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ABSTRACT This study introduces a modified parallel net (MPNET), a novel deep learning model designed
for accurate segmentation and quantification of visceral and superficial adipose tissues. This was used to
quantify the visceral and superficial adipose tissues found at the L3 levels of vertebra in CT scans. This will
be used to predict the likelihood of the patient developing diabetes or cardiovascular diseases from existing
CT scan data. MPNET was compared with state-of-the-art models like UNET, R2UNET, UNET++, and
nnUNET. This approach advances the accuracy and efficiency of image segmentation demonstrating a faster
learning curve and lower losses at early epochs than traditional models., We developed and validated using
a limited dataset of 14 single-slice DICOM files for each patient extracted from the National Health Service
UK. The outputs from MPNET not only matched but often exceeded traditional metrics such as the Dice
coefficient and IoU in nuanced anatomical delineation, providing greater clinical realism and applicability
in segmentation results. As a pilot study, this research paves the way for a forthcoming validation study on
a larger and more ethnically diverse dataset.

INDEX TERMS Convolutional neural networks, CT scan analysis, deep learning, image post-processing,
segmentation and quantification, visceral and superficial adipose tissues.

I. INTRODUCTION
Cardiovascular (CVD) and cerebrovascular diseases (CBD),
such as heart attacks and strokes, are major causes of
preventable deaths worldwide, particularly in the UK where
CVD remains a leading cause of mortality. A key factor in
these conditions is the metabolic syndrome, characterized

The associate editor coordinating the review of this manuscript and

approving it for publication was Kumaradevan Punithakumar .

by a triad of hypertension, type 2 diabetes, and obesity.
Early detection and management of metabolic syndrome
are crucial, as lifestyle changes can significantly mitigate
associated risks.

Traditional metrics like the Body Mass Index (BMI) have
been used to assess obesity, but they fall short in accurately
predicting cardiovascular risks. More precise indicators
such as the total abdominal adipose tissue (TAAT) offer a
better assessment. TAAT, particularly the fat surrounding
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intra-abdominal organs, can be quantified using CT scans
originally obtained for other clinical reasons, providing
a cost-effective method to enhance patient-specific risk
assessments without incurring additional NHS costs.

Convolutional Neural Networks (CNNs), particularly,
have revolutionized medical imaging, augmenting diagnostic
accuracy and introducing automation in complex treatment
protocols [1]. The integration of CNNs with advanced
architectures like TransU-Net has further expanded their
capabilities, facilitating the correlation of pixel dependencies
within medical images [2].

Current methods, predominantly manual, are time inten-
sive and subject to inter-operator variability, potentially
limiting diagnostic reliability [1], [3].

In this study, we investigated the potential of a modified
parallel net (MPNET) a novel CNN architecture designed
for accurate segmentation and quantification of visceral and
superficial adipose tissues. The NHS has large volumes of
abdominal CT scan data of which has been acquired for
potentially benign reasons. We decided to use this dataset to
accurately segment these adipose tissues in order to develop
a model to predict the likelihood of the patient developing
diabetes or cardiovascular diseases in the future.

A comparative analysis with existing CNN models like
U-Net is presented to explore the strengths and limitations
of these approaches in the context of abdominal CT scans.
This research seeks to fill gaps in the current understand-
ing of CNN architectures, particularly concerning pixel
dependency correlation and the integration of transformer
architectures [4].

It is applied to abdominal CT scans to nuanced anatomical
variations.

II. RELATED WORKS
The field of medical image segmentation has witnessed
transformative progress over the past years, significantly
influenced by advancements in deep learning architectures.
The U-Net architecture has been a cornerstone in this evolu-
tion, providing a robust framework for various segmentation
tasks. Its significance is further underscored by subsequent
innovations such as the Attention U-Net (AttnUNet), which
incorporates an attention mechanism to improve the model’s
focus on salient features within the image for enhanced
segmentation accuracy [5]. Despite their advancements,
models like U-Net and AttnUNet often struggle to delineate
complex anatomical structures.

Several potential models U-Net, U-Net++, Attention U-
Net, nnU-Net, R2U-Net, MPNET which were explored are
summarised in Table 1. The advent of hybrid models like
TransUNet [2] and Swin-Unet [6] represents a significant
leap forward, merging the spatial understanding of Con-
volutional Neural Networks (CNNs) with the long-range
dependency modeling capabilities of Transformers. These
models have demonstrated remarkable success in capturing

global image contexts, thereby improving encoder strength
for medical image segmentation tasks. However, while
TransUNet and Swin-Unet excel in global image context
interpretation, their segmentation precision is compromised
by their standard configurations, which do not optimally
balance global and local feature extractions necessary for
distinguishing closely adjacent tissue types.

The nnU-Net framework, with its self-configuring capa-
bilities, has set new benchmarks in the automation of
network architecture and preprocessing strategy selection for
medical image segmentation [7]. This approach significantly
reduces the manual effort involved in model configuration,
catering to the diverse needs of different segmentation tasks.
However, the nnU-Net, while reducing manual configuration
through its self-adapting capabilities, does not offer specific
optimizations for the L3 vertebral level where a unique
balance between precision in local detail extraction and
global contextual understanding is required.

