.121)

The above have corresponding mean and sample covariance:

xµ,t+1 =
2L

∑
i=0

W µ

i χ̂i,t+1|t ,

Px,t+1 =
2L

∑
i=0

W c
i [χ̂i,t+1|t − xµ,t+1][χ̂i,t+1|t − xµ,t+1]

T +δQI,

Y µ

t+1 =
2L

∑
i=0

W µ

i ϒi,t+1|t ,

PY ,t+1 =
2L

∑
i=0

W c
i [ϒi,t+1|t −Y µ,t+1][ϒi,t+1|t −Y µ,t+1]T +R,

PxY ,t+1 =
2L

∑
i=0

W c
i [χ̂i,t+1|t − xµ,t+1][ϒi,t+1|t −Y µ,t+1]T ,

(4.122)

where PxY is designated the cross correlation matrix. R is the additive noise on the predicted
measurements and takes the form σ2Im×m (for m measurements), where σ = 5. This repre-
sents the typical clinical error present when measuring e.g. ventricular or aortic pressure and
the ventricular volume [442]. δQI is considered a regularisation term to avoid sigma point
collapse [443, 14], where I is an L×L identity matrix with δQ = 10−8. We now correct the
prediction that has been made by assimilating with the noisy data. The Kalman gain matrix
is calculated as

Kt+1 = PxY ,t+1(PY ,t+1)
−1,

which then leads to:
xA

µ,t+1 = xµ,t+1 +Kt+1(Y n
t+1 −Y µ

t+1),

PA
x,t+1 = Px,t+1 −Kt+1PY ,t+1KT

t+1,
(4.123)

where xA
µ,t+1 and PA

x,t+1 are used to generate new sigma points for the t +1 time point. In
the assimilation step in equation (4.123), Y n

t+1 represents the data which are specific to a
patient. Therefore we are correcting the value parameter/state estimation with the measured
patient data (represented by the noisy synthetic data in this case). This also allows one
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to make predictions about compartments in which experimental data are not available, for
example aortic valve resistance Zao. Given the GRV assumption, required for the UKF, we
must transform the deterministic input parameters to the Gaussian setting. Each input is then
transformed as

θ
N
i ∼ N(θi,σ

2
i ), (4.124)

where θ N
i is the normally distributed input parameter i with an initial mean θi and variance

σ2
i , respectively. The mean of the normal distribution is taken from the literature values [20].

The parameter variance is selected to reflect the uncertainty in the mean parameter value
and taken from existing literature [22, 21], where larger variances are specified for input
parameters with higher uncertainty. This normal distribution reflects the prior belief about
the input parameters before any measurements are incorporated. As the UKF iterates, the
mean and variance are updated to reflect information gained from new measurements. The
initial distribution seeds the estimation process, providing a starting point that is adjusted as
more measurement data become available.

To implement the UKF, we take advantage of the versatile SciML ecosystem within Ju-
lia. Here we implement a discrete callback which performs the Kalman filtration at each
time point and returns the corrected result. This has been shown to contribute negligible
computational time associated with the callback, which underwrites our ability to produce
the result in close-to-real time. Most previous authors manually discretise the ODE system
to transform it into a discrete time system for the implementation of an UKF. Implementing
a callback allows us to take advantage of advanced ODE solvers within package Differen-
tialEquations.jl with improved accuracy. We remark that there are two distinct steps in our
computational workflow, (1) we perform a first solve of the dynamical system to generate the
synthetic data, including perturbed input parameters along with the synthetically generated
personalised HRs. This stage represents experimental data collection. (2) These data are
then stored for the second stage, when we solve the model and call the UKF. In this step,
we estimate the states and input parameters of the model, given the personalised HRs and
perturbed input parameters. The aim is that the algorithm can capture the dynamical effects
pf changing input parameters which represent evolving physiological conditions of patients.

To evaluate the effectiveness of the UKF estimation procedure we employ the root mean
squared error as found below:

RMSE =

√
(θi − xA

µ,i)
2

n
, (4.125)
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where θi is the true value of the ith input parameter, xA
µ,i is the assimilated estimate of the ith

input parameter and n is the length of the assimilated vector.

4.15 Computational Framework

All of the work in this thesis has been conducted with the Julia language [397]. Above,
sensitivity analysis is driven largely by the associated computation. In a nutshell, Julia
aims to provide the speed of C but the usability and packages one associates with higher
level languages such as Matlab, Python and R. During the work, DifferentialEquations.jl
[444, 445] is utilised for its vast array of efficient ODE solvers. Note, this package also
facilitates parameter estimation, uncertainty analysis, ML etc. QuasiMonteCarlo.jl [396] is
utilised to generate parameter samples for the GSA and GlobalSensitivity.jl [446] for the
functions to perform the analysis. We have developed, to facilitate the work of this PhD the
package CirculatorySystemModels.jl [447], an Acausal modelling package for LPMs.

This package is built on the acausal modelling framework provided by ModelingToolkit.jl
[448], containing all the common elements plus others needed for effective and realistic
lumped parameter modelling. Currently CirculatorySystemModels.jl supports common
elements such as a capacitor, resistor, inductance and diodes [247], which act as simple
valve functions. We also provide extensions to the common elements to include constant
compliance chambers, non-linear and Poiseuille resistances as well as the Double-Hill, Shi
and Smith activation functions, which are used as the cardiac driving chamber elastances
[367, 370] as defined above. We also are the first modelling package to include non-linear
valve functions from Shi, Mynard and Laubscher [373, 170, 159]. Alongside individual
components we also have created a collection of sub compartments including, full circulatory,
systemic, pulmonary and heart models. We decompose these full systems into collections of
elements such as the famous Windkessel models [11] to give the user full control over their
modelling.

There already exists some popular packages within both Simulink and Modelica such as
the “Cardiovascular library for lumped-parameter modeling” [449] and “Physiolibary” [450]
respectively. These languages operate a block orientated “drag and drop” approach with
Modelica being the common choice due to it’s acausal modelling approach [451]. Other
languages, based on XML, exist for lumped parameter modelling such as CellML [452]
and SBML [453], while these XML languages are great for exchanging models they are
often difficult to implement and model analysis is limited. A common theme within all
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current lumped parameter modelling software is the systems inability to deal with complex
event handling and non-linear components. Being based on ModelingToolkit.jl, Circulato-
rySystemModels.jl overcomes these limitations by leveraging the wider SciML framework.
[453], while these are great for exchanging models they are often difficult to implement
and model analysis is limited. As a result of Julia’s architecture, as the complexity of the
model increases the model analysis time does not become unreasonable. Other packages
exist which allow users to import models from other frameworks, CellMLToolkit.jl [454]
and OpenModelica.jl [455]. CirculatorySystemModels.jl goes beyond these by providing a
lumped parameter modelling library with seamless integration with the SciML framework
[456, 446, 444] which allows for extensive and efficient model analysis. Since both the
modelling library and the framework it is built on are pure Julia, new components can be
developed in a transparent and consistent manner.

To highlight the computational power associated with our Julia framework we refer the
reader to table 4.5. This table displays the relative execution times for the 4 chamber model
in figure 4.2B.

Table 4.5 Computational comparison: A table displaying the relative speed comparing
languages for the 4 chamber model found in figure 4.2B.

CirculatorySystemModels.jl CellMLToolkit.jl Matlab Python

1× 1.6× 272× 963×

4.16 Summary of Methods

Within this chapter many methods and models have been detailed which will be utilised
within the following chapters. Below is a tabulated version representing the mapping between
the results and which methods will be used. The rational for each model choice can be found
in section 4.2.
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Table 4.6 Model and Methods Summary: Below a tabulated version of the models and
methods which are used in each of the results chapters.

Results Chapter 5 6 7 8

Models
1 & 2 Chamber models

- Figure 4.1
4 Chamber model

- Figure 4.2
1 chamber model

- Figure 4.1A
1 chamber model

- Figure 4.1A

Methods

Sampling Methods
- Section 4.7
Sobol indices
- Section 4.5.3
Bootstrapping

- Section 4.5.3.1

Sobol indices
- Section 4.5.3

Average parameter influence
- Section 4.10

Sloppiness
- Section 4.13

Global Sensitivity
- Section 4.5

Theoretical Identifiability
- Section 4.9.3

Extended subset selection
- Section 4.12

Sobol indices
- Section 4.5.3

Unscented Kalman Filter
- Section 4.14





Chapter 5

Convergence, Sampling and Total Order
Estimator Effects on Parameter
Orthogonality in Global Sensitivity
Analysis

It is the mark of an educated person to search for the same kind of clarity in each topic to
the extent that the nature of the matter accepts it.

— ARISTOTLE, Nicomachean Ethics

Summary
This chapter introduces the investigation into total order sensitivity estimators and their
interaction with sampling methodologies and different classes of data. It highlights the need
for converged sensitivity indices and the impact this may have on obtaining personalisable
input parameters.1

1The work conducted in this chapter is published in Saxton, H., Xu, X., Schenkel, T., Clayton, R. H., &
Halliday, I. (2024). Convergence, sampling and total order estimator effects on parameter orthogonality in
global sensitivity analysis. PLOS Computational Biology, 20(7), e1011946.
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5.1 Introduction

Various methods exist to calculate model identifiability (see e.g [336]). See section 4.9;
here our approach is based on the method of Li et al. [19], which, recall, calculates the
identifiability index of the ith model input Ii as follows:

Ii = Ei ·di, (5.1)

where di is the ith input’s orthogonality relative to the current pre-selected set of input
parameters- which one is seeking to expand- and Ei is the ith input’s effect. Here, Ii measures
the likelihood of a unique recovery of the ith model input. See section 4.12. In our method,
both the effect and orthogonality of an input are calculated from the sensitivity matrix which
has been generated with respect to model outputs [19, 327, 326, 457]. Clearly, the identifi-
ability index depends on both the effect and the orthogonality which can be disclosed by
sensitivity analysis. This prompts an investigation to find the most reliable and robust method
for calculation of said sensitivity matrix.

Calculation of inputs’ effects and orthogonality are arguably the central area of research for
model personalisation. Here we ask three interrelated questions:

1. What is the most reliable estimator on which to compute underlying sensitivity indices?

2. What is the optimal sampling methodology in relation to (i) above which supports
accurate exploration a potentially very complex input parameter hyperspace?

3. How do the choices of estimator and sampling methodology interact, e.g. impact
indices’ convergence?

Prior art [458, 289, 459] almost exclusively prioritises efficient and accurate computation of
the total order matrix and the evaluation of different estimators’ abilities to reveal the “true”
effects of inputs, given their interactions over first order indices’. Recently, Puy et al. [293]
reported their examination of several total order estimators - essentially a sensitivity analysis
of sensitivity analysis [460]. These authors varied the sampling method, between Monte
Carlo and quasi-Monte Carlo, their analytic (note) test model, the dimensionality of input
parameter hyperspace, the distribution of input parameters, and the number of model runs.
The work provides a comprehensive and systematic assessment of the properties of different
estimators.

We focus on the computation of total order indices for varying model dimensionality; we
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will consider heterogeneous data, providing both continuous time series and discrete samples.
For both the simple nine parameter model defined in Figure 4.1A, and the more complex
twenty parameters model in Figure 4.1B we utilise:

Y c(t) = (Plv,Psa,Vlv)
T , Y d(tk) = (Mean(Plv),Max(Psa),Max(Vlv))

T , (5.2)

where Y c and Y d represent the continuous and discrete measurement vector. The discrete
measurements above are scalar quantities extracted from a continuous waveform solution.
The maximum measurement finds the time point tk at which the output quantity is at its
maximum value. The mean measurement averages across the whole waveform which then
gives the scalar measurement.

5.2 Results

We present: (i) the convergence of total order indices with respect to both discrete and
continuous output measurements; (ii) our investigation outcomes changing the four estimators
between the five sampling methodologies defined in Section 4.7. First, the convergence
results will be illustrated in Section 5.2.1. Then in the next two subsections, total order
Sobol indices and orthogonality of input parameters for the 1-chamber, 9-parameter model
(figure 4.1A) and the 2-chamber, 20-parameter model (figure 4.1B) are declared. Between
each subsection, we examine what effect the different choices of estimator and sampling
methodology have on the orthogonality of input parameters. Within each of the subsections,
we make the distinction between the effects of continuous and discrete measurements. All
estimators will be referred to in their full form. Sampling methodologies will be simplified
to the following:

1. SS - Sobol Sampling

2. LR - Lattice Rule

3. GR - Golden Ratio

4. U - Uniform

5. LH - Latin Hypercube

We present results for input parameters deemed to have potential bio-markers status, for
example, low arterial compliance Csa may indicate a stiffening of the vessel. Each subsection
considers convergence of a single parameter for brevity.2.

2All other data is available at https://github.com/H-Sax/Orthgonality-SA
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5.2.1 Convergence and Uncertainty

Figure 5.1 shows the convergence and the uncertainty of the minimal ventricular elastance
Emin for the 1-chamber and 2-chamber models. We calculate the Sobol indices using the
Jansen estimator and Sobol sampling, which are considered to be best practice [293, 419].
Accordingly, we take this combination as our benchmark and the sample size returned from
this initial investigation is used for evaluations on all other estimators and sampling methods.
Increasing the sample size and re-sampling with replacement allow us to evaluate the sample
size at which the Sobol indices have converged with minimum uncertainty. This is displayed
as a band around the index of interest and represents a 95% confidence interval of the index
estimate.

For the 1-chamber model, 10,000 samples (110,000 model evaluations) ensured conver-
gence when computed against the discrete measurements defined in Eq. (5.2). Figure 5.1A
shows that evaluating the Sobol indices at a higher sample size would provide minimal
improvement and at 10,000 samples the indices have negligible error. Figure 5.1B shows
that the continuous indices have minimal error during the cardiac cycle, so when we compute
the time averaged indices no excessive error will be present. Using 10,000 samples we
computed the continuous Sobol indices against the measurements defined in Eq. (5.2). For
the 2-chamber model, 20,000 samples (660,000 model evaluations) were adequate as seen
in Figure 5.1C. The continuous measurements of the 2-chamber model in Figure 5.1D show
that the indices were not subject to error for 20,000 samples. Figure 5.1C appears to indicate
that fewer samples may be adequate for the 2-chamber model. However, the adopted sample
size ensured all input parameters displayed a consistent rank with less than 5% error.

5.2.2 1-chamber Model

The uncertainty associated with the computation of Sobol total order indices on the 1-chamber
model, with N = 10,000 samples is presented in Figure 5.2. Only the results for arterial
compliance Csa are displayed. The 95% confidence intervals for the Homma and Sobol
estimators are considerably wider than that of the Jansen and Janon estimators. The Homma
estimator consistently produced estimates of the sensitivity indices which are different to
that of the other available estimators. The Jansen and Janon estimators give identical results
for their computations of the sensitivity indices and confidence intervals, for every sampling
methodology used. When the Homma and Sobol estimators are used, the latin hypercube and
uniform sampling methods produce larger confidence intervals compared to the quasi-monte
carlo sampling methods.
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Fig. 5.1 Convergence and uncertainty of indices associated with the minimum ventricu-
lar elastance Emin: Figure A displays the convergence and uncertainty of the Sobol indices
ST calculated on discrete measurements for the 1-chamber model against increasing sample
size. Here, the vertical line signifies the chosen sample size for the 1-chamber model at
N = 10,000. Figure B presents the continuous Sobol indices with uncertainty bounds, calcu-
lated at a sample size N = 10,000, on continuous measurements over a single cardiac cycle.
Figure C displays the convergence and uncertainty of ST calculated on discrete measurements
for the 2-chamber model against increasing sample size. Again, the vertical line signifies
the chosen sample size for this model, at N = 20,000. Figure D shows the continuous Sobol
indices with uncertainty bounds for N = 20,000, on continuous measurements over a single
cardiac cycle. The measurements shown in blue, yellow and green denote the left ventricular
pressure, the systemic arterial pressure and the left ventricular volume, respectively. In the
discrete settings (i.e., A and C), the measurements are the mean left ventricular pressure, the
maximum systemic arterial pressure and the maximum left ventricular volume.
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When calculating total order indices on the 1-chamber model with continuous measure-
ments (the histograms for the orthogonality distributions of input parameters are presented
in Figure 5.3), we notice that the orthogonality spread for the Jansen and Janon estimators
are identical for the golden ratio and Latin hypercube sampling methodologies. The Jansen
estimator coupled with lattice rule sampling also shares this orthogonality distribution. The
Janon estimator, with Lattice Rule and Sobol sampling, and the Jansen estimator with Sobol
sampling, exhibit minor variations from the previous orthogonality distributions generated by
Janon and Jansen estimators, however, are identical between themselves. The orthogonality
distributions returned from the Homma and Sobol estimators exhibit large variations for each
sampling methodology, although the Sobol estimator with the Sobol sampling returns an or-
thogonality distribution similar to that seen by the Jansen and Janon estimators. These results
are summarised in Table 5.1 where the input parameters are ranked based on their orthogo-
nality scores in the parameter space. We see the orthogonality results obtained for the Jansen
and Janon estimators are invariant to sampling methodologies. In contrast, the rankings for
Sobol and Homma estimators vary amongst different sampling methodologies. The Sobol
estimator when coupled with Sobol sampling, returns a parameter ranking almost identi-
cal to that of the Jansen and Janon estimators, a result consistent with tha shown in Figure 5.3.

In Table 5.2, a stratification by estimator type and examination of the range of an input
parameter across all sampling methodologies reveals, as inferred from Table 5.1, that the
Jansen and Janon estimators exhibit no variation for the whole input parameter set, given
any sampling methodology. This indicates that the Jansen and Janon estimators are the
optimal choices for this model. The Homma and Sobol estimators exhibit variations of
1.33 and 1.67 upon the input parameter set, respectively. These variations mean that using
Homma and Sobol estimators will return differing orthogonality rankings when different
sampling methodologies are used. When stratifying by sampling types, Table 5.3 reveals
that Sobol and Lattice Rule samplings exhibit the smallest mean variations of the input set
across all estimator types. It is important to note that these variations are a consequence of
the Sobol and Homma estimators which both exhibited different orthogonality rankings for
input parameters. These results indicate that given a less than optimal estimator, the Sobol or
Lattice rule sampling methodology may produce a ranking which can be considered closer to
the ground “truth”. Interestingly, we notice that the life sciences’ most commonly used Latin
Hypercube sampling methodology is characterised by the largest variation of an input set of
parameters.
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Fig. 5.2 Total order Sobol indices ST of the arterial compliance Csa for the 1-chamber
model with continuous measurements: Panels A - T show ST of Csa, for 3 continuous
measurements - left ventricular pressure, systemic arterial pressure and the left ventricular
volume (represented in blue, yellow and green curves, respectively), over a single cardiac
cycle with differing estimators and sampling methodologies. Measurements are evaluated
with N = 10,000 samples, using B = 1000 bootstrapped samples, to evaluate the uncertainty
of the estimate. The bands represent 95% confidence intervals associated with specific
indices displayed as solid curves.



126
Convergence, Sampling and Total Order Estimator Effects on Parameter Orthogonality in

Global Sensitivity Analysis

Fig. 5.3 Orthogonality distributions of input parameters for the 1-chamber model with
continuous measurements: Histograms A-T show the distribution of orthogonality returned
from examinations of the sensitivity vectors, calculated from continuous measurements. Here,
an orthogonality score of 1 represents total independence, 0 total dependence. Individual
diagrams portray a particular combination of sampling methodology and estimator type. The
frequency of each histogram is normalised such that it is comparable between plots, i.e., the
larger the frequency of a bin, the larger the number of orthogonality scores calculated from
the original sensitivity vectors.
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Table 5.1 Input parameter ranking for the 1-chamber model with continuous measure-
ments: Here, input parameters are ranked based on the averaged orthogonality score returned
from the calculated total order sensitivity matrix. In addition, the ranking is stratified by both
sampling and estimator types.

τes τep Rmv Zao Rs Csa Csv Emax Emin

H
om

m
a

SS 5 4 9 3 2 8 7 6 1
LR 5 4 9 3 2 8 6 7 1
GR 5 4 9 3 1 8 5 6 2
U 7 4 9 3 1 8 5 6 2

LH 6 4 8 1 3 9 5 7 2

So
bo

l

SS 4 3 8 5 1 7 9 6 2
LR 4 3 9 6 1 8 7 5 2
GR 4 3 8 7 1 6 9 5 2
U 5 3 8 4 1 9 7 6 2

LH 5 4 6 3 1 8 9 7 2

Ja
ns

en

SS 4 3 7 5 1 8 9 6 2
LR 4 3 7 5 1 8 9 6 2
GR 4 3 7 5 1 8 9 6 2
U 4 3 7 5 1 8 9 6 2

LH 4 3 7 5 1 8 9 6 2

Ja
no

n

SS 4 3 7 5 1 8 9 6 2
LR 4 3 7 5 1 8 9 6 2
GR 4 3 7 5 1 8 9 6 2
U 4 3 7 5 1 8 9 6 2

LH 4 3 7 5 1 8 9 6 2

Table 5.2 Input parameter ranking for the 1-chamber model with continuous measure-
ments: The ranges of input parameters across 5 sampling types for a specific estimator for
the 1-chamber model with continuous measurements.

τes τep Rmv Zao Rs Csa Csv Emax Emin
Mean variation
of input set

Range Homma 2 0 1 2 2 1 2 1 1 1.33

Range Sobol 1 1 3 4 0 2 2 2 0 1.67

Range Jansen 0 0 0 0 0 0 0 0 0 0

Range Janon 0 0 0 0 0 0 0 0 0 0
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Table 5.3 Input parameter ranking for the 1-chamber model with continuous measure-
ments: The ranges of input parameters across 4 estimator types for a specific sampling
method for the 1-chamber model with continuous measurements.

τes τep Rmv Zao Rs Csa Csv Emin Emax
Mean variation
of input set

Range SS 1 1 2 2 1 1 2 0 1 1.22

Range LR 1 1 2 2 1 1 2 0 1 1.22

Range GR 1 1 2 4 0 2 3 2 0 1.67

Range U 3 1 1 2 0 2 4 0 0 1.44

Range LH 2 1 2 4 2 2 4 1 0 2.00

Figure 5.4 displays the convergence and uncertainty associated with the computation of
the total order indices of the mitral value resistance Rmv for the 1-chamber model against
the discrete measurements. In all cases, as the sample sizes are increased, the accuracy of
the estimations and uncertainty associated with the indices improve. The Jansen and Janon
estimators provide the most efficient convergences and smallest errors when calculating the
indices. A sample size of N = 10,000 is taken for the discrete measurements, because the
columns for the Jansen and Janon estimators (Panels K - T) show that any additional samples
would return minimal improvements in terms of accurate calculation of the indices. The
Homma and Sobol estimators (Panels A - J) show considerably larger errors than that of the
Jansen and Janon estimators. When the upper limit sample size of k = 40,000 is reached, the
Homma and Sobol estimators appear to have converged, with reduced errors when combined
with the Sobol, Lattice Rule and Golden sampling methods, although the errors are still much
larger than those exhibited by the Jansen and Janon estimators. The uniform and Latin hy-
percube sampling methods present the largest errors when combined with the Sobol estimator.

For total order indices on the 1-chamber model with discrete measurements, the histograms
presented in Figure 5.5 show that the orthogonality spreads for the Jansen and Janon es-
timators, across all sampling methodologies other than the Janon estimator and the Latin
Hypercube sampling pairing, are identical. We notice, the orthogonality distributions re-
turned from the Homma estimator exhibit large variations for each sampling methodology,
as noted for continuous measurements shown in Figure 5.3. The Sobol estimator column
(Panels F - J) in Figure 5.5 shows orthogonality spreads which are somewhat similar to that
of Jansen and Janon but still quite variable between sampling methodologies. These results
are summarised in Table 5.4 where the Jansen and Janon estimators are shown to invariant to
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sampling methodologies, whilst the rankings of parameter orthogonality for the Sobol and
Homma estimators vary amongst different sampling methodologies.

In Table 5.5, stratifying by estimator type and examining the range an input parameter
exhibits across all sampling methodologies reveals that the Jansen and Janon estimators
exhibit no variation for any input parameter set for any sampling methodology, once again
implying they are the optimum choice. The Homma and Sobol estimators exhibit variations
of 5.11 to 2.22, respectively depending on the input parameter set. The variations for the dis-
crete measurements are much greater than the variations seen with continuous measurements.
When stratifying by sampling type, Table 5.6 shows the Sobol sampling method exhibits the
smallest mean variation of an input set across all estimator types. As previously, since only
the Sobol and Homma estimator exhibit significantly variable parameter rankings, stratifying
by sampling methodology places more emphasis on the apparently less robust estimators.
From this result, it does appear the Sobol sampling method may improve the robustness
associated with a parameter orthogonality ranking. One notable observation from Tables
5.1 and 5.4 is that while the robustness of the Jansen and Janon estimator is evidenced in
both tables, the ranking associated with the orthogonality of input parameters changes quite
dramatically (for example, Emin, Rmv, Zao and Rs), highlighting how the change in data type
may have consequences in parameter interpretation when conducting a sensitivity analysis.

Overall, for the 1-chamber model with 9 input parameters the Jansen and Janon estimators
appear consistently to be the most robust and most reliable which may be attributed to
excellent convergence exhibited by these estimators. Sobol and Homma estimators provide
very variable parameter rankings across different sampling methodologies, an observation
which accords with the poor convergence of these estimators. The Sobol sampling method
appears to reduce the level of uncertainty associated with an input parameter’s orthogonality
ranking, as shown in Tables 5.3 and 5.6. Interestingly, continuous measurements appear to
reduce the level of variation associated with parameter orthogonality ranking, when compared
to discrete measurements.

5.2.3 2-chamber Model

We present the results of our uncertainty study on the 20 parameters, 2-chamber model. First,
the uncertainty associated with the computation of Sobol total order indices, for this more
complex model, with N = 20,000 samples, is presented in Figure 5.6. Only the results for
the left ventricular maximum elastance Emaxlv are displayed here. The Jansen and Janon
estimators give identical index and confidence interval calculations, apart from when com-
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Fig. 5.4 Total order Sobol indices ST of the mitral valve resistance Rmv for the 1-chamber
model with discrete measurements: Panels A - T show ST of Rmv, for 3 discrete measure-
ments: mean left ventricular pressure, maximum systemic arterial pressure and maximum
left ventricular volume (represented in blue, yellow and green, respectively), evaluated at
increasing sample sizes (N ∈ [2000,40000] using B = 1000 bootstrapped samples), with
differing estimators and sampling methodologies. The bands represent 95% confidence
intervals associated with specific indices displayed as solid curves. The red solid vertical
lines represent the point (N = 10,000) at which the sample size is taken.
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Fig. 5.5 Orthogonality distributions of input parameters for the 1-chamber model with
discrete measurements: Histograms A-T show the distribution of orthogonality returned
from examinations of the sensitivity vectors, calculated from continuous measurements.
Here, an orthogonality score of 1 represents total independence of input parameters, 0
total dependence. Each individual diagram denotes a specific combination of sampling
methodology and estimator type. The frequency of each histogram is normalised such that it
is comparable between plots, i.e., the larger the frequency of a bin, the larger the number of
orthogonality scores calculated from the original sensitivity vectors.
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Table 5.4 Input parameter ranking for the 1-chamber model with discrete measurements:
Again, input parameters are ranked based on the averaged orthogonality score returned from
the calculated total order sensitivity matrix. The ranking is also stratified by both sampling
and estimator types.

