
Systematic review and meta-analysis of Murray's law in the
coronary arterial circulation.

TAYLOR, Daniel J <http://orcid.org/0000-0003-1068-1236>, SAXTON, Harry 
<http://orcid.org/0000-0001-7433-6154>, HALLIDAY, Ian, NEWMAN, Tom, 
HOSE, DR, KASSAB, Ghassan S, GUNN, Julian P <http://orcid.org/0000-
0003-0028-3226> and MORRIS, Paul D <http://orcid.org/0000-0002-3965-
121X>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/34534/

This document is the author deposited or published version. 

Citation:

TAYLOR, Daniel J, SAXTON, Harry, HALLIDAY, Ian, NEWMAN, Tom, HOSE, DR, 
KASSAB, Ghassan S, GUNN, Julian P and MORRIS, Paul D (2024). Systematic 
review and meta-analysis of Murray's law in the coronary arterial circulation. 
American journal of physiology. Heart and circulatory physiology, 327 (1), H182-
H190. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


SYSTEMATIC REVIEW

Vascular Contributions to Human Disease

Systematic review and meta-analysis of Murray’s law in the coronary arterial
circulation
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Abstract

Murray’s law has been viewed as a fundamental law of physiology. Relating blood flow ( _Q) to vessel diameter (D) ( _Q·!·D3), it dictates
minimum lumen area (MLA) targets for coronary bifurcation percutaneous coronary intervention (PCI). The cubic exponent (3.0), how-
ever, has long been disputed, with alternative theoretical derivations, arguing this should be closer to 2.33 (7/3). The aim of this meta-
analysis was to quantify the optimum flow-diameter exponent in human and mammalian coronary arteries. We conducted a systematic
review and meta-analysis of all articles quantifying an optimum flow-diameter exponent for mammalian coronary arteries within the
Cochrane library, PubMed Medline, Scopus, and Embase databases on 20 March 2023. A random-effects meta-analysis was used to
determine a pooled flow-diameter exponent. Risk of bias was assessed with the National Institutes of Health (NIH) quality assessment
tool, funnel plots, and Egger regression. From a total of 4,772 articles, 18 were suitable for meta-analysis. Studies included data from
1,070 unique coronary trees, taken from 372 humans and 112 animals. The pooled flow diameter exponent across both epicardial and
transmural arteries was 2.39 (95% confidence interval: 2.24–2.54; I2 ¼ 99%). The pooled exponent of 2.39 showed very close agree-
ment with the theoretical exponent of 2.33 (7/3) reported by Kassab and colleagues. This exponent may provide a more accurate
description of coronary morphometric scaling in human and mammalian coronary arteries, as compared with Murray’s original law.
This has important implications for the assessment, diagnosis, and interventional treatment of coronary artery disease.

bifurcation; left main coronary artery; Murray’s law

INTRODUCTION

First described in 1926, Murray’s law (1) is a fundamental
principle of biology that relates the form and function of all
branched transport networks. Derived from the principal of
minimum work, it characterizes the equipoise between the
energy required to produce and maintain blood volume
against that required to overcome viscous friction. In its sim-
plest form, flow ( _Q) is proportional to the cube of vessel di-
ameter (D) ( _Q·!·D3). Assuming conservation of mass,
Murray’s law also characterizes the relationship between the
diameters of the parent vessel (PV) and daughter vessel (DV)
around bifurcations (DPV

3 ¼ DDV1
3 þ DDV2

3). Murray’s law,
therefore, has most biological relevance to the epicardial and
transmural coronary arteries, whose main purpose is the
transportation of blood. This contrasts with the perfusing

vessels of the distal tree, where rapid expansion of cross-sec-
tional area (i.e., the flow-diameter scaling exponent) facili-
tates deceleration of blood and effective substrate exchange.