Emerging approaches like the token-based MLP-Mixer
for abdominal CT multi-organ segmentation [8] and the
nested architecture of U-Net++ [7] have introduced novel
paradigms in network design and segmentation strategy.
Emerging models like the MLP-Mixer and U-Net++ intro-
duce innovative structures which improve general segmen-
tation performance. However, they still fall short when
extremely accurate anatomical delineation is necessary to
accurately differentiate between visceral and superficial
adipose tissues, as their generic training lacks focus on
specific anatomical idiosyncrasies.

The dual-encoder networks that synergize Transformer
and CNN architectures [9] and the P-UNet with its parallel
attention mechanisms [10] signify the ongoing efforts to
refine feature detection and segmentation accuracy. These
models aim to blend the strengths of local and global
feature extraction capabilities, highlighting the community’s
dedication to overcoming the limitations of existing segmen-
tation models. Yet, the complex challenge of adipose tissue
quantification at certain anatomical levels demands a more
tailored approach that can navigate the intricate landscape of
medical image segmentationwith a higher degree of precision
and clinical relevance.

AModified Parallel NET (MPNET)-Based Deep Learning
technique, developed within this study, directly addresses
these gaps is specifically designed to improve the segmen-
tation and quantification of visceral and superficial fat at the
abdominal level, offering targeted solutions to the challenges
previously unmet by existing models.

The MPNET model leverages a novel CNN-based archi-
tecture that is finely tuned to the unique challenges of this
task. Utilizing a comprehensive dataset collected from the
National Health Service (NHS), UK, this model not only
outperforms existing state-of-the-art models such as UNET,
R2UNET, UNET++, and nnUNET in capturing the complex
anatomical structures but also enhances the clinical realism of
segmentation results.

VOLUME 13, 2025 28523



J. Adekanbi et al.: MPNET-Based Deep Learning Technique

The incorporation of a unique post-processing algorithm
further refines these outcomes, ensuring that the segmented
images align more closely with clinical requirements.
Consequently, MPNET demonstrates not just competitive
performance in traditional metrics like the Dice coefficient
and IoU but also excels in producing clinically relevant
segmentation results that surpass those of existing models.

Our methodology is described in section III with the
experimental work in section IV, discussion in section V and
conclusions in section VI.

III. METHODS
A. SUMMARY OF THE APPROACH
This study analyzed CT scans for detecting and quantifying
visceral and superficial adipose tissue using advanced deep
learning. The process begins with data collection and
segmentation, followed by pre-processing to convert images
to greyscale. An exploratory data analysis (EDA) was
conducted using techniques like pixel intensity distribution
and Fourier transform analysis to inform model training.

The data was normalized and encoded before being
divided into training, testing, and validation sets in the
proportions of 80%, 10%, and 10%, respectively.The training
involved two phases with adjustments in epochs, learning
rates, and batch sizes, using U-Net variants and MPNET.
After model training, a post-processing phase refined the
outputs for adipose tissue quantification. This study adhered
to rigorous ethical protocols, including approval by the
appropriate institutional review boards. All CT scan data was
pseudonymised complying with the General Data Protection
Regulation (GDPR) to ensure the privacy and security of
personal data.

The process of building and experimenting with the
models of our work follows a systematic and methodological
approach as illustrated in Figure 1.

B. DATA PREPARATION
1) DATASET
This study utilised fourteen (14) single-slice DICOM files
from the Sandwell and West Birmingham Hospitals NHS
Trust, taken at the L3 vertebra level, with corresponding
RGB segmentation images for adipose tissue differentiation.
Each DICOMfile metadata had values for slice thickness and
pixel scaling later used for quantification. The DICOM files
were converted to greyscale to delineate superficial (SAT)
and visceral (VAT) adipose tissues for deep learning model
analysis.

2) SEGMENTATION
In the segmentation refinement, reference maps were crucial
for accurately identifying visceral adipose tissue (VAT) and
superficial adipose tissue (SAT) in DICOM files. Using ITK-
SNAP, we delineated VAT and SAT from DICOM files,
producing corresponding NRRD output segmentation files.
Figure 2 illustrates this process, with SAT marked in red and

FIGURE 1. Project pipeline illustrating the steps from data collection and
segmentation to fat quantification.

VAT in green, showcasing the detail captured in a DICOM
slice.

C. PRE-PROCESSING
1) TRANSFORMATION OF NRRD AND DICOM FILES INTO
GREYSCALE IMAGES
To integrate into the deep learning workflow, both NRRD
segmentation and DICOM CT scan files were converted into
512 × 512 pixel greyscale images. Custom scripts, using the
nibabel library, processed NRRD files, coding superficial
adipose tissue (SAT) as white (255), visceral adipose tissue
(VAT) as grey (127), and the background as black (0).
This color scheme simplified segmentation maps for one-hot
encoding in model training.

Similarly, DICOM images were normalized to the
same resolution, standardizing pixel intensities, using a
script with the pydicom library. This ensured uni-
form image dimensions and tissue representation, criti-
cal for accurate comparison and overlay in subsequent
analysis.
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TABLE 1. Gap analysis summary.

