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Abstract: An advection-diffusion solver was applied to assess how stent strut shape and
position impact the development of a pro-thrombotic region within the stented human
artery. Presented here is a suitably parameterised advection-diffusion equation with a
source term that is spatially uniform within a certain sub-domain of interest to compute
a “time concentration”. The latter will serve as a surrogate quantity for the “age” of fluid
parcels, i.e., the time the fluid parcel has spent in the sub-domain. This is a particularly
useful concept in the context of coronary artery haemodynamics, where “stasis of blood”
(or residence time) is recognized as the most important factor in thrombotic initiation. The
novel method presented in this work has a very straightforward and convenient single
lattice Boltzmann simulation framework encapsulation. A residence time surrogate is
computed, presented and correlated with a range of traditional haemodynamic metrics
(wall shear stress, shear rate and re-circulation region shapes) and finally, the role of these
data to quantify the risk of thrombus formation is assessed.

Keywords: residence time; stenosis; clotting; coronary atherosclerosis; lattice Boltzmann;
advection-diffusion

MSC: 92C50; 76-10; 92-10

1. Introduction
Cardiovascular disease is the world’s leading cause of death [1], with over three mil-

lion people suffering from atherosclerotic cardiovascular disease in the UK. Atherosclerosis,
characterized by the narrowing or blockage of arteries due to plaque build-up, can be
treated using percutaneous interventions, such as balloon angioplasty and stent implanta-
tion. Inevitably, such procedures damage the monolayer of protective endothelial cells (EC),
which line the arteries and play a vital role in minimizing inflammation and thrombosis.
Consequently, scar tissue may form, leading to in-stent restenosis (ISR), with a reported
incidence rate during the era of bare metal stents of ∼17–41% [2]. Although stent thrombosis
(ST) is increasingly rare, with studies reporting incidence rates ranging from approximately
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0.7% to 16%, this infrequent yet severe complication carries a mortality of 30% [3,4] as well
as a considerable burden of medication.

The dynamics of thrombus formation is multifactorial, but the central pillars of a
quantitative, clinically relevant understanding are physical transport (species advection-
diffusion) and hydrodynamics, because thrombus forms in the presence of the following:

1. elevated concentrations of transported chemical species and activated platelets (which
have been exposed to high fluid shear);

2. increased fluid residence time;
3. suppressed fluid and wall shear rates.

The haemodynamic shear rate γ̇ and endothelial shear stress (ESS) history play pivotal
roles in activating advecting platelets [5]. This fact, along with the need to consider the
relative residence time, makes it necessary to assess the history of fluid parcels for a
quantitative understanding of ST. This work’s fundamental premise is that the introduction
of stent struts into the vessel induces local haemodynamic perturbations which couple
the effects 1.–3. above. This coupling, elaborated below, can be expressed using data
from suitable single-framework fluid dynamics simulations. This hypothesis is tested
by measuring residence times and stress due to fluid mechanics in the presence of a set
of clinically relevant flow perturbations, representative of both stent design and stent
deployment scenarios.

Stent struts vary in size and shape and for this work are generalized as a rounded-square
or as circular (see Figure 1). For a correctly deployed stent, elevated wall shear stress (WSS)
is observed at the corners and along the top of the strut. In these regions, margination
forces platelets down the shear gradient toward the boundary [6], while proteins such as
the von Willebrand factor (vWF) form nets, thus increasing the number of platelet binding
sites [7]. Meanwhile, distal to the strut, the flow separates into a recirculation region. Within
such regions, the vessel wall experiences low WSS and platelets and vWFs accumulate.
Clearly, the strut and the endothelial cells immediately distal to it define a pro-thrombotic
domain in which stent-induced haemodynamic perturbations couple to trigger thrombus
formation [8]. This study investigates the extent to which this coupling is influenced by
variation in strut geometry and the effectiveness of stent deployment (stent malapposition).
In passing, low WSS is observed to result in vessel inflammation and smooth muscle cell
proliferation, leading to the accumulation of smooth muscle cells [9], contributing to ISR in
this same region.

Figure 1. Stents struts: Schematic of the two stent struts being simulated in this work: Stent 1:
Circular stent strut—diameter 100 µm. Stent 2: Rounded stent strut—width and length 100 µm.

The application of computational fluid dynamics (CFD) to local hemodynamic behav-
ior facilitates an understanding of how fluid transport links to ISR and ST. Most of the prior
art has used traditional, proprietary CFD software to investigate stent strut design and stent
positioning, etc. [10–12]. The coupling of a mass transport equation has also been used by
various authors to model drug transport, both into the lumen and into the artery wall, from
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drug-eluting stents (DES). In some of the earliest work, Balakrishnan et al. implemented
a CFD and mass transfer model to predict drug deposition for single and overlapping
DESs [13]. Other mass transfer models have also been used with traditional CFD [14–18]. It
is important to note that although our work primarily focuses on assessing thrombotic risk
in coronary arteries, the base model presented here can also be applied to other flow studies
where the residence time is a key metric. For example, in the study of cerebral aneurysms,
the blood residence time is of significant interest [19], as disturbed flow patterns, such as
stagnation and recirculation, can contribute to thrombus formation within the aneurysm
sac. Of course, CFD lends itself not only to cardiovascular applications, but also to other
health applications when combined with biomechanics, for example, hydrocephalus [20].