Given the ubiquitous nature of Murray’s law, its impor-
tance for our understanding of both vascular physiology
and implications for clinical medicine are far-reaching
(2–4). This is particularly true in clinical cardiology, where
Murray’s law has become synonymous with the coronary
arterial circulation, defining the appropriate size of coro-
nary arteries within a bifurcation. Indeed, international
guideline documents (5, 6) base the indications and targets
for percutaneous coronary intervention (PCI) on minimum
lumen area (MLA) criteria derived directly from Murray’s
law and validated in a landmark clinical trial (7). Murray’s
law has also found application in computational fluid dy-
namics (CFD) modeling of the coronary vasculature, where
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clinical tools that predict the physiological significance of
coronary artery disease use the relationship between anat-
omy and physiology to determine flow splitting at bifurca-
tions. Such CFD techniques may be applied to both CT (8)
and invasive angiography modalities (9, 10) and are rapidly
being adopted in routine clinical practice (11). Furthermore,
the flow-diameter exponent may affect diagnostic accuracy
(12, 13).

Murray’s law assumes steady, laminar flow of a
Newtonian fluid in isolated bifurcations. These criteria are
not necessarily satisfied within the coronary circulation,
which has implications for the flow-diameter exponent.
When turbulent, unsteady flow and the rheological proper-
ties of blood are accounted for, an exponent between 2.0
and 3.0 is retrieved (14–16). Unlike Murray’s original work,
which considered each bifurcation in isolation, Huo and
Kassab (HK) (17) considered resistance of the entire vascu-
lar tree, which lies distal to each daughter branch in a
bifurcation, to derive a reformulated HK law, with a flow-
diameter exponent of 7/3 (i.e., 2.33). Finally, the law with
perhaps most clinical recognition is that of Finet (18), who
used intravascular ultrasound (IVUS) data, taken from 173
major epicardial bifurcations, to parameterize a fractal rela-
tionship of bifurcation morphology [DPV ¼ 0.678 (DDV1 þ
DDV2)].Differences in these morphometric scaling laws gener-
ate inconsistency in the predicted parameters of coronary
bifurcations, which is also dependent upon daughter vessel
asymmetry (Fig. 1). The clinical implications of uncertainty in
the optimal flow-diameter scaling exponent are important.
Compared with other recognized theoretical exponents, a
Murray’s exponent of 3.0 will underestimate MLA targets by
as much as 20% (19). Despite considerable research, the opti-
mum flow-diameter exponent for coronary arteries remains
unknown. The aim of this meta-analysis was to quantify the
optimum flow-diameter exponent in the epicardial and trans-
mural mammalian coronary arterial tree.

METHODS

We followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) (20) and Meta-analy-
sis of Observational Studies in Epidemiology (MOOSE) (21)
reporting guidelines in performing this systematic review
and meta-analysis (Supplemental Tables S1 and S2; all
supplemental materials may be found at https://doi.org/
10.7910/DVN/PIL9NE), which was also registered with
PROSPERO (Registration No. CRD42023416529).

Search Strategy

The following databases were searched for published stud-
ies in peer-reviewed journals from inception to 20 March
2023: Cochrane library, PubMed/Medline, Scopus, and
Embase. The following keywords were used: Murray law,
Huo Kassab law, Finet law, scaling law, flow radius, flow di-
ameter, diameter ratio, power law, exponent, Murray ratio,
area expansion ratio, volume length, diameter length, radius
length, area length, and coronary (see Supplemental Table
S3 for full search criteria). The wildcard term (�) was used to
increase search strategy sensitivity. Because of widespread
heterogeneity of nomenclature for the flow-diameter expo-
nent in the literature, all articles indexed in the Web of
Science platform referencing the original Murray’s law paper
(1) and including the term “coronary,” in addition to articles
identified through citation chasing, were also included.

Article Eligibility

Articles were considered eligible for meta-analyses if they
reported an optimum flow-diameter exponent in whole/sub-
sections of mammalian epicardial or transmural coronary
trees (i.e., not perfusion arterioles) with associated standard
error or standard deviation and number of included partici-
pants. If data were unclear or reported only in figures, corre-
sponding authors were contacted through email to seek
clarification/raw data. If corresponding authors could not be
contacted, data extraction was performed from figures with
the online software WebPlotDigitiser (V.4.6). Accuracy of
plot digitization was verified with a randomly generated
dataset (Supplemental Table S4). In all instances where
exponent standard error was retrospectively calculated from
digitized plots, methods are reported in Supplemental Table
S5. Articles not suitable for meta-analyses were still included
in the report if they reported an optimum flow-diameter
exponent in mammalian conducting coronary trees. Articles
were excluded if they reported a flow-diameter exponent not
specific for coronary arteries, were unpublished, or not pub-
lished in the English language. Conference abstracts were
not considered.