τes τep Rmv Zao Rs Csa Csv Emax Emin

H
om

m
a

SS 3 1 4 2 5 9 8 6 7
LR 3 1 4 2 6 7 9 8 5
GR 2 4 6 1 7 5 8 9 3
U 5 2 8 6 7 3 9 4 1

LH 3 4 5 6 1 8 2 7 9

So
bo

l

SS 3 2 4 1 5 8 7 6 9
LR 6 2 4 1 3 9 7 5 8
GR 3 2 5 1 6 7 8 4 9
U 1 3 5 2 4 8 7 6 9

LH 7 1 4 2 3 6 8 5 9

Ja
ns

en

SS 5 2 3 1 4 9 7 6 8
LR 5 2 3 1 4 9 7 6 8
GR 5 2 3 1 4 9 7 6 8
U 5 2 3 1 4 9 7 6 8

LH 5 2 3 1 4 9 7 6 8

Ja
no

n

SS 5 2 3 1 4 9 7 6 8
LR 5 2 3 1 4 9 7 6 8
GR 5 2 3 1 4 9 7 6 8
U 5 2 3 1 4 9 7 6 8

LH 5 2 3 1 4 9 7 6 8

Table 5.5 Input parameter ranking for the 1-chamber model with discrete measurements:
The range of parameter ranking across 5 sampling types for a specific estimator for the 1-
chamber model with discrete measurements.

τes τep Rmv Zao Rs Csa Csv Emax Emin
Mean Variation
of input set

Range Homma 3 3 4 4 6 6 7 5 8 5.11

Range Sobol 6 2 1 1 3 3 1 2 1 2.22

Range Jansen 0 0 0 0 0 0 0 0 0 0

Range Janon 0 0 0 0 0 0 0 0 0 0
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Table 5.6 Input parameter ranking for the 1-chamber model with discrete measurements:
The ranges of input parameters across 4 estimator types for a specific sampling method for
the single ventricle model with discrete measurements.

τes τep Rmv Zao Rs Csa Csv Emin Emax
Mean variation
of input set

Range SS 2 1 1 1 1 1 1 0 1 1.11

Range LR 3 1 1 1 3 2 2 3 3 2.11

Range GR 3 2 3 0 3 4 1 5 6 3.00

Range U 4 1 3 5 3 6 2 2 8 3.56

Range LH 4 3 2 5 3 3 6 2 1 3.22

bined with the lattice rule sampling methodology, the plots show slightly larger confidence
intervals for the left ventricular volume comparing to the other cases. The Homma and Sobol
estimators again display much larger confidence interval estimates compared to the Jansen
and Janon estimators. The errors associated with the Sobol sampling methodology when the
Homma and Sobol estimator are used, are much smaller compared to the Latin hypercube and
uniform sampling methodologies, hence demonstrating the impact sampling methodology
can have on the estimations of sensitivity indices.

Next, we calculate total order indices on the 20 dimensional 2-chamber model with continu-
ous measurements. From the histograms presented in Figure 5.7, the orthogonality spreads
for the Jansen and Janon estimators are nearly identical across sampling methodologies,
excluding the uniform sampling (which shares the same orthogonality spread between the
two estimators). With the Homma estimator, the spreads of orthogonality appear more
consistent amongst the sampling techniques associated with itself, comparing against the
test cases on the 1-chamber model, however, they are largely different from what returned
from the Jansen and Janon estimators. The Sobol estimator generated results which appear
closer to the orthogonality distributions of the Jansen and Janon estimators, whilst they are
not identical, the orthogonality distributions between different sampling methodologies are
more consistent than the ones exhibited by the Homma estimator. Considering Table 5.7,
the rankings of input parameters are more consistent for the Jansen and Janon estimators,
although there are slight discrepancies, as seen on the simple 1-chamber model.

In Table 5.8, stratifying by estimator type and examining the range an input parameter
exhibits across all sampling methodologies reveals that the Jansen and Janon estimators
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exhibit minimal variations to sampling methodologies - 1.3 and 1.45, respectively. The
Homma and Sobol estimators exhibit variations of 8.2 and 7.35 respectively, with the input
parameter set. When stratifying by sampling type, Table 5.9 shows the Sobol sampling
method exhibits the smallest mean variation of an input set across all estimator types of
7.2. This is still a large variation, due to all estimator types being considered and therefore
the range accounts for some of the spurious values generated by the Homma and Sobol
estimators.

Table 5.7 Input parameter ranking for the 2-chamber model with continuous measure-
ments: Here, input parameters are ranked based on the averaged orthogonality score returned
from the calculated total order sensitivity matrix. In addition, the ranking is stratified by both
sampling and estimator types.

Homma Sobol Jansen Janon

SS LR GR U LH SS LR GR U LH SS LR GR U LH SS LR GR U LH
Eminlv 3 8 8 2 2 12 8 13 9 11 5 5 5 6 5 5 5 6 6 5
Emaxlv 7 11 15 1 1 2 3 3 5 5 1 1 1 1 1 1 1 1 1 1
τeslv 1 4 6 6 8 8 5 8 8 8 3 3 3 4 3 3 3 3 4 3
τeplv 2 5 7 7 9 9 4 6 6 9 2 2 2 2 2 2 2 2 2 2

Eminla 8 10 1 12 11 13 14 7 2 14 7 7 7 7 7 7 7 7 7 7
Emaxla 9 9 2 11 12 16 17 18 14 15 18 18 18 19 18 18 18 18 19 18
τesla 19 16 16 18 19 19 19 15 20 13 8 8 8 16 9 8 8 8 16 13
τepla 13 1 11 13 17 15 15 20 18 20 16 16 17 17 16 16 16 17 17 15
Zao 10 2 13 14 13 11 10 12 7 10 4 4 4 3 4 4 4 4 3 4
Rmv 17 15 12 3 5 18 16 17 10 18 17 17 16 15 17 17 17 16 15 17
Csas 16 17 18 20 20 7 6 4 17 16 9 9 9 8 8 9 9 9 8 8
Rsas 18 18 19 16 16 14 7 14 4 12 6 6 6 5 6 6 6 5 5 6
Lsas 14 20 17 17 15 1 2 2 1 1 15 15 15 14 15 15 15 15 14 16
Csat 6 3 3 4 4 6 11 9 12 7 10 10 10 9 10 10 10 10 9 9
Rsat 12 12 14 15 18 3 9 5 19 6 13 11 12 11 13 13 11 12 10 10
Lsat 15 19 20 19 14 10 1 1 3 2 14 14 14 13 14 14 14 14 13 14
Rsar 5 6 4 9 6 5 12 11 16 3 12 13 13 12 12 12 13 13 12 12
Rscp 4 7 5 10 7 4 13 10 15 4 11 12 11 10 11 11 12 11 11 12
Rsvn 20 14 9 5 10 20 18 16 11 19 19 19 19 18 19 19 19 19 18 19
Csvn 11 13 10 8 3 17 20 19 13 17 20 20 20 20 20 20 20 20 20 20

Figure 5.8 displays the convergence and uncertainty associated with the computation of
the total order indices of the venous compliance Csvn, for the 2-chamber model, against
our discrete measurements. We see in all cases that, as the sample size is increased, the
estimate and uncertainty associated with the indices improve. Similar to the continuous
measurement case for Emaxlv shown in Fig 5.6, the Jansen and Janon estimators provide the
most efficient convergence and the smallest error when calculating the indices. A sample
size of N = 20,000 is taken for the discrete measurements, as seen in the Jansen and Janon
columns (Panels K - T), any additional sampling would return minimal improvements in
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Fig. 5.6 Total order Sobol indices ST of the maximal left ventricular elastance Emaxlv for
the 2-chamber model with continuous measurements: Panels A - T show ST of Emaxlv ,
for 3 continuous measurements - left ventricular pressure, systemic arterial pressure and the
left ventricular volume (represented in blue, yellow and green curves, respectively), over a
single cardiac cycle with differing estimators and sampling methodologies. Measurements
are evaluated with N = 20, 000 samples, using B = 1000 bootstrapped samples to evaluate
the uncertainty of the estimate. The bands represent 95% confidence intervals associated
with specific indices displayed as solid curves. Note all axes are equal for easy comparison
however the maximum values for the Homma and Sobol estimators are 0.4.
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Fig. 5.7 Orthogonality distributions of input parameters for the 2-chamber model with
continuous measurements: Histograms A-T show the distribution of orthogonality returned
from examinations of the sensitivity vectors, calculated from continuous measurements.
Here, an orthogonality score of 1 represents total independence of input parameters, whereas
0 represents total dependence. Each diagram denotes a specific combination of sampling
methodology and estimator type. The frequency of each histogram is normalised such that it
is comparable between plots, i.e., the larger the frequency of a bin, the larger the number of
orthogonality scores calculated from the original sensitivity vectors.
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Table 5.8 Input parameter ranking for the 2-chamber model with continuous measure-
ments: The ranges of input parameters across 5 sampling types, for a specific estimator for
the 2-chamber model with continuous measurements.

Range Homma Range Sobol Range Jansen Range Janon

Eminlv 6 5 1 1
Emaxlv 14 3 0 0
τeslv 7 3 1 1
τeplv 7 5 0 0

Eminla 11 12 0 0
Emaxla 10 4 1 1
τesla 3 7 8 8
τepla 16 5 1 2
Zao 12 5 1 1
Rmv 14 8 2 2
Csas 4 13 1 1
Rsas 3 7 1 1
Lsas 6 1 1 2
Csat 3 6 1 1
Rsat 6 16 2 3
Lsat 6 9 1 1
Rsar 5 11 1 2
Rscp 6 11 2 1
Rsvn 15 9 1 1
Csvn 10 7 0 0

Mean Variation
Of Input Set 8.2 7.35 1.3 1.45



138
Convergence, Sampling and Total Order Estimator Effects on Parameter Orthogonality in

Global Sensitivity Analysis

Table 5.9 Input parameter ranking for the 2-chamber model with continuous measure-
ments: The ranges of input parameters across 4 estimator types for a specific sampling
method for the 2-chamber model with continuous measurements.

Range SS Range LR Range GR Range U Range LH

Eminlv 9 3 7 7 9
Emaxlv 6 10 14 4 4
τeslv 7 2 5 4 5
τeplv 7 3 5 5 7

Eminla 6 7 6 10 7
Emaxla 9 9 16 9 6
τesla 11 11 8 4 10
τepla 3 15 4 5 5
Zao 7 8 8 11 9
Rmv 1 2 5 12 13
Csas 9 11 14 12 12
Rsas 12 12 14 11 10
Lsas 14 18 15 16 15
Csat 4 8 7 8 6
Rsat 10 3 9 9 12
Lsat 5 18 13 16 12
Rsar 7 7 9 7 9
Rscp 7 4 7 5 8
Rsvn 1 5 10 13 9
Csvn 9 7 10 12 17

Mean Variation
Of Input Set 7.2 8.15 9.3 10.65 9.75
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terms of accurate calculation of the indices. The Homma and Sobol estimators display errors
which are considerably larger than that of Jansen and Janon estimators. We see when the
upper limit sample size of N = 30,000 is reached, the Homma and Sobol estimator errors
are still large. This results demonstrates that for this complex model, less efficient estimators
(such as Homma and Sobol) and a less accurate sampling method (such as Latin hypercube)
display large confidence intervals and struggle to return converged index values.

From the histograms presented in Figure 5.9, the orthogonality spreads exhibit similar
trends to that of the continuous measurements, shown in Figure 5.7. We note that the his-
tograms are identical for the Jansen and Janon except when the Uniform sampling method is
used (which exhibits slight variations from the other histograms). With the Homma and Sobol
estimators, although there appears to be low level consistency amongst their orthogonality
distributions, they are very different to the ones produced by the Jansen and Janon estimators.
Examining Table 5.10, the rankings of input parameters are consistent for the Jansen and
Janon estimators apart from the Uniform column which often returns a parameter ranking
differing to the other sampling types.

In Table 5.11, stratifying by estimator type and examining the range a input parameter
exhibits across all sampling methodologies reveals that the Jansen and Janon estimators
exhibit minimal variation to sampling methodologies - 0.9 and 1.0, respectively. This is an
improvement on the continuous measurements as the Jansen estimator returns less than 1
parameter range variation. The Homma and Sobol estimators produce variations of 10.9 and
5.55 respectively over the input parameter set. When stratifying by sampling type, Table 5.12
shows the Lattice Rule sampling method exhibits the smallest mean variation of an input set
across all estimator types of 5.75. This is still a large variation but is less than that exhibited
by the continuous measurements.

Overall, for the more complex 2-chamber model with 20 input parameters, the Jansen and
Janon estimators are consistently the most robust and reliable estimators. When using
continuous measurements, neither returns an input parameter set mean variation greater than
1. When using discrete measurements, they return a mean variation less than or equal to 1
(see Tables 5.8 and 5.11). This, as in the 1-chamber case, could be attributable to the efficient
rate of convergence displayed by the Jansen and Janon estimator. The Sobol and Homma
estimators exhibit very different parameter rankings across different sampling methodologies
with variations of up to 10.9. These large variations are in line with the poor convergence
associated with these estimators. The Sobol and Lattice Rule sampling method appears to
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Fig. 5.8 Total order Sobol indices ST of the venous compliance Csvn for the 2-chamber
model with discrete measurements: Panels A - T show ST of Csvn, for 3 discrete measure-
ments: mean left ventricular pressure, maximum systemic arterial pressure and maximum
left ventricular volume (represented in blue, yellow and green, respectively), evaluated at
increasing sample sizes (N ∈ [10000,30000] using B = 1000 bootstrapped samples), with
different estimators and sampling methodologies. The bands represent 95% confidence
intervals associated with specific indices displayed as solid curves. The red solid vertical
lines represent the point (N = 20,000) at which the sample size is taken. Note the axes are
equal for easy comparison, the range for the Sobol and Homma estimators is [0.4, 1.2].
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Fig. 5.9 Orthogonality distributions of input parameters for the 2-chamber model with
discrete measurements: Histograms A-T show the distribution of orthogonality returned
from examinations of the sensitivity vectors, calculated from continuous measurements.
Here, an orthogonality score of 1 represents total independence of input parameters, whereas
0 represents total dependence. Each individual diagram denotes a specific combination of
sampling methodology and estimator type. The frequency of each histogram is normalised
such that it is comparable between plots, i.e., the larger the frequency of a bin, the larger the
number of orthogonality scores calculated from the original sensitivity vectors.
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Table 5.10 Input parameter ranking for the 2-chamber model with discrete measure-
ments: Here, input parameters are ranked based on the averaged orthogonality score returned
from the calculated total order sensitivity matrix. In addition, the ranking is stratified by both
sampling and estimator types.

Homma Sobol Jansen Janon

SS LR GR U LH SS LR GR U LH SS LR GR U LH SS LR GR U LH
Eminlv 17 18 14 1 3 7 6 6 9 6 5 5 5 5 5 5 5 5 5 5
Emaxlv 18 14 9 3 7 19 18 19 20 20 20 20 20 19 20 20 20 20 19 20
τeslv 4 5 4 10 11 8 7 8 6 5 4 4 4 4 4 4 4 4 4 4
τeplv 1 1 1 2 8 4 4 7 7 4 3 3 3 3 3 3 3 3 3 3

Eminla 19 19 8 14 12 14 14 14 1 16 16 16 16 18 16 16 16 16 18 16
Emaxla 20 20 6 9 9 15 13 16 15 9 17 17 17 16 17 17 17 17 16 17
τesla 9 12 17 19 17 16 19 18 17 15 12 12 12 12 12 12 12 12 12 12
τepla 15 17 7 12 15 17 17 17 18 7 15 15 15 17 15 15 15 15 17 15
Zao 14 6 12 20 13 3 2 5 4 2 1 1 1 1 1 1 1 1 1 1
Rmv 13 15 10 4 5 18 15 15 16 17 14 14 14 15 14 14 14 14 15 14
Csas 11 7 16 15 16 12 16 11 2 18 7 7 7 7 7 7 7 7 7 7
Rsas 7 10 19 18 20 6 3 4 5 3 2 2 2 2 2 2 2 2 2 2
Lsas 8 8 18 17 19 1 1 1 3 1 18 18 18 14 18 18 18 18 14 18
Csat 5 4 5 11 6 5 5 3 12 12 6 6 6 6 6 6 6 6 6 6
Rsat 10 11 15 13 14 11 11 2 8 8 10 11 9 9 10 10 11 9 9 10
Lsat 6 9 20 16 18 2 10 12 13 13 8 8 8 8 8 8 8 8 8 8
Rsar 3 2 2 8 4 9 8 9 11 11 9 9 10 11 11 9 9 10 11 11
Rscp 2 3 3 7 2 10 9 10 10 10 11 10 11 10 9 11 10 11 10 9
Rsvn 16 16 13 6 1 13 12 13 14 14 13 13 13 13 13 13 13 13 13 13
Csvn 12 13 11 5 10 20 20 20 19 19 19 19 19 20 19 19 19 19 20 19
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Table 5.11 Input parameter ranking for the 2-chamber model with discrete measure-
ments: The ranges of input parameters across 5 sampling types for a specific estimator for
the systemic circulation model with discrete measurements.

Range Homma Range Sobol Range Jansen Range Janon

Eminlv 17 3 0 0
Emaxlv 15 2 1 1
τeslv 7 3 0 0
τeplv 6 3 0 2

Eminla 11 15 2 1
Emaxla 14 7 1 0
τesla 10 4 0 2
τepla 10 11 2 2
Zao 14 3 0 0
Rmv 11 3 1 1
Csas 9 16 0 0
Rsas 13 3 0 0
Lsas 11 2 4 4
Csat 7 9 0 0
Rsat 5 9 2 2
Lsat 14 11 0 0
Rsar 6 3 2 2
Rscp 5 1 2 2
Rsvn 15 2 0 0
Csvn 7 1 1 1

Mean Variation
Of Input Set 10.9 5.55 0.9 1.0
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Table 5.12 Input parameter ranking for the 2-chamber model with discrete measure-
ments: The ranges of input parameters across 4 estimator types for a specific sampling
method for the 2-chamber model with discrete measurements.

Range SS Range LR Range GR Range U Range LH

Eminlv 12 13 9 8 3
Emaxlv 2 6 11 17 13
τeslv 5 3 4 6 7
τeplv 3 3 6 5 5

Eminla 5 5 8 17 4
Emaxla 5 7 11 7 8
τesla 7 7 6 7 5
τepla 2 2 10 6 8
Zao 13 5 11 19 12
Rmv 5 1 5 12 12
Csas 5 9 9 13 11
Rsas 5 8 17 16 18
Lsas 17 17 17 14 18
Csat 1 2 3 6 6
Rsat 1 0 13 5 6
Lsat 6 2 12 8 10
Rsar 6 7 8 3 7
Rscp 9 7 8 3 7
Rsvn 3 4 0 7 13
Csvn 8 7 9 15 9

Mean Variation
Of Input Set 6 5.75 9.35 9.7 9.15
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reduce the level of uncertainty associated with an input parameter’s orthogonality ranking
(see Tables 5.9 and 5.12 ), despite spurious parameter rankings from the Homma and Sobol
estimators leading to large parameter variation when stratified by sampling methodologies.

5.3 Discussion

Utilising two cardiovascular system models, the main aim of our investigation was to test
the robustness of the calculation of the input parameter orthogonality, while varying total
order estimator types and sampling methodologies, across differing input parameter dimen-
sionalities and types of data on which the total order indices were calculated. The results
presented in Section 5.2 show overwhelming robustness for the Jansen and Janon estimators
when calculating total order indices, compared to other estimator options. For the 1-chamber,
9-parameter model, we observed that these two estimators gave nearly invariant outcomes
across sampling methodology and the data type. When the dimensionality of the model
parameters is increased to 20, we noted that the Jansen and Janon estimators still exhibited
small variations on the input parameter orthogonality rankings. For the Jansen estimator
with discrete measurements, it returned a mean variation of less than 1. We observed that the
Homma and Sobol estimators regularly returned mean variations for input parameter sets
greater than 1, which is particularly amplified when the model dimensionality is increased.
These results indicate that if the used estimator and sampling methodology are not robust and
compatible, the calculated optimal parameter set is unreliable. The use of fragile estimators
and sampling methods can therefore produce misleading conclusions with real practical
consequences, especially in life science applications. Interestingly, we witnessed that the
variations attached to the Sobol and Lattice Rule sampling methods were the lowest across
all model dimensionalities and data types. Our results also reinforce the findings reported in
[296, 461], that the commonly used Latin Hypercube method is sub-optimal in exploring the
input parameter space, especially at high dimensionalites.

The Jansen and Janon robustness at calculating total order indices might be attributed
to the Jansen estimator never allowing negative values in the numerator (see definitions in
Table 4.4), whereas the Janon estimator is the only estimator which is proved to be both
asymptotically normally distributed and asymptotically efficient, meaning as the sample
size increases the estimation error associated with calculating the indices is negligible [420].
They are both highly optimised estimators with very little room for improvement [419, 420].
Admitting negative indices in both the Sobol and Homma estimators is a reason for the poor
performance in the calculations of these indices. From the Hoeffding-Sobol decomposition,
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as seen in section 4.5.3, the total order indices can be regarded as a decomposition of the
variance. Thus, any negative value obtained from an estimator is impossible. Any negative
value returned from an estimator is likely to be due to some points in the parameter space
returning unphysiological results. Thus reinforcing the important point of ensuring any
sensitivity indices have adequately converged in order to avoid any of these unstable points.

While the robustness of the Homma and Sobol estimators have been questioned within
this work, this does not mean they lack the ability to produce accurate estimations of parame-
ter influence. Figure 5.10 shows the Homma and Sobol total order estimator results against
the maximum left ventricular volume with an increased sample size comparing to the tests
conducted earlier - N = 100,000 (which requires 2,200,000 model evaluations). We observe
that, now with a much extended sample size, the confidence intervals (green bands in Figure
5.10) and parameter interpretations from Homma and Sobol estimators are similar to that
of the Jansen or Janon estimators, in panels C and D for N = 40,000 samples. In principle,
this demonstrates a credible convergence- that all estimators can, indeed, produce equivalent
results, when ‘sufficiently large’ samples are used. However, with a limited computational
budget, our results indicate a clear estimator choice, to obtain robust and valid parameter
interpretations with the best computational efficiency.

With the highly optimised Jansen and Janon estimators, it is evident that they consistently
exhibit the most efficient convergence and produce the smallest uncertainties when calcu-
lating total order indices. This phenomenon matches the consistent orthogonality observed
among input parameters across various sampling techniques when coupled with the Jansen
and Janon estimator. Conversely, the Homma and Sobol estimators tend to yield significantly
larger uncertainties when sample sizes are held constant among estimators, thus explaining
the lack of consistent orthogonality rankings for the input parameters. Increasing the sample
size seems to ameliorate the uncertainties associated with the Homma and Sobol estimators,
particularly when employing the Sobol, lattice rule, and Golden sampling methods. This
observation underscores the resilience of low-discrepancy sequences, demonstrating their
effectiveness even in conjunction with a sub-optimal estimator. While the work of Puy et al.
[293] did not provide extensive convergence or uncertainty quantification, it is plausible to
infer that the Jansen and Janon estimators, with their superior convergence rates and lower
uncertainty, played a pivotal role in the authors’ conclusion that these estimators are the most
efficient at capturing the true effects of input parameters.

Our investigation was based on two highly non-linear stiff differential algebraic equation
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Fig. 5.10 Estimator comparisons with larger samples for the 2-chamber model with
discrete measurements: The Sobol and Homma estimators results are based on 100k
samples, compared to the Jansen and Janon estimators using 40k samples both with 95%
confidence. The input parameter effect is displayed against the maximum left ventricular
volume as an example here.
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systems with a high level of implicit complexity. Good modelling guidelines originating
here should therefore be applicable to simpler, more linear models which with a less variable
input parameter space. Obtaining sensitivity estimates for linear models is considerably less
expensive than what has been conducted here. Convergence and uncertainty quantification
have historically been omitted from sensitivity analysis studies, despite being acknowledged
as vital, if the results of studies were then to influence policy /societal /clinical decisions
[296, 239]. In this study, we have highlighted the impact that convergence has on a total
order estimator, alongside this, we have also shown the impact of the level of sampling taken,
on the calculation of total order estimators. It is intuitive that the higher density of sampling
leads to better resolution of the input parameter space, hence our sensitivity analysis gives
a better indication about which input parameters are truly influential. Current literature
states that N > 500 but this recommendation is based on physical systems which are mostly
linear. The work conducted and results shown above suggest for a non-linear system, one
needs N > 5000. Still more importantly, it is clear that no two systems are the same -even if
they are based in similar physiology- so for one to ensure adequate resolution of an input
parameter space, convergence and uncertainty quantification through bootstrapping must be
an essential step in any modeller’s workflow, if accuracy and robustness are an issue. In other
fields, such as CFD, it is standard practice for one to perform a mesh convergence study in
order to validate the results. The work conducted here advocates for a similar principled ap-
proach in order to validate the results and interpretations made from sensitivity investigations.

While it is clear that a large sample size is needed in order to ensure accurate sensitivity
estimates, researchers are often restricted by their computational budget. Without sufficient
computational speed, it would be infeasible to perform the requisite number of model eval-
uations to obtain accurate indices interpretation. For our 2-chamber model, 100k samples
required 2.2 million model evaluations. Each model evaluation took 0.039 seconds to run in
Julia, thus it would require 23.8 hours if this was computed in serial. The Julia language has
consistently proved to be 10 to 100 times [444, 445] quicker than other comparable languages
for solving systems of this class and the use of parallel computation has further accelerated
our simulations. Therefore, in situations with a limited computational budget, the selection of
an efficient language and estimators which require fewer samples to reach convergence is key.

Although inexhaustive, the list of estimators investigated in this chapter does represent
those that are readily available, practically usable and computationally feasible. Puy et al.
[293] also recommended the estimator introduced by Azzini et al. [416], which appeared to
produce similar results to the Jansen estimator. The Azzini estimator requires N = 2k(n+1)
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model evaluations, compared to k(n+2) evaluations needed by our other estimators. The
2-chamber model would require N = 1,320,000 model evaluations for an Azzini estimator.
For models with higher parameter dimensions, this would be computationally infeasible.
As the prospect of digital twins in healthcare grows, more complex and detailed models
which accurately represent the true physiological processes are routinely generated. One
bottleneck which prevents the progression of these models to the clinic is the computational
cost associated with a detailed sensitivity analysis. This cost does not rely on calculation of
the indices as much as the process of solving the dynamical system. Therefore, while new
estimators may improve accuracy, the focus must remain on efficient resolution of complex
dynamical systems and the efficiency of the estimators for low sample numbers, in order to
ensure a thorough sensitivity analysis.