The use of meso-scale modelling, such as the lattice Boltzmann method (LBM), has
precipitated notable advances which rely on key attributes of the method, canonically,
(i) a facility with complex geometries, (ii) an intrinsically parallelisable algorithm and
(perhaps most important), (iii) compliance with multi-physics and multi-scale modelling
approaches [21–23]. Exploiting these advantages, studies which are relevant to this work
have applied LBM to blood flow in stenosed arteries [24–27], inferring relationships be-
tween flow dynamics, the stenosis and arterial atherogenesis. These works investigated
flow around stents with particular reference to the evolution of ISR [28] to stent structure
and positioning [29] and to stent selection [30]. Further afield, LBM has been applied to
aneurysms, formed as artery wall remodelling [31,32]. Other studies have also investigated
solving and applying the advection-diffusion equation to study biomedical flows using
traditional approaches, such as in the work of Lynch et al. [33], who used a stabilising finite
element approach to target a wide range of Péclet numbers. Traditional Galerkin finite
element methods for advection-diffusion problems face significant challenges in high Péclet
flows, including non-conservation, numerical diffusion and instability. Work has been done
to overcome these problems; for instance, Hughes et al. [34] stabilised Galerkin methods
by adding a residual term to ensure global conservation, resulting in better stability and
accuracy. While stabilised Galerkin methods address conservation and stability through
added residuals, LB solvers, such as the one presented here, inherently achieve local con-
servation and computational efficiency in advection-dominated flows governed by the
Navier–Stokes continuity and convection-diffusion equations, and without requiring such
modifications. We note in passing that while the latter formulation is appropriate for our
RRT, stasis of blood application, it is not currently fitted to problems which require intimate
adjustment of the Navier–Stokes equations, for example, to the Allen–Cahn–Navier–Stokes
form [35].

The relative residence time (RRT), or stasis of blood, is most frequently calculated
at the vessel wall, where its value is an accepted proxy for the probability of thrombotic
initiation. Almost always, RRT is computed as a derived metric, obtained from the time-
averaged instantaneous wall shear stress (AWSS) and oscillatory shear index (OSI), which
are themselves obtained from the fluid’s velocity field. At the time of writing, the most
widely used surrogate metric is assigned as follows:

RRT ∝ [(1 − 2 × OSI)× AWSS]−1 (1)

Clearly, the above estimate of RRT is defined only at the wall. While this measure is useful
in physiological flow calculations, at the boundary [36,37], to the authors’ knowledge, only
the method advanced in this article can compute RRT at locations within the domain bulk,
for example, in eddies. Furthermore, Equation (1) only provides a surrogate measure, not
the residence time itself.

This work describes the implementation of a novel, single-framework meso-scale
modelling approach, with the following:
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1. a “clotting algorithm”, based upon a suitable asymptotic proxy for blood residence time;
2. a simple and robust boundary closure algorithm for flow and advection-diffusion

modalities, accurately dealing with geometrical complexity, such as endothelial cells
and rounded stent struts.

The model is then applied to investigate and differentiate the patho-physiological
haemodynamics of ST and ISR, using convenient (if approximate) metrics applied to
rounded-square and circular stent struts, within the following workflow. Section 2 provides
an overview of the D2Q9 LBM model, discusses the clotting algorithm and accounts for the
computational domain, Section 3 reports the simulation results and Section 4 concludes
this research, with clinical interpretation of the data and indications of future work.

2. Methodology
Two-dimensional (2D) simulations are certainly convenient to represent the scenarios

in this research. Moreover, they are deemed physiologically adequate for the present
application [18], in which flow is dominated by the transverse and stream-wise co-ordinates.

LBM is an unsteady, bottom-up Eulerian approach in which the probability density
function (PDF) for the momentum of a fluid parcel, fi, is evolved on a discrete lattice (see
Section 2.1). LBM is conceived at the length-scale native to a minimal form of discrete
kinetic theory and is designed to recover the continuum Navier–Stokes equations. This
occurs in the thermodynamic limit, utilising a simple lattice evolution rule, or the kinetic
equation, in which the momentum PDF streams between and interacts on lattice nodes
(see [21–23]). Implemented here is a single component and single relaxation LBM, widely
designated the lattice Bhatnagar–Gross–Krook (LBGK) [38], which is one-way-coupled to
an LBM advection-diffusion scheme with a source term. This advection-diffusion scheme
effectively constitutes the clotting model, carried by a second lattice distribution. The
flow and advection modes are a statistic of computations within a single framework. The
following first introduces the flow LBM model, then the clotting algorithm, and finally,
discloses the straightforward coupling between the two.

