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Article
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Abstract: Drosophila suzukii (Matsumura), also known as spotted wing drosophila (SWD),
is invasive, with a preference for infesting commercially viable soft berries, particularly
cherries. SWD infestations in sweet cherries are difficult to detect and remove in the
field, packing houses, and processing lines, causing significant economic losses and reduc-
ing yields significantly, necessitating early detection of insect infestation in fruits during
primary decaying stages. Few publications have addressed the use of non-destructive
techniques for the detection of insect infestation in cherries. Based on the advantages
and effectiveness of the spectrophotometric techniques, an attempt was made to use the
spectrophotometry to rapidly detect postharvest SWD infestations of intact sweet cherry
fruit, to employ it in sweet cherry fruit selection and grading processes. The main purpose
of this study was to apply spectrophotometry as a rapid and non-destructive method in
detecting and classifying healthy sweet cherry fruit versus that infested with SWD eggs. To
model the data fit/prediction, principal components regression and partial least squares
regression algorithms were considered. The external cross-validation set was initially set
to 20% of the overall available samples and subsequently increased to 50% in the final
selected optimal model. The identified procedure of management of regression algorithms
allowed the selection of a very performant and robust model using the partial least squares
regression algorithm: its false negative rate and false positive rate, after 500 Monte Carlo
runs, were 0.004% +/− 0.003 and 0.02% +/− 0.01, respectively, and, in addition, the 50% of
samples were used for the external cross-validation set.

Keywords: non-destructive methods; insect infestation; sweet cherry; spotted wing drosophila;
spectrophotometry; correlation model; Monte Carlo method

1. Introduction
The invasive polyphagous pest Drosophila suzukii (Matsumura) (Diptera: Drosophili-

dae), also known as spotted wing drosophila (SWD), spread from its native distribution
in eastern and southeastern Asia [1] and emerged as a critical invasive insect pest of wild
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and domesticated berries and stone fruits in the Americas and Europe in the late 2000s [2].
Human activities facilitated SWD colonization, particularly the movement and export
of infested fruits, climatic conditions similar to the pest native range [3], and the low
effectiveness of natural enemies [4].

Insect feeding damages occur without an apparent external symptom until fruits are
nearly fully mature. In most cases, the serrated ovipositor of female SWD allows it to lay
eggs in ripening, and ripe intact soft-skinned fruits, particularly strawberries, raspberries,
blueberries, and sweet cherries; in this regard, SWD has a wide range of hosts [5,6]. Several
authors have also indicated sweet cherry as a high-risk host for SWD because it bears fruit
when few alternative host fruits are available [7,8].

Once the fruit is infested, the internal larval feeding causes direct damage, making the
fruit unmarketable and unsuitable for consumption and processing industries. In addition,
oviposition exposes fruit to secondary infection by providing access to pathogens, including
fungi, yeasts, and bacteria [9,10]. Consequently, the infested fruits become soft and rot
rapidly after harvest, resulting in reduced yields and significant economic losses [11–13].

The insect damages mainly occur inside the fruits without any visual symptoms
during the larval stage. For this reason, it is difficult to detect and remove these fruits in
packing houses and processing lines; the low-quality fruits enter the storage and cause
damage to the surrounding healthy ones. Therefore, any method of early detection of the
infestation is welcomed as it can improve productivity [14,15].

Countries allocate considerable resources to limit the spread and control of transbound-
ary pests, also adapting plant health services and activities and cooperating regionally and
globally for prevention, early warning, and control. As zero-tolerance regulations make
the shipment unmarketable for just a few infested cherries [13], the early identification
of the infestation before the shipment is essential. However, most of the current monitor-
ing methods rely on visual inspection; these traditional sorting techniques are laborious,
time-consuming, subjective, and inadequate for detecting and removing cherry fruits with
hidden internal damages [16].

Consequently, non-destructive detection methods for insect infestation of agricultural
commodities have emerged, including spectroscopic methods [17,18]. Commercial spec-
trometers usually have variable ranges: visible/shortwave near-infrared (Vis/SWNIR),
near-infrared (NIR), or visible/near-infrared (Vis/NIR), using wavelengths between
350–1100 (Vis/SWNIR), 780–2500 nm (NIR), or 350–2500 nm (Vis/NIR), respectively.

