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1. Introduction 
Running is a popular form of physical activity and provides substantial health benefits (Dai et al., 

2015; Lee et al., 2017; Tudor-Locke et al., 2010). However, running entails a high injury risk 

compared to other sports (Kemler et al., 2018), with running-related injury incidence between 2.5 

and 33 per 1000 hours of running (Videbæk et al., 2015). Running-related injuries can result in 

temporary or permanent cessation of running, and financial costs due to medical treatment or 

absence from work (Worp et al., 2015). Wearable devices (“wearables”), such as inertial 

measurement units (IMUs), enable the long-term monitoring of running biomechanics outdoors, 

and may support prevention and rehabilitation of running-related injuries (Willy, 2018).  

Running and running-related injury arise from the non-linear interaction of independent 

biological systems, and the interaction of the runner with their task and environment (Davids et 

al., 2003; Fonseca et al., 2020). A high-order signal that emerges from these non-linear 

interactions may describe the macroscopic dynamic behaviour of the individual and be sensitive 

to changes in system dynamics that might precede or result from running-related injury (Fonseca 

et al., 2020). Indeed, a high-order signal that emerges from a healthy human system will contain 

fluctuations since the system will utilise its abundant degrees of freedom (Stergiou and Decker, 

2011). Degrees of freedom define the number of potential configurations of the components at 

each level of a system (Newell and Vaillancourt, 2001). Stride time (Brahms et al., 2022; Mann et 

al., 2015; Meardon et al., 2011) and centre-of-mass or sacral acceleration (Gruber et al., 2021; 

Schütte et al., 2015) are two common choices of high-order variable in running gait literature; 

they are a function of the multiple interacting subsystems required to run and are relatively easy 

to measure compared to other possible high-order variables, such as leg stiffness.    

Linear measures of variability such as standard deviation (SD) or coefficient of variation (CV) have 

traditionally been used to quantify the magnitude of fluctuations in high-order signals. However, 

these metrics do not capture the temporal dynamics of running as they consider strides to be 
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independent events and thus ignore the role of perception-action coupling in locomotion (Davids 

et al., 2003). Detrended fluctuation analysis (DFA) (Peng et al., 1995) and sample entropy 

(Richman and Moorman, 2000) are two non-linear measures of variability that capture these 

temporal dynamics.  

DFA quantifies the complexity of a high-order signal by evaluating its fractal structure and 

detecting statistical persistence. The DFA algorithm yields the exponent α, with 0 < α < 0.5 

indicating anti-persistence, and 0.5 < α < 1.0 indicating persistence. Special cases occur at α = 

0.5, for which a signal consists of white noise and values are completely uncorrelated, and at α = 

1.0, for which a signal exhibits 1/f behaviour (pink noise).  

Stride time time series can be analysed using DFA since they satisfy its requirement for non-

cyclical data (Wilson and Likens, 2023). Researchers have found stride time DFA-α to be lower in 

runners with history of injury (Meardon et al., 2011), to decrease with fatigue (Brahms et al., 2022) 

and to decrease following a period of heavy training (Bellenger et al., 2019). In these studies, 

differences of the magnitude 0.11 to 0.17 were found between groups (Meardon et al., 2011) or 

within individuals (Bellenger et al., 2019; Brahms et al., 2022). However, research into the 

between-day reliability of running stride time DFA has been limited (Fuller et al., 2018; Godin et 

al., 2024; Mo and Chow, 2019). An understanding of this is vital for longitudinal monitoring since 

any between-day changes must be known to be real.  

Mo and Chow (2019) found that stride time DFA-α demonstrated good between-day reliability 

(ICC = 0.81) within an exhaustive thirty-minute run at a constant speed, but poor between-day 

reliability (ICC: 0.20 – 0.37) when that run was segmented into three sections. In contrast, Godin 

et al. (2024) and Fuller et al. (2018) found that DFA-α demonstrated moderate to good reliability 

(ICC: 0.71 – 0.87) during six minute trials at three fixed speeds. However, Fuller et al. (2018) 

conducted their analyses on time series of 400 strides, which is below the 500 to 600 stride 

recommendation to achieve reliable estimates of DFA-α (Ravi et al., 2020), and both Fuller et al. 
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(2018) and Mo and Chow (2019) conducted their studies on 10 or fewer participants. During 

walking, between-day reliability of stride time DFA-α has been poor (Ryan et al., 2020), moderate 

(Raffalt et al., 2018) and good (Di Bacco and Gage, 2023), although the applicability of these 

results to running is uncertain given that individuals display less persistence in walking (Wilson 

et al., 2023). It is thus evident that further research is needed to assess the reliability of DFA-α 

when applied to running stride times, with the use of a larger sample size and across a greater 

range of running conditions than those of Fuller et al. (2018) and Mo and Chow (2019).   