2.1. Flow Solver Algorithm

The LBM-based descriptions of unsteady, weakly compressible hydrodynamics are as
follows:

∂

∂t
u + u · ∇u = −1

ρ
∇p + ν∇2u,

∂ρ

∂t
+∇ · u = 0, ν = c2

s

(
τ − 1

2

)
. (2)

where cs is the speed of sound for the model (c2
s = 1

3 ) and τ is the relaxation constant
for the scheme. These originate from the lattice gas cellular automation of [39]. At the
time of writing, LBM variants have been derived in several forms, by multiple routes
and authors (see e.g., [21,40]). The momentum and continuity equations are solved using
the kinetic-scale LBGK evolution equation, which can be shown to be recovered through
Chapman–Enskog analysis. For details on this analysis, readers are referred to [21,40].

fi(x + ∆tci, t + ∆t) = fi(x, t)− ∆t
τ

(
fi(x, t)− f (0)i (ρ, u)

)
. (3)

Above, i, fi, x, t, ∆t, ci, ρ, u, ν are the lattice link label, ith component of the PDF, dis-
crete location, discrete time, time step, meso-scopic lattice velocity, macroscopic density,
macroscopic velocity (as defined below) and kinematic viscosity. The equilibrium distri-
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bution function, f (0)i (ρ, u), is a second-order polynomial approximation to a uniformly
propagating Maxwell–Boltzmann distribution:

f (0)i (ρ, u) = tiρ

(
1 +

ciu
c2

s
+

c2
i u2

2c4
s

− u2

2c2
s

)
, (4)

where ti is the lattice link weight. This form of the equilibrium distribution function f (0)i
satisfies the conservation laws for mass and momentum and incorporates the influence
of the local density ρ and velocity u in a way that is consistent with the kinetic theory.
For further justification and derivation of this form, readers are referred to [21,40]. The
macroscopic fields ρ, u and P are calculated through summations of the distribution
function in the following way:

∑
i

fi = ρ, ∑
i

fici = ρu, P =
1
3

ρ. (5)

The LBGK scheme outlined above is suitable for addressing the Reynolds numbers charac-
teristic of coronary artery flow:

Re =
|u|L

ν
≈ 600.

Above, L characterises the spatial scale of the domain. The clotting algorithm component
(for residence time) discussed in the next section, is one-way coupled to this scheme, i.e.,
the development of the residence time solution is influenced by the fluid dynamics, but
not the other way around. The simple coupling is achieved as a parameterisation of the
passing of the macroscopic velocity u to the clotting algorithm, which is then used in the
advection term.

2.2. Domain Residence Time Calculation

Central to this work is the identification of fluid parcels within the domain having an
elevated residence time, relative to a threshold to be determined. The residence time algo-
rithm is intended, eventually, to inform a reduced-order model of clotting, by identifying
parcels which are sequestered within a finite region in which it is hypothesised that their
cargo of metabolites will not be refreshed. The time for which a fluid parcel has been in
the simulation domain—its age—is defined as its residence time. When regions of high
residence time exist adjacent to a boundary and, further, contain elevated concentrations of
vWF and activated platelets, one can infer an increased risk of thrombus formation within
that region. While this work considers only the relative residence time, the method will
generalise straightforwardly to species advection-diffusion.

To assign a residence time surrogate, it is imagined that as the instant fluid parcels
enter the region of interest, an internal source producing a time species at a uniform rate
is activated. The domain residence time scalar field value is then directly proportional
to the time species concentration. Of course, time does not diffuse, so that computing
a time species concentration, denoted ϕ (from the solution of the advection-diffusion
equation, with a constant source) requires us to parameterise within the regime of a very
large Peclet number [41] (see Appendix A.1). LBM-based advection-diffusion dynamics
have also been variously derived [42–44]. Employed here is a mature variant developed
by Shi and Guo [45], which contains a source term, S (see also Chang et al. [46]). The
advection-diffusion equation, with a homogeneous diffusion coefficient D, below

∂ϕ

∂t
= D∇2ϕ −∇ · ϕu + S0, D = c2

s

(
1

ωd
− 1

2

)
,
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is supported by the evolution of a second PDF, gi, as follows:

gi(x + ∆tci, t + ∆t) = gi(x, t)− ωd
(

gi(x, t)− g(0)i (ϕ, u)
)
+ ∆Si, (6)

where the equilibrium distribution function g(0)i (ϕ, u) is:

g(0)i (ϕ, u) = tiϕ

(
1 +

ciu
c2

s
+

c2
i u2

2c4
s

− u2

2c2
s

)
, (7)

and its kinetic evolution equation source term Si is:

Si = tiS0

[
1 +

(
1 − ωd

2

) ciu
c2

s

]
. (8)

Note that the diffusion coefficient is linked to the second distribution relaxation parameter
ωd, that the velocity of the fluid u is a parameter of g(0)i (ϕ, u) and that the kinetic equation
of the second distribution is, essentially, an LBGK scheme close to that of the momentum
PDF. The source term is used to increase the residence time surrogate ϕ at the specified,
uniform rate, S0.

