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Abstract: RaceRunning is a sport for disabled people and successful performance depends on reduc-
ing the amount of time spent travelling a specific distance. Performance analysis in RaceRunning
athletes is based on traditional methods such as recording race time, distances travelled and fre-
quency (sets and reps) that are not sufficient for monitoring training loads. The aims of this study
were to monitor training loads in typical training sessions and evaluate technical adaptations in
RaceRunning performance by acquiring sensor metrics. Five elite and competitive RaceRunning
athletes (18.2 ± 2.3 yrs) at RR2 and RR3 levels were monitored for 8 weeks, performing in their usual
training sessions while wearing unobtrusive motion sensors. The motion sensors were attached to the
waist and lower leg in all training sessions, each lasting between 80 and 90 min. Performance metrics
data collected from the motion sensors included player loads, race loads, work/rest ratio and impact
shock directions, along with training factors (duration, frequency, distance, race time and rest time).
Results showed that weekly training loads (player and race loads) followed acceptable threshold
levels, according to assessment criteria (smallest worthwhile change, acute/chronic work ratio). The
relationship between race velocity (performance index) and race load was non-linear and statistically
significant, which led to different performance efficiency groups. Wearable motion sensor metrics
revealed small to moderate technical adaptations following repeated sprint attempts in temporal
running performance, variability and consistency. In conclusion, using a wearable-based system is an
effective feedback tool to monitor training quality, revealing important insights into adaptations to
training volumes in disabled athletes.

Keywords: RaceRunning; adaptations; training loads; wearable-motion sensors; performance efficiency;
feedback

1. Introduction

The number of disabled people who participate in sports is growing because of the
noted positive impact of sports participation on wellbeing, health-related fitness com-
ponents and motivation [1]. RaceRunning is a para sport: an adapted form of running
for disabled people requiring use of a three-wheeled bike during locomotion. Due to its
ergonomic design, it provides an opportunity for disabled people to move, despite severe
limb impairments [2]. RaceRunning is a competitive track event for people with severe
coordination impairments [3] and was registered as a para sport in 2017, initially for people
with brain injuries, later including cerebral palsy (CP) patients [4]. Due to the inclusive
nature of this sport for different groups of disabled individuals, it can provide valuable
opportunities for increasing the participation of disabled people in organised physical
activity for their health and wellbeing and also for competitive purposes.

Applications of technology in modern sports have become more common, due to their
impact on performance. Nowadays, many team and individual sports benefit from aug-
mented informational feedback that is provided by technologies to enhance performance,
monitor training volumes, prevent injuries and evaluate the effectiveness of practice on
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skills and physical fitness [5]. For some time, performance analysis in sport, using technolo-
gies such as video analysis systems and wearable sensors, has been an important element
of the coaching process [6]. The significant roles of the support technology have been
appreciated within the cycle of competition, reflection, decision-making and performance
preparation [7] by coaching and sport scientists.

The role of technology in practice and competition for people with disabilities is
paramount, too. In a systematic review of 39 studies [8], the importance of wearable tech-
nologies for monitoring practice and activity in disabled athletes has been emphasised.
Results revealed that the two common technologies used for performance assessment were
motion sensors and portable electromyography (EMG) systems. The authors categorised
their applications into four distinct groups: athlete classification, injury prevention, perfor-
mance characterisation/training optimisation and equipment customisation. Whilst the
selected sports were mainly wheelchair sports (rugby, basketball, racing and curling), there
were three studies in running and one study in RaceRunning and in people with CP that
indicated a lack of available evidence in RaceRunning sport.

Using wearable systems for assessment of running, jogging and sprinting perfor-
mance in both practice and competition is common [9]. For example, wearable systems
provide valuable information on physical exertion and movement economy, evaluated
according to travelled distance, velocity, acceleration and deceleration profiles, applicable
for planning strength and conditioning programmes. The wearable motion sensors that
are used frequently in sports are inertial measurement units (IMUs) and global tracking
systems (GPS). They are integrated into different hardware components (accelerometer,
gyroscope, magnetometer) in a small case, using a conventional metric, player load (a
converted form of three-axis acceleration signals), to assess acute (daily time scale) and
chronic (aggregated weekly and monthly time scales) workloads. These sensors have been
used for monitoring training workload and prediction of overuse injuries in sports such as
rugby [10], football [11], volleyball [12] and swimming [13].

Despite the popularity of running in different sports, running-related injuries are
still prevalent [14] due to an imbalance between training and recovery [15]. One way to
estimate workloads and predict risk of overuse injuries in runners is by using wearable
motion sensors. Reports from different cohorts of runners have revealed that such systems
are feasible and informative for guiding training sessions, because of their handy size and
the meaningfulness of data analytics platforms to monitor performance over time [16–18].
For example, Cloosterman et al. [17] showed that GPS data were functional in calculating
weekly acute-to-chronic workload ratio (ACWR) and associations between training load
and onset of running-related knee injuries in recreational runners. ACWR is a useful metric
to calculate an athlete’s ability to tolerate sudden changes in load. It also is a valid predictor
of risk of overuse injuries in sports. For example, in rugby players, an ACWR value above
2.0 predicted the likelihood of injuries [19]. Neal et al. [16] reported 70% adherence and
92% successful data collection in recreational runners through using a wrist IMU/GPS
sensor in monitoring acute training loads for prediction of injury.