Spectroscopy is widely accepted as a non-destructive technique for qualitative and
quantitative analyses in the agriculture industry, especially for the assessment of the quality
of fruits [19–25]. This technology is environmentally friendly, safe, and cost-effective. In
addition, as spectroscopic techniques normally require no sample preparation, they can
be used for on/in-line inspection [26,27] and have been investigated for non-destructive
detection of internal insect infestation in fruits like sour cherries, wild blueberries, jujube,
olive, and pomegranate [28]. Peshlov et al. tested three NIR instruments to classify fruit
fly larvae damage in wild blueberries, achieving an infestation detection rate between 58%
and 82% [29]. Xing et al. employed a genetic algorithm (GA) to select the most suitable
spectral bands for detecting internal insect infestation in sour cherries [30]. Moscetti et al.
addressed the problem of damage caused by insect feeding in chestnut trees, achieving
very low classification error rates, with 16.81% false negatives, 0.00% false positives, and
a total error of 8.41% [31]. Sudarjat et al. approached the problem of detecting insect
infestation in mango fruits achieving a total explained variance of 99% using only two
principal components [18]. Jamshidi et al. explored Vis/NIR spectroscopy to detect
pomegranate fruits with internal infestation caused by carob moth (Ectomyelois ceratoniae)
larvae, showing an overall classification rate of 90.6% [15]. Xing et al. used visible and
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near-infrared spectroscopy (550 to 950 nm) to identify internal insect infestation in cherries,
achieving an 85.0% classification accuracy [32]. Li et al. developed a Vis/NIR spectroscopy
system to analyze the location of Bactrocera dorsalis infestation in citrus at different stages
of infestation achieving 95.2%, 80.1%, and 100% accuracy for not infested, lightly infested,
and severely infested citrus, respectively [33]. More recently [34], Zheng et al. developed a
model to classify infestation in wild apple trees achieving a model specificity and accuracy
of 96.32% and 95.94%, respectively.

However, with regard to the use of spectroscopy for the detection of internal insect
infestation in fruits, the results depend on the type and stage of fruit ripening, type and age
of the insect, and level of fruit damage or insect infestation [28], as well as on the spectrum
acquisition conditions, such as the orientation of the light source [33].

In general, the spectrophotometric models are obtained by constructing a statistical
chemometric model able to extract information from the sample’s spectrum [23]. However,
as spectrophotometric data are influenced by many factors producing different effects,
it is difficult to assess the correlation between the spectra and the parameter of interest;
therefore, the correlation needs to be quantified, from the statistical point of view, assessing
the model prediction error on unknown samples [35] (i.e., samples that have not been used
in the building of the statistical model).

Some algorithms widely used for this aim are: principal components regression (PCR),
relying on the singular values decomposition factorization along the maximum variance
axes, proposed in 1901 by Karl Pearson [36], and partial least squares regression (PLS),
developed in 1975 by Herman Wold and Svante Wold [37,38]. PLS builds the model using
as new variables the decomposition in spectral scores and loading matrices.

To estimate the prediction error, the cross-validation (CV) technique is used [39–41]. In
general, the so-called k-fold CV allows the estimate of the prediction performance—assessed
by the coefficient of determination (R2P) on unknown samples—through the measure of the
coefficient of determination of CV (R2CV), being widely accepted as a statistical estimate of R2P.

However, the ability of the model to predict unknown samples should be assessed
through the external cross-validation set (EXTCV), directly measuring the R2P; but, the
external validation set is rarely used: it consists of taking apart a subset of the samples
(expressed as a percentage of the overall samples, generally 20–30%) and using it to verify
and measure the true prediction ability of the model on truly unknown samples.