2) DATA AUGMENTATION
Data augmentation was key to increasing the dataset
from 14 to 1032 examples, simulating a range of anatomical
variations and imaging conditions found in clinical settings
(validated by radiologists). Techniques included scaling
and translation (adjusting size and position of structures),
shearing and rotation (altering shape and orientation), and
flipping (mimicking different patient positions). Coarse
dropout introduced missing data areas, training the model on
incomplete patterns.

Perspective changes, poisson noise and blur effects simu-
lated depth and focus variations, while elastic transformations
added local geometric distortions, akin to patient movement.
Contrast and brightness adjustments accounted for variations
in CT scan quality.

These augmentation methods significantly expanded our
dataset, enhancing the deep learning models’ ability to
recognize various adipose tissue deposits and adapt to diverse
imaging conditions, thereby improving their generalisability
and robustness.

D. MODELS
1) UNET
The U-Net architecture is designed specifically for medical
image segmentation. It has a symmetric structure with
an encoder path to capture context and a corresponding
decoder path that enables accurate localization. The model
uses a series of convolutional and max pooling layers to
downsample the image, followed by upsampling layers to
construct the segmentation output. Skip connections between
downsampling and upsampling layers help in preserving
the spatial context which is often lost during pooling
operations [4].

FIGURE 2. Example Segmentation overlay on DICOM image of a single CT
slice through the abdomen (ITK-SNAP). Green: Visceral adipose tissue,
Red: Superficial adipose tissue. Other: Background.

2) UNET++

U-Net++ improves upon the original U-Net by introducing
nested and dense skip pathways. These pathways are
designed to bridge the semantic gap between the feature maps
of the encoder and decoder sub-networks. This is achieved
by connecting the corresponding layers in the encoder and
decoder with a series of convolutional operations, which
helps in improving the flow of information and gradients
throughout the network, leading to enhanced feature repre-
sentation and segmentation results [7].

3) ATTENTION U-Net (AttnUNet)
Attention U-Net adds an attention mechanism to the standard
U-Net architecture. This mechanism helps the model to focus
on target structures of varying shapes and sizes. During the
upsampling phase, the attention gates selectively highlight
salient features that are passed through the skip connections.
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This allows the model to suppress irrelevant regions in the
input while highlighting features that are useful for a specific
task [5].

4) nnU-Net
nnU-Net is a self-adapting framework that automatically
configures itself to the dataset at hand. It adapts its
preprocessing, network architecture, training, and inference
strategies to the specific requirements of the dataset. This
adaptability is achieved through an extensive analysis of
dataset properties, enabling nnU-Net to achieve robust per-
formance across different medical segmentation challenges
without any manual intervention in designing the network
architecture [21].

5) R2U-Net
R2U-Net integrates recurrent convolutional layers within
the U-Net architecture. These recurrent layers can capture
fine-grained details over successive iterations, making it
more adept at handling complex structures within medical
images. The recurrent layers are combined with residual
connections, which improve gradient flow and enable the
training of deeper networks by mitigating the vanishing
gradient problem [22].

6) MPNET
The architecture of the MPNET for segmentation was
ingeniously designed to exploit the benefits of parallel
processing in convolutional neural networks. It stands out
for its unique approach to feature extraction and merging,
setting it apart from traditional architectures like the U-Net,
which follows a more linear progression of convolutions and
pooling.

At its core, the MPNET employs multiple convolutional
paths at each depth level, eachwith different kernel sizes. This
design choice enables the network to capture a diverse range
of features from the input data. For instance, at the first depth
level, two parallel paths are employed: one with a 3×3 kernel
and another with a 5×5 kernel. These paths are then merged,
harnessing the strengths of both small and large kernels in
capturing fine and coarse features, respectively.

The model intensifies this parallel processing approach as
it deepens, consistently using dual-path convolutions at each
depth level. The use of the PReLU (Parametric Rectified Lin-
ear Unit) activation function after each convolution enhances
the model’s capacity to learn non-linear transformations more
effectively than standard ReLUs.

A distinctive feature of this architecture is the increased
dropout rate (0.65) at the deepest layer. This decision is
motivated by the need to prevent overfitting, especially given
the model’s increased complexity due to the parallel paths.

During the upsampling phase, the MPNET introduces skip
connections, a technique reminiscent of the U-Net. These
connections help recover spatial information lost during
downsampling. However, unlike the U-Net, the MPNET

merges the upsampled output with feature maps from both
paths of the corresponding depth level, further enriching the
feature representation.

In the final stage, a convolutional layer with a softmax
activation function generates the segmentation map. This
layer is critical for classifying each pixel into one of the
predefined categories, which is essential in applications like
medical image segmentation.
Mathematical Formulation:The operationswithinMPNET

can be represented mathematically as follows:
Let I be the input image, PAk and PBk be the k-th parallel

paths with kernel sizes of 3× 3 and 5× 5 respectively,Mk be
the merged output, and Uk be the upsampled feature map at
each depth level k .