Like DFA, the between-day reliability of the sample entropy of biomechanical signals during 

running is also unknown, despite it being the focus of a proof-of-concept study on monitoring gait 

variability (Gruber et al., 2021). Sample entropy evaluates a signal’s regularity by calculating the 

conditional probability that two similar vectors of m data points will remain similar with the 

addition of a consecutive data point. Data points are defined as similar if the magnitude of their 

difference is less than a threshold, set as a percentage, r, of the signal’s SD. A lower entropy value 

reflects greater regularity. Sample entropy values from trunk acceleration signals have been 

found to decrease with fatigue in runners with a history of medial tibial stress syndrome but not 

in healthy controls (Schütte et al., 2018), and to be lower in lower limb joint angle time histories 

from runners with running-related injury history compared to those without (Quirino et al., 2021). 

Nevertheless, to the best of our knowledge, the between-day reliability of sample entropy when 

applied to a high-order sacral acceleration signals from running gait has not been investigated. 

Therefore, the purpose of this study was to investigate the between-day reliability of variability 

measures when applied to two high-order signals measured by a wearable device: stride times, 

using CV and DFA, and sacral accelerations, using sample entropy. A range of speed and gradient 

combinations were investigated to assess the between-day reliability of variability measures 

across running conditions representative of different overground running scenarios. 
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2. Methods 

2.1 Participants and set-up 
28 recreational runners (17 male, 11 female; mean ± SD, age 40.8 ± 14.1 years, mass 72.2 ± 10.1 

kg, height 1.77 ± 0.08 m) provided written informed consent to participate in a protocol that 

received approval from Sheffield Hallam University Ethics Committee and reciprocal approval 

from La Trobe University Human Ethics Committee. Participants were required to be running a 

minimum of twice per week, to be able to run 10 km, and to have experienced no running-related 

musculoskeletal injuries within the previous three months. A RunScribe™ (Scribe Labs, Moss 

Beach, CA, USA) IMU sampling at 500 Hz and programmed by RunScribe™ (RunScribe™ Blue Plus, 

37.53) with propriety algorithms was placed in a lace cradle on each participant’s left and right 

running shoes. These IMUs output processed stride time data at a stride-by-stride level. Stride 

times from RunScribe™ propriety algorithms have previously been shown to demonstrate 

excellent validity (Koldenhoven and Hertel, 2018) and reliability (Kozinc et al., 2022). A third 

RunScribe™ IMU (RunScribe™ Red) collecting and outputting raw acceleration and angular 

velocity data at 200 Hz was placed in a cradle secured onto the waistband over the sacrum.  

2.2 Protocol 
Participants completed an eight-minute warm-up at a self-selected running speed, which also 

served as familiarisation to treadmill running (Van Hooren et al., 2020) (TRM 700, Precor, 

Woodinville, WA, USA). Participants’ preferred running speeds were found using the method 

described by Jordan et al. (2006). Participants then completed an ordered set of six trials at 

speeds relative to a self-reported 5 km speed (Table 1). The length of each trial ensured 550 

strides were recorded, excluding a minimum of 15 seconds at the beginning and end. This met 

guidelines on minimum time series length to calculate both stride time DFA-α (Ravi et al., 2020) 

and sacral acceleration sample entropy (Yentes and Raffalt, 2021). The order of trials was fixed 

to minimise the impact of order effects on fatigue, which may influence running gait complexity 
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(Meardon et al., 2011; Mo and Chow, 2018). Participants were given at least 2 minutes and up to 

10 minutes recovery between trials (Jordan et al., 2007). Participants returned 7 days later (n = 1, 

8 days) to repeat the ordered set of trials.   

2.3 Data Processing 
Stride time data from the right foot and raw sacral accelerometer data were downloaded from the 

RunScribe™ dashboard and imported into MATLAB (R2023b, Mathworks Inc, MA, USA).  