To provide further clarity of the full computational algorithm, please see Figure 2
below, which shows the coupling between the population and species solver. Note that
the evolution of the species distribution function, gi, is one-way coupled to the evolution
of the distribution function for the overall mass and momentum transport, fi. One way
to introduce two-way coupling would be to make the fluid kinematic viscosity (collision
parameter τ) depend upon the species concentration. In this work, however, the species
concentration, g, is a proxy for the fluid residence time (stasis of blood).

Figure 2. The algorithm of the lattice Boltzmann scheme for coupled flow and convection-diffusion
reported in this paper expressed as a traditional computational flow chart.

Before targeting stented geometries, the model is validated for the application of the
advection-diffusion scheme in an unstented geometry (straight channel) in the large Pe
regime, i.e., where advection dominates and diffusion effects are approximately zero. To
do this, the known analytical solution for the velocity profile is used to recover the domain
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residency time in the channel, and this result is compared with simulation data at a range
of diffusion coefficient values. The results show that by tuning the relaxation parameter
ωd, the model sufficiently simulated the desired Pe regime, where for the remainder of the
work, a value of ωd = 1.98 is used [27].

2.3. Computational Domain

The computational domain is an idealised two-dimensional channel, with a fixed
number of nodes in the ordinal directions. Specifically, the number of nodes along the x(y)-
directions is denoted XL (YL) (see Figure 3). The south boundary of the domain is modelled
to represent a physical endothelium, consisting of endothelial cells which are modelled with
a height of 1.5 µm and length 50 µm. Figure 1 shows the two strut profiles considered in this
work, both having the same maximum width 100 µm. The resolution of the domain is such
that 1 lu = 1 µm and the physical-lattice scaling used can be seen in Table 1. For additional
information on the boundary closure methods, please see Appendixes A.2 and A.3.

Figure 3. Schematic to illustrate the simulation domain XL = 1450 lu and YL = 1500 lu. The
boundary conditions are as follows: North symmetry condition; East/West algorithm of Zhang and
Kwok [47]; South boundary (endothelial cells and stent strut) non-slip condition enforced by the
Bouzidi boundary condition [48]. See Table 1 for physical units of the simulation.

Table 1. Scales: Each column shows the physical scale range, simulated scales and the simulated
scale in lattice units.

Linking Physical to LB Scales: 1 µm = 1 lu

Physical Size Range Simulated Size Lattice Units

Stent Height 60 µm–160 µm 100 µm 100 lu
EC Height 0.1 µm–10 µm 1.5 µm 1.5 lu
EC Length 50 µm–70 µm 50 µm 50 lu
Artery Diameter 3000 µm 3000 µm 3000 lu

3. Results and Discussion
Here, the model is applied to study the local haemodynamic effects of variation in

(i) strut geometry and (ii) position. To do this, two common stent geometries are simulated,
depicted in Figure 1, and four different stent strut positions are investigated, specifically,
50% embedded, 25% embedded, 0% embedded and −100% embedded (malapposed strut).
Additionally, the model is applied to an isolated strut, and then a group of three. Through-
out, this work reports Re ∈ [400, 600] representative of haemodynamics in human coronary
arteries. To address (i) and (ii), the results are compared between simulations using metrics
proposed to identify a thrombotic state or region. These metrics are the relative blood
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residence time (BRT), wall shear stress (WSS), flow shear rate, re-circulation region size and
location. It is useful to bound these metrics to allow us to evaluate how local haemodynam-
ics relates to a thrombotic state and its relation to ISR and ST.

Blood Residence Time

- The residency time is a measure of the amount of time a fluid parcel has spent within
the domain and can be used to locate atheroprone regions within the domain [49]. In
relation to stent haemorheology, regions of elevated residency time may accumulate
platelets and adhesion proteins, promoting thrombus formation.

Wall Shear Stress

- In the 1970s, it was hypothesised that the build-up of atheroma correlated with lower
WSS [50]. Over the last couple of decades, more evidence has been provided to
support this assertion [51–53], with low WSS regions now being characterised as
WSS < 0.4–1.0 Pa [51,54,55]. The build up of atheroma is associated with regions
of low oscillatory WSS, which typically occur in regions of flow separation and re-
circulation. Higher WSS also plays a role in atheroma formation. The region of higher
WSS found on the adlumninal surface of the struts results in platelet geometry change
and activation. These platelets can then become trapped in the lower wall shear region
or the wake behind the strut [56]. When discussing the results, high WSS is identified
as WSS > 7 Pa [56].