For each parallel block at depth k:

PAk = PReLU (Conv2D(I , kernel_size = (3, 3))) (1)

PBk = PReLU (Conv2D(I , kernel_size = (5, 5))) (2)

Mk = Concatenate([PAk ,PBk ]) (3)

For upsampling and merging with previous layers:

Uk = UpSampling2D(Mk+1) (4)

Sk = Concatenate([Uk ,Mk ]) (5)

The final segmentation map Y is obtained through a 1 ×

1 convolution on the last merged feature mapM :

Y = Softmax(Conv2D(Mfinal, kernel_size = (1, 1))) (6)

E. METRICS
1) DICE COEFFICIENT
The Dice Coefficient, also known as the Sørensen–Dice
index, measures the similarity between two samples and
is widely used in image segmentation to quantify the
performance of models. Although it’s favoured for its
straightforward calculation and interpretation, the coefficient
has limitations, particularly in handling imbalanced data and
small object segmentation [23]. These issues can lead to
misleading high scores despite poor model performance on
minor yet important details. Recognizing these limitations,
we employed the Dice Coefficient alongside other metrics,
allowing us to mitigate its biases and provide a more
balanced evaluation of ourmodels’ segmentation capabilities.
Mathematically, for a smoothing factor smooth to prevent
division by zero, it is given by equation 7.

Dice =
2 · |Ytrue ∩ Ypred | + smooth
|Ytrue| + |Ypred | + smooth

(7)

where Ytrue represents the ground truth mask and Ypred the
predicted mask.

2) DICE LOSS
Dice Loss is a metric derived from the Dice Coefficient,
used as a loss function for training segmentation models.
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FIGURE 3. MPNET architecture.

It is particularly useful when dealing with imbalanced
datasets [24]. The Dice Loss formula is stated in equation 8.

DiceLoss = 1−DiceCoefficient (8)

The closer the Dice Coefficient is to 1, the lower the Dice
Loss and the better the model’s segmentation performance.

3) INTERSECTION OVER UNION (IoU)
Intersection Over Union (IoU) is another common metric for
evaluating the performance of image segmentation models.
It measures the overlap between the predicted segmentation
and the ground truth, normalized by the union of both [25].
The IoU formulation is state in equation 9.

IoU =
|Ytrue ∩ Ypred | + smooth
|Ytrue ∪ Ypred | + smooth

(9)

IoU is an essential metric for assessing how well the model
predictions align with the actual data, with a higher IoU
indicating better performance.

4) COMBINED DICE AND CROSS-ENTROPY LOSS
To harness the strengths of both Dice Loss and Categorical
Cross-Entropy, a combined loss function is employed. The
Categorical Cross-Entropy is sensitive to the imbalanced
class distribution but does not explicitly consider the overlap
between the segmentation masks, which the Dice Loss
compensates for [26]. The combined loss is formulated as

equation 10.

Loss = α · DiceLoss+ (1 − α) · CategoricalCrossEntropy
(10)

where α is a weighting coefficient dictating the balance
between the two loss components.

Following the recommendations by Taha and Hanbury,
who advocate for a tailored approach in selecting segmen-
tation evaluation metrics, we employed the Dice Coefficient
and IoU for their complementary perspectives on model
accuracy in overlap and union of segmented areas. Addi-
tionally, the combined use of Dice and Cross-Entropy in our
loss function aligns with their guidance on addressing class
imbalance and segmentation precision, which are critical in
the medical imaging context.

F. POST-PROCESSING
In the post-processing stage, this study introduced an
algorithm designed to refine the segmentation results, specif-
ically targeting the accurate delineation between visceral
and superficial adipose tissues. The algorithm operates by
discerning and modifying only the white pixels that represent
superficial adipose tissue within the interior regions, ensuring
the preservation of the outer white boundary and pre-existing
grey areas indicative of visceral adipose tissue.

The process begins by establishing a binary mask over
the white pixels (superficial adipose tissue) in the greyscale
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image. Contours are identified within this mask using a
contour detection method. The contours that are not part of
the outer boundary are then filled, transforming the interior
white pixels to grey to represent visceral adipose tissue, while
keeping the border intact.

Mathematically, this can be represented as follows:
Let I be the greyscale image, M be the binary mask, and

C be the set of contours detected. For each contour c ∈ C
with a parent contour (indicating it is not the boundary), the
algorithm performs the following operation:

I (x, y) =

{
127 ifM (x, y) = 1 and I (x, y) ̸= 0
I (x, y) otherwise

(11)

where I (x, y) is the pixel intensity at position (x, y),
127 represents the greyscale value for visceral adipose tissue,
and 0 denotes the background.

This refined image I is then utilised in the subsequent
quantification process. The algorithm ensures that the seg-
mentation output reflects a more accurate representation of
the different adipose tissue regions, which is critical for accu-
rate adipose tissues quantification. The use of this method
significantly enhances the quality of the segmentation,
contributing to the overall reliability of the study’s findings.

FIGURE 4. Example segmentation image before post-processing.

FIGURE 5. Example segmentation image after post-processing.