One concept relevant to sports injuries is training adaptation, which indicates the
body’s response to training stress [20]. To achieve optimal individual performance in
running, coaches usually manipulate some training factors related to external loads, such as
intensity, frequency, duration, distance and number of repetitions or training volume [21].
Adding other training metrics, such as external or internal workload metrics (e.g., cumula-
tive shock, rating of perceived exertion), to the conventional training methods of runners
could provide valuable information to individualise training adaptations and potentially
reduce the risk of overtraining and overuse injuries [22].

The number of studies that have used wearable motion sensors in monitoring training
loads in disabled athletes for performance enhancement or injury prevention is limited.
Fulton et al. [23] used IMU sensors in monitoring Paralympic swimmers to investigate
the role of kicking in freestyle swimming, by quantifying variables like kick count, rate
and amplitude. To investigate changes in training load according to a specific athlete’s
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activity, some studies have used motion sensors on the wheelchair frame to obtain data
on performance parameters such as mean linear acceleration, rotational velocity and
acceleration in wheelchair basketball [24] and wheelchair tennis [25] or for computation of
energy expenditure and intensity level of players in wheelchair rugby [26]. Furthermore,
heart rate sensors have been used to monitor training load in running [27,28] and wheelchair
basketball [24].

There is no evidence to suggest that the training workloads in RaceRunning athletes
need to be the same as those of able-bodied individuals, except through use of conventional
methods of recording indirect training variables (number of races undertaken, time, dis-
tance, etc.). This method also is not adequate to gain real-time data on the body’s responses
to training stress (volume). Hence, using wearable sensors to collect more information
about body impact shock (running loads) could help coaches and trainers to optimise
training programmes based on training feedback for enhancing performance and reducing
risks of overtraining and overuse injuries, specifically in disabled athletes who often have
structural and functional variations to contend with. Thus, the aims of this study were to
monitor training loads in typical training sessions, and evaluate technical adaptations in
RaceRunning performance from sensor metrics.

2. Methods
2.1. Participants

The study used a descriptive/prospective design in which the training status of the
participants was recorded without any intervention. Five (two male and three female) elite
and competitive athletes (age: 18.2 ± 2.3 years; body mass: 51.21 ± 5.4 kg; and height:
167.1 ± 6.5 cm) were non-randomly selected from a local RaceRunning club. Because of
the purpose of the study and its descriptive nature, all members of the club were recruited
non-randomly. The eligibility criteria were disabled athletes at levels of RR2 and RR3
RaceRunning levels (RR2: n = 2 and RR3: n = 3), according to CP International Sports and
Recreation Association classifications. Athletes in the RR2 class have spasticity, athetosis,
ataxia dystonia, or muscle weakness, which limit the effective pushing movements of
the lower extremities. Athletes in the RR3 class have mild to moderate involvement in
one or both upper extremities, fair to good trunk control, and moderate involvement of
the lower extremities. Other eligibility criteria were long-term neurological conditions,
including spastic cerebral palsy (n = 4) and acquired brain injuries (n = 1), freedom from
any musculoskeletal injury during data collection and participation in competitions (mean
experience: 3.0 ± 0.7 years).

Their level of ambulation was assessed using the Functional Mobility Scale [29], in
which they were assessed on their perceived ability to walk different distances (5 m, 50 m,
500 m) independently (rate = 6) to using a wheelchair (rate = 1). The participants rated
their ability at 6 in the 5 m distance and at 1 in the 500 m distance. Participants completed a
consent form in the presence of their carers. The study was approved by an institutional
University research ethics committee and conducted according to the ethical guidelines of
the Helsinki Declaration of 1964.

2.2. Materials

The main components of the performance analysis system in this study were 9-axis
(3-axis Accelerometer, 3-axis Gyroscope, 3-axis Magnometer) and low-mass (<3 g) wearable
motion sensors (MetaMotion R, MBIENT LAB Co., San Jose, CA, USA). The sensors were
equipped with Bosch Sensortec (Stuttgart, Germany), which combines measurements of
the accelerometer, gyroscope and magnetometer to provide a robust calculation of the
orientation vector (3-axis Euler angle).

The 2 motion sensors were used throughout the performance analysis period for
capturing training loads on different body parts. A waist sensor was attached to the
low-back area (L2–L3) for measuring whole body training load, and a leg sensor was
attached to the medial-distal part of the right tibia for measuring lower-limb impact shock
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as well as recognising running phases (stance, flight and stride). For detecting running
phases, the gyroscope and accelerometer of the tibia sensor were synchronised. The tibia
sensor has previously been validated for use in different activities [30]. The sensors were
secured by double-sided tape and Velcro adjustable straps (Presco, Swindon, UK). Motion
sensor orientation was calibrated by the sensor–body alignment. The tibia sensor was
placed so that the X axis was aligned with the shank length in the standing position (X:
superior–inferior; Y: anterior–posterior; Z: mediolateral). The waist sensor alignment was
90 degrees rotation relative to the tibia sensor (X: mediolateral; Y: superior–inferior; Z:
anterior–posterior). The sensor’s sample rate was set at a frequency of 400 Hz.

The motion sensors were programmed by a free mobile application (MetaBase, MBI-
ENT LAB, Co., San Jose, CA, USA). MetaBase is a user-friendly application that runs on
both iOS and Android platforms. This application can synchronise sensors for simultane-
ous data capturing, saving and exporting. In addition, it was possible to customise data
collection in terms of signal type (acceleration, gyroscope, etc.), speed (25 Hz to 800 Hz)
and transmission mode (streaming, logging). For this study, all sessions were recorded
through the logging mode, and raw data were exported as a CSV file for further analysis.