Furthermore, some wavelengths negatively affect the model performance [42], imped-
ing the achievement of a suitable predictive error. To address this problem, the method of
the “coefficient of variation algorithm” (CVA) was developed. CVA allows for the iden-
tification of the interfering wavelengths bringing to spectrophotometric models of great
predictive performance [43–45]. The use of k-fold CV involves k estimates of the model
coefficients; CVA is related to the observation that the final model arises from the mean of
these k estimates of the coefficients. Therefore, because the standard deviation of the mean
for each coefficient measures its uncertainty, the coefficient with the greatest uncertainty
is likely related to a wavelength that is not as useful for the prediction model but instead
impairs the model’s prediction.

To further evaluate and quantify the predictive statistical performance of the model,
an additional step was considered in this work. The models’ robustness is further tested
using a Monte Carlo approach, randomizing the samples with which the algorithms are
built [46,47]. The Monte Carlo method involves the running of several simulations to obtain
a probabilistic estimate of an unknown parameter; modern computers have made this
method very popular as, nowadays, this type of calculation is feasible in an acceptable time
(from a few days to a few weeks, depending on the complexity of the problem).
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2. Problem Statement
Few publications have addressed the use of non-destructive techniques for the detec-

tion of insect infestation in cherries. Hansen et al. used X-ray CT imaging and film X-ray to
detect western cherry fruit fly larvae in cherries [48]. Moreover, Xing et al. identified the
internal insect infestation in tart cherry using visible and NIR spectroscopy [32]. However,
both used non-destructive techniques detecting only seriously infested fruits, with no
difference between healthy and slightly infested fruits.

Considering the advantages and effectiveness of the spectrophotometric techniques,
this work explored the development of a non-destructive spectrophotometric method for
the early identification of SWD eggs in intact sweet cherries for use in selection and grading
processes in packing houses.

3. Materials and Methods
The experiment was carried out using organic sweet cherries (c.v. Sweet Heart), har-

vested at the end of June from a commercial organic farm, “Tenute D’Onghia” located in
Taranto province, Southern Italy.

The harvested cherries were transported directly to the CIHEAM-Bari insectarium
(Valenzano, Puglia, Italy), where a simulation of natural infestation was performed. Fruits
were carefully checked under a stereoscope (Nikon SMZ 745T) to exclude damaged and
unhealthy cherries. The selected healthy cherries were divided into three identical batches.
The first batch was added to the rearing cage to allow D. suzukii adults to lay eggs on them.
After two days, corresponding to the ovipositional period determined by the life cycle
estimation [16], infested fruits were moved from the cage and checked for the number of
eggs per cherry under the stereoscope.

The infested cherry fruits batch, composed of 100 infested fruits, was divided into
four groups, composed of 25 fruits, according to the number of eggs by fruit:

• 1st group: from 1 to 5 eggs per cherry fruit;
• 2nd group: from 6 to 10 eggs per cherry fruit. Each subgroup with the same number

of eggs was composed of five fruits;
• 3rd group: from 11 to 30 eggs per cherry fruit. Each subgroup with the same number

of eggs was composed of five fruits;
• 4th group: more than 30 eggs per cherry fruit.

The second batch was composed of 100 healthy and non-infested cherries.
The Vis/SWNIR measurement on the fruits of the two batches (infested and healthy

fruits) was done on the same day, 48 h from the harvest, and all the fruits were maintained
in the same conditions at room temperature and RH.

Subsequently, all the fruits were stored in a cold room for 24 h (0 ◦C, 90–95% RH)
and their Vis/SWNIR spectrum was further collected on the next day. This permitted the
spectral variations due to temperature changes to be taken into account [49].

A VIS-NIR spectrophotometer (model AvaSpec-2048-UA, nominal 200–1100 nm,
2048 pixels InGaAs CCD detector, Avantes, The Netherlands) was used to collect the
spectra from the samples using an integrating sphere (IS) (model AvaSphere-80-REFL,
diameter 80 mm, nominal reflection range 250–2500 nm, sample port 15 mm, Avantes,
The Netherlands), to provide diffuse reflectance measurements, equipped with a 100 W
tungsten-halogen source light (model ASBN-100W-L, SP Spectral Products, Putnam, CT,
USA). On each fruit, the diffuse reflectance spectrum was measured, placing the fruit
below the sampling port of the IS; four spectra were collected, turning each fruit around
its symmetry axis by 90 degrees and subsequently averaging the four acquired spectra.
For the spectra collection, the dedicated software Avasoft Basic ver. 7.3 from Avantes was
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used. The data were analyzed using in-house scripts programmed using MATLAB software
(MATLAB R2024b, MathWorks, Natick, MA, USA).