Shear Stress

- Shear rates in medium-to-large-sized arteries generally fall within the range 100 to
1000 s−1 [57]. However, stenosed regions experience larger shear rates. Indeed, it has
been shown that at and above super-critical shear rates γ̇crit ≈ 5000 s−1, the vWF is
activated in the diseased vessel, which sees a narrowing of the artery, and forms long
strings that increase platelet binding [7,58]. Accordingly, shear rates above γ̇crit are
taken to indicate an increased risk of atheroma formation, caused by the effective local
narrowing of the artery due to the presence of the strut.

To summarise, this work is particularly concerned with regions which will link to
atherosclerotic plaque formation, i.e., areas of low WSS (<1 Pa), areas of high WSS (>7 Pa),
and regions of high shear rates (>5000 s−1). Once identified, this information is used on
flow stream paths, derived from the Stokes stream function, in tandem with the relative
residence time information, to identify elevated risk of atherosclerotic plaque formation,
linking to biological responses.

3.1. Single Stent Strut Simulations

Here, a single stent strut is simulated (both circular and rounded stent strut geometries,
as shown in Figure 1) at a range of stent positions (100 µm malapposed, 0% embedded, 25%
embedded, 50% embedded), at Re = 409, 469, 528. In each case, the relative residence time
is considered, and the velocity and shear rate within the domain where the haemodynamics
are of most interest. Figures 4 and 5 provide an example of simulation results corresponding
to the circular and rounded struts in flow characterised by Re = 528. To facilitate comparison,
Tables 2 and 3 summarise the key metrics for both the circular and rounded struts at
Re = 409, 469, 528.

For both stent geometries, it was observed that the more embedded the stent strut,
the smaller the flow disturbance caused. This observation can be quantified by the re-
circulation length given in Tables 2 and 3. Comparing results for struts which are 50%,
25% and 0% embedded, for both the circular and rounded struts, the re-circulation size
decreases as the percentage embedding increases. This suggests that for less-embedded
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stents, there will be a larger distal region of low WSS. However, the influence of the stent
geometry manifests when comparing circular and square stent struts when malapposed,
with circular stent struts producing smaller re-circulation regions due to their streamlined
profile maintaining flow attachment for longer. In addition, for both stent geometries,
malapposed struts cause a re-circulation region which is detached from the stent strut, in
comparison to 0%, 25% and 50% embedded simulations, where the re-circulation region is
attached to the strut. This observation indicates a potential change in the thrombotic region
location based on stent strut positioning.

Figure 4. Single circular strut, Re = 528: Plots of the residence time (left), velocity profile (middle)
and shear rate (right) for flow around a circular stent strut, which is (i) −100%; (ii) 0%; (iii) 25%; and
(iv) 50% embedded. Results were taken at Reynolds number, Re = 528.

Figure 5. Single rounded strut, Re = 528: Plots of the residence time (left), velocity profile (middle)
and shear rate (right) for flow around a rounded stent strut which is (i) −100%; (ii) 0%; (iii) 25%; and
(iv) 50% embedded. Results were taken at Reynolds number, Re = 528.

The impact of the stent geometry on the local haemodynamics and how this relates to
thrombus formation are considered. Comparing WSS over the stent struts, it is evident that
the rounded square strut has a larger maximum WSS than the circular strut for equivalent
Re. It was further observed that the maximum WSS increases with Re number and decreases
as the stent becomes more embedded, as expected. Interestingly, across all simulations
of the circular and rounded stents struts, the maximum WSS values are above those of
the high WSS level (>7 Pa [56]). Figures 4 and 5 plot the shear rates in the region local to
the stent. These plots clearly show, for all simulations, that the areas of low shear rates
correspond to areas where re-circulation regions are present, and that the areas of high
shear rates appear at the top centre of the strut and the post top-left rounded corner of
the struts, for the circular and rounded square struts, respectively. For the circular strut,
the malapposed positions resulted in shear rates above the γ̇crit, whereas for the rounded
square strut, the malapposed and 0% embedded positions across all simulations have shear
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rates above the γ̇crit. This suggests that both stent position and geometry play a critical role
in vWF activation and elongation.

Table 2. Circular stent strut: Max WSS found at the top centre of strut. Relative location is position
relative to the origin at the bottom centre of the strut.