A Polar Heart Rate sensor (Polar Sense armband and chest strap) was used to monitor
internal load during the training session. The Polar armband is an optical sensor that was
wrapped around the right upper arm and connected via Bluetooth to the Polar mobile
application (Polar Flow App, version 6.24.0) for recording the heart rate per athlete.

2.3. Procedure

The data collection protocol was followed according to Figure 1. The principal inves-
tigator (MS) was a performance analyst in the RaceRunning club who worked with the
participants and the coaching team to discuss the protocol. Some stages of the protocol,
such as data collection, feedback provision and training monitoring (see Figure 1), required
effective communication with the coach and athletes to enhance the viability and feasibility
of the wearable-based system in the field. Data collection took place at an indoor athletics
track where the participants trained for one day per week. Participants wore standard
running shoes and clothing, and everyone had to use a RaceRunner bike (Petra Cross
Runner, Quest 88 Ltd., Shifnal, UK) which was adjustable in terms of body dimensions. The
coach supervised the training session, which consisted of a routine programme including
warming up with stretching, low-velocity running and a main part that was planned based
on the seasonal training volume in terms of the number of runs, distance and intensity.
Sprint running occurred on a straight line track, ranging between 20 m and 100 m in
distance. Usually, the sprint running (activity) period was followed by a rest period of
7–8 min for a full recovery. The rest periods were dynamic and included slow walking and
active stretching.

The standard procedure for monitoring training volumes was the pen-paper method
(using a training log notebook) in which the coach wrote the number of runs, their distances
and the race time for each participant. The wearable-based performance analysis system
was added to the traditional methods in this study, providing an objective assessment tool
in sprint performance for assessing training loads and race intensity, and as a monitoring
system to individualise optimal loads and prevent any risk of overtraining. The motion sen-
sors were attached to the participant’s body before the start of the main training component
and were removed after the cooling down period. In addition, the principal investigator
recorded the start and the end of the training session to match it with the sensor timestamp
(year/month/date/time). Each session lasted between 80 and 90 min, and the length of
this study was 2 months.

The coaches and athletes were regularly provided group and individual delayed feed-
back (1 week) on the quality of training sessions, based on the defined training metrics/key
performance indicators (KPIs) in RaceRunning (see the next section). The type of feedback
was mainly provided as visual feedback in Excel charts. Over time, session-by-session
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variations and fluctuations in KPIs were provided in PowerPoint slides to facilitate strategic
decision-making in the training plan.
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Figure 1. Diagram of data management procedure in using the wearable system for monitoring
RaceRunning performance. The main aims (bold) and tasks (italic) from session data collection to
feedback provision are presented.

2.4. Data Analysis

The wearable motion sensors provided different metrics in the raw data. However,
KPIs were individualised and selected because they directly related to each athlete’s
physical performance, reflecting the required workload, being indicative of body condition.
Individualised KPIs were divided into 2 main groups: KPIs for training load monitoring
and KPIs for technical adaptations.

Training load KPIs: Training loads were further divided into internal loads (HR) and
external loads (travelled distance, player loads and race loads). Values of HR were captured
directly from the Polar armband as beats/min and reported as maximum, minimum and
average HR per session. External loads were mainly extracted from the acceleration of the
waist sensor (XYZ) for the whole training session (player load) or sprint race (race load).
The race load was different from the performer load in terms of excluding the rest periods.
The loads were presented as total load or load per minute/seconds.

The extracted load from the 3-axis acceleration was defined by the method in sports
performance in which the resultant acceleration was scaled by 100 [31]:

Player load =
√
(ax1 − ax − 1) + (ay1 − ay − 1) + (az1 − az − 1)/100

ax ay az is acceleration in 3 axes.
Race time was recorded with a digital stopwatch by the same person every time and

presented as seconds/milliseconds. Sprint speed was calculated by dividing distance run
by race time for each participant.

To assess the quality of training and avoid overtraining, weekly changes in the race
load and training load were evaluated by the Smallest Worthwhile Change (SWC) and
ACWR methods.

The SWC was calculated as follows:

(1) SWC = 0.3 × SDweekly change

(2) Meanweekly change

(3) Upper and lower limits = Meanweekly change ± SWC

The ACWR method was based on the ratio of session load for each performer divided
by the average load (2-month average).

The above equations were used for the group data. If the individual weekly change
was inside the group’s upper and lower limits, then it was defined as in the normal zone.
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Technical adaptation KPIs: The technical body adaptations were calculated based on
the changes in different aspects of the running cycle (stance, flight, foot placement) as
the training session progressed and the impact shock directions (forward, sideways and
upward) generally. The gyroscope of the leg sensor was used to assess the running cycle
through a method used in previous studies [2,30]. In this method, the initial contact
and toe-off points were detected when the angular velocity of the tibia (in degrees per
second) reached its minimum value on the x-axis. Thus, stride time was determined by
the time from the first initial contact moment to the next initial contact moment. Stance
time was determined from the initial contact to the toe-off moments, and flight time was
determined from the toe-off to the initial contact moments. This process was completed by
using a custom-written MATLAB 9.2 program (MathWorks, Inc., Natick, MA, USA). The
temporal pattern of the running cycle was assessed by using the average (mean), variability
(coefficient of variation) and consistency/regularity (permutation entropy) values. The
permutation entropy (PE) is a mathematical method for measuring the complexity of a time
series [32]. In this study, we used PE for assessing the consistency of stride time in 100-m
races through order equal to 3 (three strides in a row). If the 3-number units have the same
order (e.g., [1–3]) each time, we assume that the time series has high predictability and low
complexity (closer to PE = 0).