All the estimators used here are available in the global sensitivity packages such as SALib,
GlobalSensitivity.jl, SenSobol and sbiosobol [462, 446, 463]. It is reassuring to see that the
default estimator used to calculate the total order index, in the available packages, is the
Jansen estimator. Given the conclusion drawn from Puy et al. [293] and the findings from
this work, researchers could straightforwardly use the above packages when performing
practical identifiability studies and would obtain a reliable optimal set of input parameters
which best describes the experimental data available to them.

A related thread of research is the calculation of total order sensitivity indices where one
assumes dependency between input parameters. This is partially investigated by Puy et
al. [463] when implementing the method of Glen et al. [464]. This method requires a
prescription of linear dependencies between parameters, however, these are often unknown.
Consequently, Puy et. al. noted an inaccuracy associated with this method when calculating
the true effects. There have been various attempts at deriving variance based sensitivity
indices with dependent inputs [465–467], however, like the method of Glen et al. [464],
they require knowledge of the dependencies that exist within the model and therefore the
computational power needed to simulate these indices is often much larger than the standard
Sobol indices. Further, there is no accepted method for how to calculate these dependent
indices which should be of interest for future work. Therefore, the need to understand how
input parameter orthogonality is affected by varying estimators and sampling methodologies
is of significant importance, in order for total order sensitivity indices to be utilised in identi-
fiability studies.

While we have used the method of Li et. al. [19] (see Eq. (5.1)) suitable for practical
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identifiability studies, it is also applicable to other methods. Another approach of identifying
input parameters is the structured correlations method [331] in which one seeks to identify
correlations between parameters and to calculate ranks (based on which parameters can be
identified uniquely if they are not strongly correlated with other parameters). This approach
used the total order sensitivity matrix to calculate these correlations. Therefore, the need for
reliable and robust sensitivity matrices remains- whichever method is implemented.

The work of Puy et al. [293] is conclusive in its findings of the Jansen and Janon esti-
mators being the most reliable in finding a “true” input parameter effect. Our work reinforces
these conclusions, in that we find the Jansen and Janon are the most reliable in the calculation
of input parameter orthogonality (which appears to be motivated by input parameter conver-
gence). Puy et al. [293] also reported that any choice made on the model has a non-negligible
effect. While we agree with these conclusions for the most part, we are able to identify
that similar to the model dimensionality, it appears choices we make, such as the sampling
methodology and type of data used, have more impactful consequences. The lower variation
associated with input parameter sets, when low discrepancy sequences are used, implies their
effectiveness in returning robust and reliable input parameter sets. It appears that there is
no clear advantage of using either continuous or discrete measurements when choosing how
to calculate the total order indices. This may change given the investigation in a different
domain.

5.4 Conclusion

This chapter delved into the intricacies of varying sampling methodologies and variance-
based total order estimators, aiming to establish best practices for practical identifiability
studies. We conducted our investigation using two highly non-linear and stiff LPMs of the hu-
man cardiovascular system as different but physiologically unified, complimentary test cases:
(i) a 1-chamber, 9-parameter model in figure 4.1A and (ii) a 2-chamber, 20-parameter model
in figure 4.1B, both based on differential algebraic equations. Via a thorough assessment of
total order estimators and sampling methodologies, we gained valuable insights into their
strengths and weaknesses, shedding light on the orthogonality of the input parameters within
the models. This analysis complements prior work that focused on the estimators’ ability
to uncover the “true” effects of a model, enriching our comprehension of their practical
identification.

Our findings advocate for the Jansen and Janon estimators as robust choices across dif-



5.4 Conclusion 151

ferent sampling methodologies, measurement data variations, and model dimensions. These
estimators emerge as preferred tools for calculating total order indices and, consequently, for
identifying the optimal set of input parameters. Their efficient convergence and the resulting
reduction in index uncertainty make them the optimal choice for this task. These estimators
of the variance and thus will be robust for any dynamical system investigated in any domain.
Furthermore, we recommend the use of low-discrepancy quasi-random Sobol and Lattice
Rule sampling schemes as optimal sampling methodologies to complement Jansen and Janon
estimators.

This work establishes a framework of good modelling practice for practical identifiabil-
ity studies, considering both the influence of input parameters and their orthogonality. By
incorporating these best practices into modelling studies, researchers can consistently and
reliably identify the optimal input parameters for dynamical systems. This approach not only
enhances the quality and accuracy of parameter identification, but also paves the way for
more informed decision-making in various scientific and practical domains.





Chapter 6

Investigating the Impact of Experimental
Designs on the Personalisation Process: a
Cardiovascular Perspective

I would rather have questions that can’t be answered than answers that can’t be questioned.
— RICHARD FEYNMAN

Summary
In view of the clear need for converged sensitivity indices, this chapter "reverses" the
concept of sensitivity analysis and explores what the impact of changing outputs has on input
parameter ranking and model sloppiness, enhancing our understanding of the complexities
associated with the personalisation process. 1

1This chapter is currently not published however is under review with the journal Computers in Biology and
Medicine. Saxton, H., Taylor, D., Halliday, I., Newman, T., Schenkel, T., Morris, P., Clayton, R., Xu, X. (2024).
The impact of experimental designs & system sloppiness on the personalisation process: A cardiovascular
perspective.
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6.1 Introduction

The concept of digital twin (DT) originates in the 1960s with NASA, who created a virtual
representation in the Apollo 13 moon exploration mission. There are now many definitions
of the DT, one representative example being “a set of virtual information constructs that
mimics the structure, context and behaviour of an individual or unique physical asset, which
is dynamically updated with data from its physical twin throughout its life-cycle and that
ultimately informs decisions that realise value” [468]. In medicine, the potential of the
DT is profound, particularly in enhancing patient care and outcomes - clearly, a digital
representation of an individual’s physiology or pathophysiology holds immense promise, not
least it could empower healthcare professionals to simulate and predict a patient’s disease
trajectory, from compensation to decompensation, or in response to various lifestyle changes
and treatments [469].

In cardiology, the adoption of heart and circulatory DTs has gradually gained momen-
tum and trust within the clinical community, evidenced by several recent proof-of-concept
studies [470, 226, 471]. Traditionally, clinical diagnosis and patient trajectories in cardiology
rely heavily on a clinician’s expertise and population-based averages [472]. However, the
emergence of DTs in cardiology signifies a shift towards a more personalised approach. These
DTs integrate mechanistic (physics-based) models, grounded in physiological understanding
of the heart, human circulation, and related physiological processes, with dynamic clinical
data collected over time or immediate data from the clinic [7]. This integration enables the
DT to provide tailored predictions and clinical decision support. Virtual representations of a
patient’s full cardiovascular health in differing states are referred to as their “physiological
envelope" [237].

Clinical data are valuable resources, thus the choice or requirement of what data are needed
to personalise a LPM (to create a useful cardiovascular DT) is multi-faceted [240]. Within
a clinical setting, they range over both continuous and discrete measurement data and the
process of obtaining diagnostically useful data often requires invasive tests on a patient.
With any data - blood pressure, flow and volume for each compartment (say), one then
calculates "derived" clinical metrics (with clinical precedent). Examples include (i) ejection
fraction [473] which is traditional stratifier of heart failure; (ii) pulse pressure [474] to stratify
arterial stiffening; (iii) maximum blood velocity [475] to stratify heart valve stenosis; (iv)
cardiac output [476] to assess overall heart health. One also observes various clinical time
series waveforms such as ventricular pressures and volumes [477]. Such metrics can be
amalgamated into a DT, enriching the model’s predictions with patient-specific information
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with what amounts to a weak form of validation. In general, a plethora of available clinical
tests (each carrying its own risks to patients, note) may be ordered, to generate metrics that
are of variable importance in creating a faithful virtual representation of a patient; ranking
them for importance is a challenging task. Each set of measurements collected and utilised
to perform DT related tasks is denoted an experimental design [478].

The integration of clinical data into an LPM, to form a DT is for all practical purposes
precisely ‘the personalisation process’ (or ‘model personalisation’). Mathematically, this task
is an ‘inverse problem’ [479]. One can think of the solution to the personalisation process
as an input parameter set that locates the global minimum of a hypersurface, spanned by
the combination of input parameters of the mechanistic model and the available clinical
measurements. These parameters potentially provide unique clinical biomarkers [480], be-
cause they define a point in the input parameter hyper space such that the outputs of our
mechanistic model most closely match the clinical measurements of a patient. Put another
way, the coordinates of this model operating point in the input parameter space define a
patient’s patho/physiological state.

There remain many very important open questions surrounding the personalisation pro-
cess, which we distil as explicit questions:

1. What clinical data must be acquired in-vivo to obtain patient-specific biomarkers?

2. Is a set of biomarkers invariant in the presence of changed experimental designs?

3. How straightforward is the solution of the personalisation problem under different
experimental designs? Does one require a complex genetic algorithm or a simple
gradient descent method?

4. Should DTs prioritise individual patient “physiological envelopes" or should they
target specific conditions?

These expansive and important question clearly require extensive work from the entire
community. We concern ourselves to ask to what extent the above questions can be answered.
Before proceeding, it is important to note that all investigations in this work are conducted
with forward generated model data first to understand the ideal setting by eliminating the
confounding effects of e.g. noise. Clinical data obtain in-vivo may provide polluted steer to
the in-silico data obtained from the model.
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6.1.1 Clinical Measures

When varying the experimental design, we adopt medically representative measures i.e. those
utilised in diagnosing cardiovascular diseases. To investigate the effect of experimental
design, we devise an additive algorithm: each time we move to what we will designate a
new measurement level (see below) we add the new measurement to the previous output set,
therefore defining a new “unified" output space, of progressively increased dimension, for
the analysis of input parameter effects.

In tables 6.1, 6.2 and 6.3, we declare what we define to be progressive, or stratified measure-
ment “levels". See table captions. The latter are essentially sets of increasing cardinality,
containing discrete, continuous and mixed measurements.

6.1.1.1 Discrete Measurements

In the discrete case in table 6.1, we utilise only single point metrics. These metrics can be
obtained through just 3 clinical tests:

1. Blood Pressure (BP): This can be readily obtained through a cuff reading while a
patient is in hospital. In our chosen model, this measurement is obtained by calculating
Max(Psa)
Min(Psa)

and corresponds to Level 1.

2. Ejection Fraction (EF): This can be obtained through an echocardiogram. In our
model, we calculate EF for the left and right ventricle then the left and right atria as
Max(Vi)−Min(Vi)

Min(Vi)
. For i = lv,rv, la,ra this corresponds to Levels 2A, 2B, 2C and 2D.

3. Max(Qi) - Maximum flow: This could be obtained from either an echocardiogram or a
cardiac MRI. This is calculated for the systemic, pulmonary, aortic valve, mitral valve,
pulmonary valve and tricuspid valve.

To emphasise the additive process of the experiment in the discrete setting, for example the
full output set for Level 3A is defined as follows:

Level 3A = (BP,EFcv,EFrv,EFca,EFra,Max(Qs)).

6.1.1.2 Continuous Measurements

For the continuous measurements displayed in table 6.2, each continuous waveform obtained
is made up of 150 time points, obtained though 4 clinical data streams below.
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Table 6.1 Table of Discrete Measurements: Each discrete level (top row) declares which
new measurement is added to an increasing model target outputs set. For example, set 2D is
the union of all data in sets 1A to 2D; Vra augments the set of all preceding measurements.
Each discrete measurement equates to a single point extracted from the cardiovascular cycle.

Discrete Measurement Levels
Measurement

Level 1 2A 2B 2C 2D

Measurement
Added BP EFlv EFrv EFla EFra

Measurement
Level 3A 3B 3C 3D 3E 3F

Measurement
Added Max(Qs) Max(Qp) Max(Qlv) Max(Qla) Max(Qrv) Max(Qra)

1. Qi - Flow rate: can be obtained through a doppler ultrasound, for the systemic, pul-
monary, aortic valve, mitral valve, pulmonary valve and tricuspid valve.

2. Vi - Chamber volume: can be obtained through a cardiac MRI, for the two ventricles
and two atria.

3. Pcv,Psa - Left heart pressures: can be obtained through invasive catherterisation for the
left ventricle and systemic artery.

4. Prv,Ppa,Pra,Ppv - Right heart and circulation pressures: can be obtained by invasive
Swan-Ganz catherterisation and wave form pressures are collected in the right heart
for the right ventricle, pulmonary artery, right atrium and pulmonary vein.

6.1.1.3 Mixed Measurement Levels

The previous two measurement settings will reveal the difference between continuous and
discrete metrics. The mixed measurement level combines both the discrete and continuous
measurements but represents a standard diagnosis procedure with increasing invasiveness,
i.e., in clinic, a patient would not be subject to invasive chamber pressure measurements
unless deemed necessary. Apart from one additional measurement (noisy blood pressure)
which will be introduced below, all other metrics and corresponding measurement levels are
the same as those defined in sections 6.1.1.1 and 6.1.1.2.

• BPN - noisy blood pressure: This level is added to account for the situation of a patient
taking their own arterial blood pressure at home, with noisy readings due to human
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Table 6.2 Continuous Measurements: Each continuous level shows which new time series
measurement is added to the expanding set of outputs which also contains all measurements
previous measurements. Each continuous measurement relates to a single converged cardio-
vascular cycle, consisting of 150 time points.

Continuous Measurement Levels

Measurement
Level 1A 1B 1C 1D 1E 1F

Measurement
Added Qs Qp Qlv Qla Qrv Qra

Measurement
Level 2A 2B 2C 2D 3A 3B

Measurement
Added Vlv Vrv Vla Vra Psv Psa

Measurement
Level 4A 4B 4C 4D

Measurement
Added Prv Ppa Pra Ppv
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error and lower device accuracy. The analysis of noisy output data will illustrate how
global sensitivity indices alter in the presence of noise.

BPN is calculated as

BPN =
Max(Psa)

Min(Psa)
× (1+ ε), ε ∼ N(0,0.1).

In this setting, Level 2 represents an arterial blood pressure measurement obtained in the
hospital, not being subject to noise. Slightly different to the measurement levels introduced
in sections 6.1.1.1 and 6.1.1.2, here Level 2 will replace Level 1 (instead of adding to it) and
Level 2 will be used in all increasing measurement sets for the later levels.

Table 6.3 Table of Mixed Measurement: Each level declares which new measurement is
added to the increasing output set (apart from Level 2 which replaces Level 1) along with the
accumulation of all previous measurements. Each discrete measurement added corresponds
to a single cardiovascular cycle. For each continuous measurement added this is a converged
cardiovascular cycle resolved on 150 equispaced time points.

Mixed Measurement Levels
Measurement

Level 1 2 3A 3B 3C 3D

Measurement
Added BPN BP EFlv EFrv EFla EFra

Measurement
Level 4A 4B 4C 4D 4E 4F

Measurement
Added Qs Qp Qlv Qla Qrv Qra

Measurement
Level 5A 5B 5C 5D 5E

Measurement
Added Max(Qlv) Max(Qla) Max(Qrv) Max(Qra) Vlv

Measurement
Level 5F 5G 5H 6A 6B

Measurement
Added Vrv Vra Vra Psv Psa

Measurement
Level 7A 7B 7C 7D

Measurement
Added Prv Ppa Pra Ppv
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6.2 Results

Sections 6.2.1, 6.2.2 and 6.2.3 account for average input parameter influence across all
outputs, for varying experimental design, using the method of section 4.10. The average
input parameter rank and values are displayed as tables. The corresponding figure in each
section shows the eigenvalues of the Fisher information matrix on a log10 scale, for varying
measurement levels (see sections 4.4 and 4.13). The sections below present results for the
varying discrete, continuous and mixed measurement levels, respectively, as described in
section 6.1.1.

6.2.1 Discrete Measures

Table 6.4 ranks each input parameter and their corresponding influence value based upon
discrete measurements. We note, from level 1 to level 3F, the resistance of the systemic
vascular bed Rsvb and the systemic arterial compliance Csa rank highest, with the largest
influence values with the exception from level 2D in which Eshi f t,ra ranks the most influential.
This can be explained by the experimental design. The newest measurement added for level
2D was the ejection fraction of the right atrium. The Eshi f t,ra parameter controls the ejection
of blood for the whole system thus if the timing of atrial contraction is wrong this can impact
the whole system. However in all the other cases, it appears Rsvb and Csa still dominate. As
more measurements are added to the experimental design, we observe more input parameters
record an influence score greater than 0.01. For case 3F where there are 11 outputs, 17 input
parameters are recorded with an influence score larger than 0.01. As the measurement set
increases, the largest influential value decreases. In addition, as more measurements are
added, although more “influential" parameters are obtained, the majority have an influence
score of O(10−2).

The result in figure 6.1 shows that the model cannot be regarded as sloppy with a discrete
output set. With an increasing output set, we observe more input parameters are regarded
as stiff. Even with the largest output set, level 3F, the model still exhibits an eigenvalue
spectrum spanning >15 orders of magnitude.

6.2.2 Continuous Measures

With an increasing continuous measurement set, in table 6.5, a much higher number of influ-
ential input parameters are present, compared to the discrete case (table 6.4). Even with just
a single continuous measurement of the systemic flow (Column 1A), 17 input parameters are
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Table 6.4 Input parameter ranking for discrete measurements: Averaging across all
output space, the input parameter rank and its influence value are displayed, for increasing
discrete measurements. Here P represents the parameter and E the corresponding average
influence value.

Measurement Levels
1 2A 2B 2C 2D

P E P E P E P E P E
Csa 0.80 Rsvb 0.44 Rsvb 0.34 Rsvb 0.26 Eshi f t,ra 0.24
Rsvb 0.60 Csa 0.43 Csa 0.33 Csa 0.26 Rsvb 0.10
τes,lv 0.04 Emax,lv 0.24 Emax,lv 0.18 Emax,lv 0.14 Csa 0.10

V0,lv 0.04 V0,lv 0.03 V0,lv 0.03 Emax,lv 0.06
τes,lv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,ra 0.04

τes,lv 0.02 τes,lv 0.01 τep,rv 0.02
Emin,rv 0.01
Emax,rv 0.01
V0,lv 0.01

Measurement Levels
3A 3B 3C 3D 3E 3F

P E P E P E P E P E P E
Rsvb 0.22 Rsvb 0.20 Rsvb 0.19 Rsvb 0.17 Rsvb 0.15 Rsvb 0.13
Csa 0.20 Csa 0.18 Csa 0.17 Csa 0.15 Csa 0.13 Csa 0.11

Emax,lv 0.10 Emax,lv 0.09 Emax,lv 0.09 Emax,lv 0.09 Emax,lv 0.08 Eshi f t,ra 0.10
Eshi f t,ra 0.05 Eshi f t,ra 0.06 Eshi f t,ra 0.06 τes,lv 0.05 Eshi f t,ra 0.05 Emax,lv 0.07
Emin,lv 0.03 Emin,lv 0.03 Emin,lv 0.03 Eshi f t,ra 0.05 τes,lv 0.05 τes,lv 0.04
Emax,rv 0.02 Emax,rv 0.02 Cpa 0.03 Emin,lv 0.03 Emin,lv 0.05 Emin,lv 0.03
V0,lv 0.02 V0,lv 0.01 Rpvb 0.03 Emax,rv 0.02 Emax,rv 0.03 Emax,ra 0.03
Csv 0.01 Csv 0.01 Emax,rv 0.02 Emax,la 0.02 τes,rv 0.02 Emax,rv 0.03

Emax,la 0.01 Emax,la 0.01 Eshi f t,la 0.02 Eshi f t,la 0.02 Emax,la 0.02 τes,rv 0.03
Eshi f t,la 0.01 Eshi f t,la 0.01 Emax,la 0.02 Csv 0.01 Eshi f t,la 0.02 Emin,ra 0.02

τes,lv 0.01 Cpa 0.01 Csv 0.02 V0,lv 0.01 Csv 0.02 Csv 0.02
Rpvb 0.01 Rpvb 0.01 V0,lv 0.01 Cpa 0.01 Emin,rv 0.01 Eshi f t,la 0.02

Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 V0,lv 0.01 Emax,la 0.02
τes,lv 0.01 τes,lv 0.01 Emax,ra 0.01 Rpvb 0.01 Cpa 0.01 Emin,rv 0.01

Rpvb 0.01 Rpvb 0.01 Rra 0.01
Cpa 0.01
Rpvb 0.01
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Fig. 6.1 Discrete measures - sloppy analysis: The eigenvalues of the Fisher information
matrix for increasing discrete measurements are displayed here on a log10 scale.
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regarded as influential. In level 4D, where there are 16 continuous output measurements, 20
input parameters are recorded as influential. Here, the ranking of influential input parameters
shows much less consistency, compared to table 6.4. The most influential parameters appear
loosely to correlate with the latest output added to the measurement list. For example, in level
3B, the left ventricular pressure and systemic arterial pressure are new additions to the output
set, and then the top ranking parameters are the minimal ventricular elastance Emin,lv and the
end pulse time for the left ventricle τep,lv. Whereas in level 4C, pressures associated with the
pulmonary system have just been added, then the top ranking parameters are the right atrial
activation time Eshi f t,ra and the minimal elastance for the right ventricle Emin,rv. Despite the
change in rankings, we note that a similar set of input parameters qualify as influential, with
just minor changes when new output measurements are added. As observed in the discrete
measurement set, when more input parameters are influential, the concentration of influence
decreases and is more evenly spread between the input parameters with an influence value
>0.01.

Figure 6.2 shows that for any continuous measurement set, the system can be regarded as
sloppy. When increasing the output measurements, the level of sloppiness decreases, with
the eigenvalue spectra contracting from a range of 10−16 to 10−6. Compared to the discrete
sloppy analysis (figure 6.1), input parameters in the stiff direction exhibit larger values than
observed previously.

6.2.3 Mixed Measures

When combing both discrete and continuous measurements, the results in table 6.6 show a
similar structure to that observed when only continuous measurements are utilised. When
BPN is the only output, all input parameters record an influence greater than 0.01, despite the
noise, there are still clear influence parameters (Csa,Rsvb and τes,lv) which might be regarded
as biomarkers. However, when we introduce the noise free BP, the influence values associated
with the biomarkers increase significantly. At level 4A, the first continuous measurement is
introduced alongside the previous discrete ones. As a consequence, we observe the number
of input parameters with influence greater than 0.01 grows from 9 in level 3D to 17 in level
4A. In level 7D (which contains all discrete and continuous measurements) the exact same
ranking as level 4D in table 6.5 manifests, although the values of influence vary slightly.
This indicates that continuous measurements dominate, when obtaining influential input
parameters for a set of measurements. This pattern is also present in figure 6.3, where
once continuous measurements are introduced to the output list, sloppiness appears and the



164
Investigating the Impact of Experimental Designs on the Personalisation Process: a

Cardiovascular Perspective

Table 6.5 Input parameter rankings for continuous measurements: Averaging across all
output space, we declare input parameter rankings and their respective influence value, for
increasing continuous measurements.