Study selection was performed independently by three
investigators (D.J.T., P.D.M., and I.H.), who are amix of clini-
cal academics (D.J.T. and P.D.M.) and a computational mod-
eling professor (I.H.). Titles and abstracts were assessed by
D.J.T. and P.D.M., studies deemed suitable for inclusion by
one or both investigators were included for full-text screen-
ing. D.J.T., P.D.M., and I.H. performed full-text screenings,
with discrepancies resolved by consensus. Data for all com-
patible results were extracted and stored in a preformatted
spreadsheet, which included data on species, disease state,

Figure 1. Agreement between scaling laws as a function of asymmetry.
Note the close agreement between the laws of Huo and Kassab (17) and
Finet et al. (18) for highly asymmetrical bifurcations.
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size of coronary arteries studied (diameter or Strahler order),
and the optimal flow diameter exponent (Supplemental
Table S6). Plot digitization was performed by D.J.T. and veri-
fied by P.D.M. and I.H. For each study included in the meta-
analyses, risk of bias was assessed independently by D.J.T.
and P.D.M. using the National Heart, Lung, and Blood
Institute observational cohort and cross-sectional study
quality assessment tool and used to rate studies as “good,”
“fair,” or “poor” (22). For studies whose authorship posed a
conflict of interest in bias assessment, a third reviewer (H.S.)
independently performed this analysis.

Data Synthesis and Statistical Analysis

The primary end point was the pooled optimized flow-di-
ameter exponent for the conducting portion of mammalian
coronary trees (vessel Strahler order �5). Secondary outcomes
included the pooled flow-diameter exponent for humans and
animals separately, for epicardial versus transmural coronary
arteries and the pooled exponent in subjects with versus with-
out cardiovascular disease. The meta-analysis was computed
using the Meta-Essentials software package (V.1.5, Erasmus
Research Institute of Management) (23). For studies reporting
exponents with a skewed distribution, log-transformation was
applied, provided this satisfied a log-normal assumption.
Results were then combined such that all were comparable on
an absolute scale (24). As some studies reportedmultiple expo-
nents from the same clinical dataset, an analysis was per-
formed to quantify sensitivity to study weighting. For this
sensitivity analysis, a prior intrastudy meta-analysis was per-
formed to derive a single flow-diameter exponent for each
study, which was then used for pooled interstudy com-
parisons. A fixed-effect model was used for intrastudy
meta-analysis, as between-group variability could not be
efficiently quantified (25, 26). The standard formula for
pooled estimates was used to calculate μ and r (27).
Interstudy heterogeneity was assessed using Cochrane’s
_Q test and the I2 index. When significant heterogeneity
between studies was present (I2 > 50%), the interstudy-
pooled flow-diameter exponent was calculated with a ran-
dom-effects model (28). When heterogeneity was not
significant, a fixed-effects model was used. Tabulated
results from all studies reporting an optimized flow-di-
ameter exponent are presented, with results of the inter-
study meta-analysis also displayed graphically with
forest plots. Risk of reporting bias was assessed using the
National Institutes of Health (NIH) quality assessment
tool. Publication bias was assessed with funnel plots and
Egger regression.

RESULTS

Study Selection

A total of 4,524 articles were identified through database
searching, 244 by searching articles citing the original
Murray’s law paper and 4 through citation chasing. After
duplicate removal, 4,180 unique articles were identified.
Title/abstract screening removed 4,024 articles, leaving
156 articles for full-text screening. Full-text screening
identified 27 articles quantifying a flow-diameter exponent
(Supplemental Table S6). These articles were based upon

22 unique datasets, as 6 articles (29–34) analyzed the same
morphometric data from 5 pigs originally described by
Kassab et al. (35). Of these 22 studies, 18 were suitable for
meta-analysis (Fig. 2).