To model the data fit/prediction, PCR and PLS algorithms were selected, being both
available from the “Statistics and Machine Learning Toolbox” of MATLAB software. Fur-
thermore, to speed up calculations, the “Parallel Computing Toolbox” of MATLAB was
used and the calculations were carried out on a Dell Precision T3610 computer (Intel Xeon,
12 cores, 3.7 GHz).

The chemometric parameter Y to be predicted was categorical, HEALTHY versus
INFECTED. To these two categories, the Y values of −1 and +1 were arbitrarily assigned
for healthy and infected fruit, respectively.

As the fitting model of the Y prediction is a continuous value, a threshold value of
0 has been considered to revert back to the two categories (HEALTHY versus INFECTED).
When the predicted Y value is greater than or equal to the threshold then an INFECTED
fruit is predicted; on the contrary, when the predicted Y value is less than the threshold,
then the fruit is predicted to be a HEALTHY one.

The EXTCV was set to 20% (the choice of samples was randomized) of the overall
available samples. The methods were validated by a 2-fold CV.

The statistical performance of the chemometric models was evaluated by the squared
coefficient of correlation (R2CR), and the squared coefficient of correlation of CV (R2CV),
using 50 Monte Carlo runs [23,45].

Additional parameters of prediction performance were taken into account: the ‘limit of
confident detection’ (LODP@95%) (i.e., 1.96 times the root mean square error of prediction),
the ‘range of confident prediction error percent’ (RANGEPERR%@95%) and the widespread
ratio of the standard deviation of calibration data to standard error of prediction data
(RPD), introduced by Williams and Norris [50], as extensively described in the literature
and previous works of the authors [22,43–45,51].

3.1. First Step

The identification of features (i.e., wavelengths) statistically explaining the sample
property has been successfully addressed by considering the regression coefficients coming
out from the model cross-validation to which the CVA method was applied. Once a
problematic wavelength is identified, this is eliminated from the calculation loop, and
another run is performed (each new run uses a new randomized set of calibration samples).
This loop continues until no more wavelengths are identified as problematic. After this
phase, a study was performed on the recorded RPD values, rewinding back to the RPD
maximum value and to the corresponding selected wavelengths subset. Finally, 50 Monte
Carlo runs were performed using the subset of selected wavelengths; in this manner, the
RPD was statistically assessed at its maximum measured value (both its mean and standard
deviation of the mean).

After the selection of the optimal wavelengths using the CVA method, the EXTCV was
used to verify the model performance of prediction. To assess this, the usual parameters
were used: the false positive rate (FPR) and the false negative rate (FNR).

FPR is the ratio between wrongly predicted samples as inoculated and overall healthy
samples in EXTCV.

FNR is the ratio between wrongly predicted samples as healthy and overall inoculated
samples in EXTCV.

While the FPR represents the fruits that could be discarded as inoculated despite being
healthy, the FNR is a very critical parameter representing a risk; indeed, FNR represents
the fruits that could arrive to consumers being, unfortunately, inoculated.

The two algorithms were coded as M = PCR or PLS.
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In addition, to improve the prediction capability of the models, some pre-treatments
of the spectra were considered:

(a) raw spectrum or standardized spectrum (i.e., by centering around the mean value and
dividing by the standard deviation), coded as OPTN = 0 or OPTN = 6, respectively;

(b) application of a 0th, 1st, or 2nd-degree derivative (coded as D = 0 (none), 1 (first
derivative), or 2 (second derivative)) (i.e., using the Savitzky–Golay algorithm [52]
with a width of 15 points and a polynomial order of two).