Measurement Levels

1A 1B 1C 1D 1E 1F

P E P E P E P E P E P E

Emin,lv 0.57 Emin,lv 0.32 τes,lv 0.38 Eshi f t,la 0.21 Eshi f t,la 0.19 Eshi f t,la 0.11
Rsvb 0.26 Eshi f t,la 0.16 Emin,lv 0.14 τep,lv 0.18 τep,lv 0.15 Eshi f t,ra 0.1
Csa 0.23 Rsvb 0.16 Rsvb 0.1 Emin,lv 0.07 Emin,lv 0.06 τep,lv 0.08
τes,lv 0.16 Cpa 0.14 Csa 0.06 τes,lv 0.06 τes,lv 0.05 Emin,lv 0.04
Cpv 0.15 Csv 0.12 Emax,lv 0.06 Rsvb 0.03 τes,rv 0.05 τes,rv 0.04

Eshi f t,la 0.13 Csa 0.11 Eshi f t,la 0.05 Cpa 0.03 Rsvb 0.03 τes,lv 0.03
Emax,lv 0.13 Rpvb 0.11 Csv 0.04 Emin,la 0.03 Cpa 0.03 τep,rv 0.03

Csv 0.12 τes,rv 0.1 Cpa 0.04 Csv 0.02 Emin,la 0.02 Rsvb 0.02
Eshi f t,ra 0.08 Cpv 0.1 Cpv 0.04 Emax,la 0.02 Csv 0.02 Cpa 0.02
Emax,la 0.08 Emax,lv 0.09 Rpvb 0.03 Rpvb 0.02 Emax,la 0.02 Csv 0.02
Emin,rv 0.08 τes,lv 0.09 Eshi f t,ra 0.03 τes,rv 0.02 Rpvb 0.02 Rpvb 0.01
Emax,rv 0.07 Eshi f t,ra 0.07 τes,rv 0.03 Csa 0.01 Csa 0.02 Emin,la 0.01

Cpa 0.07 Emin,rv 0.07 Emin,rv 0.03 Emax,lv 0.01 Emax,lv 0.02 Emin,rv 0.01
Rpvb 0.04 Emax,la 0.06 τep,lv 0.02 Cpv 0.01 Cpv 0.01 Emax,la 0.01

Emax,ra 0.03 Emax,rv 0.05 Emax,la 0.02 Eshi f t,ra 0.01 Emin,rv 0.01 Emax,lv 0.01
Rsv 0.02 τep,lv 0.04 Emin,rv 0.01 Eshi f t,ra 0.01 Csa 0.01

Emin,la 0.02 Emin,la 0.03 Cpv 0.01
Emax,ra 0.02

Measurement Levels

2A 2B 2C 2D 3A 3B

P E P E P E P E P E P E

τep,lv 0.18 τep,lv 0.12 Eshi f t,la 0.11 Eshi f t,ra 0.16 τep,lv 0.12 Emin,lv 0.1
Eshi f t,la 0.06 Eshi f t,ra 0.1 τep,lv 0.1 Eshi f t,la 0.06 Emin,lv 0.09 τep,lv 0.08
Emin,lv 0.04 Eshi f t,la 0.06 Emin,lv 0.08 Emin,lv 0.05 Eshi f t,ra 0.08 Rsvb 0.08

Eshi f t,ra 0.04 Emin,lv 0.05 Eshi f t,ra 0.06 τep,lv 0.04 Eshi f t,la 0.07 Eshi f t,ra 0.07
τes,lv 0.03 τes,rv 0.03 Emin,la 0.05 Emin,rv 0.03 Emin,la 0.04 Eshi f t,la 0.07

Emax,lv 0.02 τes,lv 0.03 Emax,lv 0.03 Emin,la 0.03 τes,lv 0.03 τes,lv 0.07
τes,rv 0.02 τep,rv 0.03 τes,lv 0.02 τep,rv 0.03 Emax,lv 0.03 Emin,la 0.04
Rsvb 0.02 Emax,lv 0.02 Csv 0.02 Csv 0.02 Csv 0.02 Emax,lv 0.03
Csv 0.02 Csv 0.02 τes,rv 0.02 Emin,ra 0.02 Emin,rv 0.02 Csv 0.03
Cpa 0.01 Rsvb 0.02 Rsvb 0.02 τes,rv 0.02 Rsvb 0.02 Emin,rv 0.03
Csa 0.01 Emax,rv 0.02 Emax,la 0.02 Emax,rv 0.02 Emax,rv 0.02 Csa 0.03

Emin,la 0.01 Cpa 0.01 Emax,rv 0.02 Emax,lv 0.02 Cpv 0.02 Cpv 0.03
Cpv 0.01 Emin,rv 0.01 Cpa 0.02 Rsvb 0.02 Csa 0.02 Emax,rv 0.02

Emin,rv 0.01 Csa 0.01 Csa 0.02 Emax,ra 0.02 τes,rv 0.02 Emax,la 0.02
Cpv 0.01 Cpv 0.02 Cpa 0.01 Cpa 0.02 Cpa 0.02

Emin,la 0.01 Emin,rv 0.02 τes,lv 0.01 Emax,la 0.01 τes,rv 0.02
τep,rv 0.01 Cpv 0.01 τep,rv 0.01 τep,rv 0.01
Rpvb 0.01 Emax,la 0.01 Emin,ra 0.01 Emin,ra 0.01

Csa 0.01 Emax,ra 0.01 Emax,ra 0.01

Measurement Levels

4A 4B 4C 4D

P E P E P E P E

Emin,lv 0.09 Emin,lv 0.09 Eshi f t,ra 0.18 Eshi f t,ra 0.16
Eshi f t,ra 0.08 Eshi f t,ra 0.09 Emin,rv 0.05 Emin,lv 0.08

Rsvb 0.07 Rsvb 0.07 Emin,lv 0.05 Emin,rv 0.05
τep,lv 0.06 τep,lv 0.06 Rsvb 0.04 Rsvb 0.04

Eshi f t,la 0.06 Eshi f t,la 0.05 Csv 0.03 Eshi f t,la 0.04
Emin,rv 0.04 Emin,rv 0.04 Eshi f t,la 0.03 Csv 0.03
τes,lv 0.03 Csv 0.04 Emin,ra 0.03 τep,lv 0.03

Emin,la 0.03 Emin,la 0.03 τep,rv 0.03 Emin,la 0.03
Csv 0.03 τes,lv 0.03 τep,lv 0.02 Emin,ra 0.03

Emax,lv 0.03 Emax,lv 0.03 Emax,rv 0.02 Emax,rv 0.03
τep,rv 0.02 τes,rv 0.03 τes,rv 0.02 Emax,lv 0.02
τes,rv 0.02 τep,rv 0.03 Emax,ra 0.02 τep,rv 0.02

Emax,rv 0.02 Emax,rv 0.02 Emin,la 0.02 τes,rv 0.02
Csa 0.02 Cpv 0.02 Emax,lv 0.01 Cpv 0.02
Cpv 0.01 Csa 0.01 Cpv 0.01 Emax,ra 0.02
Cpa 0.01 Cpa 0.01 Cpa 0.01 τes,lv 0.02

Emin,ra 0.01 Rpvb 0.01 τes,lv 0.01 Csa 0.02
Emax,la 0.01 Emin,ra 0.01 Rpvb 0.01 Cpa 0.02
Emax,ra 0.01 Emax,ra 0.01 Csa 0.01 Rpvb 0.01

Emax,la 0.01 Emax,la 0.01
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Fig. 6.2 Continuous measures - sloppy analysis: The eigenvalues of the Fisher information
matrix for increasing continuous measurements, displayed on a log10 scale.
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eigenvalues are greater than 100 with an eigen-spectrum ranging from 10−12 for level 4B
decreasing down to 10−6 for level 7D.

Table 6.6 Input parameter ranking for mixed measurements: The input parameter ranking
and its influence value, averaging across all outputs, for increasing mixed measurements.

Measurement Levels

1 2 3A 3B 3C 3D 4A 4B 4C 4D 4E 4F 5A

P E P E P E P E P E P E P E P E P E P E P E P E P E

Csa 0.22 Csa 0.80 Csa 0.44 Rsvb 0.34 Rsvb 0.26 Eshi f t,ra 0.24 Emin,lv 0.44 Emin,lv 0.27 τes,lv 0.38 τep,lv 0.25 τep,lv 0.20 τep,lv 0.11 τep,lv 0.11
Rsvb 0.21 Rsvb 0.60 Rsvb 0.43 Csa 0.33 Csa 0.26 Rsvb 0.10 Rsvb 0.29 Cpa 0.16 Emin,lv 0.11 Eshi f t,la 0.16 Eshi f t,la 0.14 Eshi f t,la 0.09 Eshi f t,la 0.09
τes,lv 0.17 τes,lv 0.04 Emax,lv 0.24 Emax,lv 0.18 Emax,lv 0.14 Csa 0.10 Csa 0.23 Rsvb 0.16 Rsvb 0.09 Emin,lv 0.06 τes,rv 0.05 Eshi f t,ra 0.09 Eshi f t,ra 0.09

A
llinputparam

eters
registerE

>
0
.01

V0,lv 0.04 V0,lv 0.03 V0,lv 0.03 Emax,lv 0.06 Csv 0.22 Eshi f t,la 0.16 Csv 0.06 τes,lv 0.05 Emin,lv 0.05 τes,rv 0.05 τes,rv 0.05
τes,lv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,ra 0.04 τes,lv 0.17 Csv 0.14 Emax,lv 0.06 Cpa 0.03 τes,lv 0.04 Emin,lv 0.04 Emin,lv 0.04

τes,lv 0.02 τes,lv 0.02 τep,rv 0.02 Eshi f t,ra 0.13 τes,rv 0.12 Csa 0.05 Rsvb 0.02 Cpa 0.03 τep,rv 0.03 τep,rv 0.03
Emin,rv 0.02 Emax,lv 0.13 Rpvb 0.11 Eshi f t,la 0.05 Csv 0.02 Rsvb 0.02 τes,lv 0.03 τes,lv 0.03
Emax,rv 0.01 Emin,rv 0.12 Csa 0.10 Cpa 0.04 Emin,la 0.02 Csv 0.02 Cpa 0.02 Cpa 0.02
V0,lv 0.01 Cpv 0.11 Eshi f t,ra 0.09 Eshi f t,ra 0.03 τes,rv 0.02 Emin,la 0.02 Rsvb 0.02 Rsvb 0.02

Eshi f t,la 0.10 Emax,lv 0.08 Emin,rv 0.03 Rpvb 0.02 Rpvb 0.02 Csv 0.02 Csv 0.02
Emax,rv 0.08 Emin,rv 0.08 Cpv 0.03 Emax,la 0.02 Emax,la 0.01 Emin,rv 0.01 Emin,rv 0.01
Emax,la 0.06 Cpv 0.08 Rpvb 0.03 Emax,lv 0.01 Emax,lv 0.01 Rpvb 0.01 Rpvb 0.01
Emax,ra 0.04 τes,lv 0.07 τes,rv 0.03 Eshi f t,ra 0.01 Emin,rv 0.01 Emin,la 0.01 Emin,la 0.01

Rsv 0.04 Emax,rv 0.05 Emax,rv 0.02 Emin,rv 0.01 Eshi f t,ra 0.01 Emax,lv 0.01 Emax,lv 0.01
Cpa 0.03 Emax,la 0.04 Emax,la 0.02 Csa 0.01 Csa 0.01 Emax,la 0.01 Emax,la 0.01
Rpvb 0.03 τep,lv 0.04 τep,lv 0.01 Cpv 0.01 Cpv 0.01

Emin,la 0.01 Emax,ra 0.03 Emax,ra 0.01
Rsv 0.03 Rsv 0.01

Emin,la 0.03

Measurement Levels

5B 5C 5D 5E 5F 5G 5H 6A 6B 7A 7B 7C 7D

P E P E P E P E P E P E P E P E P E P E P E P E P E
τep,lv 0.11 τep,lv 0.11 τep,lv 0.11 τep,lv 0.17 τep,lv 0.11 Eshi f t,la 0.11 Eshi f t,ra 0.16 τep,lv 0.12 Emin,lv 0.10 Emin,lv 0.09 Emin,lv 0.09 Eshi f t,ra 0.18 Eshi f t,ra 0.16

Eshi f t,la 0.09 Eshi f t,la 0.09 Eshi f t,la 0.09 Eshi f t,la 0.06 Eshi f t,ra 0.10 τep,lv 0.09 Eshi f t,la 0.06 Emin,lv 0.09 τep,lv 0.08 Eshi f t,ra 0.09 Eshi f t,ra 0.09 Emin,rv 0.05 Emin,lv 0.08
Eshi f t,ra 0.09 Eshi f t,ra 0.09 Eshi f t,ra 0.09 Emin,lv 0.05 Eshi f t,la 0.06 Emin,lv 0.07 Emin,lv 0.05 Eshi f t,ra 0.08 Rsvb 0.08 Rsvb 0.07 Rsvb 0.07 Emin,lv 0.05 Emin,rv 0.05

τes,rv 0.05 τes,rv 0.05 τes,rv 0.05 Eshi f t,ra 0.04 Emin,lv 0.05 Eshi f t,ra 0.06 τep,lv 0.04 Eshi f t,la 0.07 Eshi f t,ra 0.07 τep,lv 0.06 τep,lv 0.05 Rsvb 0.04 Rsvb 0.04
Emin,lv 0.04 Emin,lv 0.04 Emin,lv 0.04 τes,lv 0.03 τes,rv 0.03 Emin,la 0.05 Emin,rv 0.03 Emin,la 0.04 Eshi f t,la 0.06 Eshi f t,la 0.06 Eshi f t,la 0.05 Csv 0.03 Eshi f t,la 0.04
τep,rv 0.03 τep,rv 0.03 τep,rv 0.03 Emax,lv 0.02 τep,rv 0.03 Emax,lv 0.03 Emin,la 0.03 τes,lv 0.03 τes,lv 0.04 Emin,rv 0.04 Emin,rv 0.04 Emin,ra 0.03 Csv 0.03
τes,lv 0.03 τes,lv 0.03 τes,lv 0.03 τes,rv 0.02 τes,lv 0.03 τes,lv 0.03 τep,rv 0.03 Emax,lv 0.03 Emin,la 0.03 τes,lv 0.03 Csv 0.03 Eshi f t,la 0.03 τep,lv 0.03
Cpa 0.02 Cpa 0.02 Cpa 0.02 Rsvb 0.02 Emax,lv 0.02 Csv 0.02 Csv 0.03 Csv 0.02 Emax,lv 0.03 Emin,la 0.03 Emin,la 0.03 τep,rv 0.02 Emin,la 0.03
Rsvb 0.02 Rsvb 0.02 Rsvb 0.02 Csv 0.02 Rsvb 0.02 τes,rv 0.02 Emin,ra 0.02 Emin,rv 0.02 Csv 0.03 Csv 0.03 τes,lv 0.03 τes,lv 0.02 Emin,ra 0.02
Csv 0.02 Csv 0.02 Csv 0.02 Cpa 0.01 Csv 0.02 Rsvb 0.02 τes,rv 0.02 Rsvb 0.02 Emin,rv 0.02 Emax,lv 0.03 Emax,lv 0.03 Emax,rv 0.02 Emax,rv 0.02

Emin,rv 0.01 Emin,rv 0.01 Emin,rv 0.01 Csa 0.01 Emax,rv 0.02 Emax,la 0.02 Emax,rv 0.02 Emax,rv 0.02 Csa 0.02 τep,rv 0.02 τes,rv 0.03 τes,rv 0.02 Emax,lv 0.02
Rpvb 0.01 Rpvb 0.01 Rpvb 0.01 Emin,la 0.01 Cpa 0.02 Emax,rv 0.02 Emax,lv 0.02 τes,rv 0.02 Cpv 0.02 τes,rv 0.02 τep,rv 0.02 Emax,ra 0.02 τep,rv 0.02

Emin,la 0.01 Emin,la 0.01 Emin,la 0.01 Cpv 0.01 Emin,rv 0.02 Cpa 0.02 Rsvb 0.02 Cpv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emax,rv 0.02 Emin,la 0.02 τes,rv 0.02
Emax,lv 0.01 Emax,lv 0.01 Emax,lv 0.01 Emin,rv 0.01 Csa 0.01 Csa 0.02 Emax,ra 0.02 Csa 0.02 Emax,la 0.02 Csa 0.02 Cpv 0.02 Emax,lv 0.02 Cpv 0.02
Emax,la 0.01 Emax,la 0.01 Emax,la 0.01 Cpv 0.01 Cpv 0.02 τes,lv 0.02 Emax,la 0.01 τes,rv 0.01 Cpv 0.02 Csa 0.02 Cpv 0.01 Emax,ra 0.02

Emin,la 0.01 Emin,rv 0.01 Cpa 0.02 Cpa 0.01 Cpa 0.01 Cpa 0.02 Cpa 0.02 Cpa 0.01 τes,lv 0.02
τep,rv 0.01 Cpv 0.01 τep,rv 0.01 Emin,ra 0.01 Emin,ra 0.02 Rpvb 0.02 τes,lv 0.01 Csa 0.02
Rpvb 0.01 Emax,la 0.01 Emin,ra 0.01 τep,rv 0.01 Emax,ra 0.01 Emin,ra 0.02 Rpvb 0.01 Cpa 0.02

Csa 0.01 Emax,ra 0.01 Emax,ra 0.01 Emax,ra 0.01 Emax,ra 0.01 Csa 0.01 Rpvb 0.01
Emax,ra 0.01 Emax,la 0.01

6.3 Discussion

Our study aims to assess the impact of experimental design on the input parameter influence
and the system sloppiness. Overall, the results accord with prior art: continuous mea-
surements lead to a larger selected subset of input parameters as plausible candidates for
personalisation in a cardiovascular DT [300, 333, 339]. When only discrete measurements
are used, there is a smaller and more concentrated subset of identifiable input parameters.
Perhaps surprising is the extent of this disparity. Only when the largest discrete measurement
level, 3F, is examined do we obtain the same number of input parameters with a value greater
than 0.01, compared to the first continuous measurement level 1A.

We further observe that as the size of the output set increases, the influence between input
parameters appears to become more evenly distributed. For example, for the discrete mea-
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Fig. 6.3 Mixed measures - sloppy analysis: The eigenvalues of the Fisher information
matrix for every other increasing mixed measurements, displayed on a log10 scale.
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surements results shown in table 6.4, the systemic vascular bed resistance Rsvb and arterial
compliance Csa rank as the most influential parameters for all measurement levels except 2D.
In level 1, Csa and Rsvb have influence values of 0.8 and 0.6 respectively. However, in level
3F, when the dimensionality of output space increases to 11, these two parameters’ influence
decreases to 0.11 and 0.13.

The first sloppy analysis of the cardiovascular model under test indicates that discrete
measurements do not introduce sloppiness into the system, whereas for continuous measure-
ments, the system begins to exhibit sloppy behaviour. Through the lens of creating DTs, the
stiff input parameters are clearly identified using discrete measurements which would lead
to easier identification of a personalised global minimum parameter set. When using the
combination of both the continuous and discrete measurement sets, as they increase in size,
the number of stiff input parameters which can be considered as prime candidates for person-
alisation increases. Sloppiness provides a view into the structure of the input parameter space
and an insight for why more “influential" input parameters appear when the dimensionality
of the outputs grows. As more measurements are added, there is a noticeable change in the
structure of the response surface, providing more information on the personalisable global
minimum location.

When creating a virtual representation of a patient, it is still an open question whether
the DT should be personalised to a specific condition or encapsulate the full physiological
envelope of a patient [239, 237, 469]. Our experiments and analysis provides some insight
there. If one wishes to capture a full physiological envelope with a DT, a number of con-
tinuous measurements are essential. This is due to the larger number of influential input
parameters, along with the higher values of stiff eigenvalues, when compared to the discrete
measurement setting. This approach brings practical problems of course, because of the
invasive nature associated with obtaining some continuous measurements (e.g. ventricular
pressure, recall). A patient would have to be subject to a serious of invasive tests with
associated risks to generate the data to for a personalised DT. Alongside this, continuous
measurements have shown a higher level of sloppiness, indicating that a computationally
expensive optimisation routine may have to be utilised to generate the virtual patient rep-
resentation. Conversely, if the purpose of a DT is to target specific conditions, a set of
non-invasive discrete measurements poses as an alternative. Although there is a smaller
number of identifiable input parameters in this case, the influence is concentrated strongly
around the biomarkers relevant to the discrete metrics. In addition, because the system does
not exhibit sloppy behaviour, the personalisation process using discrete measurements may
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be more efficient than its continuous counterparts.

One problem of the sloppy analysis is the subjectivity in diagnosing whether sloppiness is
present within a system. In this work, we have used the common definition of evenly spaced
eigenvalues on a log scale, distributed over a minimum range of 106 orders of magnitude
[342, 18]. The lack of sloppiness is clear in the discrete measurements setting (see figure
6.1). In the case of continuous measurements, when the measurement level increases, the
distribution of eigenvalues (figure 6.2), while still evenly spaced, reduces from a spread of
1016 to just 106 (i.e., more input parameters are in the stiff direction than before). But does
this change in an apparent reduction in sloppiness actually align with intuition? Given the
increase of parameters in the stiff direction, one would assume more accurate optimisation of
the input parameters when compared to level 1. However, this remains an open question and
requires an additional study to investigate.

The study of sloppiness is common practice in most other areas of systems biology, however,
this is not the case for cardiovascular models. The concept of sloppiness provides an impor-
tant insight for examining the personalisability of cardiovascular models. By assessing the
stiff and sloppy directions generated from the input parameters, sloppy analysis provides an
alternative approach to identify optimal subsets for personalisation, compared to other meth-
ods such as profile likelihood and combining sensitivity and orthogonality [481, 339, 482].
This is an interesting area which should be explored in future research. When attempting to
personalise a DT, there are several stages and sloppy analysis belongs to the vital off-line
stage in which prime candidates for personalisation are identified. This off-line stage enables
us to identify biomarkers which can be personalised to produce the virtual representation of
a patient. The off-line stage is vital because once patient data are introduced, any additional
issues occurring during personalisation can then be attributed to issues within the clinical data.

For the personalisation of cardiovascular DTs, the process in which this happens must
operate on a multi-dimensional input parameter space in which some points give accurate
representation of a patient’s physiological and pathophysiological state. Currently, analysis
on the input parameter space and the identification of the optimal parameter subset for per-
sonalisation are conducted on a local basis [270, 483, 484]. For example, it is still the norm
to form the sensitivity matrices through local methods when analysing system sloppiness
[346, 265]. If sloppy analysis is to be utilised more in the identification of biomarkers, local
analysis should not be adopted for larger, more complex circulatory models. Personalisation
is a global process, therefore it is vital to understand and quantify the global behaviour and
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the structure present within the input parameter space. This is why we have conducted our
sloppiness analysis using the global sensitivity analysis outcomes in this work.

To perform such an extensive study, the associated computational expense is another impor-
tant factor to consider. In total, we have tested 48 individual experimental designs, for each of
which a sensitivity analysis has been performed with 75,000 samples to ensure convergence
[485]. As our chosen global sensitivity method is Sobol indices [482, 270, 299], this means
for each experimental design, 75000× (36+2) = 2.85×106 model evaluations are required.
Thus for 48 independent experimental designs, we have solved the 4-chamber model 136.8
million times. This study has only been made feasible due to the superior computational
speed exhibited by DifferentialEquations.jl within Julia. Solving the dynamical system for a
single model run including 30 cycles took 0.060246(s). When personalising DTs, computa-
tionally efficient and accurate tools should be utilised where possible, for the most effective
allocation of computational resources for all stages of DT development.

Alongside LPMs, there is also interest in higher dimensional (e.g. 1D, 2D and 3D) car-
diovascular models which can be utilised as DTs [7, 486, 487]. The level of physiological
details in these models is usually far superior to what can be established in LPMs. The main
drawback or compromise, is the lack of ability to simulate global haemodynamics because of
the astronomical computational cost.

Physiologically detailed models of a single piece of vessel or a compartment are of course of
great importance, to further biological understanding where invasive clinical assessments
are inappropriate or unethical. One promising area of the cardiovascular digital twin devel-
opment is in the creation of multi-scale, multi-modal models, combining both LPMs and
physiologically detailed higher dimensional representations of specific vessels or valves
[302, 487]. This approach combines the advantages of both modelling domains and forms an
attractive avenue for future research in cardiovascular personalisation and building DTs.

6.4 Conclusion

Our study highlights the importance of experimental design in the quantification of input
parameter influence and the associated model sloppiness, for a LPM-based personalised
cardiovascular digital twin. Using a 4-chamber 36-parameter LPM as a test bench, we
investigated 48 independent experimental designs. The most significant findings, are: (i) Input
parameter identifiability is not consistent when the model is subject to varied measurement



6.4 Conclusion 171

data, and depends on the chosen experimental design. (ii) Sloppiness is present in LPMs when
the chosen experimental design contains continuous measurements. (iii) The personalisation
of a digital twin to encompass the complete physiological envelope necessitates invasive
tests to obtain continuous measurements. Although this approach offers an increased number
of identifiable parameters with the potential to be biomarkers, it comes at the expense of a
sloppy system which in turn increases the difficulty in parameter identification. Conversely,
discrete metrics may provide a simpler personalisation approach, yielding less identifiable
but more targeted biomarkers, due to the absence of sloppiness in the system.





Chapter 7

Assessing Input Parameter Hyperspace
Structure and Parameter Identifiability in
a Cardiovascular System Model using
Sensitivity Analysis.

The difference between a democracy and a dictatorship is that in a democracy you vote
first and take orders later; in a dictatorship you don’t have to waste your time voting.

— CHARLES BUKOWSKI

Summary
Having considered the impact of experimental design and convergence when quantifying the
uncertainty present within lumped systems, we next compare various subset selection methods
to evaluate the rank stability of the resulting personalised subsets. Further, we expand upon a
subset selection method, accounting for parameter influence and orthogonality to incorporate
the global nature of the personalisation problem. Through the application of Sobol indices,
we propose a domain-agnostic algorithm offering an informal but intuitive and interpretable
map of input parameter space, which lends insight into the personalisability of a model.1

1The work in this chapter is published in: Saxton, H., Xu, X., Schenkel, T., & Halliday, I. (2024). Assessing
input parameter hyperspace and parameter identifiability in a cardiovascular system model via sensitivity
analysis. Journal of Computational Science, 79, 102287.
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7.1 Introduction

Mathematically, input parameter identification is an inverse problem; clinically it is the
personalisation process [488, 489]. It amounts to taking a highly detailed dynamical system
model with its input parameters (usually prescribed realistic bounds) and supplying the model
with target observations i.e. experimental or clinical to match, data that correspond to model
outputs. The process returns a new set of input parameters which - in some sense - best
describe the observed data. This new set allows for new inferences to be made about the
physical process under investigation [237] or the condition of the patient from whom the
target data was taken. In the clinic, LPMs show promise as diagnostic and treatment planning
aids in CV diseases, such as coronary artery disease, pulmonary arterial hypertension and
aortic valve stenosis [187, 490, 159]. If one can ingest into CVS LPMs measurements
specific to patients and can personalise quickly and robustly, one may hope to e.g. broaden
the uptake and evaluation of information in the diagnostic process to the extent the need for
invasive diagnostic tests diminishes. The diagnostic challenge requires that a model be able
to personalise to pathophysiological states, as well the physiological. Further, if personalised
input parameters can be used to e.g. stratify an individual or cohort, the uptake of LPMs
might rise still further to meet the prognostic challenge [239].

The mathematical essence of the personalisation process is a solution, for an input parameter
coordinate set, that locates the global minimum of a hyper-surface, or landscape, spanned by
the input parameters and computed from the target clinical measurements. Patient-specific
data are typically sparse and mathematically insufficient, so many off-line investigations must
be performed to ensure the optimal accuracy, efficiency and uniqueness of the solution to the
personalisation process. Despite progress there remain many open questions surrounding the
key personalisation issues, which we distil as questions

• What is the most effective and stable methods for mapping the bounded, physiologically
realistic input parameter space?

• How does one ensure biomarkers extracted from input parameters are truly patient
specific?

• What is the surface complexity of input parameter space corresponding to the available
measurements?

This chapter aims to provide methodologies and limited answers for these three questions.
It is important to note our investigation uses forward data (synthetic model outputs) from
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the prescribed dynamical system, in order to understand the methods in an ideal setting. Of
course, without this critical, off-line step, misleading results may be obtained which would
then lead to ill-informed clinical decisions.

The personalisation process is a large and detailed procedure with many choices to be
made to ensure unique and patient specific input parameters. Patients cohorts may exist
at many different pathophysiological states so one must explore the input parameter space
globally [237, 239]. Off-line assessment of a LPM is a necessary prelude, as it ensures
as complete an understanding as is practically feasible for a complex numerical model, in
an ideal setting. Thus, when practical identifiability is performed, using profile likelihood
or global optimisation, any problem in parameter identififablity can be attributed to issues
surrounding available data. We aim to extend the sensitivity–based identifiability stage of
the procedure, to utilise global sensitivities, and to provide a practical investigative test
able to quantify the complexity of input parameter, which has obvious utility. The essential
contributions here are as follows:

1. Extension of Parameter Selection Method: We extend the parameter selection
method of Li et al. [19], incorporating global sensitivities, to respect the global nature
of the personalisation process.

2. Stability of Optimal Input Parameter Subset Selections: We address the stability of
optimal input parameter subset selections by considering competing considerations
and various parameter sensitivity methods, both local and global.

3. Quantification of Input Parameter Space Complexity: We set-out an investigative
test based in global sensitivity analysis, able to quantify the complexity of the input
parameter space.

These contributions are intended to enhance the understanding and robustness of the per-
sonalisation process, offering evolved tools for parameter identification in patient-specific
models.

7.2 Results

For the 9 parameter single ventricle model in Figure 4.1A and 4 model outputs of

Y = (Mean(Qs),PP(LV ),PP(SA),SV(LV )).
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Where PP and SV represent the pulse pressure and stroke volume of a compartment. Sections
7.2.1 and 7.2.2 respectively consider LSA and GSA results. Sections 7.2.2.1, 7.2.2.2 and
7.2.2.3 consider the Morris, eFAST and Sobol GSA methods defined in section 4.5. In section
7.2.3 the overall effect of input parameters is compared between sensitivity methods, utilising
equation 4.112. We then compare the ranking of input parameters, based solely on their
orthogonality score, between methods utilising equation 4.113, in section 7.2.4. Section 7.2.5
examines the stability of input parameter identifiability when we extend subset selection to
GSA methods and finally section 7.2.7 examines the complexity of the input parameter space
of our single ventricle model, using the method of section 4.6.