Different descriptive and inferential statistics were used to address the aims of this
study. The main descriptive statistical methods calculated values of central tendency and
variability, percentage and ratio using scatter diagrams. To monitor training loads in terms
of weekly changes and their impact on sprint performance, a nonlinear regression test was
used. Technical adaptations in running performance and impact load directions, due to
training status, were tested with Wilcoxon-ranked order and Friedman tests, respectively.
All methods were tested at a 95% confidence interval (two-tailed). We also calculated
Cohen’s d effect size (ES) as an index of sensitivity of wearable sensors to detect the
magnitude of the changes. The d values equal to 0.2, 0.5 and greater than 0.8 were classified
as small, medium and large effects, respectively.

3. Results
3.1. Training Load Monitoring

Presenting race load as an additional performance metric, along with race time (sprint
performance), was informative to understand the relationship between the amount of
workload and optimal individual performance. In other words, visualising the athlete’s
body responses (HR) as internal load, relative to external load and sprint performance,
together was useful informational feedback to adjust the activity/rest periods appropriately
(see Figure 2).

The weekly training load followed the acceptable threshold limits in all athletes,
regardless of their disability levels (see Figure 3). The average change in weekly race
load in some athletes (disability class 2) increased by 9.58%, whereas in disability class
3, the race load decreased by −1.13%. The discrepancy among the athletes’ race loads
indicates the intra-individual variability in their responses to the same race distance. The
ACWR displayed fluctuations on a weekly basis (0.52–0.79). The average group ACWR
was 0.69 (±0.16).

The relationship between race load and sprint performance was statistically significant
and non-linear (r = 0.61, R2 = 37%, p < 0.05), which indicates that the best sprint velocity
was achieved in the race loads between 8 and 10 g. This association established a model to
classify the performers. The long-term monitoring of sprint load and performance showed
that the athletes differed in performance efficiency. In other words, the load–performance
relationship emerged in four distinct groups, listed as economic, good, acceptable and poor
performers (see Figure 4). These categories (quadrants) mainly emerged from the median
scores of the group performance (all individual values) in different sessions based on race
load (X) and running speed (Y) and neighbour points to create a cluster. Thus, athletes
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might move from one category (performance quality) to another one due to fluctuations in
race load and race speed (see Figure 3).
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Figure 2. Examples of session training load monitoring procedures. Each athlete (A1,A2) ran multiple
times as part of the training plan with enough rest periods. The main KPIs that were extracted in
each session were related to training loads (external and internal) and sprint performance (time). We
presented feedback based on the session performance individually and focused on the related KPIs.
The performer load represents external load, whereas HR (beats/min) represents the internal load.

3.2. Technical Adaptations

The wearable sensors were able to assess the temporal pattern of the running cycle
during training sessions (see Figure 5). The majority of athletes spent more time in the
stance phase when the training session progressed from the first race (normal condition) to
the last race (fatigue condition), which was accompanied by increased temporal variability
in the stance phase. The flight phase and stride times and variability were unchanged
or decreased as the training session progressed. The stride time value was slightly less
consistent when the training session progressed. However, the results of the Wilcoxon test
did not show any statistically significant differences in running performance, variability
and consistency between the two conditions (p > 0.05). The magnitudes of ES for the
average time, temporal variability and temporal consistency were medium (d = 0.58),
medium (d = 0.66) and small (d = 0.22), respectively.
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Figure 3. Monitoring weekly changes in training loads in one athlete (A). The descriptive changes in
training load (A) were accompanied by two other criteria for checking the acceptable thresholds of
training loads: SWC and ACWR. The results of AWC in different disability groups (B) and ACWR
(mean ± SD) in different sessions (C) are presented in this Figure.

Results of the Friedman test showed that the direction of external loads was signif-
icantly different (χ2 = 8.40, p < 0.05) and the majority of external load was transferred
vertically (41%). The magnitude of ES was large (d = 2.33). The trends were similar in
different training sessions, except in session 2, where the forward load was slightly higher
than the sideways load (see Figure 6).
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Figure 4. There was a non-linear relationship between race load and sprint performance in RaceRun-
ners (A). This relationship was established as a criterion (significant association) to evaluate individual
performance and for creating a classification system to evaluate training load (X), relative to sprint
performance (Y). The vertical and horizontal lines are group median scores (B). The colours represent
within class distributions.
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Figure 5. Running gait profile of RaceRunning athletes in different training conditions. Temporal
mean (A), variability (B) and consistency (C) of running cycle are different between normal and
fatigue conditions.

Applications of some performance indicators for training monitoring are summarised
in Table 1.

Table 1. A summary of performance indicators for monitoring training in RaceRunning.

Performance Indicator Applications to Training Monitoring

Training load Assessing the runner and overall training physical stress through resultant
XYZ acceleration

Race load Assessing training physical stress in running events (e.g., 60 m, 100 m dash, etc.)
through resultant XYZ acceleration
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Table 1. Cont.