G. QUANTIFICATION
Quantifying adipose tissue from CT images involves a
systematic process of translating image data into measurable
volumes of visceral and superficial adipose tissues. We begin
with the segmentation of CT images, where adipose tissues

are identified and marked with specific greyscale values:
127 for visceral adipose tissue and 255 for superficial adipose
tissue. These values are crucial for distinguishing between the
different types of adipose tissues.

The algorithm calculates the count of pixels corresponding
to each type of adipose tissue. Because the CT images are
resized to 512 × 512 for inference, it is essential to adjust
these pixel counts to account for any changes in image scale.
This adjustment maintains the accuracy of the quantification
process.

The next step involves converting the adjusted pixel counts
into physical volumes. This is where the pixel spacing of
the original CT images (DICOM files) becomes vital. Pixel
spacing refers to the physical distance between the centres
of adjacent pixels, measured in millimetres. By knowing the
pixel spacing and the slice thickness, the study can accurately
determine the actual physical volume each pixel represents.

To calculate the physical volume occupied by each type of
adipose tissue, the adjusted pixel counts are multiplied by the
volume of a single pixel (derived from pixel spacing and slice
thickness). This calculation yields the total volume occupied
by visceral and superficial adipose tissue in cubicmillimetres,
which are then converted to cubic centimetres.

1) MATHEMATICAL REPRESENTATION
The mathematical representation of the process is as follows:

Let Px and Py be the pixel spacings in the x and y
dimensions, Rx and Ry the resized image dimensions, Ox and
Oy the original image dimensions, and T the slice thickness.

The scaling factors are:

Sx =
Ox
Rx

, Sy =
Oy
Ry

(12)

The area per pixel:

A = Px × Py (13)

The corrected volume for each adipose tissue type in cubic
millimeters:

Vvisceral, mm3 = Countvisceral × Sx × Sy × A× T (14)

Vsuperficial, mm3 = Countsuperficial × Sx × Sy × A× T (15)

And the conversion to cubic centimeters:

Vvisceral, cm3 =
Vvisceral, mm3

1000
(16)

Vsuperficial, cm3 =
Vsuperficial, mm3

1000
(17)

2) SCIENTIFIC FOUNDATION AND RELATED WORK
The methodology for converting pixel count to physical
volume was substantiated by recent studies in the field.
The research by Parikh et al. [27] delineated a similar
approach, validating a method that calculated adipose tissue
volume using voxel counts within CT images, reinforcing
the accuracy of such methods for clinical assessments [27].
Moreover, contemporary studies highlighted the application
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TABLE 2. Hyperparameters for U-Net, U-Net++, Attention U-Net,
nnU-Net, R2U-Net, and MPNET during two training phases.

of deep learning models for segmentation tasks, with subse-
quent pixel counting for volume calculations, showcasing the
relevance of this approach [28], [29]

IV. EXPERIMENT
A. SETUP
The experimental setup for this study was conducted on
Cluster 3, a high-performance computing facility provided
by Birmingham City University. This section briefly recaps
the computational environment used and its rationale in the
context of the deep learning models and datasets employed
in this research.

1) COMPUTATIONAL ENVIRONMENT
Cluster 3’s multi-node architecture comprised of CPU and
GPU nodes, all configured with PowerEdge R740 servers.
The CPU nodes provide substantial memory capacity, each
powered by approximately 180GB RAM for handling large
datasets efficiently.

Complementing the CPU resources, the GPU nodes are
equipped with two NVIDIA Tesla T4 GPUs per node,
leveraging their 320 Turing Tensor cores and 2560 CUDA
cores for rapid deep learning computation, critical for model
training and inference tasks.

The system runs on CentOS-8.2.2004-x86_64, ensuring
a robust platform for conducting complex machine learning
experiments.

B. TRAIN, VALIDATION, TEST SPLIT
The dataset, comprising 1032 examples, was systematically
divided into distinct sets for training, validation, and testing.
This stratification was crucial for the evaluation of the
deep learning models, ensuring that each had exposure to
a comprehensive range of data during training while also
setting aside unbiased subsets for performance assessment.

A total of 825 examples (approximately 80%of the dataset)
were allocated for the training set, which is used to fit the
models and adjust the weights. The validation set, consisting
of 103 examples, corresponds to 10% of the dataset, serving
as a benchmark for tuning model hyperparameters and
preventing overfitting. The remaining 104 examples (also
around 10%) were designated as the test set, providing a final,
independent evaluation of the model’s performance and its
ability to generalise to new data.

1) TRAINING PHASES
Two primary training variations were employed:

1) Phase 1 (Initial Training): The first training phase
proceeded over 200 epochs with a learning rate set at
1e-4 (as seen in Table 2 for the majority of models.
An exception was made for the Parallel Net, which
operated with a slightly higher learning rate of 2e-4 to
accommodate its unique architecture. All models were
trained with a batch size of 8 except Attention U-Net
which used a batch size of 16, setting the stage for
baseline performance metrics.
Each model showcased unique strengths and weak-
nesses. As seen in Table 4 The MPNET model demon-
strated the highest training accuracy (0.9799) and
Dice coefficient (0.9726), indicating its effectiveness
in segmenting adipose tissue in CT images. However,
in the validation set, as seen in Table 3 it exhibited
a higher loss (0.0839) compared to other models,
suggesting some challenges in generalising to unseen
data as.
The U-Net model, while not reaching the peak perfor-
mance of MPNET in training, showed a more consis-
tent performance between training and validation, with
a minimal loss increase from 0.0594 to 0.0681. This
consistency is indicative of its generalisability.
R2U-Net, U-Net++, and nnU-Net had a more
balanced performance between training and validation,
though with lower accuracy and Dice coefficients
compared to MPNET and U-Net. The Attention U-Net
model showed the lowest accuracy in both training
(0.8554) and validation (0.8460), pointing to potential
difficulties in learning from the dataset in this phase.