Eleven studies analyzing the flow-diameter relationship of
human coronary arteries were identified, of which nine were
included in meta-analyses. These nine studies included data
from 372 individuals and 826 unique bifurcations/arteries.
Most studies (n¼ 6) conducted retrospective analysis of clin-
ical data taken from healthy coronary arteries during clini-
cally indicated evaluation for ischemic heart disease (19, 36–
40). One study quantified exponents in epicardial arteries
with a mix of healthy (n ¼ 42) and diseased (n ¼ 68) partici-
pants (41), whereas the remaining two studies each analyzed
a single, healthy heart postmortem (42, 43). The two studies
not suitable for meta-analysis included one CT coronary an-
giography (CTCA) analysis of nondiseased left epicardial ves-
sels in 211 participants, reporting an exponent of 2.4 (44),
whereas the second study conducted whole tree analysis of
the left coronary circulation of a nondiseased single human
heart, reporting an optimal exponent of 2.53, increasing to
3.21 in the smallest vessels (45) (Table 1).

Sixteen articles quantified an optimal flow-diameter expo-
nent in mammalian animal coronary arteries. These studies
analyzed 11 unique datasets, as 6 (29–34) analyzed the same
morphometric data of 5 pigs originally described by Kassab
et al. (35) (Table 2). Nine articles were included in the meta-
analysis, comprising morphometric data from 244 unique
coronary trees from 53 pigs, 44 rats, 11 mice, and 4 dogs. Most
studies (n¼ 7) included transmural vessels, whereas two stud-
ies (46, 47) examined the epicardial vessels exclusively. One
study investigated the effects of ventricular hypertrophy on
flow-diameter exponent (48), while all other studies examined
only healthy vessels. The 7 studies not suitable for meta-anal-
ysis (29–32, 49–52) quantified exponents in 15 dogs, 5 unique
pigs, and the 5 pigs described by Kassab et al. (35); exponents
ranged from 2.06 to 3.50 (Table 3).

Risk of Bias and Publications Bias

Risk of bias in the included studies showed that quality of
most studies was generally fair or good (Supplemental Table
S7). The highest risk of bias was seen in studies that failed to
adequately describe the characteristics of included partici-
pants or account for large proportions of participant nonin-
clusion. Several human studies did not adequately describe
the patient population and attrition rates. Only a single study
performed prior power analysis (39), whereas only one other
attempted to control for confounding factors (48). There was
no evidence of systematic reporting bias in flow-diameter
exponent (Egger test, P¼ 0.15) (see Supplemental Fig. S1).

Outcomes

An optimal flow-diameter exponent was reported in 18
studies, including 489 total participants. The pooled flow-di-
ameter scaling exponent across all participants was 2.39
[95% confidence interval (CI): 2.24–2.54] (Fig. 3). Between-
study heterogeneity was large (I2 ¼ 99%). The pooled expo-
nent was relatively insensitive to reduced weighting of stud-
ies reporting multiple optimized flow-diameter exponents
for the same clinical dataset (pooled exponent: 2.39; 95% CI:
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2.19–2.56). The flow-diameter scaling exponent for humans
and animals separately was 2.42 (95% CI: 2.17–2.67) and 2.36
(95% CI: 2.17–2.55). Overlap in exponent 95% CI ranges indi-
cated no significant difference between epicardial and trans-
mural vessels in exponent value: 2.43 (95% CI: 2.25–2.61) versus
2.21 (95% CI: 1.93–2.49), respectively. All cause cardiovascular
disease also did not significantly alter theflow-diameter scaling
exponent compared with healthy participants [2.29 (95% CI:

2.10–2.49) vs. 2.38 (95% CI: 2.19–2.56), respectively] (see
Supplemental Fig. S2, A–G). Data supplements can be accessed
here: https://doi.org/10.7910/DVN/PIL9NE.