Performance Indicator Applications to Training Monitoring

ACWR
Assessing the quality of an individual training physical stress
(overstressed/normal) relative to monthly average training stress for prevention of
overtraining and overuse injuries

Running temporal pattern
Assessing temporal features of running pattern and their changes in response
to training stimulus (internal adaptations) through variability and
regularity measures

Directions of external loads (impact shocks) Assessing the load distribution patterns and their variations during running
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4. Discussion

The aims of this study were to monitor training loads in typical training sessions and
evaluate technical adaptations in RaceRunning performance from sensor metrics. The
findings of the current study showed that feedback provided by a wearable-based system
was useful in obtaining more information about the quality of training, such as (i) the
individual’s adaptations to sprint performance as external loads increased, (ii) acceptability
of weekly load changes to prevent overuse injuries and overtraining, and (iii), technical
changes in running temporal parameters due to perceived fatigue at the end of training
sessions. The advantages of the wearable-based system as a performance analysis tool for
disabled athletes are discussed in the following sections.
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4.1. Wearable Sensors for Monitoring Training Loads

The first application of wearable sensors was for monitoring training loads. The
wearable motion sensors were feasible for in-field analysis of the performance of disabled
athletes. The performance metrics in this study were important to investigate the adverse
effects of training, especially in disabled runners who have limited capacity to adapt to
the excessive training volume. In other words, metrics such as total sessions load (player
loads), race load, activity/rest ratio and ACWR are conventional performance metrics in
sport to monitor body adaptations and compensations. Two criteria have been used in
monitoring and decision-making of the training loads: SWC and ACWR. Assessment of
both criteria confirmed that the athlete’s response to the training loads was acceptable
and the training did not cause any adverse effects. An important aspect of sport training
concerns the body’s adaptations to the training stimulus. Therefore, the rate of change in
training load may be more problematic than the absolute load experienced by an individual.
Hence, ACWR is a useful metric to calculate an athlete’s ability to tolerate sudden changes
in load [19]. This is the first study that used a wearable system in disabled athletes to
monitor the training loads. However, in able-bodied distance runners [17], it has been
reported that the normal range of ACWR was between 0.8 and 1.3, more than the normal
range of ACWR reported in this study (0.52–0.79). Those participants also showed more
weekly fluctuations in ACWR than in this study.

Determining whether weekly changes in training load are clinically and practically
meaningful is also important in sport training [33]. The SWC is a criterion that can distin-
guish between random variations (individual and situational differences) and systematic
variations (training adaptations). It should be used to understand the meaningfulness of
any observed changes instead of changes based on cut-off points [34]. Calculating the SWC
allows the coach to be confident that they can accurately determine a real change in body
responses to the training over time, rather than just a typical variation. Our results showed
that all athletes performed in the acceptable zone regardless of their disability status. Thus,
matching between task demands (training volume) and individual constraints has been
undertaken precisely in this study by using the wearable-based system, which was not
possible with traditional methods of training assessment.

Based on the non-linear relationship between race loads and sprint velocity, four
RaceRunning groups emerged: runners with economic, good, acceptable and poor per-
formances. This finding is important in determining the level of physical fitness in more
representative sport training. In other words, the majority of traditional sport analysis
methods are based on recording training factors such as the number of races, time and
distance rather than how the athletes tolerate the training stress [21]. This uni-dimensional
approach (performance-oriented) overlooks the person–task interaction (bi-dimensional
approach) in planning and might lead to overtraining and subsequent overuse injuries.
Including wearable sensor-based training metrics (e.g., race loads) in addition to the con-
ventional methods could help runners to individualise their training adaptations [22],
in adopting a reasonable approach for progression from poor performance to economic
performance. After inspection of individual performance (for example, ACWR in Figure 3C
and the classification system in Figure 4A), it was evident that the level of inter-individual
variability (indexed as SD bars and XY individual points) was a key factor in discriminating
athletes. The method of feedback provision to individualise the training condition through
a wearable-based system was more appropriate to meet the individual’s needs.

It seems that maintaining energy levels in successive sprint attempts in a training
session after adequate rest periods was a key performance variable that distinguished the
athletes of this study. As a result, it is not surprising that the performance–load association
was non-linear and that the economic sprint performance had a race load between 8 and
10 g. Other individual factors that could be mediators of this relationship are the roles
of power, technique and sprint-specific endurance in sprinting performance [35], as well
as differences in pacing strategy (acceleration, maximal velocity and deceleration phases)
between runners of this study [36]. These individual factors should be investigated in future
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studies to clarify the role of organismic (personal) constraints in the performance–training
load relationship.

4.2. Wearable Sensors for Identifying Technical Adaptations

The second application of wearable sensors in this study was for finding possible
modifications in the running gait cycle. The repeated sprints in a session showed that
the athletes performed differently as the training session progressed from early to later
attempts. The changes in temporal parameters had bigger impacts (ES) on cycle timing
and variability than consistency. The variability and consistency of running cycle time
have different meanings in biomechanical adaptations to training stress. Whilst the time
of stride and each stride phase (stance and flight) indicate the speed of action execution,
the other two metrics, variability and consistency, are related to motor control mechanisms
and can provide more information about running performance. For example, driving a
three-wheeled bike with existing disabilities requires significant postural and muscular
adjustments in this population, and that might cause performance fluctuations (variability)
in training sessions. We have to note that the participants of this study were competitive
athletes with sufficient training experience in this sport, but their technical performance
was still affected by training stress. This information could be used as a feedback tool to
assess physical conditioning (e.g., fatigue threshold) through a more functional approach.