7.2.1 Local Sensitivity

Figure 7.1 is the local sensitivity matrix. The minimal elastance of the left ventricle Emin

is most influential across all measurements, followed by the maximal elastance Emax and
windkessel factors Rs,Csa and Csv. The end diastole timing parameter τep and the valve
parameters Zao and Rmv are the least influential.

Fig. 7.1 Local relative sensitivity matrix: Shows the local relative sensitivity matrix,
measuring input parameters’ (column headings) influence on specific model outputs (row
headings).

7.2.2 Global Sensitivity

The mean vs. variance plots are shown for Morris’ method in figure 7.2. Figure 7.3 and 7.4
show first order indices (panel A), total order indices (panel B) and the higher order indices
(panel C) as defined in equation (4.5.3), for the eFAST and Sobol methods, respectively.
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7.2.2.1 Morris Method

Figure 7.2, plotted on a log10 scale note, shows using Morris’ method, that both valve
parameters Zao, Rmv and the minimal elastance Emin have high mean and variance values
against all 4 measurements, implying these inputs are influential and have either a non-linear
relationship with the output, or non-linear interactions with other inputs. Here the venous
compliance Csv has a low mean and variance for all 4 measurements, implying Csv has little
influence and may be fixed.

Fig. 7.2 Morris’ method scatter plots: Each plot displays a normalised mean value plotted
against the variance value for each input parameter using a log 10 scale. Panel A: Morris’
method results for the stroke volume of the left ventricle. Panel B: Morris’ method results for
the pulse pressure. Panel C: Morris’ method result for the pulse pressure in the left ventricle.
Panel D: Morris’ method results for the mean systemic flow.

7.2.2.2 eFast Method

The sensitivity indices generated from the eFAST method are shown in figure 7.3. Panel
C displays the higher order sensitivity indices Sh ≈ 0 with the highest order interaction
value of 0.0066, for Emin, impacting the pulse pressure of the systemic artery. Thus, using
the eFAST method, we infer the inputs to act independently on the outputs. Examining
panels A and B, the ventricular elastance parameters Emin,Emax appear influential across all 4
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measurements. The systemic resistance Rs appears influential across all measurements apart
from the ventricular pulse pressure. The arterial compliance Csa appears influential when the
measurement includes a pressure. The other system parameters appear to have little influence
across all outputs.

Fig. 7.3 eFAST sensitivity matrices: Each matrix, with input parameters as column headings
and specific model outputs as row headings, shows an influence value for an input parameter
against a specific output. Panel A: the first order indices. Panel B: the total order indices.
Panel C: the difference sensitivity matrix.

7.2.2.3 Sobol indices

Figure 7.4 shows the Sobol indices. As in the eFAST case, we note that panel C, for the
higher order indices, are all approximately 0. The largest higher order interaction is the
minimal elastance Emin, with a value Sh = 0.0099, impacting the stroke volume of the left
ventricle. Because the higher order indices are of very low value, the second order indices are
minimal as shown in figure 7.5. Panels A and B show the first and total order indices (their
respective convergences are displayed in figures (7.6 and 7.7). Emin appears most influential
across all measurements, with the system parameters Rs,Csa and Csv next.
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Fig. 7.4 Sobol sensitivity matrices: Each matrix, with input parameters as column headings
and specific model outputs as row headings, displays an influence value for an input parameter
against a specific output. Panel A: the first order indices. Panel B: the total order indices.
Panel C: the difference sensitivity matrix.

7.2.3 Input Parameter Influence Comparisons

Figures 7.1, 7.2, 7.3 and 7.4 show our sensitivity matrices for each input parameter, using
different methods. Using the method in section 4.10, table 7.1 shows the average influence
ranking of all input parameters across all 4 measurements. Although exact influence values
differ, all sensitivity measures rank the minimal elastance Emin as the most influential
across all measurements. All sensitivity measures, except Morris’ method, rank the arterial
compliance Csa as second most influential, with Morris’ method attributing an influence
measure and order of magnitude lower than all other methods. Interestingly, the Morris
sensitivity measure ranks the valve parameters as the next most influential. All global
measures apart from Morris’ rank input parameters in the same orders, apart from the
parameters with negligible influence values. The first order and total order indices exhibit the
same ranking, which once again is indicative of a system driven by independent input factors
Sh ≈ 0. The Local sensitivity matrix displays a very similar ranking to the global measures,
with small differences in positions.
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Fig. 7.5 Second order Sobol indices: The second order Sobol indices are presented as
lower triangular matrices, due to their symmetric nature. Each matrix element displays the
influence an interaction between two input parameters have on a selected output. Panel A: the
second order indices stroke volume for the left ventricle. Panel B: the second order indices
for the pulse pressure for the left ventricle. Panel C: the second order indices pulse pressure
for the systemic artery. Panel D: Displays the second order indices for the mean systemic
flow.

Table 7.1 Parameter influence ranking: A table displaying the ranking of each input
parameter influence, averaged across all 4 measurements. Rankings are displayed for both
local, global, first order and total order sensitivity measures.

Sensitivity Metric Parameter Ranking Parameter Influence Value

Local Emin,Csa,Emax,Rs,Csv,τes,τep,Zao,Rmv 0.674, 0.388, 0.324, 0.322, 0.078, 0.062, 0.018, 0.018, 0.009
Morris Emin,Rmv,Zao,Csa,τes,Rs,Emax,τep,Csv 0.919, 0.384, 0.074, 0.014, 0.013, 0.012, 0.008, 0.005, 0.001

eFAST S1 Emin,Csa,Rs,Emax,τes,Csv,Zao,Rmv,τep 0.796, 0.223, 0.213, 0.141, 0.009, 0.003, 0.001, 0.000, 0.000
eFAST ST Emin,Csa,Rs,Emax,τes,Csv,Zao,Rmv,τep 0.794, 0.228, 0.216, 0.144, 0.012, 0.006, 0.004, 0.003, 0.003
Sobol S1 Emin,Csa,Rs,Emax,τes,Csv,Zao,τep,Rmv 0.796, 0.224, 0.209, 0.142, 0.009, 0.003, 0.001, 0.000, 0.000
Sobol ST Emin,Csa,Rs,Emax,τes,Csv,Zao,Rmv,τep 0.795, 0.224, 0.214, 0.142, 0.009, 0.003, 0.001, 0.000, 0.000
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Fig. 7.6 First order Sobol indices’ convergence: Panel A,B,C and D display, for each
individual input parameter, the first order convergence for the stroke volume of the left
ventricle, the pulse pressure of the left ventricle, the pulse pressure of the systemic artery and
the mean systemic flow, respectively.

Fig. 7.7 Total Order Sobol indices’ convergence: Panel A,B,C and D display, for each
individual input parameter, the total order convergence for the stroke volume of the left
ventricle, the pulse pressure of the left ventricle, the pulse pressure of the systemic artery and
the mean systemic flow, respectively.
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7.2.4 Orthogonality Analysis

Figure 7.8 (Panels A-F) display the orthogonality matrices for the respective sensitivity mea-
sures. Overall, the orthogonality rankings of input parameters are different using different
sensitivity measures. In some instances, for example, for the eFAST and Sobol methods,
there are very different orthogonality scores between the first and total order indices, e.g. τep.
Despite this, there are still common trends in the orthogonality scores: τes being consistently
independent, Rs having independent effects from Csa, and Emin, Emax having dependent
effects. Panels G-L report varied orthogonality scores between different sensitivity measures.
Sobol first order, Sobol total order, eFAST first order and the local measure are consistent
with more orthogonal parameters. Morris’ and eFAST total order produce orthogonality
rankings which suggest that the input parameters are more dependent on each other.

Table 7.2 displays the mean averaged input parameter ranking based on orthogonality matrix
in figure (7.8). In contradistinction to the influence case shown in Table 7.1, no clear patterns
in the ranking emerge. Zao appears the most orthogonal for the eFAST first order, Sobol first
order and Sobol total order methods. The venous compliance Csv ranks as least orthogonal
in all sensitivity measures, apart from the eFAST total order and the Sobol first order, but
even in these settings, the rank of Csv is low. Examining the parameter orthogonality value
column in table 7.2, we see a large variation in the average values of orthogonality for each
input parameter, with the lowest ranked parameter exhibiting an average orthogonality score
between (0.21-0.549).

Table 7.2 Parameter orthogonality ranking: the rank of input parameters based on their
average orthogonality score, calculated by taking the mean orthogonality score for each input
parameter across all outputs for each sensitivity measure.

Sensitivity Metric Parameter Ranking Parameter Orthogonality Value

Local τep,τes,Csa,Zao,Rs,Rmv,Emax,Emin,Csv 0.694, 0.686, 0.635, 0.620, 0.566, 0.465, 0.405, 0.398, 0.398
Morris Csa,Rs,τes,Emax,τep,Emin,Zao,Rmv,Csv 0.537, 0.468, 0.410, 0.236, 0.229, 0.223, 0.218, 0.212, 0.210

eFAST S1 Zao,τep,Rs,τes,Csa,Rmv,Emin,Emax,Csv 0.865, 0.770, 0.730, 0.729, 0.714, 0.631, 0.553, 0.552, 0.549
eFAST ST Csa,Rs,τes,Zao,Emax,τep,Emin,Csv,Rmv 0.761, 0.701, 0.693, 0.517, 0.370, 0.361, 0.357, 0.348, 0.347
Sobol S1 Zao,Rs,Csa,τes,Rmv,τep,Csv,Emax,Emin 0.798, 0.768, 0.754, 0.732, 0.647, 0.614, 0.534, 0.529, 0.520
Sobol ST Zao,τep,Rs,τes,Csa,Rmv,Emin,Emax,Csv 0.863, 0.742, 0.729, 0.726, 0.706, 0.623, 0.547, 0.545, 0.545

7.2.5 Indentifiability Analysis

Utilising equation (4.68), for every sensitivity matrix generated from LSA and GSA, we
find the FIM to be singular, i.e., certain model parameters’ effects are totally dependent on
others. Rank(F) = 4 for the single ventricle model defined in Eqs. (2-6) implies 9−4 = 5
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Fig. 7.8 Orthogonality matrix and histograms: panels A-F show the orthogonality matrices
for the local, Morris, eFAST first order, eFAST total order, Sobol first order and Sobol total
order methods, respectively. A value of 1(0) indicates that the two input parameters have
orthogonal effects on across all the outputs (contribute the same effect on the output). Panels
G-L are histograms of the respective orthogonality matrices, indicating the distribution of
orthogonality present within the input parameters, when computed through the different
sensitivity measures.
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non-identifiable parameter combinations. Thus, we expect 4 identifiable input parameters.
From the definition of the identifiability index (equation 4.114), we use a cut off of I < 0.05
[270] although further investigation of the reliability of this measure is indicated. We note
all sensitivity methods, except Morris’ obtain the expected number of identifiable input
parameters in table 7.3. All global methods identify the minimal elastance (Emin) and
arterial compliance (Csa) as the most identifiable parameters. The local sensitivity measure
agrees with the global methods, with the minimal elastance as the most identifiable and
the arterial compliance as identifiable (but this is ranked 4th). Sobol first order indices and
the local measure are the only methods that find the systemic resistance Rs as identifiable.
eFAST and the Morris method first order indices are the only methods to find the maximal
elastance as also identifiable. Both total order indices for the global methods give the same
set of identifiable input parameters. Examining the identifiability index value of each input
parameter, all global methods except Morris’ attribute a similar value for each rank position,
indicating that although the input parameter rankings may vary between methods, their
quantifiable identifiablity value remains constant.

Table 7.3 Identifiable input parameters: the identifiable input parameters calculated using
the global subset selection method. Parameters in red indicate an unidentifiable input
parameter utilising a cut off of I < 0.05.

Sensitivity Metric Identifiability Parameter Ranking Identifiability Index Value

Local Emin,Rs,Zao,Csa,Csv,τes,Emax,Rmv,τep 0.703, 0.169, 0.097, 0.068, 0.023, 0.017, 0.016, 0.003, 0.000
Morris Emin,Csa,Emax,Csv,Rs,τes,Zao,Rmv,τep 0.919, 0.396, 0.114, 0.008, 0.005, 0.002, 0.000, 0.000, 0.000

eFAST S1 Emin,Csa,Csv,Emax,τes,Rs,Zao,τep,Rmv 0.814, 0.210, 0.085, 0.040, 0.034, 0.034, 0.003, 0.000, 0.000
eFAST ST Emin,Csa,Csv,τes,Emax,Rs,τep,Zao,Rmv 0.812, 0.201, 0.079, 0.050, 0.045, 0.017, 0.000, 0.000, 0.000
Sobol S1 Emin,Csa,Rs,Csv,Zao,Emax,τes,Rmv,τep 0.815, 0.150, 0.078, 0.076, 0.006, 0.003, 0.000, 0.000, 0.000
Sobol ST Emin,Csa,Csv,τes,Emax,τep,Rs,Rmv,Zao 0.813, 0.192, 0.086, 0.069, 0.036, 0.010, 0.000, 0.000, 0.000

7.2.6 Rank Stability

The extended subset selection algorithm specified in section 4.12 assumes (reasonably) that
the most influential input parameter is the automatically identifiable and so is a sensible -
but not necessary - first choice, from which to construct a subset. How dependant are the
outcomes of the method, on this choice? Table 7.4 shows the results of performing the
subset selection method, based on the first order Sobol indices, while changing the first input
parameter. Strikingly, we see that the same subset of identifiable input parameters is obtained
in all cases for any input parameter which is fixed. We note that the ranking in which the
parameters appear identifiable is not consistent however with the calculation of orthogonality
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in the response surface one would expect this to influence the result given a change in the
assumed identifiable parameter.

Table 7.4 Rank stability test: Table showing the stability of the rank associated with the
extended subset selection. Parameter fixed indicates the parameter which is taken to be
identifiable and the extended subset algorithm is then performed.

Parameter Fixed Identifiable Subset

Emin - Default Emin,Csa,Rs,Csv
Emax Emax,Emin,Csa,Rs
Csv Csv,Emin,Rs,Csa
Csa Csa,Emin,Rs,Csv
Rs Rs,Emin,Csa,Csv
Zao Zao,Emin,Csa,Rs
Rmv Rmv,Emin,Rs,Csa
τep τep,Emin,Csa,Csv
τes τes,Emin,Csa,Rs

7.2.7 Hypercube dimension

In Table 7.5, we extend the input parameter space volume, from local to one characterised by
a parameter variation of ±15%, revealing an input parameter ranking which remains constant
from a boundary ±0.01% upward. From the local sensitivity measure, we note a ranking
similar to the global setting, with the minimal elastance Emin and arterial compliance Csa

ranking first and second. The other input parameters, when using the local measure, appear
to vary by only a single rank position compared to the global setting. As each hypercube
dimension is sampled with the same density, one would expect to see the parameter influence
value to remain the same. Here, as the hypercube dimension is extended, we observe some
slight variation in the influence value. This shows that, as the hypercube is extended, there is
some quantifiable change in an input parameter’s influence.

7.3 Discussion

Aiming to address the stability of input parameter identifiability, we extended the subset
selection method of Li et al., [19] to global sensitivities, then took various global sensitiv-
ity methods to interrogate the input parameter space. Tables 7.6 and 7.7 disclose issues
around this problem. Comparing influence and orthogonality rankings directly, we noted
that influence had a much more consistent ranking with all methods, except the local and the
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Table 7.5 Hyperspace dimension: input parameter rankings for varying sizes of input
parameter space explored when computing total order Sobol indices. Both the ranking and
the value of the influence are displayed.

Hypercube Dimension Parameter Ranking Parameter Influence Value

Local Emin,Csa,Emax,Rs,Csv,τes,τep,Zao,Rmv 0.674, 0.388, 0.324, 0.322, 0.078, 0.062, 0.018, 0.018, 0.009
±0.01% Emin,Csa,Rs,Emax,τes,Csv,Zao,τep,Rmv 0.788, 0.227, 0.210, 0.167, 0.009, 0.003, 0.001, 0.001, 0.000
±0.5% Emin,Csa,Rs,Emax,τes,Csv,Zao,τep,Rmv 0.785, 0.236, 0.222, 0.141, 0.009, 0.003, 0.001, 0.000, 0.000
±3.0% Emin,Csa,Rs,Emax,τes,Csv,Zao,Rmv,τep 0.792, 0.226, 0.215, 0.140, 0.009, 0.003, 0.001, 0.000, 0.000
±7.0% Emin,Csa,Rs,Emax,τes,Csv,Zao,Rmv,τep 0.792, 0.226, 0.214, 0.141, 0.009, 0.003, 0.001, 0.000, 0.000
±15.0% Emin,Csa,Rs,Emax,τes,Csv,Zao,Rmv,τep 0.795, 0.224, 0.214, 0.142, 0.009, 0.003, 0.001, 0.000, 0.000

Morris methods. When the ranks are based on orthogonality, we observe that no methods
exhibit a consistent ranking of input parameters. This is further apparent when the extended
parameter subset selection method is applied. Table 7.3 highlights that all global methods
except Morris’ found the minimal elastance Emin, the arterial compliance Csa and the venous
compliance Csv to be identifiable, however the 4th parameter found to be identifiable varied
between each method. The total order indices for eFAST and Sobol produced the same subset
of identifiable parameters in the same order, which is reassuring, although we see that the
model is driven mainly through independent effects (Sh ≈ 0), where the total order indices
capture all contributing affects to the output variance. Thus, the identifiable subset returned
is the same.

Table 7.6 The mean rank and range of the input parameters: The effect of different
parameter subset methodologies (influence, orthogonality and our extended Li methodology
[19]) when we stratify across all sensitivity metrics

.

Input Parameters
τes τep Rmv Zao Rs Csa Csv Emax Emin

In
flu

en
ce Mean

Rank 5.2 8.3 7.3 6.5 3.6 2.3 6.3 3.6 1.0

Range 6-5 9-7 9-2 8-3 6-3 4-2 9-6 7-3 1-1

O
rt

ho

Mean
Rank 3.3 3.6 6.6 3.0 2.8 3.0 8.5 6.6 7.3

Range 4-2 6-1 9-6 7-1 5-2 5-1 9-7 8-4 9-6

L
iM

et
ho

d Mean
Rank 5.3 8.0 8.3 6.5 4.8 3.0 8.5 6.6 7.3

Range 7-4 9-6 9-8 9-3 7-2 4-2 5-3 7-3 1-1

From the way each sensitivity method aggregates, orthogonality has a clear impact on an
input parameter’s identifiability and therefore should be examined further. However, it is
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Table 7.7 The mean rank and the range of input parameters: Across all subset selection
methodologies when we stratify by different sensitivity methods.

Input Parameters
τes τep Rmv Zao Rs Csa Csv Emax Emin

L
oc

al

Mean
Rank 4.6 5.6 7.6 5.0 3.6 3.0 6.3 5.6 3.3

Range 6-2 9-1 9-6 8-3 5-2 4-2 9-5 7-3 8-1

M
or

ri
s Mean

Rank 4.6 7.3 6.0 5.6 4.3 2.3 7.3 4.6 2.6

Range 6-3 9-5 8-2 7-3 6-2 4-1 9-4 7-3 6-1

eF
A

ST
S1

Mean
Rank 4.6 6.3 7.6 5.0 4.0 3.0 6.0 5.3 3.0

Range 5-4 9-2 9-6 7-1 6-3 5-2 9-3 8-4 7-1

eF
A

ST
ST

Mean
Rank 4.0 7.3 8.6 6.3 3.6 1.6 5.6 5.0 3.0

Range 5-3 9-6 9-8 8-4 6-3 2-1 8-3 5-5 7-1

So
bo

lS
1 Mean

Rank 5.3 7.6 7.3 4.0 2.6 2.3 5.6 6.0 3.6

Range 7-4 9-6 9-5 7-1 3-2 3-2 7-4 8-4 9-1

So
bo

lS
T Mean

Rank 4.3 5.0 7.3 5.6 4.3 3.0 6.0 5.6 3.0

Range 5-4 9-2 8-6 9-1 7-3 5-2 9-3 8-4 7-1
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important to note that the extended subset methodology (with results in table 7.3) utilises
the concept of orthogonality differently to the way it was analysed in table 7.2. Once the
number of the selected input parameters is greater than the number of measurements avail-
able, the orthogonality score used to calculate the identifiability index from equation 4.114
(i.e., the worst case/maximum orthogonality) is chosen. Thus, for input parameters deemed
unidentifiable, the rank should not be examined too closely, as there are an infinite number
of unidentifiable ranking positions for the input parameters. Moreover, with the extended
subset methodology, we examine orthogonality against groups of input parameters, so the
rankings presented in table 7.2 (which are based on averages of orthogonality pairings of the
parameters) may not translate directly to the extended subset methodology.

The Morris method has failed to return consistent results for both the influence and an
identifiable subset. While it is still popular for higher dimensional models, its inability to
explore input parameter space is here exposed. This ability deteriorates exponentially with
increasing dimensions [16]. Ideally, one would use a variance based method such as eFAST
or Sobol indices to characterise input parameter, however this is often not utilised due to
the associated computational expense. Sensitivity analysis is driven by the speed in which
a dynamical system can be solved. The time taken to compute Morris, eFAST and Sobol
indices on 28 threads was 3568.6,3325.1 and 6893.0 seconds respectively. Thus, eFAST
presents itself as a reliable and efficient GSA method. Note, for the Sobol method, the
time quoted above included the computation of second order indices also; if we were only
interested in the first and total order the number of model evaluations would be the same
as Morris’ method. Thus, given one can optimise the model solution time, efficient GSA
is assured. This may be achieved through use of surrogates [288, 491] or by utilising the
efficient ODE solvers in DifferentialEquations.jl [445], as here.

Overall, eFAST is a reliable method to assess the uncertainty of the single ventricle model.
However it relies on a sinusoidal function to sample input parameter space, which creates
two problems. This sampling method produces a zigzag pattern in the input parameter space
and it can struggle to capture the extremes of the input parameter space [492]. When the size
of the input parameter space increases, and with more physiologically detailed models, the
eFAST method may also struggle to return true input parameter sensitivities. On the other
hand, the Sobol methodology utilises Quasi-Monte Carlo sampling strategies, which allow
for an easy computation of the confidence intervals associated with the sensitivity index. No
such method exists for the eFAST methodology, due to the sampling nature of the method
[493]. Therefore, for assessing uncertainty, the Sobol method is still preferred, because of its
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ability to compute confidence intervals using the bootstrapping methodology alongside the
sensitivity indices.

A secondary aim of our investigation was to develop a GSA based methodology to map input
parameter space. We have shown in table 7.5 that as one migrates from base state, input
parameters’ influence rank is constant over an extended region. The simplest explanation
for the change in parameter rank moving from the point that is base state to an albeit small
by extended region of ±0.01% is that local SA is by construction a linearisation - a tangent
plane - taken at a point with all non-linear curvature effects neglected. The total order Sobol
indices method captures all effects and these are present, though intentionally neglected in
local SA. Further, in table 7.5 the value quantifying parameters’ influence remains largely
constant with minor variations, implying that as the size of the hyperspace is extended, new
domains of parameter influence are reached. However, the effects as a whole do not change
because of the extension of the hyperspace dimensions. This indicates a largely additive
model, representing a flat input parameter hyperspace. A (mostly) additive nature suggests
that the single ventricle model is a good candidate for personalisation. Validation of this
conclusion can be performed from patho–physiological patient measurements; however,
our present model is only shown to be effective in identifying patient’s characteristics from
exercise data using local optimisation [368]. Our findings, utilising the hyperspace dimension
test are consistent with this.

Despite the promising findings of our hyperspace dimension test, there are important issues
to consider. First, we use a GSA method to quantify the input parameter space. Often, GSA
is performed without any assessment of the error associated with the sensitivity value. It has
been shown that in order to achieve the true input parameter influence, convergence must
be achieved. Thus, we propose Sobol indices are used for the hyperspace dimension test.
Second, one should ensure the same density of sampling at every hyperspace dimension
size. The selection of samples suffers from‘the curse of dimensionality’ [494]. But if a large
enough sample size over the hypercube was used, consistent sample densities close to the
base state would become too small. Here, we have utilised the total order indices due to
Sh ≈ 0. If this was not the case, one would have to perform investigations with both the first
and total order indices. The first order indices are much harder to converge [293, 297, 290],
thus for a model with slightly more complexity and higher non-linearity, it may not be
possible to perform such a convergence test. However, for dynamical systems where the
outputs are driven by independent effects of the inputs, this test will prove useful.
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For personalisation, investigations must be assumed to rely on a fixed set of measurements.
In reality, one may not have access sufficient data. While our methodology defines the
ideal off-line scenario to investigate identifiability –before using live patient data– it should
be acknowledged every investigation is constrained by available measurements. So, every
time new data become available, a new study is indicated. This also has implications for
parameter inference, because parameter identifiability is only valid in the presence of a set of
measurements.

7.4 Conclusion

Our study provides a clear and intuitive investigation of a key stage of the personalisation
process. We have used a single ventricle, 9 parameter, 0D model, to probe the identifiability
of its input parameters in the presence of 4 synthetic but representative clinical surrogate
measurements. We have: (i) extended the parameter subset selection method of Li et al.,
[19] to reflect the global nature of the personalisation process, (ii) shown how a different
set of globally identifiable input parameters could be obtained and (iii) provided novel
perspectives relative to previous local studies. Assessing the stability of this identifiable
input parameter subset, we employed various global and local measures of input parameter
sensitivity, revealing how alternative sensitivity methods which depict input parameter space
in contrasting ways lead to similar but subtly different identifiable input parameter subsets
(driven mainly by the dissimilar orthogonality between input parameters). Finally, we have
detailed a novel and intuitive input parameter hyper-surface structure investigation, utilising
Sobol indices. The connection with Sobol index error evaluation provides a guide for mapping
of the complexity of input parameter space, with a view to aid the inverse problem. When
applied to the single ventricle model, within the presence of the 4 chosen measurements,
the single ventricle model revealed itself as a prime candidate for personalisation, due to its
stable input parameter rankings, in the presence of expanding hyperspace boundaries.



Chapter 8

Personalised Parameter Estimation of the
Cardiovascular System: Leveraging Data
Assimilation and Sensitivity Analysis.