Reynolds
Number Embedded % WSS Shear Rate Residence Time

Max Max Max Relative Re-Circulation
(Pa) (s−1) (lu) Location (µm) Length (µm)

Re = 409

−100 11.4 5406 328 (345, 72) 45
0 9.91 4455 337 (49, 40) 131
25 8.9 3894 229 (50, 30) 70
50 7.41 3156 114 (−33, 44) 24

Re = 469

−100 12.4 5881 385 (354, 60) 117
0 10.9 4921 414 (48, 36) 140
25 9.77 4304 270 (48, 11) 74
50 8.15 3478 120 (50, 1) 25

Re = 528

−100 13.3 6319 441 (366, 51) 165
0 11.9 5357 486 (47, 32) 160
25 10.6 4690 299 (48, 11) 77
50 8.9 3781 120 (50, 1) 26

Table 3. Rounded square stent strut: Max WSS found at the post top-left rounded corner. Relative
location is position relative to an origin taken at the bottom centre of the strut.

Reynolds
Number Embedded % WSS Shear Rate Residence Time

Max Max Max Relative Re-Circulation
(Pa) (s−1) (lu) Location (µm) Length (µm)

Re = 409

−100 12.3 6245 362 (328, 79) 170
0 10.4 5053 360 (51, 49) 154
25 9.03 4300 267 (51, 33) 87
50 7.35 3457 151 (51, 14) 41

Re = 469

−100 13.3 6753 428 (333, 67) 231
0 11.5 5582 438 (51, 45) 161
25 9.97 4750 316 (51, 27) 94
50 8.09 3810 167 (51, 9) 43

Re = 528

−100 14.3 7218 495 (337, 57) 304
0 12.4 6077 510 (51, 42) 169
25 10.9 5174 354 (51, 24) 99
50 8.83 4143 172 (51, 7) 44

Finally, the relative residence time is examined across the simulations. The BRT
field variable is best evaluated within the context of flow along with the streamlines and
shear rate plots. It is noted that the regions with large relative BRTs are also regions
where flow re-circulation occurs at low velocities and low shear rates. In addition, by
following the streamlines, one can imagine how platelets and vWF proteins convect to these
high residence time regions, generating a pro-thrombotic region and state. Furthermore,
Tables 2 and 3 show larger residence times when the stent is either malapposed or 0%
embedded, when compared with the 25% and 50% embedded, which accords with the
hydrodynamics of larger re-circulation regions, when the stent is either malapposed or
0% embedded.
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Concluding the findings on single strut scenarios, the pro-thrombotic region was
assessed within the steady flow regime and is defined, for present purposes, by the inter-
section of the relative residence time with the other metrics of wall shear stress, shear rate
and distal reattachment distance, tentatively to identify risk areas which promote thrombus
formation. It is observed, for both circular and rounded stent struts, that a re-circulation
region forms behind the strut, which is generally more prominent with less embedding of
the strut. All struts experienced high WSS with the max WSS being above the critical limit
stated earlier (7 Pa) and reported in [56]. It was found that the square stent strut produced
higher shear rates, with both the malapposed and 0% embedded strut producing shears
above the stated critical value (5000 s−1), and the malapposed circular struts also showing
shear rates above the critical value. Following the streamlines from these areas of high WSS
and high shear rates (where the platelets are hypothesised to be activated), the platelets
will aggregate in the circulation region (region of low WSS), which will increase the risk of
thrombus formation. It was also observed that the more streamlined circular strut reduced
the risk of a pro-thrombotic region by having a lower magnitude of WSS, lower shear rates,
smaller re-circulation regions and smaller relative residence times.

3.2. Multiple Stent Struts Simulations

The flow dynamics in the stent region can be more complicated because of interactions
between adjacent struts. The spacing between struts varies, depending upon the brand and
the axial co-ordinate (i.e., the position where the stent cross-section is examined) and, of
course, on how effectively the stent has been implanted.

Here, steady flow over three adjacent equi-spaced struts of both circular and rounded
geometries is simulated at a range of stent positions (100 µm malapposed, 0% embedded,
25% embedded and 50% embedded) at Re = (464, 533) to assess the flow dynamics
between the stent struts. In each simulation, BRT and the Stokes stream function overlaid
on a shear rate field are considered, across a cropped section of the domain where the local
haemodynamics are of most interest. Figures 6 and 7 provide an example of simulation
results corresponding to the circular and rounded struts in flow characterised by Re = 533.

A clear difference between the multiple stent strut simulations and the isolated strut
simulations arise for the inter-strut re-circulation zones interactions. From Figure 6, for the
circular stent struts, at the Re numbers tested, the re-circulation behind the first strut does
not reach the second strut when embedded by at least 25%. For the rounded square stent
struts, the re-circulation behind the first strut does not reach the second stent strut when
the strut is embedded by more than 25%. This implies that for rounded square struts, there
are larger regions which experience both low shear rates and, presumably, oscillatory flow.
Clearly, the spacing between the stent struts would also impact on whether the detached
flow of one strut re-attaches before the next strut.