2.3.1 Stride Times  
Trials were expected to contain a minimum of 550 consecutive valid strides. However, every trial 

had at least one instance of a stride being skipped or erroneous data being reported. Skipped and 

erroneous strides were uniformly distributed throughout trials.  Therefore, the first 512 strides in 

each trial for which valid data were available were concatenated to form a series of 512 stride 

times. This concatenation was expected to have a negligible effect on the calculation of DFA-α 

since stride times in healthy runners display statistical persistence (Wilson and Likens, 2023) and 

such series are insensitive to concatenation in the cases of data loss (Pavlova et al., 2019). Stride 

times were subsequently removed if they corresponded to step frequencies lower than 130 steps 

per minute (spm) or greater than 210 spm. These thresholds were set respectively 10 spm lower 

and higher than reported cadence thresholds for running (Hansen et al., 2018; Ueno et al., 2021) 

to account for the variability in stride times which may not be reflected in one-minute averages. 

A series of 512 stride times could be constructed for all 12 trials (6 trials * 2 days) for 19 

participants. Series could not be constructed due to injury between the two days (n = 2), 

incompletion of trials (n = 3), and data recording errors (n = 4).    

The mean and coefficient of variation (CV) of stride times were then calculated. Stride time DFA-

α was estimated using the evenly spaced averaged algorithm (Liddy and Haddad, 2018). 

Parameters were selected to minimise the root mean square error between theoretical and 

estimated α values for 100 time series of simulated (Kroese and Botev, 2013) fractional Brownian 

motion and fractional Gaussian noise of length N = 512. α values ranged from 0.3 to 1.4 in steps 
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of 0.1, excluding 1.0 (Delignières, 2015). All other parameter values included in this testing 

procedure were those presented by Phinyomark et al. (2020). Consequently, window sizes 

selected ranged from 4 to N/5 and detrending was performed using a first-order polynomial.  

2.3.2 Sacral Acceleration 
Control of motion may differ between the anterior-posterior, mediolateral and vertical directions 

due to differences in the availability of strategies between directions (Schütte et al., 2015; Winter, 

1995). However, the local coordinate system of the sacral IMU may not have aligned with the 

horizontal-vertical coordinate system of the treadmill. Therefore, the accelerometer readings 

were transformed to an East-North-Up treadmill-fixed coordinate system. A constant north-

pointing magnetometer vector was created to align north with the long axis of the treadmill belt 

and remove heading drift (Gui et al., 2015). A Kalman filter was applied using the ahrsfilter 

function in MATLAB to estimate IMU orientation by fusing accelerometer, gyroscope and 

synthetic magnetometer data, enabling transformation of accelerometer readings to a treadmill-

fixed coordinate system.   

Both sampling frequency and cadence directly influence sample entropy since they determine 

the spatial distance between adjacent data points and the number of data points within each 

stride cycle, thus influencing the likelihood of similar vectors being repeated (Ahmadi et al., 2018; 

Raffalt et al., 2019). Thus, strides were defined by initial contact events that were found using a 

continuous wavelet transformation with a mother scale = 16 (McCamley et al., 2012). 30 strides 

(Leverick et al., 2014) of non-wavelet transformed data from the start of each trial were then 

extracted. These 30 strides were resampled to N = 3000 data points using a cubic spline 

interpolation to fix the average number of data points per stride. The sample entropy algorithm 

was then applied to individual components (mediolateral, anterior-posterior, vertical) and the 

resultant of these resampled time series. Parameters m and r were varied such that all 

combinations in the respective sets {2, 3, 4} and {0.10, 0.15, 0.20, 0.25, 0.30} were tested (Yentes 

and Raffalt, 2021).  
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2.4 Statistical Analysis 
Between-day reliability was quantified for each of the six conditions and overall using ICC 

estimates and their 95% confidence intervals (CIs) based on a single-measure, absolute-

agreement, 2-way mixed-effects model. ICC thresholds of < 0.50, 0.50 – 0.75, 0.75 – 0.90 and > 

0.90 were used to indicate poor, moderate, good and excellent relative reliability respectively (Koo 

and Li, 2016). The standard error of measurement (SEM) and absolute minimum detectable 

change were calculated using the method of Weir (2005) to, respectively, provide an index of 

absolute reliability and to quantify the minimum change between repeated measurements on an 

individual that could be considered real.  