The identification and removal of outliers were not considered.
The final result was coded as M-D-OPTN, i.e., model name, derivative degree, and

specific pre-treatment considered.
This represented the first step (see inner Monte Carlo loop in Figure 1).
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3.2. Second Step

The second step consisted of repeating 10 times the first step (setting EXTCV to 20%),
performing 10 Monte Carlo estimations of the selection algorithms on randomized samples
(see outer Monte Carlo loop in Figure 1).

Therefore, for each M-D-OPTN model, the FPR and FNR parameters were assessed
from the statistical point of view (i.e., the mean and standard deviation of the mean are
evaluated). From these results, the optimal M-D-OPTN model was selected.

3.3. Third Step

The third step allowed evaluation of the robustness of the selected optimal model and
selection of the optimal subset of wavelengths that best predicted the required property.
Indeed, each of the 10 replicates, as performed in the second step, selected a different subset
of wavelengths.

3.4. The Final Model

The final model was built considering the most frequently selected wavelengths. To
this aim, a threshold number (S) was introduced; therefore, to each wavelength, the S value
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was assigned, measuring the number of replicates of the second step (from 1 to 10) in which
the specific wavelength was selected.

For example, S ≥ 5 implies the identification of all the wavelengths that the algorithm
selected in 5 to 10 of the considered 10 replicates; S ≥ 10 implies the identification of the
wavelengths that have been used in all 10 replicates.

The measure of the robustness of the selected optimal model was carried out by
varying S (from 1 to 10, selecting a decreasing number of wavelengths) and changing
EXTCV from 20% to 70% with increments of 5%.

The values of FNR and FPR were represented against EXTCV. An exponential fit
(y = a ∗ exp(b ∗ x)) was considered on these data and a threshold of 0.01% and 0.1% was used
to express a SCORE (with regard to FNR and FPR respectively) for each subset of wavelengths
(arising from the variation of S). A higher SCORE measured a better statistical performance.

For example, for each fixed S value, a subset of wavelengths was selected, so the
SCORE for FNR represents the EXTCV value at which the FNR reaches 0.01% (using the
exponential fit of the data), while the SCORE for FPR represents the EXTCV value at which
the FPR reaches 0.1% (using the exponential fit of the data).

In conclusion, while the second step identified the optimal model to use, the third step
identified the optimal subset of wavelengths to consider.

This allowed the final model coefficients and their statistical reliability to be deter-
mined, expressed through their percent coefficient of variation (CV%).

4. Results and Discussion
4.1. First and Second Step Results and Discussion

Figure 2 shows the results of the second step, consisting of repeating the first step
10 times on randomized samples and setting EXTCV to 20%, performing a Monte Carlo
estimation of the selection algorithms on randomized samples. The results are expressed as
FNR and FPR in percent.
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The red “+” represent the data outliers.

Figure 3 shows the bar plot of the mean values of the FNR and FPR of Figure 2 and their
standard deviation of the mean (bar). Furthermore, the PLS-0-0 model (i.e., raw spectra
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without any derivative) is statistically estimated to have an FNR of 0% in all 10 randomized
replicates. The red arrow in Figure 3 indicates the optimal model with regard to FNR (i.e.,
the consumer risk).
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Figure 4 shows a replicate of the PLS-0-0 model, belonging to the first step. It is to
be highlighted that the algorithm does not know the EXTCV; all the plots regarding the
EXTCV are only for informative purposes. The categorical nature of the model is shown by
the FPR and FNR values appearing in one of the plots in Figure 4.
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The first step allowed comparison of the performance of the different M-D-OPTN mod-
els under test. To this aim, Figure 5 shows, from the same replicate previously considered,
the boxplot of performances expressed as RANGEPER%@95%.
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Finally, the goodness of the overall underlying statistics must be assessed. Figure 6a
allows to evaluate this aspect. Indeed, Figure 6a shows, for the considered replicate, the
relationship between the RPD and R2CV for all the runs performed, all the considered
models (PCR, PLS), and all the grouped Monte Carlo evaluations (where the standard
deviation of the mean of each group is shown).
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for all considered models (PCR, PLS) and all grouped Monte Carlo runs. (b) Relationship be-
tween RANGEPERR%@95% and RPD. Correlation is hyperbolic; RPD is inversely correlated with
RANGEPERR%@95%.
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According to [53,54], the relation is 1/sqrt (1-R2CV); therefore, RPD and R2CV are two
transposable parameters, but RPD is more discriminant than R2CV [53]. To this aim, it is
normally accepted that a prediction model can be used in quality control when RPD ≥ 5.0
and to quantitatively measure the property of interest when RPD ≥ 8.1 [50,55]. However,
there is no definite accord among various authors as the RPD parameter does not allow
the model’s statistical reliability to be evaluated in terms of the statistically guaranteed
maximum measurement error on unknown samples, this last being the value needed by
the final user of the model to quantify its measuring reliability.