Product of optimism and knowledge is a constant.
— LEV LANDAU

Summary
From investigations examining how to derive input parameters suitable for identification
in personalised medicine, we now turn to the Unscented Kalman Filter (UKF) as a tool
for efficient, adaptive parameter estimation in the presence of disturbances. Our findings
demonstrate an exceptional adaptability in the UKF, to severe parameter perturbations which
representing large physiological fluctuations. We offer novel insights into the continuous
sensitivity of model input parameters, illustrating the robustness and efficacy of the UKF.
The real time monitoring of a patient’s physiological state, with minimal delay, becomes
more feasible, by incorporating patient- specific measurements by leveraging the UKF. The
workflow presented here facilitates prompt identification of pathophysiological conditions. 1

1The work in this chapter is published in: Saxton, H., Schenkel, T., Halliday, I., & Xu, X. (2023).
Personalised parameter estimation of the cardiovascular system: Leveraging data assimilation and sensitivity
analysis. Journal of Computational Science, 74, 102158.
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8.1 Introduction

There is an accelerating trend towards utilising established data assimilation (DA) methods
to aid estimation of personalised model input parameters. While DA methods do not have
a direct metric for assessing the influence of input parameters, they have demonstrated
effectiveness in their recovery from experimental data [495], stemming from an ability to
leverage time-varying measurements. DA has been successfully applied to various CV
problems, including the estimation of Windkessel model input parameters [22, 356] and
closed-loop models of single ventricle physiology [21]. Here, our focus lies on the Unscented
Kalman Filter (UKF) [355], detailed in chapter 4.14, primarily due to its ability to handle
the non-linearities introduced by the valvular and ventricle functions of the LPM. Here we
utilised the 1-chamber 9 parameter model as seen in figure 4.1A in order to demonstrate the
efficiency of the method.

8.2 Parameter Perturbations & Synthetic Data

We derive noisy synthetic patient waveform data from forward model solutions characterised
with notionally ground truth parameter values of lv pressure Plv, lv volume Vlv and systemic
pressure Psa, for 15 cycles, representing plausible continuous clinical measurements from
(say) echocardiography for Vlv [496] and arterial line measurements for Psa [497] (cardiac
catheterisation can be performed to extract Plv [498]). To align with the purpose of a UKF,
our forward numerical solutions are subject to multiplicative Gaussian corruption as follows:

Y m
j = h(X(t j,θ t)), Y n

j = h(X(t j,θ t)) · (1+ψ j). (8.1)

Above, subscript j denotes sampling time, deemed to be the discrete time of the numerical
solution, superscript n indicates a noisy solution and superscript m denotes the measured,
un-corrupted numerical solution. ψ j is an independent, normally-distributed random variable,
with zero mean and a standard deviation 0.025, which is typical [22].

We propose two types of perturbation to the input parameters, applied from t > 8 ( having
run the model to steady state ) until the end cycle. The first perturbation we apply is to
the elastance timing parameters of the chamber, such that for every cycle t > 8 we apply a
random value for τes and τep satisfying the distributions

τes ∼ N(0.3,0.032), τep ∼ N(0.45,0.032). (8.2)
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The second parameter perturbation applied to the non-timing parameters of the model
describes a gradual increase from t > 8 and is represented in Figure 8.1 and equation (8.3):

θ(t) =
1
2

sin
(t − t0

4

)
+θ0, (8.3)

where θ(t) represents the value of an input parameter (see Table 4.1) at time t. t0 represents
the time at which the perturbation is applied. t0 = 8. θ0 represents the true value of the input
parameter, before it is perturbed, i.e., for Emin, θ0 = 0.03.

Fig. 8.1 Parameter Perturbation : the perturbation applied to the minimal contractility
parameter Emin. From t > 8, the perturbation becomes positive, demonstrating an increase in
minimal ventricular contractility.

Table 8.1 Normal (Gaussian) distribution parameters of the single ventricle model: θ -
Initial mean from [20] . σ - Standard deviation from [21, 22].

Parameter θ σ

τes 0.3 0.01
τep 0.45 0.01
Rmv 0.06 0.01
Zao 0.033 0.01
Rs 1.11 0.3
Csa 1.13 0.3
Csv 11.0 0.3

Emax 1.5 0.3
Emin 0.03 0.01
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8.3 Results

We conduct a continuous sensitivity analysis of our model, examine the UKF’s ability to
recover input parameters when no perturbations are present and analyse the robustness of
the model investigated (section 8.3.1). We proceed to examine the ability of UKF to recover
true input parameters when they are perturbed from base states (section 8.3.2). For each
case explored we tabulate RMSE for each input parameter, before and after a perturbation
has been applied. The values presented in the tables below are accurate to 1sf. All results
presented below are discussed in full within section 8.4.

8.3.1 Base State

Figure 8.2 shows the case where a patient may be haemorrhaging blood, so blood volume
drops and as a consequence, systemic resistance increases to maintain arterial pressure (de-
noted by the orange curve). To represent this scenario, initial blood volume was halved and
the systemic resistance was doubled. The mean values of the arterial pressure for the base
state and the pathophysiological state were 97.8 mmHg and 98.2 mmHg. Given, this case
examined is very unlikely to occur in clinic, the model response is in line with expectation
providing confidence of the affected model to adapt to other pathophysiological states.

Fig. 8.2 Systemic arterial pressure : the arterial pressure for a base state simulation (blue)
and when blood volume is halved and systemic resistance is doubled (orange).

Figure 8.3 summarises our implementation of the UKF when no parameter perturbations
are present- only beat-to-beat variability. Evidently, the input parameters are estimated with
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remarkable precision from the outset. The only parameter that deviates beyond 1% of its
true value is Csv, as depicted in Figure 8.3G. Also, Rmv (Figure 8.3C) and Rs (Figure 8.3E)
exhibit noticeable deviations from their true parameter values, indicated by the yellow line.
However, these data still demonstrate superior accuracy compared to existing medical devices
where the standard error is 20%[499]. Most input parameters exhibit consistent variance,
with the exceptions in Figures 8.3N, 8.3P, and 8.3Q, which correspond partially to the input
parameters that were not estimated within 1% accuracy. Notably, certain input parameters,
as shown in Figures 8.3J, 8.3K, 8.3L, 8.3M, 8.3O, and 8.3R, exhibit consistent periodic vari-
ation. These input parameters, characterised by steady variance, also demonstrate excellent
accuracy, except for Rmv in Figure 8.3C. In Table 8.2 the root mean squared error (RMSE)
is displayed for all input parameters. Emin displays the smallest RMSE. Csv exhibits RMSE
values an order of magnitude larger than the rest of the input parameters. We remark that the
RMSE, as defined in equation 4.125, decreases by an order of magnitude in the second half
of the observed time span.

Fig. 8.3 Single Ventricle Base State Estimation : figures A - I display the parameter
estimations over the 15 cardiac cycles. The yellow and blue line represent the true and
estimated parameter values respectively. Figures J - R display the parameter covariances
over the 15 cardiac cycles.
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Table 8.2 Single Ventricle Base State RMSE : first row shows the RMSE values of input
parameters for t ≤ 8s. The second row displays the RMSE values of the input parameters for
t > 8s.

Parameter τes τep Rmv Zao Rs Csa Csv Emax Emin
RMSE t ≤ 8s 0.005 0.009 0.005 0.003 0.05 0.01 0.8 0.04 0.003
RMSE t > 8s 0.0005 0.0004 0.002 0.001 0.03 0.02 0.6 0.007 0.0006

Figure 8.4 reports the continuous sensitivity of the input parameters, where no perturbations
are applied with respect to arterial pressure. See Appendix for the sensitivity analysis of
input parameters to the other measurements (similar to Figure 8.4). We note the sensitivity
of input parameters follows a dynamics which mimics a cardiac cycle, that some parameters,
such as τes,Rmv,Rs and Csa in Figures 8.4A, C, E, F, exhibit a consistent level of sensitivity
over the full CV cycle, the τes Figure 8.4A being the most influential during overall and
that the parameters Emin,Emax,Zao and Csv exhibit orders of magnitude change in sensitivity
during the cycle. In Figure 8.4B we see the end pulse time τep appears to have no influence
of the arterial pressure during the whole cardiac cycle.

8.3.2 Parameter Perturbations

We examine the UKF’s ability to estimate input parameters accurately, when they are per-
turbed away from the “baseline" value during each cardiac cycle, applying the perturbations
defined in equations (8.2) and (8.3) from t ≥ 8.

8.3.2.1 τes & τep

Figure 8.5 demonstrates the UKF’s ability to adapt to perturbations of the timing param-
eters τes and τep. The UKF adapts to the perturbed points with exceptional ability -see
Figures 8.5A and 8.5B. The original parameter values were τes = 0.35 and τep = 0.45, the
perturbed values for the cycles were τes = [0.35,0.27,0.27,0.28,0.34,0.28,0.31,0.26] and
τep = [0.43,0.46,0.47,0.44,0.46,0.44,0.43,0.43] to 2dp. The variance of the parameters
in Figures 8.5J and 8.5K appear to be consistent, despite the perturbations. Figures 8.5I
and 8.5R represent the estimation and variance of the parameter Emin respectively. There is
disruption to the parameter estimation, despite the true value of Emin being found during each
cardiac cycle. There is minimal disruption to the parameter variance. Note similar behaviour
with the aortic valve resistance Zao, and maximal contractility Emax in Figures 8.5D, 8.5M,
8.5H and 8.5Q respectively. The common theme between both is that the parameter estima-
tions return to the true parameter values during each cardiac cycle. Estimates of all input
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Fig. 8.4 Single Ventricle Base State Sensitivity - Figures A - I display the continuous
parameter sensitivities with respect to the arterial pressure. All parameters which returned 0
for sensitivity are set to a value of 10−6 in order to plot a log scale.



198
Personalised Parameter Estimation of the Cardiovascular System: Leveraging Data

Assimilation and Sensitivity Analysis.

parameters apart from Csv have minimal errors. The RMSE values in Table (8.3) indicate that
no input parameter estimations suffer as a result of perturbing the timing parameters (of the
elastance function). Some input parameter estimates improve as the simulation progresses.
Csv exhibit the worst RMSE by an order of magnitude when compared to the other input
parameter estimates.

Fig. 8.5 τes & τep : Figures A - I show parameter estimations over 15 cardiac cycles with
varying values for τes and τep. The yellow and blue line represent the true and estimated
parameter values respectively, the blue dots represent the perturbed values on the input
parameters. Figures J - R display the parameter covariances over the 15 cardiac cycles.

Table 8.3 τes & τep RMSE : first row, RMSE values of input parameters for t ≤ 8, second row,
displays the RMSE values of the input parameters for t > 8 after a continuous perturbation
has been applied to

Emin.
Parameter τes τep Rmv Zao Rs Csa Csv Emax Emin

RMSE t ≤ 8 0.01 0.009 0.008 0.003 0.2 0.02 2 0.04 0.005
RMSE t > 8 0.03 0.02 0.007 0.004 0.06 0.009 4 0.05 0.008
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8.3.2.2 Emin

Figure 8.6 reports the UKF’s ability to estimate ventricular compliance, Emin, given the
perturbation defined in equation (8.3). In Figure 8.6I, we see Emin traces the perturbation with
high accuracy, and that the perturbation also impacts the variance of the parameter, causing a
gradual increase, from when it is applied. This increase in parameter variance is also present
in other input parameters (where the perturbation is not applied), seen in Figures 8.6J, K,
L, M, O, R. The timing parameters of the elastance function, τes and τep, appear to diverge
from the true parameter values when the perturbation is applied, as seen in Figures 8.6A
and 8.6B. We remark that all input parameter estimates return to the true parameter value
by the final cycle at t = 15. All other input parameters, apart from Csv, tend towards their
true values with minimal error after the perturbation is applied to Emin. Table 8.4 indicates
that the UKF copes with the perturbation with great efficiency as the RMSE value of the
perturbed parameter Emin increases minimally. Overall most input parameters do not suffer
significantly, with some actually improving their estimation, after the perturbation applied to
Emin, with only τes exhibiting a 2.5× increase in error. Csv as in the base state is the input
parameter with the largest RMSE error.

Table 8.4 Emin RMSE - The first row shows the RMSE values of input parameters for t ≤ 8.
The second row displays the RMSE values of the input parameters for t > 8 after a continuous
perturbation has been applied to Emin.

Parameter τes τep Rmv Zao Rs Csa Csv Emax Emin
RMSE t ≤ 8 0.004 0.008 0.007 0.003 0.2 0.01 1 0.03 0.01
RMSE t > 8 0.01 0.009 0.009 0.009 0.03 0.008 2 0.03 0.03

8.3.2.3 Csa & τep

In Figure 8.7, we report perturbations applied to τep and equation (8.3) applied to Csa. Figure
8.7B demonstrates the UKF’s ability to adapt to differing times which are applied to the end
pulse time, τep. In Figure (8.7 F) we see that Csa is not found as accurately when the same
perturbation is applied to Emin, Figure 8.6I. Despite Csa not being determined as efficiently,
the trend of gradual increase is still present in the estimated parameter. We observe small
disruption to other input parameters in the presence of this parameter perturbation case. Csv

and Rmv appear to diverge from the true parameter estimate. In Table (8.5) the RMSE values
indicate the UKF struggles to capture the perturbation to Csa accurately, with a 5× increase
in the RMSE. The perturbation applied to τep appears to cope with a small increase in the
error. Most input parameters appear to improve their estimate of the input parameter value
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Fig. 8.6 Emin. Figures A - I show the parameter estimations over the 15 cardiac cycles with
perturbed Emin. The yellow, blue and green line represent the true, estimated and perturbed
parameter values respectively. Figures J - R display the parameter covariances over the 15
cardiac cycles.
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apart from Emin, where the error increases by 2× and Rmv where we see the same increase
in the error, however in this case it appears Rmv may be diverging. Csv again is the input
parameter with the largest RMSE value.

Fig. 8.7 Csa & τep - Figures A - I show the parameter estimations over 15 cardiac cycles with
perturbed Csa and τep. The yellow and blue line represent the true and estimated parameter
values respectively. The blue dots and green line represent the perturbed parameter values
for τep and Csa. Figures J - R show the parameter covariances over the 15 cardiac cycles.

Table 8.5 Csa & τep RMSE : first row, RMSE values of input parameters for t ≤ 8. Second
row : RMSE values of the input parameters for t > 8 after a continuous perturbation has been
applied to Csa and discretely we perturb τep

Parameter τes τep Rmv Zao Rs Csa Csv Emax Emin
RMSE t ≤ 8 0.004 0.01 0.009 0.003 0.1 0.02 2 0.03 0.002
RMSE t > 8 0.003 0.03 0.02 0.002 0.04 0.1 3 0.007 0.004

8.3.2.4 Rs & Emin

Here, Rs and Emin are perturbed. We see exceptional ability of the UKF to adapt to Emin

being perturbed by equation (8.3) but Rs fails to track the perturbation as accurately as Emin.
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A majority of input parameters in Figure 8.8 converge to the ground truth value, with little
error apart from Rmv and Csv. This parameter perturbation combination causes increases
in all parameter variances. The RMSE values of Table (8.6) indicate -once again- that all
none-perturbed parameters are fairly resistant to the changes applied to the input parameter
space, we see a 1.67× and 1.25× increase in the RMSE for τes and τep, a 2× increase in the
perturbed Emin parameter and a 3.33× increase on the RMSE value for Zao. The perturbed
systemic resistance Rs retains the same level of error pre and post perturbation which we
believe is due to Rs failing accurately to find the true parameter value in the first 8 cycles.
Then, after the perturbation is applied the Rs estimation fails to track the perturbation to the
higher values, Rs > 1.3. Csv exhibits the largest values of the RMSE, notably for t > 8 we
see our smallest value of the RMSE yet for Csv. From Figure 8.8G we see Csv appears to tend
towards the true value before diverging again.

Fig. 8.8 Rs & Emin - Figures A - I show the parameter estimations over the 15 cardiac cycles
with perturbed Emin and Rs. The yellow and blue line represent the true and estimated
parameter values respectively. The green lines represent the peturbed input parameter values.
Figures J - R display the parameter covariances over the 15 cardiac cycles.
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Table 8.6 Rs & Emin RMSE : first row, RMSE values of input parameters for t ≤ 8. Second
row : RMSE values of the input parameters for t > 8 after a continuous perturbation has been
applied to Emin and Rs.

Parameter τes τep Rmv Zao Rs Csa Csv Emax Emin
RMSE t ≤ 8 0.006 0.008 0.007 0.003 0.2 0.02 1 0.04 0.02
RMSE t > 8 0.01 0.01 0.008 0.01 0.2 0.03 0.6 0.03 0.04

8.3.2.5 τes, τep & Emin

Figure 8.9 shows the outcome after both the timing parameters τes and τep and the minimal
contractility parameter Emin are perturbed. The timing parameters τes and τep struggle to
adapt to the differing timing parameters shown in Figures 8.9A and 8.9B. Perturbing Emin

leads to an accurate estimate during every cardiac cycle. We notice the parameter estimates
for other input parameters converge with minimal error. Csv diverges from the true value in
Figure 8.9G. The mitral valve resistance Rmv appears to diverge from the true parameter value
when the perturbation is applied, but towards the final cardiac cycle it appears to converge
back towards the true parameter value. We also notice that the variance appears to increase in
all parameters except Csv - see Figures 8.9 J-R. This is mirrored in the RMSE values found in
Table (8.7) we see a 16.7× and 50× increase in the RMSE value for τes and τep. Emin appears
robust to the perturbation with the same value of the RMSE being found before and after
the perturbation has been applied. All over input parameters suffer from increases to their
RMSE value with the exception of the systemic resistance which has a 10× improvement.
Csv exhibits the largest RMSE value.

Table 8.7 τes,τep & Emin RMSE : first row, RMSE values of input parameters for t ≤ 8. Second
row : the RMSE values of the input parameters for t > 8 after a continuous perturbation has
been applied to Emin and then a discrete perturbation to the timing parameters τes and τep.

Parameter τes τep Rmv Zao Rs Csa Csv Emax Emin
RMSE t ≤ 8 0.006 0.008 0.006 0.003 0.2 0.01 2 0.04 0.04
RMSE t > 8 0.1 0.4 0.02 0.005 0.02 0.02 3 0.04 0.04

8.3.2.6 Csv

Next, we perturb the venous compliance parameter Csv. In Figure 8.10, the parameter
estimate diverges from the ground truth value whist all other parameter estimates in Figure
8.10 appear to converge as accurately as in the base state, a fact mirrored by constant variance.
The RMSE values found in Table (8.8) reflect the accuracy of estimation observed in the base
state case, see Table (8.2). In this case we obtain our smallest value of the RMSE obtained by
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Fig. 8.9 τes,τep & Emin - Figures A - I exhibit parameter estimations over 15 cardiac cycles
with perturbed timing parameters τes and τep and Emin. The yellow and blue lines represent
the true and estimated parameter values respectively. The blue dots represent the perturbed
values of the timing parameters τes and τep. The green line represents the continuous
parameter perturbation. Figures J - R display the parameter covariances over the 15 cardiac
cycles.
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τep after the perturbation was applied to Csv. Figure (8.10) displays a uniform trend that as the
simulation runs longer the estimation improves, seeming to indicate the perturbation applied
to Csv makes no difference to the estimation of the other input parameters. Csv appears to
take no notice of the perturbation and continues to diverge.

Fig. 8.10 Csv: Figures A - I show parameter estimations over the 15 cardiac cycles with
perturbed Emin. The yellow and blue line represent the true and estimated parameter values
respectively. The green line represents the perturbed value of Csv. Figures J - R display the
parameter covariances over the 15 cardiac cycles.

Table 8.8 Csv RMSE : first row RMSE values of input parameters for t ≤ 8. Second row :
the RMSE values of the input parameters for t > 8 after a continuous perturbation has been
applied to Csv.

Parameter τes τep Rmv Zao Rs Csa Csv Emax Emin
RMSE t ≤ 8 0.004 0.008 0.007 0.003 0.09 0.02 2 0.03 0.002
RMSE t > 8 0.001 0.0004 0.006 0.0007 0.06 0.003 3 0.008 0.001
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8.4 Discussion

Our main intention was to test the robustness of the UKF in the presence of beat-to-beat
variability and physiological parameter perturbations. Overall, we see it presents as a good
choice for the identification of input parameters, both in terms of accuracy and efficiency.
The results in section 8.3 demonstrate that all the input parameters exhibit adaptive behaviour,
towards their ground truth value in the presence of perturbed and non-perturbed input pa-
rameters (note: always for synthetic personalised varying cardiac cycle length times). Most
remarkably, when certain input parameters are perturbed, namely, the minimal ventricular
elastance or compliance, Emin, and the ventricle timing parameters τes and τep, the UKF often
finds the perturbed values exceptionally well (see Figure 8.6 and Figure 8.5). This provides
assurance that, given a similar data set measured in clinic, these important parameters may
be feasibly estimated, given the same set of clinical measurements are used. Note, given
a different set of measurements it is likely the accuracy of the estimations may change for
specific input parameters. Other input parameters such as the systemic compliance, Csa and
the systemic resistance Rs do not return such accurate estimations (see Figures 8.7 and 8.8).
Despite this, it appears the general trend of the added perturbation is still present in the
estimation of the input parameters.

All cases considered reveal that when a perturbation is applied to a parameter, this nor-
mally introduces some disturbance to the other parameter estimations in the model (see
the Figures in section 8.3) where the disturbance of other parameters in magnitude is often
smaller than the magnitude of the perturbed parameter. Further, the disturbance introduced
on certain input parameter estimates is a residual effect of another parameter perturbation
and not a direct change in our synthetic patient’s physiological state.

The non-perturbed parameter estimations tend towards their true values during a cardiac
cycle after a perturbation has been applied. This is evident in the RMSE values, in section 8.3.
Clinical expertise is essential to ensure that this minimal disturbance can be distilled from
true parameter perturbations, for example, in a head-up tilt, one observes a significant drop in
systemic resistance before recovery [357]. In Figure 8.9, we perturb 3 input parameters and
observe the estimations on the timing parameters break down dramatically while the other
input parameters appear to be estimated with sufficient accuracy. This is likely to be caused
by the 3 parameters being linked by the analytical description of the ventricle in equation
(4.25), which highlights the need to identify dependencies and identifiable parameters, before
estimation, to ensure that accurate and unique parameter estimations can occur.
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We examined the continuous sensitivity of input parameters to give an indication on how this
may relate to the accuracy of estimation performed by the UKF. The continuous sensitivity
analysis (CSA), with results shown in Figure 8.4, reveals that most input parameters have
a well-defined "cycle of importance" which corresponds to the phases of the cardiac cycle.
Two tentative conclusions can be drawn: first, this may explain why most input parame-
ters are estimated with outstanding accuracy, even when their time averaged influence is
small compared to the most influential parameter τes. Therefore an accurate estimation of
input parameters is due to either a well-defined cycle of importance or being consistently
important. This means the input parameters’ effects are observable in the outputs, such
that they would be accurately identified by the UKF. Our second conclusion from the CSA
relates to what choice of measurements should be made. It is accepted practice to investigate
discrete measurements. The CSA indicates that there are distinct moments within the cardiac
cycle where certain parameters exert a stronger influence compared to their influence at
other instants. Our work provides a guide for what one should consider, when deciding
on which measurements to use to interrogate an input parameter space, i.e., one would
choose measurements which are applicable to the time points where all input parameter
effects are at their largest, hence improving the chances of making the parameters identifiable.

Notably, two input parameters exhibit surprising results. In the CSA (Figure 8.4), we
note that the end pulse time, τep, exhibits minimal sensitivity across the whole time period
investigated. Due to personalised cardiac cycles being included, the effects of end pulse time
are truncated. The end pulse time signifies the start of passive filling of the ventricle and due
to the passive filling phase of of the ventricle being isolated between cycles, this leads to the
effects being neglected. Despite the lack of sensitivity, τep is found accurately in nearly all
cases investigated. One explanation is that the variance of the parameter is consistently low,
hence the UKF finds the local minimum estimate and therefore the accurate estimate. Due
to this factor, our estimate of τep should be considered with more caution than other input
parameters.

Within the clinical setting, the end systolic time, τes is that which is considered to have
more impact, as it relates to a QT interval [500, 501], which is reflected in the high level
of sensitivity seen in Figure 8.4. In section 8.3, we notice that the estimates of the venous
compliance Csv appear to diverge in all cases. Csv even diverges in the base state where no
parameter perturbations have been applied (see Figure 8.3). The variance of the venous
compliance is the highest in all parameter estimations, whereas the parameters with accu-
rate estimations have steady minimal variances. One explanation for this is that venous
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compliance has no direct influence over any of the measurements present in our analysis
[502]. As a consequence the parameters’ effects cannot be observed independently in our
synthetic measurements and subsequently the parameter estimate is poor. Despite these
special cases, the CSA and UKF results are robust and consistent to all other input parameters.

In the presence of personalised cardiac cycle lengths and parameter perturbations, the
average computation time is 90.4 seconds under serial execution, which corresponds to an
average of 6 seconds per cardiac cycle. If the goal is to implement this approach in the clinic
it is important to reduce the computation time to real-time levels, ensuring a one-to-one
relationship between the computational time and the cardiac cycle time. Recently, a real time
implementation without perturbations is available to clinicians [502]. Although the estimates
in this study demonstrate exceptional accuracy, it is possible to decrease the computational
time by reducing the tolerance, complexity of the differential equation solver, and the size
of the time step. However, this would inevitably lead to a decrease in the accuracy of the
parameter estimate. Currently, no adaptive time step Kalman filtration approach exists for
this purpose, but its development would significantly enhance the efficiency of the algorithm.
Additionally, it would be intriguing to investigate the optimal time step required to ensure
sufficient accuracy of the parameter estimate. If either of these issues could be developed, it
would lead to an increase in the algorithm’s efficiency while still maintaining the accuracy
level presented within this work.

It is worth noting that the computational expense of this approach is low compared with
other computational tools for direct clinical applications [21, 82, 368, 503]. Even though the
computational time of this work does not currently meet real-time requirements, clinicians
can still obtain prompt insights into a patient’s physiological state, compared to other tools.
Therefore, when pathophysiological conditions are present within the patient data, the UKF
should be capable of providing state and parameter estimates that accurately emulate the
pathophysiological conditions depicted in the data. The only drawback with this current
workflow is that the personalised cardiac cycle lengths must be recorded, say through an ECG.
However, when the pathophysiological condition is not severe, this workflow (of collecting
personalised cardiac lengths and patient data, feeding them to the UKF, and interpreting the
results) remains an efficient approach to personalised patient-centred care.

A primary perturbation employed in this study involves a random scattering of the tim-
ing parameters of the elastance function, specifically τes and τep, as defined in equation (8.2).
In reality, there presumably exists some function that enshrines the complex relationship
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between the length of the cardiac cycle τ , the end systolic time τes, and the end pulse time
τep. However, in this work, these parameters are treated as independent parameters of the
elastance function. By perturbing τes and τep independently, we are able to demonstrate
the robustness associated with the UKF in accurately estimating the timing parameters,
even under extreme and non-physiological conditions. hence defining a worst case scenario.
This highlights the excellent capability of the UKF to handle perturbations and effectively
estimate the timing parameters, despite their independence from the underlying physiological
relationships within the cardiac cycle. The other parameter perturbation used (defined in
equation (8.3)) applies a steady increase to a parameter value. The results are also tested
using a steady decrease in the parameter value and the same conclusions hold. This parameter
perturbation is more realistic and similar parameter dynamics have been reported in models
which have built-in physics which causes time-varying behaviour of input parameters, such
as in models of head-up tilt, microgravity and stochastic versions of the Windkessel model
[504–506].