The scope of previous studies in RaceRunning is limited only to assessment and
general fitness improvements [37,38], and there are no studies which shed insights on
the athletes’ biomechanical adaptive capacities. However, the temporal modifications in
sprint performance, due to training factors such as fatigue, are common in running. For
example, García-Pinillos et al. [39] showed that fatigue increased stance time by 4%, step
time variability by 5% and reduced flight time by 15% in sprint performance.

Another technical adaptation which was picked up in data from the wearable motion
sensors was related to variations in the impact shocks. The results showed that vertical
shock is stronger than shocks in other directions, and this trend was similar in different
training sessions. Adaptations to the ground impact shock in every stride are a natural
ability, but due to some technical differences such as foot placement, body sway and
coordination with the bike, the amount of shock transfer in the 3D body plane might
be variable. This finding showed that the postural control mechanisms work flexibly
to stabilise the body and propel it forward in fast running performance, an ability that
is developed by practice and experience. Other adaptive functions, such as an ability
to attenuate body impact shock, have also been reported in RaceRunning athletes in a
previous study [2].

Our study has practical implications for para sports generally, and RaceRunning
specifically. It is not possible to provide kinematic feedback in a typical training session
by using traditional methods, and usually, coaches only measure overall running time as
a feedback metric. We showed that using wearable motion sensors provided additional
information about the running gait cycle to monitor subtle changes in the temporal pattern-
ing of athletes due to individual (level of disability), environmental and task constraints
(training factors). The performance metrics defined in this study have functional benefits
in monitoring training loads and also gaining insights into the technical adaptations. One
example of application in routine practice by coaches may be considered by interacting
with the motion sensors dashboard that provides online and concurrent feedback on the
screen during or after a race. Use of these data may be useful for comparing the results of
external load and heart rate (maximum and average) with previous attempts (accumulated
scores) to assess the training intensity and volume.

As a limitation of this study, calculating the running phase by mathematical algorithms
in this study is not practical for in-field assessment, but advances in technologies and
machine learning methods can lead to innovative ways to assess running gait adaptations
during and after training in future. The other limitations of this study were relying on
a small (convenience) sample size and skill level of performers that might restrict the
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generalisability of this study in disabled RaceRunning athletes. Incorporating the rate of
perceived exertion (RPE) in the assessment system and associating with the heart rate and
player loads is another limitation of this study that can be investigated in future research.
Technically, wearing sensors during strenuous activities, such as sprint running, could be
subject to measurement error due to losing sensor–skin contact specifically with the waist
sensor. This issue might be negligible in individual sports such as running (where there
is no physical contact). Using it in other activities might affect the reliability of data in
prolonged sessions.

5. Conclusions

The findings of this study showed how using a wearable-based system could en-
hance the quantity and quality of augmented feedback over traditional methods of per-
formance analysis in monitoring training loads and identifying technical adaptations in
sprint performance in disabled athletes. The results suggest how coaches and performance
analysts can use metrics such as training loads, race loads, impact shock directions and
the load–performance quadrants as feedback tools to enhance running performance in
disabled athletes. It is highly recommended that future research design studies based on
the limitations of the current study to achieve better findings for practice changes, mainly
through accessing a bigger sample size and using a more systematic approach in applying
all performance criteria.

Author Contributions: Conceptualization, K.D.; Methodology, M.S.; Formal analysis, M.S.; Writing—
original draft, M.S.; Writing—review & editing, K.D.; Project administration, M.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki, and approved by the Ethics Committee of SHEFFIEDL HALLAM UNIVERSITY
(ER5529202; 28 November 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Te Velde, S.J.; Lankhorst, K.; Zwinkels, M.; Verschuren, O.; Takken, T.; de Groot, J.; HAYS Study Group. Associations of sport

participation with self-perception, exercise self-efficacy and quality of life among children and adolescents with a physical
disability or chronic disease-a cross-sectional study. Sports Med. Open 2018, 4, 38. [CrossRef] [PubMed]

2. Shafizadeh, M.; Theis, N.; Davids, K. Locomotor adaptations during RaceRunning in people with neurological motor disorders.
Adapt. Phys. Act. Q. 2019, 36, 325–338. [CrossRef] [PubMed]

3. Drysdale, P.; Gonzalez, X. World Para Athletics: RACERUNNING. Enhancing Athletes with High Support Needs Participation in
World Para Athletics. 2017. [Press Release]. Available online: http://kafd.koreanpc.kr/board/exec/down?board_idx=11&file_
idx=4591 (accessed on 20 January 2020).

4. van der Linden, M.L.; Corrigan, O.; Tennant, N.; Verheul, M.H.G. Cluster analysis of impairment measures to inform an evidence-
based classification structure in RaceRunning, a new World Para Athletics event for athletes with hypertonia, ataxia or athetosis.
J. Sports Sci. 2020, 39, 159–166. [CrossRef] [PubMed]