DISCUSSION

In our meta-analysis of the flow-diameter exponent in cor-
onary arteries, we found a pooled exponent of 2.39 for the

Figure 2. Consort diagram.

Table 1. Studies quantifying an optimal flow-diameter exponent in human coronary arteries

Study Participants, n Cardiovascular Pathology Vessels Analyzed Exponent ± SD/(95% CI)

Suwa et al. (43) 1 Not reported �100 μm 2.51 ± 0.084
<100 μm 2.82 ± 0.097

Hutchins et al. (41) 42 AS0 LMCA bifurcation 3.2 ± 1.6
26 AS1 LMCA bifurcation 2.8 ± 1.3
25 AS2 LMCA bifurcation 2.6 ± 1.5
17 AS3/4 LMCA bifurcation 2.2 ± 2.1
53 AS0 Non-LMCA epicardial

bifurcations
2.7 ± 1.3

Changizi and Cherniak (36) 33 Nondiseased Epicardial bifurcations 2.60 ± 0.64
Zamir (42) 1 Nondiseased RCA bifurcations >1.0 mm 2.01 ± 0.78
Ellwein et al. (37) 55 Diameter stenosis >50% excluded LMCA bifurcation 2.67 (2.25–3.16)

Diameter stenosis >50% excluded LAD bifurcation 1.28 (1.15–1.43)
Diameter stenosis >50% excluded LCx bifurcation 1.14 (1.00–1.31)

Medrano-Gracia et al. (44) 211 Nondiseased Epicardial bifurcations 2.4
van der Giessen et al. (38) 6 Nondiseased Epicardial bifurcations Flow diameter fit: 2.55 (2.27–2.83)

Flow ratio fit: 2.27 (1.58–2.96)
Choi et al. (40) 43 Nonobstructive CAD Epicardial arteries 2.27 ± 0.24
Blanco et al. (39) 50 Nondiseased LMCA bifurcations Anatomic fit: 2.32 ± 1.05

Simulation fit: 2.62 ± 0.64
Taylor et al. (19) 20 Nondiseased Epicardial arteries Flow fit: 2.15 (1.38–3.20)

Rmicro fit: 2.38 (1.34–3.36)
Schwarz et al. (45) 1 Atrial tachycardia, mitral stenosis,

atherosclerosis
Epicardial, 5.0 μm 2.53

All measurements represent vessel diameter. AS, artery stenosis grade; CAD, coronary artery disease; CI, confidence interval; INOCA,
ischemia with nonobstructive coronary artery; LAD, left anterior descending artery; LCx, left circumflex artery; LMCA, left main coro-
nary artery; RCA, right coronary artery, Rmicro, microvascular resistance.
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mammalian coronary tree. Of the theoretically derived laws,
our findings appear to best corroborate the HK exponent of
7/3. This is reassuring, given the theoretical work that con-
siders turbulence (15), rheological blood properties (16), and
flow pulsatility (14), as seen in conducting epicardial and
transmural coronary arteries, which also all suggest that an
exponent of 3.0 is an overestimation. The similarity in
results between humans and animals was expected; the
underlying physics governing the flow in both groups should
be comparable. The pooled exponent is also consistent with
studies unsuitable for inclusion in meta-analysis (44, 49,
50). In addition, confidence intervals for the pooled expo-
nent support other analyses that have suggested that
Murray’s exponent of 3.0 is an overestimate (57–59) and
those reporting the area-preservation exponent of 2.0 are an
underestimate (60–62). Unlike Murray’s original law, our
pooled exponent of 2.39 implies that wall shear stress (WSS)
is not conserved uniformly throughout the coronary tree and
is instead sensitive to vessel diameter (WSS·!·D�0.75).
Historically, a time-averaged WSS of �1.5 Pa was thought
to be optimal for healthy human coronary arteries (63).
The current meta-analysis results support more recent

work proposing that the atheroprotective range for WSS
for any given coronary tree ranges between 1.0 and 7.0 Pa
(64). The biological and physical mechanisms underlying
this variation in WSS are beyond the scope of the present,
clinically focused study. However, our pooled exponent of
2.39 shows closest agreement with the HK scaling law and
associated exponent of 2.33 (17). Similar to the original
work of Murray (1), the HK law is based upon a minimum
energy hypothesis, encapsulated in a ratio of viscous to
metabolic dissipation, but extended to the whole coro-
nary tree distal to a particular vessel. This HK model
derives power law relationships between structure and
function parameters, which have been validated experi-
mentally (31) and shows excellent agreement with Finet’s
independent, heuristic fractal scaling laws for typical epi-
cardial arteries (18).