2) Phase 2 (Hyperparameter tuning): In Phase 2, the study
refined the training process by selectively adjusting the
batch sizes for models with an initial accuracy above
80%. Through an iterative approach of trial and error,
the batch size was reduced to 4 for most models. This
adjustment allowed for more frequent updates to the
model weights, thereby facilitating nuanced learning.
However, the Attention U-Net, which incorporates an
attention mechanism, demonstrated improved perfor-
mance with a larger batch size of 8. This specific
example suggests that the model benefited from a
broader variety of examples per update, optimizing its
attention-driven feature selection.
This heuristic approach to hyperparameter tuning was
pragmatically employed to balance computational effi-
ciency with the empirical observation of performance
improvements. These adjustments were driven by
direct experimentation, where different settings were
tested and those yielding the best results were imple-
mented. This method reflects a practical perspective,
emphasizing outcomes over theoretical predictions,
and is indicative of a real-world scenario where optimal
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TABLE 3. Performance metrics for U-Net, U-Net++, Attention U-Net, nnU-Net, R2U-Net, and MPNET during two validation phases, detailing loss, accuracy,
dice Coefficient, and IoU.

TABLE 4. Performance metrics for U-Net, U-Net++, Attention U-Net, nnU-Net, R2U-Net, and MPNET during two training phases, detailing loss, accuracy,
dice coefficient, and IoU.

TABLE 5. Confidence intervals (CI) for Dice and IoU, along with p-values (vs MPNET), based on 100 test examples split into 10 groups.

parameters are often determined through hands-on
testing and observation.

2) EMPIRICAL HYPERPARAMETER TUNING: OBSERVATIONS
AND MODEL PERFORMANCE ACROSS VALIDATION PHASES
Initial hyperparameters were set experimentally, and adjust-
ments were made based on the first phase’s results. The
modifications demonstrate how architectural characteristics
interact with hyperparameter settings. Detailed findings from
this analysis are outlined below.

1) U-Net
• Changes in metrics: Loss decreased from 0.0681 to
0.0600, accuracy increased from 0.9666 to 0.9724,
Dice coefficient improved from 0.9577 to 0.9625,
and IoU rose from 0.9453 to 0.9496.

• Architectural influence: U-Net’s architecture,
which efficiently learns features with fewer
parameters, benefits from smaller batch sizes
enhancing its generalisation capabilities.

2) U-Net++

• Changes in metrics: Loss reduced from 0.0781 to
0.0663, accuracy improved from 0.9616 to 0.9677,

Dice coefficient increased from 0.9509 to 0.9588,
and IoU advanced from 0.9363 to 0.9461.

• Architectural influence: The complex nested con-
nections of U-Net++ more effectively process the
refined gradient information from smaller batch
sizes, enhancing model learning and performance.

3) Attention U-Net

• Changes in metrics: Significant reductions in loss
from 0.2713 to 0.0957, with accuracy soaring from
0.8460 to 0.9633, Dice coefficient climbing from
0.8042 to 0.9323, and IoU jumping from 0.7588 to
0.9052.

• Architectural influence: The attention mechanisms
of this model benefit from a larger batch size that
still provides a diverse set of examples, optimizing
its attention-driven feature selection capabilities.

4) nnU-Net

• Changes in metrics: Minor improvements with
loss marginally decreasing from 0.1158 to 0.1096,
accuracy rising from 0.9409 to 0.9441, Dice
coefficient slightly improving from 0.9241 to
0.9286, and IoU increasing from 0.9014 to 0.9064.
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FIGURE 6. Best train losses comparison graph for UNet, Parallel Net (MPNET), R2U-Net, U-Net++, Attention
U-Net, and nnU-Net over two validation phases.

FIGURE 7. Best train accuracies comparison graph for UNet, Parallel Net (MPNET), R2U-Net, U-Net++, Attention
U-Net, and nnU-Net over two validation phases.

• Architectural influence: As a self-configuring
system, nnU-Net subtly adjusts to changes in batch
size, optimizing performance through its internal
parameter adjustments.

5) R2U-Net

• Changes in metrics: Loss dropped from 0.0875 to
0.0746, accuracy increased from 0.9565 to 0.9629,
Dice coefficient grew from 0.9436 to 0.9522, and
IoU improved from 0.9263 to 0.9372.

• Architectural influence: The recurrent layers in
R2U-Net benefit from smaller batch sizes, allow-

ing for frequent updates that help integrate and
refine contextual information more effectively.