3. Results 
Stride time mean, CV and DFA-α during each trial and day are displayed in Table 2. The running 

speed and cadence for each participant for each trial are in supplementary material A. Stride 

time mean displayed excellent relative reliability in all six trials (ICC ≥ 0.935), and overall (ICC = 

0.957). Stride time CV displayed varying relative reliability across trials (ICC: 0.441 to 0.783), 

although with absolute minimum detectable changes ≥ 0.371%. Stride time DFA-α displayed 

poor relative reliability for trials 2, 3 and 6 and overall (ICC ≤ 0.423) but moderate for trials 1, 4 

and 5 (ICC: 529 to 0.562), although with a wide range. Minimum detectable changes were 

greater than 0.208 across all trials for DFA-α.  

Mean sacral acceleration sample entropy values for each combination of the parameters m and 

r are shown in Figure 1. Vertical and resultant sacral accelerations displayed the greatest 

regularity for any fixed pairing of m and r. ICCs, SEMs and minimum detectable changes for 

sacral acceleration sample entropy are shown in Figure 2. Mediolateral and resultant 

accelerations displayed moderate to good relative reliability for all combinations of m and r 

(ICC: 0.638 to 0.779 and ICC: 0.641 to 0.798, respectively), whereas anterior-posterior and 

vertical accelerations displayed poor to moderate relative reliability for all combinations of m 

and r (ICC: 0.491 to 0.593 and ICC: 0.420 to 0.610, respectively). The highest overall relative 
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reliability was found for the combination m = 3 and r = 0.20 applied to the resultant acceleration 

signal (ICC = 0.798). This combination of parameters and signal also demonstrated moderate to 

good relative reliability across all trials (ICC: 0.648 to 0.898), although with relatively high 

minimum detectable changes (Table 3).  

Scatter plots showing the distribution of stride time mean, CV and DFA-α, and resultant sacral 

acceleration sample entropy for the parameters m = 3 and r = 0.20, across days 1 and 2, are 

shown in Figure 3. 

4. Discussion 
The purpose of this study was to assess the between-day reliability of variability measures in two 

high-order running gait variables measured using wearable devices. Stride time CV displayed 

moderate relative reliability (ICC: 0.672), although with relatively high minimum detectable 

changes. In contrast, stride time DFA-α displayed poor relative and absolute reliability (ICC: 

0.457; minimum detectable change: 0.250). Sample entropy when applied to mediolateral and 

resultant sacral accelerations displayed moderate to good relative reliability for all combinations 

of the parameters m and r. However, like stride time CV, it demonstrated poor absolute reliability 

in the context of between-condition differences observed in this study and changes previously 

reported within individuals when they transition from healthy to injured states (Gruber et al., 

2021). 

Stride time mean (day 1: 0.729 s; day 2: 0.732 s), CV (day 1: 1.25%; day 2: 1.21%) and DFA-α (day 

1: 0.747; day 2: 0.753) calculated within this study fell within ranges previously reported for 

treadmill running (Mann et al., 2015; Mo and Chow, 2019) and in overground running studies using 

IMUs (Brahms et al., 2022; Meardon et al., 2011). Stride time mean displayed excellent between-

session reliability across all trials (ICC point estimates: 0.935 to 0.968), whereas stride time CV 

displayed varying relative reliability across trials (ICC point estimates: 0.441 to 0.783), and with 

wide ranging CIs. Stride time CV ICC point estimates were similar to those reported by Godin et 
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al. (2024) (0.52 to 0.62), who also reported wide CIs, but they were lower than those reported by 

Mo and Chow (2019) and Fuller et al. (2018) who used smaller sample sizes (n = 7 and n = 10 

respectively).  