The residence time plots in Figures 6 and 7 demonstrate a similar trend to the isolated
struts, with less-embedded struts showing higher relative residence time. Observed is a
more complex BRT field for multiple struts, although some established conclusions are
supported by these results as follows: (i) areas of larger BRT align with regions of low
shear stress; (ii) circular strut simulations show lower BRT when compared to rounded
square simulations; (iii) areas of larger BRT are found proximal to the stent struts, again,
intersecting with low shear rate regions.
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Figure 6. Three circular strut, Re = 533: residence time (left) and the shear rate with the Stokes stream
function overlaid (right) for flow around three circular stent struts, which are as follows: (i) −100%;
(ii) 0%; (iii) 25%; and (iv) 50% embedded. Results were taken at Re = 533.

Figure 7. Three rounded strut, Re = 533: Plots of the residence time (left) and the shear rate with
Stokes stream function overlays (right) for flow around three circular stent struts, which are as
follows: (i) −100%; (ii) 0%; (iii) 25%; and (iv) 50% embedded. Results were taken at Re = 533.

4. Conclusions
The core development in this work is the introduction and application of a coupled

LBM-advection-diffusion and Newtonian flow solver, with a straightforward and amenable
boundary closure, all encapsulated within a single framework, to investigate artery-scale
stent haemodynamics, with particular emphasis on local, pro-thrombotic regions in the
immediate vicinity of the struts. Specifically, it is postulated that the concentration of a
diffusion limited time species scalar field serves as a surrogate, at high Peclet number, for
the relative domain residence time of blood. This quantity is computed alongside a set of
accepted mechanical metrics (see below) that might easily provide datasets from which to
evaluate the potential risk of atheroma formation.

Like all in silico models, our algorithm for the simulation of the advection-diffusion
process suffers limitations when one attempts to apply it in a wider context to that re-
ported here—thrombus risk. Specifically, when applied in any large Péclet number regime
(as the diffusion coefficient approaches zero), instabilities arise, manifesting initially as
short-wavelength, high-frequency oscillations. Further, ubiquitous numerical diffusion
effects will be present due to the compromise forced by the computational resource, the
diffusion coefficient value and, again, numerical stability. To address this, we have, here,
proposed a way to control diffusion effects, by subtracting an open channel solution to
“cancel” diffusion effects associated with the wall’s no-slip condition. Finally, a more stable
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(but expensive) diffusion algorithm might enhance the stability at higher Péclet number
flows; but this development would not impact the framework reported herein for a novel
utilisation of advection-diffusion dynamics to identify thrombosis risk.

The data that are computed to find an assessment of risk associated with stent deploy-
ment scenarios and strut profiles are the shear rate, wall shear stress, relative residence time,
and the characteristic length of the strut distal re-circulation region. All are determined
with appropriate resolution and address realistic physiological ranges, relative scales and
geometries within the steady regime. Simulations were performed both on single struts
and triplets of struts to determine how strut shape and positioning interact with the metrics
identified above. This work has considered a finite, but clinically representative, set of
geometries, from which consistent observations emerge.

The general observations indicate that the less embedded a strut, the larger the risk of
a region prone to thrombosis, based on identifying regions with large relative residence
time, low shear rates and large re-circulation zones. High WSS over the top of the struts
will promote the von Willebrand factor (vWF) to elongate and hence encourage platelet
activation. Importantly, flow streamline distributions imply that fluid parcels containing
activated vWFs would then advect these species, resulting in the accumulation of key
proteins and platelets in low-shear-rate, long-residence-time re-circulation zones. The
simulation results further show that the rounded square stent struts created regions with
larger WSS, longer re-circulation characteristic length and higher relative residence time
compared with the circular stent struts, which quantifies the significance of strut streamlin-
ing. Multiple stent strut simulations evidenced a similar trend, with an increased residence
time associated with the rounded square stent strut. Highlighted also is the importance
of the flow interaction between adjacent struts, modulated by the Reynolds number, stent
position and stent spacing. All these factors impact upon whether the flow re-attaches
before reaching the next stent strut, which appears to be of high importance, as it could
lead to large regions of low and oscillatory shear stress.

Broadly, it is clear that the stent strut shape, relative position and malapposition all
couple strongly to the local hemodynamic metrics, including the residence time. From
the data presented here, no single metric seems to be insignificant, highlighting the need
for convenient single-framework methodologies. This study confirms that this approach
can report all the relevant fields efficiently and accurately. Further work is required to
objectively correlate the individual modalities and to establish the role of a number of data
science tools which require only such data as are presented here.
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Abbreviations
The following abbreviations are used in this work:

ISR in-stent restenosis
ST stent thrombosis
ESS endothelial shear stress
WSS wall shear stress
vWF von Willebrand factor
CFD computational fluid dynamics
DES drug-eluting stents
LBM lattice Boltzmann method
2D two-dimensional
PDF probability density function
LBGK lattice Bhatnagar–Gross–Krook

Appendix A. Simulation Set Up
This Appendix will provide additional detail concerning the set-up and parameterisa-

tion of the simulations. Specifically, it will focus on the control of diffusion, treatment of
irregular boundaries and the flow boundary conditions.