6) MPNET
• Changes in metrics: Minimal improvement with
loss slightly reducing from 0.0839 to 0.0807,
accuracy remaining nearly the same from 0.9625 to
0.9631, Dice coefficient nearly unchanged from
0.9557 to 0.9559, and IoU slightly decreasing from
0.9447 to 0.9443.

• Architectural influence: With parallel convolu-
tional paths at each depth level, MPNET is
designed to extract a comprehensive range of
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FIGURE 8. Best train dice coefficients comparison graph for UNet, Parallel Net (MPNET), R2U-Net, U-Net++,
Attention U-Net, and nnU-Net over two validation phases.

FIGURE 9. Best train IoUs comparison graph for UNet, Parallel Net (MPNET), R2U-Net, U-Net++, Attention
U-Net, and nnU-Net over two validation phases.

features by combining different kernel sizes
which strengthens feature extraction. The minimal
change in metrics despite the batch size reduction
can be attributed to the model’s capacity to
maintain effective learning and generalisation.

C. QUANTITATIVE ANALYSIS OF ADIPOSE TISSUE
SEGMENTATION USING MPNET ON UNSEEN DICOM DATA
SETS
The MPNET model’s efficacy was assessed on seven unseen
datasets, containing 14 to 18 DICOM image slices taken
at the L3 vertebra level. The calculations of visceral (VAT)

and superficial adipose tissue (SAT) volumes are concisely
presented in Table 7.

The means and medians indicated its consistent volume
estimation across various anatomical structures. Standard
deviations highlighted the precision of the model’s mea-
surements. The model’s high accuracy, dice coefficient,
and Intersection over Union (IoU) validated its robust
segmentation capabilities.

D. STATISTICAL ANALYSIS
A hundred (100) test examples were divided into 10 equally
sized groups (each containing 10 examples). For each group,
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FIGURE 10. Best validation losses comparison graph for UNet, Parallel Net (MPNET), R2U-Net, U-Net++,
Attention U-Net, and nnU-Net over two validation phases.

FIGURE 11. Best validation accuracies comparison graph for UNet, Parallel Net (MPNET), R2U-Net, U-Net++,
Attention U-Net, and nnU-Net over two validation phases.

we computed the Dice coefficient and IoU, then used these
values to calculate 95% confidence intervals (CIs) and
perform significance tests relative to MPNET. As shown in
Table 5, MPNET achieves a Dice CI of (0.96299, 0.96813)
and an IoU CI of (0.95159, 0.95763).

By comparison, R2U-Net reports a Dice CI of (0.94892,
0.95377) with a p-value of 6.35×10−7, and nnU-Net exhibits
a Dice CI of (0.92393, 0.93296) with a p-value of 9.67 ×

10−11. Attention U-Net’s performance also differs signifi-
cantly, with p-values on the order of 10−12. All p-values
remain far below the conventional 0.05 threshold, indicating
MPNET’s statistically superior segmentation performance.

V. DISCUSSION
The experimental results demonstrate significant insights
into the performance of various CNN models in medical
image segmentation. The following discussion interprets
these results:

1) Performance Improvement Post-Tuning: A common
trend observed across all models is the improvement
in performance metrics post hyperparameter tuning.
This highlighted the importance of fine-tuning in
deep learning models, especially in complex tasks
like medical image segmentation. The decrease in
loss and increase in accuracy, Dice coefficient, and
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FIGURE 12. Best validation dice coefficients comparison chart for UNet, Parallel Net (MPNET), R2U-Net,
U-Net++, Attention U-Net, and nnU-Net across two phases.

FIGURE 13. Best validation IoUs comparison graph for UNet, Parallel Net (MPNET), R2U-Net, U-Net++, Attention
U-Net, and nnU-Net over two validation phases.

IoU in the post-tuning phase suggested that the
models were able to generalise better and pro-
duce more accurate segmentations (see Table 4 and
Table 3).

2) Technical and Clinical Generalisability of MPNET:
MPNET’s architecture, featuring parallel convolutional
paths with varied kernel sizes, is poised for a strong per-
formance across diverse clinical datasets. This design
enables the model to effectively capture both fine and
coarse anatomical details, essential for generalising to
varied medical imaging scenarios. The combination of
multiple feature scales and increased dropout at deeper

layers suggests an enhanced ability to handle larger,
more heterogeneous datasets without overfitting.

3) Comparison of Models:

• U-Net: The U-Net model showed a substantial
improvement in all metrics post-tuning, reaffirm-
ing its efficacy and robustness in medical image
segmentation tasks. Its architecture, despite being
the simplest among those tested, continued to
deliver strong results, making it a reliable choice
in the field (see Table 4 and Table 3).

• MPNET: While MPNET shows an improvement
in accuracy and Dice coefficient after tuning, its
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TABLE 6. CT scans of the L3 vertebra from five patients are shown alongside segmentation outputs from the best versions of the six models: U-Net,
U-Net++, Attn U-Net, nnU-Net, R2U-Net, and MPNET, highlighting differences in segmentation accuracy.