In contrast, stride time DFA-α displayed poor to moderate relative reliability across all trials and 

overall (ICC point estimates: 0.357 to 0.562; minimum detectable changes ≥ 0.208), albeit again 

with a wide range. Although these point estimates fell within the range reported by Mo and Chow 

(2019) (ICCs: 0.20 to 0.81), both Godin et al. (2024) (ICCs: 0.79 to 0.85; minimum detectable 

changes ≤ 0.18) and Fuller et al. (2018) (ICCs: 0.74 to 0.87) found excellent reliability in stride time 

DFA-α. Moreover, the present study found an minimum detectable change of 0.208 even in the 

trial that displayed the greatest between-day reliability. Whilst some day-by-day variation in DFA-

α would be expected given that the human body is continually self-organising under the presence 

of dynamic individual constraints (Davids et al., 2003), differences of the magnitude 0.11 to 0.17 

have previously been found to separate previously injured and non-injured groups (Meardon et 

al., 2011), fatigued and non-fatigued states within individuals (Brahms et al., 2022) and the 

periods before and after fatigue heaving training within individuals (Bellenger et al., 2019). With 

the DFA algorithm presented here applied to stride time data collected using a RunScribe™ IMU, 

it would be impossible to confidently interpret within participant changes in DFA-α of an 

equivalent magnitude as real. However, it is possible that between-day reliability may be different 

for alternative stride time measurement methodologies, such as optoelectronic devices (Godin 

et al., 2024), force sensitive resistors (Fuller et al., 2018) or motion capture (Mo and Chow, 2019), 

or for alternative DFA parameter choices (Godin et al., 2024; Fuller et al., 2018; Mo and Chow, 

2019), given that it is highly sensitive to parameter selection (Phinyomark et al., 2020).  

Sacral acceleration sample entropy values were in the range 0.168 to 0.819 across trials, with 

vertical and resultant accelerations displaying the greatest regularity. This may partially be 

explained by the constant force of gravity in the vertical direction (Schütte et al., 2015). For the 
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parameters m = 2 and r = 0.20, our sample entropy values (Figure 1) were typically greater than 

those reported in healthy, unfatigued runners by Schütte et al. (2015). However, Schütte et al. 

(2015) sampled at 400 Hz, and did not resample their data to fix the average number of data 

points per stride. Given the resampling procedure used here generated a series with temporal 

spacing equivalent to sampling rate of 137 Hz (100 points per stride / 0.730 mean stride time), 

and the decrease in sample entropy with sampling frequency (Raffalt et al., 2019), this difference 

is reasonable.  

To the best of our knowledge, these are the first results on the reliability of sacral acceleration 

sample entropy during running. ICC point estimates indicated poor to moderate (0.420 to 0.610) 

relative reliability of anterior-posterior and vertical acceleration signals for all combinations of 

the parameter m and r, and moderate to good (0.638 to 0.798) relative reliability of mediolateral 

and resultant sacral acceleration signals. Greater deficits in mediolateral control compared to 

other directions have been attributed to the fewer available degrees of freedom to control motion 

in this direction (Morrison et al., 2016), and the ICC results observed in this study would support 

the long-term monitoring of mediolateral sacral acceleration signals in running, particularly if 

changes in mediolateral sample entropy due to reduced degrees of freedom emerge earlier than 

in other directions. However, SEM and minimum detectable change values indicated the 

limitations of interpreting between-day changes in sample entropy as a change in human health. 

For the parameters m = 2 and r = 0.15 used by Gruber et al. (2021) in their proof-of-concept study 

on the relationship between sample entropy and running-related injury, we found an minimum 

detectable change of 0.143 for resultant sacral acceleration. This was over 46 times greater than 

the group average difference they reported in sample entropy between measurements at baseline 

and immediately prior to running-related injury. Moreover, our minimum detectable change 

values also scaled approximately linearly with sample entropy values as the parameters m and r 

varied. Thus, the reliability of sample entropy as presented here may be inadequate to interpret 
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changes in sample entropy as real independent of parameter selection, unless greater within 

participant changes are observed.  

This study had limitations that must be considered. First, DFA was performed with a single set of 

input parameters, although this was selected following a systematic process for a series of 

constant length (N = 512 strides). Since the implementation of DFA in running gait literature varies 

widely (Wilson and Likens, 2023), future studies should investigate the change in reliability for 

alternative parameter selections. Second, our study was limited to fixed speed indoor treadmill 

running so that the effects of changes in running speed and in environmental conditions, which 

may have reduced between-day reliability, were minimised. Further studies are needed to 

understand repeatability of variability measures in representative overground running trials. 

Third, stride time data were calculated using proprietary algorithms from RunScribe™ which may 

apply a level of smoothing that removes some variability. Alternative stride time measurement 

methodologies may yield different results. Finally, between-day differences likely reflected a 

combination of measurement error and natural day-to-day biological variation that could not be 

separated. This could be further investigated by use of gold standard laboratory measurement 

systems.  