Indeed, because any statistical model is used to forecast the property of interest on
unknown samples, a prediction model must provide its error rate with a guaranteed
significance level. The statistical parameter used to assess the model error rate on unknown
samples is the RANGEPERR%@95%, allowing a clear interpretation of its meaning, being
related to LODP%@95% and to the statistical concept of confidence interval.

Figure 6b shows the relationship existing between RANGEPERR%@95% and RPD.
The correlation is hyperbolic; RPD is inversely correlated with RANGEPERR%@95%, i.e.,
their product is equal to a constant, and its value is 98.39 (+/−0.16).

The constant depends on the product under analysis. For example, from pre-
vious works, for kaki fruit, the mean value of the constant correlating RPD and
RANGEPERR%@95% was equal to 36.39 (±3.70) [43], while for olive pomace the mean
value of the constant was 45.60 (±1.78) [44]. With regard to donkey milk [45], the mean
value of the constant was 45.95 (±0.52) for protein content, 70.35 (±1.32) for lactose content,
and 73.84 (±0.82) for dry-matter content.

4.2. Third Step Results and Discussion

As the third step permitted the evaluation of the robustness of the selected optimal
model and the identification of the optimal subset of the best wavelengths predicting the
required property, the results are related to the measure of the reliability of the selected
optimal model varying S (from 1 to 10, so selecting a decreasing number of wavelengths)
and changing EXTCV from 20% to 70% with increments of 5%.

Figure 7 shows the FNR and FPR SCORE for the PLS-0-0 model. The optimal value
for S is 5, where the higher SCORE is reached for both FNR and FPR. The S value selects
the optimal wavelengths to be considered for the model, the subset being composed of
261 wavelengths.
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Figures 8 and 9 show the values of FNR and FPR, respectively, versus EXTCV for the
optimal S ≥ 5. An exponential fit (y = a ∗ exp(b ∗ x)) has been considered on these data
and the threshold of 0.01% and 0.1% have been used to express a SCORE (with regard to
FNR and FPR respectively) for each subset of wavelengths. A higher SCORE measures a
better statistical performance. The SCORE for FNR represents the EXTCV value at which
the FNR reaches 0.01% (using the exponential fit of the data), while the SCORE for FPR
represents the EXTCV value at which the FPR reaches 0.1%.
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Figure 9. FPR values versus EXTCV for optimal S ≥ 5. An exponential fit (y = a ∗ exp(b ∗ x)) has
been considered on these data and a threshold of 0.01% has been used to express a SCORE. SCORE
for FPR represents EXTCV value at which FPR reaches 0.1%.

4.3. The Final Model Results and Discussion

Finally, while the second step allowed the identification of the optimal model to be used,
the third step allowed the identification of the optimal subset of wavelengths to be considered.

The model coefficients (BETA or the wavelength multipliers) arise from the third step;
in our case, S ≥ 5 is considered. The model calculation has calculated 11 estimates (the
11 values assigned to EXTCV from 20% to 70%) of each BETA coefficient. Therefore, the
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model BETA coefficients are the mean of these values; in addition, the CV% is calculated to
show the uncertainty of these BETA values.