Clinical Relevance

In clinical cardiology, the optimal flow-diameter exponent
is relevant for the diagnosis and treatment of patients with
suspected ischemic heart disease. Coronary intervention is

Table 3. Summary of animal studies quantifying an exponent, excluding pigs described by Kassab et al. (35)

Study Subjects, n Vessels Analyzed Exponent ± SD

Arts et al. (47) Dogs (9) Epicardial, 400 μm 2.55 ± 0.03
VanBavel and Spaan (49) Pigs (2) Epicardial, >200 μm 2.35

200–40 μm 2.50
<40 μm 2.82

Zhou et al. (46) Pigs (5) LAD, 500 μm 2.71
Tomanek et al. (51) Dogs (14) 50–9 μm 2.73
Gong et al. (48) LVH pigs (6) Epicardial 2.51 ± 0.48

Transmural 2.07 ± 0.14
RVH pigs (6) Epicardial 2.58 ± 0.65

Transmural 2.15 ± 0.14
CHF pigs (6) Epicardial 3.15 ± 1.49

Transmural 2.26 ± 0.15
LVH control (6) Epicardial 2.62 ± 0.74

Transmural 2.01 ± 0.12
RVH control (6) Epicardial 2.39 ± 0.73
Transmural 1.95 ± 0.13
CHF control (6) Epicardial 2.69 ± 0.69

Transmural 2.10 ± 0.13
Rivolo et al. (50) Pig (3), Dog (1), Human (1) Epicardial, 100 μm �2.25 to �3.5
Li et al. (53) Mice (11) Epicardial, 40 μm 2.26 ± 0.26
Zamir et al. (54) Pigs (7) Epicardial, 40 μm 3.53†
Wieringa et al. (55) Rats (38) 37–15 μm 2.81
Demeulenaere et al. (56) Rats (6) 150–10 μm 2.61

CHF, congestive heart failure; LAD, left anterior descending artery; LCx, left circumflex artery; LVH, left ventricular hypertrophy;
RCA, right coronary artery; RVH, right ventricular hypertrophy. All vessel measurements represent diameter. †Digitally extracted data
and combined through fixed effects meta-analysis.

Table 2. Summary of studies reporting exponents from morphometric data of 5 pigs, originally described by Kassab
et al. (35)

Study Vessel Diameter RCA LAD LCx Combined

Zhou et al. (30) Epicardial, 500 μm 2.18 2.21 2.51
Mittal et al. (29) Epicardial, �8 μm 2.2 2.1 2.1
Kassab (31) Epicardial, �8 μm 2.18 2.18 2.06
Kassab (32) Epicardial, �8 μm 2.09 2.10 2.10
Kaimovitz et al. (33) Epicardial (vessel order 11-8) 1.86† 1.99† 1.88† 1.90†

Transmural (vessel order 7-5) 1.48† 1.43† 1.65† 1.54†
Sturdy et al. (34) Epicardial 2.47

LAD, left anterior descending artery: LCx, left circumflex artery; LMCA, left main coronary artery; RCA, right coronary artery.

†Digitally extracted data and combined through fixed effects meta-analysis.