The UKF utilised to estimate input parameters can only perform within a local context.
While it excels in providing efficient parameter estimations, there are advanced global opti-
misation techniques, such as particle filters and genetic algorithms which offer additional
benefits such as independence from initial conditions, which the UKF can be sensitive to,
and they are better suited at coping with non-linearities in the system, so global optimisation
techniques can often explore a wider input parameter space [507, 508]. Use of carefully
chosen sigma vectors to represent a GRV reduces the need for numerical derivative evalua-
tions, which are computationally expensive in global optimisations. A UKF’s computational
advantage is particularly valuable in clinical situations where a decision may required under a
time constraint. However, relying solely on the UKF’s local approach has certain limitations.
Since the UKF heavily relies on initial conditions and model assumptions, there is a potential
for introducing bias into the estimates.

Within this chapter, all parameter distributions and initial co-variances were chosen with the
physiology of the input parameters in mind. See section 4.14. The dynamical system noise
was set to Q = 10−8, reflecting the cardiovascular system’s largely deterministic nature and to
avoid sigma point collapse, a problem associated with the UKF [21, 443]. The measurement
noise used in this work was R = 52 × I3×3 to represent the uncertainty within our chosen
measurements, as defined in section 8.2. The local nature of the UKF restricts its ability to
explore the entire parameter space, limiting its capability to find the global optimum. In
contrast, global optimisation techniques can better navigate multi-modal parameter spaces,
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potentially yielding more accurate estimates.

The estimates provided by the UKF could be evaluated by the clinical expert with specialised
knowledge, to determine if the estimated parameters align with physiological expectations
and reflect their assessment of the patient’s physiological state. Such an evaluation process
ensures that the estimates are not only mathematically sound but also relevant. By incorporat-
ing the interpretive expertise of clinical professionals, the UKF’s estimates can be validated,
enhancing the interpretation of clinical data and providing a more comprehensive assessment
of the patient’s condition. This collaborative approach between the UKF and the clinical
expert fosters an efficient, reliable and clinically relevant decision-making process.

8.5 Conclusion

We have analysed a tractable nine-dimensional closed loop, single ventricle LPM of the
systemic circulation. Our approach to this LPM may be generalised to a range of dynamical
systems and our observations are in principle applicable to any model - not just one in a car-
diovascular setting. We present a de novo computational algorithm, designed to incorporate
patient-specific beat-to-beat variability into model investigations. Utilising this algorithm,
we have efficiently implemented the Unscented Kalman Filter, demonstrating its exceptional
adaptability to severe parameter perturbations, representing significant changes in a patient’s
physiological state.

Our investigation into the computationally efficient, continuous sensitivity of model in-
put parameters explains the exceptional capability of the UKF accurately to estimate input
parameter values, within a single cardiac cycle. This insight contributes to our understanding
of the UKF’s robustness and efficacy. Our research showcases potential clinical applications
of the UKF. By utilising patient-specific measurements and employing the close to real-time
UKF, it becomes feasible to monitor a patient’s physiological state with minimal delay, offer-
ing promise to medical professionals, to promptly identify the onset of a (patho)physiological
condition.



Chapter 9

Discussion

It was written I should be loyal to the nightmare of my choice.
— JOSEPH CONRAD, Heart of Darkness

Summary
This chapter discusses the results presented in this thesis and examines how lumped parameter
models fit into a clinical workflow and what one must do to obtain a personalised medicine.
We also examine alternative approaches for quantifying uncertainty within cardiovascular
models.
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We have examined the offline investigation of sensitivity analysis and parameter subset
selection of cardiovascular LPMs and unveiled the UKF as a promising methodology for
online parameter calibration, to a patient. Our results reveal important new considerations
for personalising these models. To obtain the greatest impact, computational models must be
incorporated into a clinical workflow. LPMs appear to be a good candidate as a components
of a cardiovascular digital twins. As demonstrated in chapter 6, the data which parameter in-
fluence estimates are computed against can lead to very different interpretations. Thus if one
were to apply a LPM to create a virtual patient representation, to e.g. track a pathophysiology
over time, say as the patient decompensates, one would need to recompute the personalisable
subset at every update of the model, incurring a large, on-going computational expense. Still,
due to the efficient computational properties, a LPM remains an attractive conduit.

Another attractive property of LPMs for personalisation is that they provide insight into the
physiology for which no clinical measurements are available or ethical. Due to the efficient
computation time of LPMs,as demonstrated above with high-fidelty complex models. Using
an LPM to study pathophysiology in (say) a specific vessel or compartment by performing a
GSA, the results may reveal new influencing factors which would not have been otherwise
exposed.

A limitation associated with LPMs is their neglect of spatial factors in the cardiovascu-
lar system. There are accepted clinical diagnostic metrics associated with wall shear stress
that are impossible recover with LPMs. As mentioned above, when seeking to apply compu-
tational modelling in a clinical setting this has to be completed within an acceptable time
frame. Higher dimensional models may be suitable for the diagnosis of pathophysiologi-
cal conditions, their interrogation of clinical scans (MRI/CT) scans allowing for the close
examination of patient specific vessel structure [509, 510]. However, were one to need to
personalise a higher dimensional model requiring continuously updates of new data sources,
this would require very considerable computing power- and would become logistically unfea-
sible. Alternatively, high fidelity models provide us the opportunity to visualise the impact of
including multiple different biological processes such as material, chemical and electrical
models of heart function or vessel dynamics. Thus while we have been concerned with
the tractable inverse problem in this work, the high dimensional modelling still cannot be
discarded for a future in which resource that are currently classified as exascale become more
accessible.

Recently, there has been an upswing in the use of high performance computing in car-
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diovascular models. Here, all the sensitivity analysis has considered how efficiently one can
solve a model. For our LPMs, we have used only a single node with multiple CPUs (26 & 48).
In Julia, one should use Distributed.jl to extend to multiple nodes which would then allow
us to gain multiple speed-ups. For more complex models, for example, of the whole human
circulation, the parameter subset selection methodologies could then be applied. Another
potential improvement to the whole subset selection methodology would be to use the new
differential equation solvers which are adapted to GPUs, from DiffEqGPU.jl. This would
then, on average, provide us with an additional order of magnitude acceleration, leading
to quicker and more efficient model personalisation. This has been recently utilised with
higher dimensional models,reducing the computational time to hours instead of days for a
single model execution, which improves clinical prospects; however this is still unusable
for sensitivity analysis investigations unless coupled to an emulator methodology. It is also
important to note that higher dimensional models contain hundreds of thousands sources of
error compared to LPMs, which possibly contain hundreds at most. These are present in the
form of additional model parameters which are likely to be attributed to the segmented arterial
geometry created from a medical image. If one has an interest in quantifying the uncer-
tainty using Sobol indices the number of model executions would quickly become infeasible.
Recall, Sobol indices require k(n+2) model executions, where n is the number of parameters.

Turning to the application of computational models to the clinic, while access to HPC
opens up opportunities for further process investigation and the personalisation of more
highly detailed LPMs, one has to acknowledge the limit on resources available. If a model
were to be integrated into a routine clinical checkup (say) or a DT to monitor the evolution
of a patients health, such resource is not going to be readily available in the medium term.
Further, another common barrier to the implementation of technical solutions into cardiovas-
cular care is the barrier to entry and the staff up-skilling required for HPC training would
be too large. Thus, while HPC offers an academic technical or off-line solution for further
research, the focus for clinical translation of cardiovascular models has to be on the efficient
solving of models locally. Otherwise, while the technology and methods are available to
simulate large scale complex models the computational resource may not be.

To perform the vital offline stage investigating the sensitivity of the model parameters,
we have already highlighted the vital importance of efficient model solving. Apart from
utilising the HPC systems as discussed above, the steady models can be executed at a fraction
of the speed associated with pulsatile models thus making them a prime candidate for person-
alisation. Another approach is statistical emulators of the model which is under investigation,
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namely Gaussian processes. A Gaussian process (GP) s a flexible non parametric regression
tool widely used for machine learning, which effectively interpolates an output surface.
The GP is initially trained using a set of design data composed of inputs and the desired
output. Once trained, a GP can be evaluated very quickly to estimate an output for a new
and unseen set of inputs, and so can emulate a cardiac cell model, or simulator [511]. A GP
can treat uncertainty and variability explicitly, providing a probabilistic (mean and variance)
estimate of the output, and so is an ideal tool for sensitivity and uncertainty analysis. It can
be trained on a relatively small number of simulator runs, and so offers advantages over other
approaches, such as Monte Carlo methods that require large numbers of simulator runs. The
emulator is a probability distribution for the model. Given any point in parameter space θ the
emulator encodes our knowledge about the corresponding model output Y . If we have run the
simulator at x, then we know the corresponding model output with certainty. Note that this
does not mean that we know with certainty the “true" value of the quantity we are modelling,
just that we know what value the computer model will return given input parameters θ .
When training the GPE it allows for us to associate an uncertainty associated with points in
input space. Work has shown that Sobol indices can be directly calculated from the outputs
of the emulator [512, 288]. There are many other theories of model emulation such as
neural network and polynomial chaos expansion [513, 514]. Statistical modelling allows for
categorising patients based on the probability of an outcome, mechanistic modelling provides
the insight into whether we should support or reject this such categorisation.

The whole focus of the personalisation process is situated around the integration of com-
putational tools into a clinical workflow. If one is to provide clinicians with predictions
or advice based on computational models, we must quantify the risk associated with these
deductions. This means that every aspect of uncertainty in the modelling process must be
understood and quantified. Thus, this presents a dichotomy between looking to minimise the
uncertainty of the personalisation process and trying to obtain quick and efficient solutions to
the cardiovascular systems under investigation. While emulators solve models efficiently and
offer an attractive alternative methodology the effects and uncertainty of the hyperparameters
associated with the training of an emulator need also to be quantified when they are been
used to make deductions from cardiovascular models. In this work we have avoided the use
of emulators due to the speed associated with the system solvers in Julia. However, when
examining the UKF’s efficiency in the personalisation process, there are multiple hyperpa-
rameters associated with this methodology. Thus further investigation should be performed
to examine the impact of the associated hyperparameters of the UKF. An interesting future
direction would be to include the hyperparameters into a GSA to examine their influence
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against the mechanical model parameters. Although these hyperparameters carry no clinical
insight, if they are to be incorporated into the personalisation process it would begin to allow
us to provide clinicians with a greater more reasoned quantification of the risk associated
with model interpretations.

In this work we have been able to focus on Sobol indices, due to the rapid computation of the
models investigated. However, given a wish to investigate more complex models with multi-
ple paths (regulation, chemical, electrical), would Sobol indices still be usable? There have
been other attempts at simplifying the computational burden associated with Sobol indices’
computation, such as hybrid local-global sensitivity analysis method termed the Distributed
Evaluation of Local Sensitivity Analysis (DELSA). DELSA uses derivative-based “local”
methods to obtain the distribution of parameter sensitivity across the parameter space and
has been shown to be in good standing with respect Sobol indices interpretation. However,
the intuitive understanding provided by the first and total order indices Facilitates insight
into the complexity of input space, as described in section 4.6. Derivative based global
measures (DGSM) (first introduced by Sobol and Gershman), have a strong link with the
Morris screening method and Sobol’ sensitivity indices and have several advantages over
them. DGSM are very easy to implement and evaluate numerically. The computational time
required for numerical evaluation of DGSM is generally much lower than that for estimation
of Sobol’ sensitivity indices. Most importantly it can be shown that the total order Sobol
indices are bounded above by the DGSM sensitivity metrics. DGSM is based on averaging
local derivatives using Monte Carlo or Quasi Monte Carlo sampling methods. This technique
is much more accurate than the Morris method as the elementary effects are evaluated as
strict local derivatives with small increments compared to the variable uncertainty ranges.
Local derivatives are evaluated at randomly or quasi-randomly selected points in the whole
range of uncertainty and not at the points from a fixed grid. The estimator is defined as a
normalised integral of partial derivatives.

The question of why this is important rests depends on one’s view of utilising more complex
models in future. When performing parameter subset selection, the parameters which are
found to be unidentifiable are fixed at their nominal value, a practice denoted “factor fixing"
by Saltelli [196]. If one obtains models with O(103) input parameters, in a preliminary in-
vestigation using DGSM (as a proxy for the total order indices which is the gold standard for
factor fixing) before performing a full global analysis one may be able to significantly reduce
the parameter space for which a full Sobol analysis can be performed and the identification
of inputs for personalisation is plausible. This is something which should be tested in the
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future, to identify a best practice where possible.

There are also differing interpretations when seeking to assess the sensitivity of Y to θ .
A way of exploring the sensitivity of a model output in the presence of uncertainty is by
distribution-based techniques (also called moment independent). A technique is distribution-
based (or moment independent) if the associated global sensitivity measures explicitly
consider the entire model output distribution (either the cumulative distribution function or
the density) instead of relying on a particular moment of this distribution (e.g., variance).
They are well suited to address the decision maker’s state of knowledge in the model output,
especially when distributions are skewed or multi-modal. If one utilises a variance-based
method then one is implicitly framing the SA within the following SA setting: we are betting
on the factor that, if determined (i.e., fixed to its true value), would lead to the greatest
expected reduction in the variance of Y . In a distribution-based sensitivity analysis, originally
proposed by Park and Ahn [515], a different setting is proposed. Now the SA setting is: we
are betting on the factor that, if determined, would lead to the greatest expected modification
in the distribution of Y. The sensitivity measure of interest is defined as

δi :=
1
2
Eθi[si(θi] (9.1)

si(θ̃i) :=
∫

ΩY

| fY (y)− fY |θi=θ̃i
(y)|dy (9.2)

si(θ̃i) is the shift the model output distribution fY (y) and the conditional model output
distribution, fY |θi=θ̃i

(y), given that input θi is fixed at θ̃i. As underlined by Iman and Hora
[516], in the presence of long tail input/output distributions robustness problems might
emerge in the estimation of statistical quantities as, e.g. variance-based sensitivity measures.
The results in this thesis have all been based on a variance based interpretation, however in
reality we have access to many long tailed outputs, with the moment independent approach
this may provide a more accurate insight into the sensitivity of continuous outputs which
may influence our results when performing parameter subset selection methods.

A major assumption associated with the work here is that all input parameters are inde-
pendent of each other i.e. none are correlated. A sensitivity approach that has gained more
traction recently is that of the Shapley Value. The Shapley value, from economics, provides
an alternative way to define variable importance. As we describe below, Shapley value
provides a way to attribute the value created by a team to its individual members. In our
context the members are individual input variables. Owen [517] derived Shapley value
importance for independent inputs where the value is variance explained. The Shapley value
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of a variable turns out to be bracketed between two different Sobol’ indices. Song et al. [518]
recently advocated the use of Shapley value for the case of dependent inputs. They report that
it is more suitable than Sobol’ indices for such problems. They use the term “Shapley effects"
to describe variance based Shapley values. Although Shapley value solves the conceptual
problems, computational problems remain challenging [519]. The Shapley value is defined
in terms of 2n −1 models where n is the dimension of θ . Shapley values offer an interest-
ing approach to allow us to identify the marginal influence of each input parameter given
specified correlations between parameters. The human body is a complex interconnected
system thus the personalisation process should be carefully considered, leveraging clinical
knowledge about correlations between compartments to observe if a different personalisable
set of input parameters are obtained.

Following chapter 2, there is a difference between sensitivity and uncertainty analysis.
In GSA, one prescribes bounds on the input parameters, which in theory should be informed
by e.g clinical constraints. Then by utilising a GSA method, one identifies the input parame-
ters which most greatly impact a chosen set of outputs. An issue associated with GSA is that
we have no insight into the value of the outputs which we are investigating. Were one to use a
range on input parameters which does not encapsulate the full range of (patho)physiology of a
patient, deductions from a GSA may not reflect reality. One could style personalisation as the
task of obtaining a region within input parameter space which characterises a patient. If the
objective is long term monitoring of a patient tracking changes in a condition one must have
investigated and identified the whole of the implicated region. A simple example is a heart
valve resistance if one considers a range which subsumes a sub-region for which no blood
can flow through the valve. When performing a GSA one would be picking up influence
of unphysiological regions that -clinically- are of no consequence, thus when performing a
parameter subset reduction, one may reach false conclusions with serious consequences.

How does one identify regions of input space that are of interest? This is an open question. As
we shall cement below, we propose that GSA should be used in collaboration with uncertainty
analysis. A promising method is tha of Bayesian history matching - a statistical method for
calibrating mathematical models. The basis of history matching is to use observed data to
rule-out any parameter settings which are “implausible”. For a potential parameter set θ ,
their implausibility I(θ) is calculated as

I(θ) =
|E[ f (θ)]−Y o|√

V[ f (θ)]
(9.3)
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where Y o is the observed outputs, E[ f (θ)] is the expected output of the model and V[ f (θ)]
represents the uncertainties of the model for that parameter sample. Due to the extensive
number of simulations needed, often one uses an emulator as described above. An implausi-
bility of 3 is considered a good threshold for rejecting parameter settings. For models with
more that one output other thresholds can be used. A key component of history matching is
the notion of iterative refocusing, where new computer model simulations can be chosen to
better improve the emulator and the calibration, based on preliminary results.

We have focused exclusively on parameter uncertainty and made the assumption that the
models we use reflect reality. Another important consideration is that of model discrepancy -
the difference between a model’s predictions and reality. Another major source of uncertainty
in modelling is uncertainty in the model structure, i.e. the form of the governing equations.
There is always a difference between the imperfect model and reality and reality which
is termed model discrepancy. Assessment of the robustness of model predictions given
our uncertainty in the model structure, and methods to characterise model discrepancy, has
received relatively little attention anywhere in mathematical/systems biology. For calibration,
the existence of model discrepancy can change the meaning of the estimated parameters.
If we fail to account for the model discrepancy in our inference, our parameter estimates,
instead of being of physically meaningful quantities, will have their meaning intimately tied
to the model used to estimate them. The estimated parameter values depend on the chosen
model form, and the uncertainty estimates obtained during inverse parameter UQ tell us little
about the true value (only how confident we are about the "pseudo-true" values). In other
words, there is no guarantee that the obtained θ will match the true physiological values of
any parameters that have a clear physiological meaning. We can try to restore meaning to the
estimated parameters by including a term to represent the model discrepancy in our models.
While this term does not tell us what physics we are missing, it allows us to gain insight into
that we are missing some. See [236] for more details.

Alongside model discrepancy we are often limited with the amount of data available in
cardiovascular systems. So, we seek a method in which we can leverage mechanistic mod-
elling but accounting for model discrepancy. This workflow falls into the burgeoning field of
“scientific machine learning” which integrates machine learning derived idea into traditional
engineering-related methods to utilise domain knowledge and physical constraints into the
learning process. It has recently been shown to advantage merging differential equations with
machine learning. Physics-Informed Neural Networks (PINNs) use differential equations in
the cost functions of neural networks to incorporate prior scientific knowledge [520]. While
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this has been shown to be a form of data -efficient machine learning for some scientific
applications, PINNs frame the solution process as a large optimisation. While this formalism
incorporates the knowledge of physical systems into machine learning, it does not incor-
porate the numerical techniques which have led to stable and efficient numerical solvers.
Treating the training process as fully implicit is compute-intensive which, recent results have
shown, is increasingly difficult as the stiffness of the model increases [521]. While work has
demonstrated that efficiency is greatly improved when incorporating classical discretisation
techniques into the training process (as “discrete physics-informed neural networks”, such
as in multi-step neural networks [522]). Common PINN frameworks do not have the ability
automatically to combine scientific machine learning training with highly efficient differential
equation solvers and adjoint techniques developed over the last century. Thus, as a basis
for scientific machine learning that incorporates the efficient numerical solver and adjoint
techniques, developed by Julia lang they denote these as universal differential equation
(UDE). UDEs are differential equations which are defined in full or part by a universal
approximator. A universal approximator is a parameterised object capable of representing
any possible function in some parameter size limit. Mathematically the UDE can be seen as

d
dt

X(t) = f (X(t);θ)+NN(X(t),θ). (9.4)

Above, the NN represents the missing physics within our mechanistic model. The Julia
framework allows us to utilise the adaptive differential equation solvers and advanced auto-
matic differentiation frameworks - advantages that lead to a more efficient training procedure
and should be investigated further in the final model calibration stage to patient data. Here
UDEs offer an interesting approach, we could still calibrate the model parameters which can
provide clinical insight while utilising a neural network to account for any model discrepancy.

Our results embellish the vital offline stage of personalisation and the important consid-
erations that one must make to ensure the results’ validity. Figure 9.1 is a proposal for
the personalisation of a cardiovascular LPM which emphasises the recursive nature of the
personalisation process. For example, once a personalisable subset of parameters have been
obtained, if said subset does not contain the biomarkers, one must work with clinicians to
establish what additional data can be obtained for a patient and thus GSA and subset selection
can be iterated. This proposal also highlights one of our key findings - that personalisation
outcomes must be constrained with the available data. But when UA or model sloppiness is
performed we can repeat the whole process again by either developing a new model or incor-
porating clinical data. From figure 9.1 we propose that the personalisation process should
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be a largely offline process to obtain the best case personalisable set of input parameters.
Once we subsequently begin to constrain the model with data, to personalise the model, this
stage involves the optimisation and calibration of the model parameter values (informed
by model sloppiness investigations). Also, one can then begin to examine the practical
identifiability of the model parameters which allows one to examine the uniqueness of the
personalisable subset of model parameters given noisy clinical data. The proposed workflow
below defines a novel approach to quantifying the uncertainty associated with cardiovascular
models constrained by computational time. This work has examined the combination of GSA
and orthogonality in chapter 5 and 7. Model sloppiness was examined in chapter 6 and the
UKF online optimisation stage was examined in chapter 8.
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Fig. 9.1 A schematic representation of the personalisation process : this represents the
stages which a lumped parameter cardiovascular model must go through, to ensure unique
personalisation.



Chapter 10

Conclusions & Future Work

Science is organised knowledge. Wisdom is organised life.
— HERBERT SPENCER, The Art of Education

10.1 Conclusions

This thesis focuses on defining best practices for the uncertainty quantification stage of the
personalisation process for cardiovascular lumped parameter models. While the focus in this
work has been cardiac, the techniques and best practices defined in this work can be applied
to any domain in which an dynamical system is investigated. Chapters 5 - 8 progressively
align with the principal aims of method refinement, parameter subset reduction and parameter
identification, as initially outlined in Chapter 1 and summarised below. We have examined

1. The impact of different statistical estimators, sampling methodologies and convergence
when performing a global sensitivity analysis of LPMs,

2. The impact of varying model outputs have on the personalisation process and applied
the theory of model sloppiness to gain novel insights into model behaviour,

3. The stability of personalisable subsets of input parameters, to varying sensitivity
methods and, on the back of this, developed a new methodology which provides insight
into the non-linearity associated with a model response surface.

4. The unscented Kalman filter as a method for parameter estimation in the personalisation
process.



222 Conclusions & Future Work

Chapter 5 considered the intricacies of changing sampling methodologies and variance-based
total order estimators, aiming to establish best practices for practical identifiability studies.
Through a thorough empirical assessment of total order estimators and sampling method-
ologies, we gained insight into their strengths and weaknesses. We have indicated how the
received wisdom of sample sizes of k > 500 is insufficient to ensure converged sensitiv-
ity indices. We have highlighted how the provision of sensitivity indices has to become a
convergence driven investigation as in CFD to ensure the validity of parameter interpretations.

Once best practices for sensitivity indices were established in Chapter 5, Chapter 6 showed
how changing model outputs can affect parameter interpretations. We performed the first
sloppy analysis of a cardiovascular LPM to obtain insight into the response surface struc-
ture and have shown how input parameter identifiability is not consistent conceived when
subject to varied measurement data and how it depends on the chosen experimental design.
Sloppiness is present in LPMs, when the chosen experimental design contains continuous
measurements. Possibly the most important conclusion from this work has been how the
personalisation of a digital twin to encompass a person’s complete physiological envelope
necessitates invasive tests to obtain continuous measurements. Although this approach offers
an increased number of identifiable parameters with potentials status as biomarkers, it comes
at the expense of creating a sloppy system which in turn increases the difficulty in parameter
identification. Conversely, discrete metrics may provide a simpler personalisation approach,
yielding less identifiable but more targeted biomarkers, due to the absence of sloppiness in
the system.

Given the improved appreciation of how the personalisation state of cardiovascular models
is dependent on the outputs chosen and convergence of sensitivity indices. Chapter 7 ex-
tended the subset selection method of Li et al., [19], to encompass the global nature of the
model personalisation process and revealed how a different set of globally identifiable input
parameters could be obtained with different sensitivity metrics, and provided alternative
perspectives. Assessing the stability of this identifiable input parameter subset, we employed
various global and local measures of input parameter sensitivity, revealing how alternative
sensitivity methods which map input parameter space in contrasting ways lead to subtly
different identifiable input parameter subsets, which was driven mainly by the dissimilar
orthogonality between input parameters. In this chapter we were also able to show that
the subset selection method is robust to the initial identifiable parameter choice with the
same subset of identifiable parameters being obtained each time. Finally in this chapter
we have presented a novel, intuitive input parameter hyper-surface structure investigation,
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utilising Sobol indices. The connection with Sobol index error evaluation provides a guide for
mapping of the complexity of input parameter space, with a view to aid the inverse problem.

Chapter 8 considered how the computationally efficient, continuous sensitivity of model
input parameters has led to a novel explanation for the exceptional capability of the UKF to
accurately estimate input parameter values within a single cardiac cycle. With highlighting
how the more sensitive parameters during each cycle are obtained more efficiently. This
insight contributes to our understanding of the UKF’s robustness and efficacy. Our research
showcases potential clinical applications of the UKF. By utilising patient-specific measure-
ments and employing the close to real-time UKF, it becomes feasible to monitor a patient’s
physiological state almost in real time. Our tool has the capacity to Help medical profes-
sionals promptly to identify the onset of a (patho)physiological condition, thus reducing the
necessity for invasive procedures and ultimately improving patient care.

10.2 Future Work

The main conclusions of this work have focused around laying the theoretical foundations of
the personalisation process utilising lumped parameter models. Future work should address
application and development of UQ for cardiovascular and systems biology models.