 

5. Conclusion  
This study investigated the between-day reliability of variability measures in two high-order 

variables measured using IMUs. Sample entropy of sacrum acceleration signals displayed good 

relative reliability for mediolateral and resultant acceleration across a range of speed and 

gradient combinations, although with minimum detectable changes larger than between-day 

changes reported in previous studies. In contrast, stride time data from RunScribe™ IMUs 

programmed with proprietary algorithms yielded CV values displaying highly variable reliability 
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and poor reliability for DFA-α. Any between-day changes in variability measures of stride time or 

sacral acceleration collected using an IMU should thus be interpreted with caution.      
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Table 1: The six ordered conditions participants completed during each day. 5 km speeds were 
self-reported based on participants’ current level of fitness. 

Trial Order Trial Description 
1 Preferred running speed at 0% gradient 
2 75% 5 km speed at 0% gradient 
3 85% 5 km speed at 0% gradient 
4 95% 5 km speed at 0% gradient 
5 75% 5 km speed at -5% gradient 
6 75% 5 km speed at +5% gradient 
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Table 2: Between-day reliability of stride time mean, CV and DFA-α split by trial.   

 Trial  Condition Day 1 Mean (95% CI) Day 2 Mean (95% CI) ICC (95% CI) SEM MDC 
Stride 
time 
Mean (s) 

1 PRS at 0% gradient 0.736 (0.713, 0.759) 0.736 (0.713, 0.759) 0.935 (0.840, 0.975) 0.011 0.032 
2 75% 5 km speed at 0% gradient 0.739 (0.717, 0.762) 0.743 (0.717, 0.762) 0.939 (0.853, 0.976) 0.011 0.031 
3 85% 5 km speed at 0% gradient 0.724 (0.701, 0.748) 0.726 (0.701, 0.748) 0.961 (0.904, 0.985) 0.009 0.025 

 4 95% 5 km speed at 0% gradient 0.704 (0.680, 0.728) 0.709 (0.680, 0.728) 0.959 (0.896, 0.984) 0.010 0.027 
 5 75% 5 km speed at -5% gradient 0.750 (0.728, 0.773) 0.751 (0.728, 0.773) 0.966 (0.914, 0.987) 0.008 0.023 
 6 75% 5 km speed at +5% gradient 0.723 (0.701, 0.744) 0.726 (0.701, 0.744) 0.968 (0.919, 0.987) 0.008 0.022 
  Overall 0.729 (0.720, 0.738) 0.732 (0.723, 0.741) 0.957 (0.938, 0.970) 0.010 0.027 
Stride 
time  
CV (%) 

1 PRS at 0% gradient 1.325 (1.109, 1.540) 1.217 (1.109, 1.540) 0.675 (0.342, 0.860) 0.211 0.585 
2 75% 5 km speed at 0% gradient 1.249 (1.048, 1.449) 1.133 (1.048, 1.449) 0.441 (0.022, 0.735) 0.249 0.690 
3 85% 5 km speed at 0% gradient 1.202 (1.020, 1.385) 1.198 (1.020, 1.385) 0.753 (0.460, 0.897) 0.166 0.460 

 4 95% 5 km speed at 0% gradient 1.272 (1.093, 1.451) 1.284 (1.093, 1.451) 0.716 (0.394, 0.881) 0.193 0.535 
 5 75% 5 km speed at -5% gradient 1.246 (1.114, 1.378) 1.285 (1.114, 1.378) 0.743 (0.451, 0.892) 0.149 0.414 
 6 75% 5 km speed at +5% gradient 1.205 (1.048, 1.361) 1.169 (1.048, 1.361) 0.783 (0.525, 0.910) 0.134 0.371 
  Overall 1.250 (1.182, 1.318) 1.214 (1.161, 1.268) 0.672 (0.557, 0.761) 0.189 0.525 
Stride 
time 
DFA-α  

1 PRS at 0% gradient 0.703 (0.642, 0.764) 0.775 (0.642, 0.764) 0.562 (0.098, 0.814)  0.081 0.226 
2 75% 5 km speed at 0% gradient 0.751 (0.688, 0.815) 0.728 (0.688, 0.815) 0.357 (-0.109, 0.692) 0.103 0.287 
3 85% 5 km speed at 0% gradient 0.760 (0.702, 0.818) 0.754 (0.702, 0.818) 0.423 (-0.043, 0.733) 0.092 0.255 