META-ANALYSIS OF MURRAY’S LAW IN THE CORONARY ARTERIES

H186 AJP-Heart Circ Physiol � doi:10.1152/ajpheart.00142.2024 � www.ajpheart.org
Downloaded from journals.physiology.org/journal/ajpheart at Sheffield Hallam Univ (143.052.059.244) on December 2, 2024.

http://www.ajpheart.org


focused entirely on restoring arterial diameter to allow suffi-
cient myocardial blood flow. For nearly 100 years, our under-
standing of the relationship between arterial diameter and
blood flow has been dictated by Murray’s law. European (6)
and American (5) guidelines, along with the Bifurcation
Academic Research Consortium (Bif-ARC) (65), recommend
an MLA threshold derived from Murray’s law. These guide-
lines advocate for a left main coronary artery (LMCA) MLA
of 6–7.5 mm2. The lower value of 6 mm2 was derived using a
Murray’s exponent of 3.0 and prospectively validated in the
multicenter, prospective LITRO study (7). Although this
study showed that deferral of revascularization in LMCA
lesions with an MLA < 6 mm2 was safe, use of the pooled
exponent of 2.39 would have derived an MLA threshold of 7.1
mm2 (Fig. 4). The latter of these values shows closer agree-
ment with observational data from 121 patients with angio-
graphically normal or minimally diseased left coronary
arteries (66) that informs the 7.5-mm2 upper MLA threshold.
No studies have assessed the outcomes with higher minimum
MLA thresholds. Furthermore, CFD techniques for evaluating
virtual fractional flow reserve (FFR) of epicardial lesions use
the flow-diameter exponent for determining proportion of
flow splitting at bifurcations (8, 9, 19, 67, 68). The magnitude
of exponent used has significant impact on diagnostic accu-
racy of virtual FFR for CFD techniques using both CT (13) and
plane angiographic imaging data (12). Incorporation of flow-
diameter scaling in virtual FFR workflows improves clinical
utility, with very close agreement between single-view and

three-dimensional reconstructions (69). Finally, in line with
HK analysis (17), our pooled exponent gives a crown flow re-
sistance parameter (ɛ) of 2.770, whichmay be used to describe
interrelated diameter, length (L), and volume (V) scaling laws
specific to the coronary tree:

D ¼ L
3ɛ�2
4ðɛþ 1Þ V ¼ L

5
ɛþ 1

Figure 3.Meta-analysis of pooled flow-diameter exponent.

Figure 4. Variation in minimum lumen area (MLA) thresholds for left main
coronary artery (LMCA) due to different theoretical exponents.
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These additional laws may aid in the diagnosis of diffuse
coronary disease, which is often difficult with traditional
techniques (70).

Limitations

Heterogeneity was high (I2 ¼ 99%), but this was expected,
given the relatively low resolution of several imaging techni-
ques used for quantifying coronary morphology and the well-
documented challenges of assessing intracoronary flow (71).
Nevertheless, this heterogeneity may represent a more subtle
relationship between vessel diameter, resistance, and flow
(30), which the current study is underpowered to detect. The
exponents of 1.32 and 1.18 that were reported by Ellwein et al.
(37) were a key source of heterogeneity. These results imply a
marked acceleration of blood, which has not been observed,
and so these results should be treated with caution.
Limitations in data reporting did not allow for detailed quanti-
fication of the effect of cardiovascular disease on the flow-di-
ameter exponent or an analysis of other variables of interest.
Significant variability and the absence of consensus in the no-
menclature of the flow-diameter scaling exponent meant the
search strategy was not guaranteed to be completely exhaus-
tive, necessitating the incorporation of citation chasing as an
additional searching technique. Thresholds for discrimination
between epicardial and transmural arteries may have differed
between some studies, but as there was no difference in the
exponent between the two vessel types, this is unlikely to be
significant. Analysis of the effect of disease on the flow-diame-
ter scaling exponent was limited by a small number of studies
and disagrees with other findings reporting coronary artery
disease (72), and lesion calcification (73) may influence the
exponent. This may, therefore, be a topic for future research.
The clinical utility of defining variations in the flow-diameter
exponent for patient groups and vessel sizes is uncertain.

Conclusions

In this meta-analysis, we identified an optimal flow-diam-
eter exponent for Murray’s law in mammalian coronary
arteries of 2.39. This is in very close agreement with the theo-
retically derived HK exponent of 7/3, which may be a more
accurate description of coronary morphometric scaling com-
pared with Murray’s original law. This finding may have
implications for the assessment, diagnosis, and intervention
of coronary artery disease.
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