10.2.1 Model Redundancy Investigation

The question of the complexity of a model needed for an investigation is still very open. Our
investigations in chapter 6 showed how different model outputs can change the interpretations
of model parameters coupling this with the best practices of GSA developed in chapter 5. One
could utilise the concept of effective dimensions [523] and minimally disruptive curves [524].
These methods allow one to ask when does an ordinary differential equation model become
overly complex, given a fixed set of output data? A cardiovascular example of this would
be if one was building a LPM to assess the severity of coronary artery disease, questions
surrounding the need for represented systemic, pulmonary, cerebral or venous circulation or
only the coronary anatomy could be answered with these metrics. These methods allow one
to provide the answer as to when does the added model complexity become ineffective in the
models contribution to a fixed set of outputs.
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10.2.2 Application of the uncertainty quantification framework

The personalisation framework defined in figure 9.1 defines some tentative best practices
for LPM calibration. Future work should revolve around the application of this process
to determine if we can obtain a clinically competent computational model. Firstly, one
should investigate the stages omitted in this thesis, structural identifiability and practical
identifiability. It will be interesting to see the workflow’s ability to calibrate parameters
to a patient data over a long period of time. Further investigations should be performed
to examine the minimum time required to perform a full model personalisation to see if
this could be applied routinely. Such an undertaking could have applications outside of
of cardiovascular problems. In metabolic studies involving type 2 diabetic patients, it is
often important to personalise a meal response in order to predict the amount of insulin
needed. The uncertainty quantification workflow developed here is agnostic to application;
thus investigation in other areas of systems biology may prove fruitful.

10.2.3 Graphics processing unit investigation

Graphical processing units (GPUs) are well-suited for performing single model executions
with multiple different initial conditions or input parameter sets [525]. Across all aspects
of the personalisation process, especially in global sensitivity analysis and parameter opti-
misation, multiple independent model executions are needed to quantify the variability and
uncertainty present within the system. If one could leverage the computational advantages
of a GPU the whole sensitivity analysis pipeline could make uncertainty quantification
possible in a clinically acceptable timeline. Recently work which led to the creation of
DiffEqGPU.jl has shown that multi core single node CPU model computation is 150x slower
than computation on a single GPU [526]. This means that we would be able to utilise the
efficient Julia solvers and the GPU hardware making the Julia lang an ideal language for
model personalisation.

10.2.4 Universal differential equations

The question of model complexity may also be approached with the introduction of neural
networks. Discussed in detail in the previous chapter, the application of universal differential
equations would allow us to investigate to what degree our models exhibit discrepancy with
clinical data. Given a some patient data, one could construct a series of tests in which
models of increasing anatomical fidelity are optimised to clinical data. An error metric is
then constructed between the model solutions and the clinical data, to quantify the quality of
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fit. This test is then repeated however a neural network is added to the models previously
invested and the error metric score is compared between the two scenarios. My conjecture is
that one would observe that the simpler physiology model with the additional neural network
would return a smaller error metric, compared to unguided high fidelity models.
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Marek Darowski, Maciej Kozarski, Bart Meyns, Nikolaos S Katertsidis, et al. A cardiovascular
simulator tailored for training and clinical uses. Journal of Biomedical Informatics, 57:100–112,
2015.

[497] Bernd Saugel, Karim Kouz, Agnes S Meidert, Leonie Schulte-Uentrop, and Stefano Romagnoli.
How to measure blood pressure using an arterial catheter: a systematic 5-step approach. Critical
Care, 24:1–10, 2020.

[498] Zahra Keshavarz-Motamed. A diagnostic, monitoring, and predictive tool for patients with
complex valvular, vascular and ventricular diseases. Scientific Reports, 10(1):1–19, 2020.

[499] Elliott M Antman and Joseph Loscalzo. Precision medicine in cardiology. Nature Reviews
Cardiology, 13(10):591–602, 2016.

[500] Anand Ambhore, Swee-Guan Teo, Abdul Razakjr Bin Omar, and Kian-Keong Poh. Ecg series.
importance of qt interval in clinical practice. Singapore medical journal, 55(12):607, 2014.

[501] Josef Kautzner. Qt interval measurements. Cardiac electrophysiology review, 6:273–277,
2002.

[502] Harry Saxton, Xu Xu, Ian Halliday, and Torsten Schenkel. New perspectives on sensitivity and
identifiability analysis using the unscented kalman filter, 2023.

[503] Edgar Hernando Sepúlveda Oviedo, Leonardo Enrique Bermeo Clavijo, and Luis Carlos
Méndez Córdoba. Openmodelica-based virtual simulator for the cardiovascular and respiratory
physiology of a neonate. Journal of Medical Engineering & Technology, 46(3):179–197, 2022.

[504] Katarzyna Buszko, Sławomir Kujawski, Julia L Newton, and Paweł Zalewski. Hemodynamic
response to the head-up tilt test in patients with syncope as a predictor of the test outcome: A
meta-analysis approach. Frontiers in physiology, 10:184, 2019.



References 259

[505] Carin Basirun, Melanie L Ferlazzo, Nicholas R Howell, Guo-Jun Liu, Ryan J Middleton, Boris
Martinac, S Anand Narayanan, Kate Poole, Carmine Gentile, and Joshua Chou. Microgravity×
radiation: A space mechanobiology approach toward cardiovascular function and disease.
Frontiers in Cell and Developmental Biology, 9:750775, 2021.

[506] Ahmed S Abutaleb and J Melbin. The estimation of the cardiac time-varying parameters during
the ejection phase of the cardiac cycle using the ito calculus. Cardiovascular Engineering,
10:118–127, 2010.

[507] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic algorithm: past,
present, and future. Multimedia Tools and Applications, 80:8091–8126, 2021.

[508] Zhe Chen et al. Bayesian filtering: From kalman filters to particle filters, and beyond. Statistics,
182(1):1–69, 2003.

[509] Marco D Mazzeo and Peter V Coveney. Hemelb: A high performance parallel lattice-boltzmann
code for large scale fluid flow in complex geometries. Computer Physics Communications,
178(12):894–914, 2008.

[510] I Zacharoudiou, JWS McCullough, and Peter V Coveney. Development and performance of a
hemelb gpu code for human-scale blood flow simulation. Computer Physics Communications,
282:108548, 2023.

[511] Eugene TY Chang, Mark Strong, and Richard H Clayton. Bayesian sensitivity analysis of a
cardiac cell model using a gaussian process emulator. PloS one, 10(6):e0130252, 2015.

[512] Sam Coveney, Cesare Corrado, Jeremy E Oakley, Richard D Wilkinson, Steven A Niederer,
and Richard H Clayton. Bayesian calibration of electrophysiology models using restitution
curve emulators. Frontiers in Physiology, 12:693015, 2021.

[513] Thomas Grandits, Christoph M Augustin, Gundolf Haase, Norbert Jost, Gary R Mirams,
Steven A Niederer, Gernot Plank, András Varró, László Virág, and Alexander Jung. Neural
network emulation of the human ventricular cardiomyocyte action potential for more efficient
computations in pharmacological studies. Elife, 12:RP91911, 2024.

[514] Elias C Massoud. Emulation of environmental models using polynomial chaos expansion.
Environmental modelling & software, 111:421–431, 2019.

[515] Chang K Park and Kwang-Il Ahn. A new approach for measuring uncertainty importance and
distributional sensitivity in probabilistic safety assessment. Reliability Engineering & System
Safety, 46(3):253–261, 1994.

[516] Ronald L Iman and Stephen C Hora. A robust measure of uncertainty importance for use in
fault tree system analysis. Risk analysis, 10(3):401–406, 1990.

[517] Art B Owen. Sobol’indices and shapley value. SIAM/ASA Journal on Uncertainty Quantifica-
tion, 2(1):245–251, 2014.

[518] Eunhye Song, Barry L Nelson, and Jeremy Staum. Shapley effects for global sensitivity analysis:
Theory and computation. SIAM/ASA Journal on Uncertainty Quantification, 4(1):1060–1083,
2016.

[519] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shapley value
based on sampling. Computers & Operations Research, 36(5):1726–1730, 2009.

[520] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational physics, 378:686–707, 2019.



260 References

[521] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

[522] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for
data-driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236, 2018.

[523] Arnald Puy, Pierfrancesco Beneventano, Simon A Levin, Samuele Lo Piano, Tommaso Por-
taluri, and Andrea Saltelli. Models with higher effective dimensions tend to produce more
uncertain estimates. Science Advances, 8(42):eabn9450, 2022.

[524] Dhruva V Raman, James Anderson, and Antonis Papachristodoulou. Delineating parameter
unidentifiabilities in complex models. Physical Review E, 95(3):032314, 2017.

[525] Dániel Nagy, Lambert Plavecz, and Ferenc Hegedűs. The art of solving a large number of
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Appendix A

1D Model Derivation

A.1 Numerical Scheme Derivation

Following treatment based upon Olufsen [116], Chapter 7, and Hughes and Lubliner [115].
In our analysis we will eventually make simplifications for absence of any body force on
fluid and constant (time-independent) boundary shape. Notation for boundary regions and
corresponding unit normal’s, expressed in cylindrical polar co-ordinates is given in table A.1
below. Note that the system’s axial symmetry implies n̂θ = 0 for all parts of the boundary,

Table A.1 Boundary normal unit vectors and notations: Expressed here within cylindrical
polar co-ordinates, using accepted notation, relative to the co-ordinate system orientation in
which êz is the streamwise (artery centre-line) direction. All normal’s are positive pointing
away from the enclosed volume. In this table, Rz =

dR
dz which is a known function of

streamwise co-ordinate, z.

Boundary Element Location
Inlet Luminal Outlet z

Unit normal, n̂ −êz
(Rzêz+êr)√

1+R2
z

êz êz

Identifier ∂Ωi ∂Ωl ∂Ωo ∂Ωz

A.2 Conservation Relations in the Presence of Leak

Hughes and Lubliner apply Reynolds’ transport theorem [527] to the leaking artery to show
that for some arbitrary scalar function ξ (r,z, t) [115]

∂

∂ t
Aξ +

∂

∂ z
A(ξ ūz) =

∫∫
∂Ωx

Dξ

Dt
dA+

∮
C(z)

ξ (u− v) · n̂dl (A.1)
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Later, we will set time derivatives to zero. Above, u ( v ) denotes fluid (boundary) motion,
C(z) identifies a contour in the luminal boundary lying within a plane perpendicular to the
z-axis (axis of symmetry), A is the smallest area bounded by C(z) and the overbar denotes a
cross-sectional area average

ξ̄ =
1
A

∫∫
∂Ωz

ξ dA

A.2.1 Volume Balance

Set ξ = 1 in equation A.1 from which it is immediate that

∂A
∂ t

+
∂

∂ z
Aūz +ψ = 0, ψ =−

∮
C(z)

wndl (A.2)

where wn = (u− v) · n̂ is the relative normal component of the fluid motion at the boundary.
Accordingly, sink term ψ(z) represents the volumetric flux per unit length of fluid leaving
the domain at streamwise location z.

A.2.2 Streamwise Momentum Balance

Set ξ = vz(r,z, t) in equation A.1 from which it is immediate that

∂

∂ t
Aūz +

∂

∂ z
Aū2

z +ψp =
∫∫

∂Ωz

Duz

Dt
dA, ψp =−

∮
C(z)

uzwndl. (A.3)

The material derivative in the above may be replaced from the (right hand side) of an
approximate form of the z-component of the curvilinear Navier-Stokes equations, following
Hughes and Lubliner [115]∫∫

∂Ωz

Duz

Dt
dA =−A

ρ

∂ p̄
∂ z

+
η

ρ

∮
C(z)

(n̂ ·∇)uzdl

and expanding the directional derivative in the integrand and substituting we find

∂

∂ t
Aūz +

∂

∂ z
Aū2

z +
A
ρ

∂ p̄
∂ z

+ψp =
η

ρ

∮
C(z)

(
Rz

∂uz
∂ z + ∂uz

∂ r

)
√

1+R2
z

dl.

Following Olufson [116], we next suppose the dominant term in the first integration on the
right hand side to be ∂uz

∂ r , assume cylindrical symmetry (so that Rz is constant on contour
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C(z)) and transpose all terms to the left hand side

∂

∂ t
Aūz +

∂

∂ z
Aū2

z +
A
ρ

∂ p̄
∂ z

+ψp −
2πηR(z)

ρ
√

1+R2
z

[
∂uz

∂ r

]
∂ΩL(z)

= 0. (A.4)

Momentum sink term will be related to the volume sink term (Equation A.2) below. Finally,
we introduce the convective acceleration parameter, implicitly defined as follows

χ ūz
2 =

1
A

∫∫
A(z)

u2
z dA

Of course, χ can be evaluated only based upon assumptions made regarding the transverse
variation of the velocity profile. We return to this point shortly. The momentum conservation
equation may now be written as follows

∂

∂ t
Aūz +

∂

∂ z

(
χAūz

2)+ A
ρ

∂ p̄
∂ z

+ψp −
2πηR(z)

ρ
√

1+R2
z

[
∂uz

∂ r

]
∂ΩL(z)

= 0. (A.5)

in which χ is the momentum correction coefficient [116]. We now assume the follow-
ing transverse velocity profile within the artery, which enforces a no-slip condition at the
boundary (uz(z,R) = 0) and has a blunting which is controlled by the parameter ζ [198].

uz(z,r) = u(z)
(

ζ +2
ζ

)[
1−
( r

R(z)

)ζ
]
, 0 ≤ r ≤ R(z), ζ ∈ [1,9], (A.6)

A no-slip condition at luminal boundary of course inconsistent with any leak and following
equation. We return to this matter shortly. For the moment, this profile underwrites the
following results

ūz = u(z), χ =

(
ζ +2
ζ +1

)
,

[
∂uz

∂ r

]
∂ΩL(z)

=− ūz(ζ +2)
R(z)

, ψp = 0. (A.7)

The last result for the momentum sink follows immediately from Equation A.3.

To obtain a preliminary form of the momentum conservation equation, we substitute Equa-
tions A.7 into Equation A.4, yielding

∂

∂ t
Aūz +

∂

∂ z

(
χAūz

2)+ A
ρ

∂ p̄
∂ z

+
2πη(ζ +2)ūz

ρ
√

1+R2
z

= 0. (A.8)
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We have used this form of momentum conservation recently, to compare what we designate
physiological and anatomical leak [119].

To obtain an alternative form for the momentum conservation equation, we assume a flat
profile with the velocity at the boundary given at all points within the domain and at the
boundary by ūz. Of course this messes-up the gradient term

[
∂uz
∂ r

]
∂ΩL(z)

. Overlooking this,

we now have for the momentum source term, from (the second) Equation A.3 the following
simplification

ψp(z) =
∮

C(z)
uzwndl →

∮
C(z)

ūzwndl = ūz

∮
C(z)

wndl = ūzψ(z)

A second form for the momentum conservation equation now follows

∂

∂ t
Aūz +

∂

∂ z

(
χAūz

2)+ A
ρ

∂ p̄
∂ z

+ ūzψ(z)+
2πη(ζ +2)ūz

ρ
√

1+R2
z

= 0. (A.9)

This is the form of momentum conservation assumed in this work.

A self-consistent way to obtain a momentum conservation equation is to assume a pro-
file which is structured, with a formal slip velocity at the boundary. Note that we don’t mean
molecular slip here.

A.3 Hughes and Lubliner Result

Return to equation A.4, before the introduction of the convective acceleration parameter,
expand the time derivative.....

ūz
∂

∂ t
A+A

∂

∂ t
ūz +

∂

∂ z

(
χAūz

2)+ A
ρ

∂ p̄
∂ z

+ψp −
2πηR(z)

ρ
√

1+R2
x

[
∂uz

∂ r

]
∂ΩL(z)

= 0. (A.10)

...and use Equation A.2 to eliminate the area derivative

A
∂

∂ t
ûz − ūz

(
∂

∂ z
Aūz +ψ

)
+

∂

∂ z
Aū2

z +
A
ρ

∂ p̄
∂ z

+ψp −
2πηR(z)

ρ
√

1+R2
x

[
∂uz

∂ r

]
∂ΩL(z)

= 0. (A.11)

...expanding...

A
∂

∂ t
ûz − ūz

∂

∂ z
Aūz − ūzψ +

∂

∂ z
Aū2

z +
A
ρ

∂ p̄
∂ z

+ψp −
2πηR(z)

ρ
√

1+R2
z

[
∂uz

∂ r

]
∂ΩL(z)

= 0. (A.12)



A.4 Viscous Boundary Force After Olufson 265

...and using the product rule (backwards) in the second term...

A
∂

∂ t
ûz −

∂

∂ z

(
Aūz

2)+Aūz
∂ ūz

∂ z
− ūzψ +

∂

∂ z
Aū2

z +
A
ρ

∂ p̄
∂ z

+ψp −
2πηR(z)

ρ
√

1+R2
z

[
∂uz

∂ r

]
∂ΩL(z)

= 0.

(A.13)
.....and grouping terms, we obtain.....

A
(

Dūz

Dt

)
+

∂

∂ z

(
A(ū2

z − ūz
2)
)
+

A
ρ

∂ p̄
∂ z

− ūzψ +ψp −
2πηR(z)

ρ
√

1+R2
z

[
∂uz

∂ r

]
∂ΩL(z)

= 0. (A.14)

At this point, we re-introduce assumptions about the form of the velocity profile, but con-
sistently this time. The profile of Fossan et al. [198] will serve (equation A.6). Accordingly,
we loose the term ψp (as discussed above, any profile meeting the slip condition will have
this effect) but we retain the term in ψ which was introduced from the volume conservation
equation

A
(

Dūz

Dt

)
+(χ −1)

∂

∂ z
Aūz

2 +
A
ρ

∂ p̄
∂ z

− ūzψ +
2πη(ζ +2)ūz

ρ
√

1+R2
z

= 0. (A.15)

One final spot of faffing will suffice;(
Dūz

Dt

)
+

(χ −1)
A

∂

∂ z
Aūz

2 +
1
ρ

∂ p̄
∂ z

=
ūz

A

(
ψ +

2πη(ζ +2)
ρ
√

1+R2
z

)
(A.16)

The latter is Hughes and Lubliner’s result.
To further expose the difference between this and Olufson’s formulation, let us set ūz =

Q
A

and multiply by A, whereupon the last equation becomes

A
D
Dt

(
Q
A

)
+(χ −1)

∂

∂ z

(
Q2

A

)
+

A
ρ

∂ p̄
∂ z

=
Q
A

(
ψ +

2πη(ζ +2)
ρ
√

1+R2
z

)
(A.17)

In the steady limit, replacing the material derivative with ūz
∂

∂ z

Q
∂

∂ z

(
Q
A

)
+(χ −1)

∂

∂ z

(
Q2

A

)
+

A
ρ

∂ p̄
∂ z

=
Q
A

(
ψ +

2πη(ζ +2)
ρ
√

1+R2
z

)
(A.18)

A.4 Viscous Boundary Force After Olufson

We consider Olufson’s boundary force contribution to the momentum balance in order to
assess the correct form of the surface element. The viscous force over the whole boundary is



266 1D Model Derivation

given by the following contraction of the stress tensor evaluated at the boundary∫∫
∂Ω

σzα n̂αdA =−
∫∫

∂Ωi

σzzdA (A.19)

+
∫∫

∂Ωl

(
σzzRx +σzr√

1+R2
z

)
dA

+
∫∫

∂Ωo

σzzdA.

Above, the Einstein convention is used. Substituting the symmetry-adapted expressions for
the components of the stress [52] we straightforwardly obtain

∫∫
∂Ω

σzα n̂αdA =−
∫∫

∂Ωi

(
−p+2η

∂uz

∂ z

)
dA (A.20)

+
∫∫

∂Ωl


(
−p+2η

∂uz
∂ z

)
Rz +η

(
∂uz
∂ r + ∂ur

∂ z

)
√

1+R2
z

dA

+
∫∫

∂Ωo

(
−p+2η

∂uz

∂ z

)
dA.

Assuming there is no convective acceleration at the inlet and outlet and resolving the luminal
integration we obtain∫∫

∂Ω

σzα n̂αdA =
∫∫

∂Ωi

pdA−
∫∫

∂Ωo

pdA (A.21)

+
∫ L

0

∫ 2π

0

(
−p+2η

∂uz
∂ z

)
Rz +η

(
∂uz
∂ r + ∂ur

∂ z

)
√

1+R2
z

Rdθ

dz.

Noting that p(L,r)− p(0,r) =
∫ L

0
∂

∂ z p(ξ ,r)dξ and that the integration limits are everywhere
constant, we transform the pressure terms on the right hand side

∫∫
∂Ω

σzα n̂αdA =−
∫ L

0

(∫∫
∂Ωx

∂ p
∂ξ

dA
)

dξ (A.22)

+
∫ L

0

∫ 2π

0

(
−p+2η

∂uz
∂ z

)
Rz +η

(
∂uz
∂ r + ∂ur

∂ z

)
√

1+R2
z

Rdθ

dz.
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Finally, we retain terms to leading order in taper parameter, Rz and neglect the derivative ∂ur
∂ z

relative to ∂uz
∂ r∫∫

∂Ω

σzα n̂αdA ≈−
∫ L

0

(∫∫
∂Ωz

∂ p
∂ξ

dA
)

dξ +2πη

∫ L

0

∂uz

∂ r
R
√

1+R2
z

−1
dz. (A.23)

A.5 Numerical Scheme

For the sake of completeness we restate the 1D Navier-Stokes equations with leak accounting
for vessel taper and slip

dQ
dz

+ψ = 0, Q(z) = Q(0)
(A(z)

A(0)

) c
2
,

d
dz

(
δ

Q2

A

)
+

A
ρ

dP
dz

+
2(ζ +2)πµ

ρ

Q
A

(
1+
(dR

dz

)2
)−1/2

+α
Q
A

ψ = 0,

Q(0) = Q0, P(0) = P0, α ∈ [0.4,1.0], δ =
ζ +2
ζ +1

(A.24)

We now find the sink ψ in terms of area

ψ =−dQ
dz

[By definition]

=− d
dz

(
Q0

( A
A0

) c
2

)
=−Q0

A
c
2
0

c
2

A
c
2−1 dA

dz

(A.25)

using K = 2(ζ+2)πµ

ρ
, the momentum equation can be written as

d
dz

(
δ

Q2

A

)
+

A
ρ

dP
dz

+K
(

1+
(dR

dz

)2
)−1/2 Q

A
+α

Q
A

ψ = 0 (A.26)

Expanding the derivative and subbing in the expression for ψ

−δQ2A−2 dA
dz

+δ
2Q
A

dQ
dz

+
A
ρ

dP
dz

+K
(

1+
(dR

dz

)2
)−1/2 Q

A
−α

Q
A

Q0

A
c
2
0

c
2

A
c
2−1 dA

dz
= 0

(A.27)

Using Q = Q0

(
A
A0

) c
2 and dQ

dz = Q0

A
c
2
0

c
2A

c
2−1 dA

dz
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−δQ2
0

Ac−2

Ac
0

dA
dz

+
2δQ0

A
Ac/2

Ac/2
0

Q0c

2Ac/2
0

Ac/2−1 dA
dz

+
A
ρ

dP
dz

+

KQ0Ac/2−1

Ac/2
0

(
1+
(dR

dz

)2
)−1/2

−α
Q0Ac/2−1

Ac/2
0

Q0c

2Ac/2
0

Ac/2−1 dA
dz

= 0

(A.28)

Simplifying terms

−δQ2
0

Ac−2

Ac
0

dA
dz

+
δQ2

0c
Ac

0
Ac−2 dA

dz
+

A
ρ

dP
dz

+
KQ0Ac/2−1

Ac/2
0

(
1+
(dR

dz

)2
)−1/2

−
αQ2

0c
2Ac

0
Ac−2 dA

dz
= 0

(A.29)

Factorise a common Q2
0Ac−2

Ac
0

dA
dz out

Q2
0Ac−2

Ac
0

dA
dz

(
−δ +δc− αc

2

)
+

A
ρ

dP
dz

+
KQ0Ac/2−1

Ac/2
0

(
1+
(dR

dz

)2
)−1/2

= 0 (A.30)

Divide and multiply through by A & ρ respectively

ρQ2
0Ac−3

Ac
0

dA
dz

(
−δ +δc− αc

2

)
+

dP
dz

+
ρKQ0Ac/2−2

Ac/2
0

(
1+
(dR

dz

)2
)−1/2

= 0 (A.31)

Integrating the above between vessel segment xi and xi+1(
−δ +δc− αc

2

)
ρQ2

0
Ac

0

∫ xi+1

xi

Ac−3 dA
dz

dz+
∫ xi+1

xi

dP
dz

dz

+
ρKQ0

Ac/2
0

∫ xi+1

xi

Ac/2−2
(

1+
(dR

dz

)2
)−1/2

dz = 0
(A.32)

Utilise that
∫

Ac−3 dA
dz dz = Ac−2

c−2(
−δ +δc− αc

2

)
ρQ2

0
(c−2)Ac

0

(
Ac−2

i+1 −Ac−2
i

)
+Pi+1 −Pi

+
ρKQ0

Ac/2
0

∫ xi+1

xi

Ac/2−2
(

1+
(dR

dz

)2
)−1/2

dz = 0
(A.33)
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Writing Ac−2
i+1 as Ac

i+1
A2

i+1
and utilising

Q = Q0
Ac/2

Ac/2
0

,K =
2(ζ +2)πµ

ρ
(A.34)

Simplifying terms(
− δρ

c−2
+

ρδc
c−2

− ραc
2(c−2)

)(
Q2

i+1

A2
i+1

− Q2
i

A2
i

)
+Pi+1 −Pi

+2(ζ +2)πµ

∫ xi+1

xi

Q
A2

(
1+
(dR

dz

)2
)−1/2

dz = 0

(A.35)

We will aim for a formulation in terms of vessel area

A = πR2 → R =
A1/2

π1/2(
dR
dz

)2

=

(
d
dz

(A1/2

π1/2

))2

=

(
A−1/2

2π1/2
dA
dz

)2

=
A−1

4π

(
dA
dz

)2 (A.36)

Write to clearly identify the inertia and viscous terms. All in terms of area and flow.

Pi −Pi+1 = ρ

[
2δ (c−1)−αc

2(c−2)

](
Q2

i+1

A2
i+1

− Q2
i

A2
i

)
+2(ζ +2)πµ

∫ xi+1

xi

Q
A2

(
1+

1
4πA

(dA
dz

)2
)−1/2

dz

(A.37)

Applying the trapezoidal rule we obtain a computational scheme of:

∆Pi = ρ

[
2δ (c−1)−αc

2(c−2)

](
Q2

i+1

A2
i+1

− Q2
i

A2
i

)

+πµ(ζ +2)∆z

[
Qi+1

A2
i+1

(
1+

1
4πAi+1

(
Ai+2 −Ai+1

∆z

)2
)−1/2

+
Qi

A2
i

(
1+

1
4πAi

(
Ai+1 −Ai

∆z

)2
)−1/2]

Pi+1 = Pi −∆Pi

(A.38)

Where ∆z is each vessel segment length. This numerical scheme is valid for the healthy parts
of the vessel.
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