 4 95% 5 km speed at 0% gradient 0.746 (0.678, 0.814) 0.744 (0.678, 0.814) 0.562 (0.145, 0.806)  0.100 0.276 
 5 75% 5 km speed at -5% gradient 0.741 (0.697, 0.785) 0.763 (0.697, 0.785) 0.529 (0.116, 0.787)  0.075 0.208 
 6 75% 5 km speed at +5% gradient 0.779 (0.729, 0.828) 0.752 (0.729, 0.828) 0.347 (-0.107, 0.684) 0.081 0.225 
  Overall 0.747 (0.724, 0.769) 0.753 (0.729, 0.776) 0.457 (0.299, 0.591)  0.090 0.250 

 

CV: coefficient of variation; DFA: detrended fluctuation analysis; PRS: preferred running speed; CI: confidence interval; ICC: intraclass correlation coefficient; SEM: 
standard error of measurement; MDC: minimum detectable change. 
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Table 3: Between-day reliability of resultant sacral acceleration sample entropy. Results are presented for the combination of the parameters m and r that yielded 
the highest ICC overall (m = 3, r = 0.20). 

 Trial  Condition Day 1 Mean (95% CI) Day 2 Mean (95% CI) ICC (95% CI) SEM MDC 
Sample 
entropy 

1 PRS at 0% gradient 0.265 (0.229, 0.302) 0.256 (0.229, 0.302) 0.856 (0.670, 0.942) 0.028 0.079 
2 75% 5 km speed at 0% gradient 0.270 (0.234, 0.306) 0.262 (0.234, 0.306) 0.745 (0.451, 0.893) 0.036 0.101 
3 85% 5 km speed at 0% gradient 0.283 (0.247, 0.319) 0.283 (0.247, 0.319) 0.898 (0.755, 0.960) 0.025 0.069 

 4 95% 5 km speed at 0% gradient 0.298 (0.257, 0.340) 0.299 (0.257, 0.340) 0.830 (0.610, 0.931) 0.037 0.101 
 5 75% 5 km speed at -5% gradient 0.264 (0.229, 0.299) 0.258 (0.229, 0.299) 0.757 (0.471, 0.899) 0.037 0.103 
 6 75% 5 km speed at +5% gradient 0.270 (0.243, 0.297) 0.281 (0.243, 0.297) 0.648 (0.293, 0.847) 0.039 0.109 
  Overall 0.275 (0.261, 0.289) 0.273 (0.258, 0.288) 0.798 (0.720, 0.856) 0.034 0.095 

 

PRS: preferred running speed; CI: confidence interval; ICC: intraclass correlation coefficient; SEM: standard error of measurement; MDC: minimum detectable 
change.  
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Figure 1: Mean sample entropy values for each combination of the tested parameters m and r during day 1 for sacral A) mediolateral acceleration, B) anterior-

posterior acceleration, C) vertical acceleration, D) resultant acceleration, and during day 2 for sacral E) mediolateral acceleration, F) anterior-posterior 

acceleration, G) vertical acceleration, H) resultant acceleration.  
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Figure 2: Between-day reliability of sacral acceleration signals. Top row: ICC estimates for each combination of the tested parameters m and r for sacral A) 

mediolateral acceleration, B) anterior-posterior acceleration, C) vertical acceleration, D) resultant acceleration. Middle row: SEM for each combination of the tested 

parameters m and r for sacral E) mediolateral acceleration, F) anterior-posterior acceleration, G) vertical acceleration, H) resultant acceleration. Bottom row: MDC 

for each combination of the tested parameters m and r for sacral I) mediolateral acceleration, J) anterior-posterior acceleration, K) vertical acceleration, L) resultant 

acceleration. 

ICC: intraclass correlation coefficient; SEM: standard error of measurement; MDC: minimum detectable change.  
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Figure 3: Distribution of A) stride time mean, B) stride time coefficient of variation (CV), C) stride time detrended fluctuation analysis exponent alpha (DFA-α), and D) 
resultant sacral acceleration sample entropy for the parameters m = 3 and r = 0.20, across days 1 and 2. Values fall on the solid black line if they are identical on 
days 1 and 2. 
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