Figure 10 shows the BETA coefficients value (262) and their uncertainty expressed as
CV%. The average value of CV% is acceptable. However, two wavelengths have a CV%
value higher than the others; this can be a symptom that the corresponding wavelength
should be neglected because the value of the coefficient is near zero.
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Figure 10. BETA coefficients of model arising from the third step and their uncertainty (in red). The
dotted blue line represents the mean of CV%.

Because of this, the wavelengths with a CV% value greater than 15% have been further
removed and the subsequent wavelengths subset was consequently obtained by purging
the problematic wavelengths. Thus, the subset was reduced to 247 wavelengths.

Figure 11 shows the BETA coefficients value (247) and their uncertainty expressed as
CV% for the final model. The data in Figure 11 have been obtained after 500 Monte Carlo
runs assessing the FNR (0.004% +/− 0.003) and FPR (0.02% +/− 0.01) using an EXTCV of
50% of the overall randomized samples. The CV% of all the coefficients is less than 10%,
showing a low uncertainty of the BETA coefficients over the overall of the Monte Carlo
runs (the mean CV% is 3.1%).
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Furthermore, in Figure 11, it can be visually observed that two wavelengths (1132 and
1223 nm) have a greater negative BETA coefficient. This could be related to their capacity
to identify the HEALTHY cherries (HEALTHY cherries are identified by a negative Y
prediction value); however, this could not be statistically demonstrated because the model
considering only these two wavelengths and the constant term did not have acceptable
FNR and FPR (49.8% and 44.8% respectively).

Finally, Figure 12 shows where the selected wavelengths are, as well as showing the
average normalized spectrum of all HEALTHY and INFECTED cherries.
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There is an extended gap of not selected wavelengths between 600 and 700 nm. This
corresponds to the orange-to-dark-red color range. Therefore, the orange-to-dark-red color
range is uninformative with regard to the presence or absence of SWD eggs. Moreover,
Figure 12 shows that the information concerning the SWD eggs identification is related to
the 170–600 nm range (UV-orange) and 700–1300 nm range (shortwave near-infrared).

5. Conclusions
Due to the advantages and effectiveness of the spectrophotometric techniques, the

use of the Vis/SWNIR spectral range was evaluated by developing a spectrophotometric
method to rapidly detect postharvest SWD infestations of intact sweet cherry.

To model the data fit/prediction, PCR and PLS algorithms were selected.
The EXTCV was initially set to 20% of the overall available samples, then increased to

50% in the final selected optimal model.
The building of the final optimal model consisted of a three-step procedure. Each step

was statistically evaluated using the Monte Carlo technique. This technique was extensively
used in this work to statistically assess all the parameters and coefficients.

The identification of wavelengths best explaining the property of the samples was
successfully addressed by considering the regression coefficients coming out from the
model cross-validation, then applying the CVA method.

In conclusion, the following points can be highlighted.

(1) The CVA method demonstrated its usefulness in selecting the best-explaining
wavelengths.

(2) The selection of the optimal M-D-OPTN model has been performed on randomized
repetitions using the Monte Carlo technique.
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(3) The procedure in three steps, adopted to manage the regression algorithms, allowed
the selection of a very reliable prediction model; its FNR and FPR, after 500 Monte
Carlo runs, were 0.004% +/− 0.003 and 0.02% +/− 0.01, respectively.

(4) A total of 50% of the samples have been used as EXTCV, and therefore the prediction
model is highly performant; indeed, with regard to the FNR, the model wrongly
identified only 4 cherries out of 100,000 as not infected (being however infected).

(5) The final model is robust from the point of view of the temperature variations of the
samples; indeed, the model was built taking into account the spectra variations due
to temperature changes with 50% of the samples at different temperatures.

The practical application of this study is related to the early on-line detection of
postharvest SWD infestations of intact sweet cherry fruit, to be employed on processing
lines in packing houses. To this end, because the use of the integrating sphere is difficult to
apply on the processing lines, the same management procedure of the spectrophotometric
models will be evaluated using a less expensive hyperspectral camera with a reduced
discrete set of wavelengths.
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