Appendix A.1. Control of Diffusion

Eliminating diffusion entirely is not possible in LBM or any other numerical scheme.
Simulations are therefore parameterized to emphasize advection over diffusion, by simu-
lating at large Peclet numbers:

PeL =
L|u|

D
.

This work does not aim to facilitate precise solutions of advection-diffusion dynamics for
PeL → ∞. Rather, it seeks to obtain a measure of the relative residence time which supports
quantitative comparison of clinically relevant scenarios in the form of values of ϕ which
stratify different patho-physiologies and characterise domain locations. This comparison
might be facilitated by a normalisation, relative to the corresponding physiological case.
Even so, a natural step is to minimise diffusion by parameterising as follows:

ωd → 2, D → 0, PeL → ∞.

However, in LBGK simulation, the relaxation parameter ωd cannot approach too closely its
upper bound without exciting instability [21]. As such, lattice PeL and Re parameterisation
is controlled using the lattice |u| and L, as throughout this work, the results reported use a
fix value of ωd = 1.98.

Appendix A.2. Treatment of Irregular Boundaries

One benefit of the LBM is its ability to represent complex geometries using straight-
forward boundary closure rules. To model the correct boundary curvature characteristic
of the strut and endothelial cell geometries, an interpolated bounce-back scheme is im-
plemented, following Bouzidi et al. [48]. This scheme determines the post-collision and
post-propagation (ψψ) distribution function f ψψ

−i (xB, t + ∆t) by interpolating between the
post-collision pre-propagation (ψ) distribution functions, at the fluid site immediately
adjacent to the boundary f ψ

−i(xB, t) and at the penultimate lattice site f ψψ
i (xA, t). The



Mathematics 2025, 13, 376 15 of 18

formulation of f ψ
−i(xB, t + ∆t) depends upon a metric q = |BW|

|BC| , which is the normalised
distance to the boundary wall:

f ψψ
−i (xB, t + ∆t) =

2q f ψ
i (xB, t)− (1 − 2q) f ψ

i (xA, t) if q < 1
2 ,

1
2q f ψ

i (xB, t) + 2q−1
2q f ψ

i (xB, t) if q ≥ 1
2 ,

(A1)

To further exemplify this result and declare the notation used in this work, the following
provides a one-dimensional schematic of Figure A1:

Figure A1. Bouzidi boundary conditions: Schematic depicting the Bouzidi boundary condition
interpolation rules based on the two cases q < 0.5 and q ≥ 0.5, in one dimension. Note, the labelling
convention used in this figure relates to that used in Equation (A1).

For closure of the advection-diffusion scheme, an interpolated bounce-back scheme on
the gi distribution function is applied. The remaining boundary conditions implemented for
both the lattice Boltzmann and advection-diffusion solver are discussed in the next section.

Appendix A.3. Flow Boundary Conditions

Table 1 outlines (i) the range of physical scales; (ii) the scales simulated; (iii) the related
lattice units (lu). To ensure appropriate resolution, the conversion of 1 µm = 1 lu is used.
Figure 3 is a schematic of the simulation domain (top) and then an enlargement of the local
flow dynamics around a strut. Figure 1 declares the two strut profiles considered in this
work, both having the same maximum width 100 µm. Further, the ECs have a height of
1.5 µm and length 50 µm.

A mix of boundary conditions have been implemented for the species and concentra-
tion populations. In Figure 3, the symmetry of an idealised artery channel is utilised for
computational efficiency, a symmetry condition being implemented at the north boundary,
for both the species and concentration populations. At the east and west boundaries for
the concentration, periodic boundary conditions are implemented. For the momentum
distribution fi, Zhang–Kwok pressure boundary conditions [47] are implemented, which
impose a pressure step across an otherwise periodic velocity boundary. The pressure in
LBM is proportional to the density as P = c2

s ρ. Equation (A2) describes how the pressure
gradient is calculated by multiplying the exiting distribution functions by constant β. The
density (pressure) difference between the inlet and outlet will drive fluid in the streaming
direction by maintaining a higher (lower) density at the distal (proximal) arterial boundary.

f in
inlet = f out

outlet

ρ0 +
β

c2
s

ρ̄outlet
, f in

outlet = f out
inlet

ρ0 − βL
c2

s

ρ̄inlet
. (A2)

In this work, the value of β is assigned to ensure the simulations fall within the physiological
Re number range for artery flow (see Section 3). At the south boundary, to represent the
endothelial cells and struts, the no-slip interpolative bounce back boundary condition of
Appendix A.2 for both species and concentration is implemented.
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