5. Carling, C.; Reilly, T.; Williams, M.A. Performance Assessment for Field Sports; Routledge: London, UK, 2009.
6. Franks, I.M.; Goodman, D.; Miller, G. Analysis of performance: Qualitative and quantitative 1983. Sports March.
7. O’Donoghue, P. An Introduction to Performance Analysis of Sport; Routledge: London, UK, 2014.
8. Rum, L.; Sten, O.; Vendrame, E.; Belluscio, V.; Camomilla, V.; Vannozzi, G.; Truppa, L.; Notarantonio, M.; Sciarra, T.; Lazich, A.;

et al. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. Sensors 2021, 21, 1858. [CrossRef]
9. Leser, R.; Baca, A.; Orgis, G. Local positioning systems in game sports. Sensors 2011, 11, 9778–9797. [CrossRef]
10. Hulin, B.T.; Gabbett, T.J.; Lawson, D.W.; Caputi, P.; Sampson, J.A. The acute:chronic workload ratio predicts injury: High chronic

workload may decrease injury risk in elite rugby league players. Br. J. Sports Med. 2016, 50, 231–236. [CrossRef]

https://doi.org/10.1186/s40798-018-0152-1
https://www.ncbi.nlm.nih.gov/pubmed/30112621
https://doi.org/10.1123/apaq.2018-0155
https://www.ncbi.nlm.nih.gov/pubmed/31113207
http://kafd.koreanpc.kr/board/exec/down?board_idx=11&file_idx=4591
http://kafd.koreanpc.kr/board/exec/down?board_idx=11&file_idx=4591
https://doi.org/10.1080/02640414.2020.1860360
https://www.ncbi.nlm.nih.gov/pubmed/33337948
https://doi.org/10.3390/s21051858
https://doi.org/10.3390/s111009778
https://doi.org/10.1136/bjsports-2015-094817


Sensors 2024, 24, 7923 15 of 16

11. Bowen, L.; Gross, A.S.; Gimpel, M.; Li, F.X. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in
elite youth football players. Br. J. Sports Med. 2017, 51, 452–459. [CrossRef]

12. Lin, H.S.; Wu, H.J.; Wu, C.C.; Chen, J.Y.; Chang, C.K. Quantifying internal and external training loads in collegiate male volleyball
players during a competitive season. BMC Sports Sci. Med. Rehabil. 2024, 16, 168. [CrossRef]

13. Mooney, R.; Corley, G.; Godfrey, A.; Quinlan, L.R.; ÓLaighin, G. Inertial sensor technology for elite swimming performance
analysis: A systematic review. Sensors 2016, 16, 18. [CrossRef]

14. van Poppel, D.; Scholten-Peeters, G.G.; van Middelkoop, M.; Verhagen, A.P. Prevalence, incidence and course of lower extremity
injuries in runners during a 12-month follow-up period. Scand. J. Med. Sci. Sports 2014, 24, 943–949. [CrossRef]

15. Bertelsen, M.L.; Hulme, A.; Petersen, J.; Brund, R.K.; Sørensen, H.; Finch, C.F.; Parner, E.T.; Nielsen, R.O. A framework for the
etiology of running-related injuries. Scand. J. Med. Sci. Sports 2017, 27, 1170–1180. [CrossRef]

16. Neal, B.S.; Bramah, C.; McCarthy-Ryan, M.F.; Moore, I.S.; Napier, C.; Paquette, M.R.; Gruber, A.H. Using wearable technology
data to explain recreational running injury: A prospective longitudinal feasibility study. Phys. Ther. Sport 2024, 65, 130–136.
[CrossRef] [PubMed]

17. Cloosterman, K.L.; Fokkema, T.; De Vos, R.J.; van Oeveren, B.; Bierma-Zeinstra, S.M.; van Middelkoop, M. Feasibility and usability
of GPS data in exploring associations between training load and running-related knee injuries in recreational runners. BMC
Sports Sci. Med. Rehabil. 2022, 14, 78. [CrossRef] [PubMed]

18. Nakaoka, G.; Barboza, S.D.; Verhagen, E.; van Mechelen, W.; Hespanhol, L. The Association Between the Acute:Chronic Workload
Ratio and Running-Related Injuries in Dutch Runners: A Prospective Cohort Study. Sports Med. 2021, 51, 2437–2447. [CrossRef]
[PubMed]

19. Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50,
273–280. [CrossRef]

20. Halson, S.L.; Jeukendrup, A.E. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med. 2004,
34, 967–981. [CrossRef]

21. Viru, A.; Viru, M. Nature of training effects. In Exercise and Sport Science; Garret, W., Kirkendall, D., Eds.; Lippincott Williams &
Williams: Philadelphia, PA, USA, 2000; pp. 67–95.

22. Napier, C.; BSc, M.R.; Menon, C.; Paquette, M.R. Session Rating of Perceived Exertion Combined With Training Volume for
Estimating Training Responses in Runners. J. Athl. Train. 2020, 55, 1285–1291. [CrossRef]

23. Fulton, S.K.; Pyne, D.; Burkett, B. Optimizing kick rate and amplitude for Paralympic swimmers via net force measures. J. Sports
Sci. 2011, 29, 381–387. [CrossRef]

24. Mason, B.S.; van der Slikke RM, A.; Hutchinson, M.J.; Berger MA, M.; Goosey-Tolfrey, V.L. The Effect of Small-Sided Game
Formats on Physical and Technical Performance in Wheelchair Basketball. Int. J. Sports Physiol. Perform. 2018, 13, 891–896.
[CrossRef]

25. Mason, B.S.; van der Slikke RM, A.; Hutchinson, M.J.; Goosey-Tolfrey, V.L. Division, result and score margin alter the physical
and technical performance of elite wheelchair tennis players. J. Sports Sci. 2020, 38, 937–944. [CrossRef] [PubMed]

26. Borel, B.; Lacroix, J.; Daviet, J.C.; Mandigout, S. Intensity level and on-court role of wheelchair rugby players during competition.
J. Sports Med. Phys. Fit. 2019, 59, 387–393. [CrossRef] [PubMed]