TABLE 7. Summary of MPNET’s volume analysis including the sum, mean, median and standard deviation for VAT and SAT across seven datasets with
14-18 slices each.

loss increased slightly. This could indicate a more
nuanced balance between precision and recall,
and suggests areas for further optimization in its
architecture. Also, from the early epochs, MPNET
displayed higher validation and train loss figures
compared to other models. This suggests that its
architecture might be particularly effective, hinting
at potentially significant results if tested on a larger
scale.

• R2U-Net: Exhibits con1’’sistent improvements
across all metrics, which may be attributed to its

recurrent convolutional layers that enhance feature
extraction capabilities.

• U-Net++: Showed notable improvements post-
tuning, particularly in accuracy and Dice coef-
ficient. The nested architecture of U-Net++

seems to benefit significantly from the fine-tuning
process, possibly due to its enhanced feature
extraction through dense skip pathways.

• Attention U-Net: Despite its lower starting point,
Attention U-Net showed remarkable improvement
after tuning, particularly in terms of accuracy and
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the Dice coefficient. This underscored the utility
of attention mechanisms in improving model focus
and accuracy in segmentation tasks.

• nnU-Net: Demonstrated consistent performance
improvements, supporting the idea that a self-
adapting framework can effectively tailor itself to
the specifics of the segmentation task.

4) Radiological Assessment: An experienced consultant
radiologist reviewed images produced by various
models to ensure that they included only SAT or
VAT. The review also verified that the models omitted
abdominal organs, vascular structures, muscles, and
bones. Any models not meeting these criteria were
subsequently refined.

5) Implications:
• The results reinforce the notion that no sin-
gle model universally outperforms others in all
aspects. Each model has its unique strengths and
weaknesses, which become evident in different
performance metrics (see Table 4, Table 3, and
Table 6).

• The improvement in IoU and Dice coefficient
across all models post-tuning suggests that these
models are particularly sensitive to hyperparam-
eter adjustments. This is crucial for practitioners
to consider when employing these models in
real-world scenarios (see Table 3).

• The variation inmodel performance also highlights
the importance of selecting the right model based
on specific requirements of the segmentation task,
such as the level of detail required, the presence of
imbalanced classes, or the computational resources
available.

The findings from this study underscore the intricate
dynamics and performance characteristics of various deep
learning models in medical image segmentation. These
insights not only reinforce the criticality of tailored model
selection and parameter optimization but also hint at promis-
ing directions for future research to further refine and exploit
these advanced modeling techniques.

VI. CONCLUSION
This study embarked on a comparative analysis of deep
learning models for the segmentation and quantification of
adipose tissue in CT imaging, culminating in the evaluation of
traditional models and the introduction of the novel MPNET.
The quantitative results demonstrated that while conventional
models like U-Net and U-Net++ performed admirably, the
novel MPNET showed promising qualitative results that
could translate into better clinical applicability.

The utilization of Dice loss combined with categorical
cross-entropy proved effective across models, facilitating a
balance between shape similarity and pixel-wise classifica-
tion accuracy. Data augmentation techniques successfully
expanded the limited dataset, underscoring the potential of
deep learning in scenarios where data scarcity is a challenge.

Furthermore, the post-processing step employed by
MPNET highlighted its potential to produce clinically
realistic segmentations, despite some quantitative metrics not
fully capturing its performance. This suggests a possible
divergence between numerical evaluation and practical
utility, advocating for a more nuanced approach to model
assessment in future research.

In light of these findings, it is evident that model selection
cannot be guided by quantitative metrics alone, especially
when considering the end application in clinical settings.
The MPNET, with its unique architecture and promising
clinical performance, warrants further investigation. Subse-
quent research could refine its architecture and explore its
applicability across a broader range of medical imaging tasks.

VII. RECOMMENDATIONS AND FUTURE WORK
The outcomes of this study, while shedding light on
the capabilities of CNN architectures in adipose tissue
segmentation from CT images, also open several avenues for
future research. The following recommendations and areas
of future work are proposed to extend the findings of this
research:

1) Architectural Refinement: Future studies could focus
on refining the architecture of MPNET, perhaps
by experimenting with different convolutional layer
configurations or by introducing new forms of regu-
larization to improve generalisation. The introduction
of advanced techniques such as attention mechanisms
or capsule networks could also be explored to enhance
segmentation quality.

2) Dataset Expansion: While data augmentation tech-
niques were effective in this study, acquiring larger
and more diverse datasets could provide richer infor-
mation for model training. Collaborating with medical
institutions to gather more data would be a significant
step forward. This study serves as a pilot, laying
the groundwork for a forthcoming validation study
that will include a larger and more ethnically diverse
dataset, enhancing the generalisability and strength of
the findings.

3) Computational Efficiency: Investigating the computa-
tional efficiency of the models is crucial, especially for
deployment in clinical settings where resources may
be limited. Studies could focus on model compression
techniques or efficient network designs that do not
compromise on performance.

4) Explainability and Trust: As AI models become more
prevalent in healthcare, their explainability becomes
paramount. Future work should aim to make these
models more interpretable, which is vital for gaining
trust from healthcare practitioners.

5) Cross-Validation: This study did not utilize cross-
validation due to limited computing resources. Future
research should incorporate cross-validation to better
assess model performance and generalisability.
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