27. Runciman, P.; Tucker, R.; Ferreira, S.; Albertus-Kajee, Y.; Derman, W. Effects of Induced Volitional Fatigue on Sprint and Jump
Performance in Paralympic Athletes with Cerebral Palsy. Am. J. Phys. Med. Rehabil. 2016, 95, 277–290. [CrossRef]

28. Runciman, P.; Tucker, R.; Ferreira, S.; Albertus-Kajee, Y.; Derman, W. Paralympic athletes with cerebral palsy display altered
pacing strategies in distance-deceived shuttle running trials. Scand. J. Med. Sci. Sports 2016, 26, 1239–1248. [CrossRef]

29. Graham, H.K.; Harvey, A.; Rodda, J.; Nattrass, G.R.; Pirpiris, M. The Functional Mobility Scale (FMS). J. Paediatr. Orthop. 2004, 24,
514–520. [CrossRef]

30. McGrath, D.; Greene, B.R.; O’Donovan, K.J.; Caulfield, B. Gyroscope-based assessment of temporal gait parameters during
treadmill walking and running. Sports Eng. 2012, 15, 207–213. [CrossRef]

31. Boyd, L.; Ball, K.; Aughey, R.J. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football.
Int. J. Sports Physiol. Perform. 2011, 6, 311–321. [CrossRef]

32. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102.
[CrossRef]

33. Taylor, K. Fatigue monitoring in high performance sport: A survey of current trends. J. Aust. Strength Cond. 2012, 20, 12–23.
34. Twist, C.; Highton, J. Monitoring fatigue and recovery in rugby league players. Int. J. Sports Physiol. Perform. 2013, 8, 467–474.

[CrossRef]
35. Morin, J.B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running

performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [CrossRef] [PubMed]
36. Volkov, N.I.; Lapin, V.I. Analysis of the velocity curve in sprint running. Med. Sci. Sports 1979, 11, 332–337. [CrossRef] [PubMed]
37. von Walden, F.; Hjalmarsson, E.; Fernandez-Gonzalo, R.; Palmcrantz, A.; Kvist, O.; Pontén, E. Racerunning Training for 12 Weeks

Improves Physical Fitness and Promotes Skeletal Muscle Hypertrophy in Adolescents and Young Adults with Cerebral Palsy.
Med. Sci. Sports Exerc. 2020, 52, 325. [CrossRef]

https://doi.org/10.1136/bjsports-2015-095820
https://doi.org/10.1186/s13102-024-00958-7
https://doi.org/10.3390/s16010018
https://doi.org/10.1111/sms.12110
https://doi.org/10.1111/sms.12883
https://doi.org/10.1016/j.ptsp.2023.12.010
https://www.ncbi.nlm.nih.gov/pubmed/38181563
https://doi.org/10.1186/s13102-022-00472-8
https://www.ncbi.nlm.nih.gov/pubmed/35484612
https://doi.org/10.1007/s40279-021-01483-0
https://www.ncbi.nlm.nih.gov/pubmed/34052983
https://doi.org/10.1136/bjsports-2015-095788
https://doi.org/10.2165/00007256-200434140-00003
https://doi.org/10.4085/1062-6050-573-19
https://doi.org/10.1080/02640414.2010.536247
https://doi.org/10.1123/ijspp.2017-0500
https://doi.org/10.1080/02640414.2020.1737361
https://www.ncbi.nlm.nih.gov/pubmed/32138612
https://doi.org/10.23736/S0022-4707.18.08214-2
https://www.ncbi.nlm.nih.gov/pubmed/29845832
https://doi.org/10.1097/PHM.0000000000000372
https://doi.org/10.1111/sms.12575
https://doi.org/10.1097/01241398-200409000-00011
https://doi.org/10.1007/s12283-012-0093-8
https://doi.org/10.1123/ijspp.6.3.311
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1123/ijspp.8.5.467
https://doi.org/10.1007/s00421-012-2379-8
https://www.ncbi.nlm.nih.gov/pubmed/22422028
https://doi.org/10.1249/00005768-197901140-00004
https://www.ncbi.nlm.nih.gov/pubmed/530024
https://doi.org/10.1249/01.mss.0000677164.68818.72


Sensors 2024, 24, 7923 16 of 16

38. Hjalmarsson, E.; Fernandez-Gonzalo, R.; Pingel, J.; Santiago, L.; Palmcrantz, A.; Ponten, E.; von Walden, F. Skeletal muscle size
is an important factor for Racerunning performance in individuals with Cerebral Palsy. Med. Sci. Sports Exerc. 2020, 52, 475.
[CrossRef]

39. García-Pinillos, F.; Cartón-Llorente, A.; Jaén-Carrillo, D.; Delgado-Floody, P.; Carrasco-Alarcón, V.; Martínez, C.; Roche-Seruendo,
L.E. Does fatigue alter step characteristics and stiffness during running? Gait Posture 2020, 76, 259–263. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1249/01.mss.0000679104.97517.35
https://doi.org/10.1016/j.gaitpost.2019.12.018

	Introduction 
	Methods 
	Participants 
	Materials 
	Procedure 
	Data Analysis 

	Results 
	Training Load Monitoring 
	Technical Adaptations 

	Discussion 
	Wearable Sensors for Monitoring Training Loads 
	Wearable Sensors for Identifying Technical Adaptations 

	Conclusions 
	References

