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Abstract. Event-based vision datasets have emerged as a critical asset in advancing

the capabilities of real-time perception systems, particularly in fields such as robotics,

autonomous vehicles, and human-computer interaction. These datasets enable low-latency

processing by capturing asynchronous, pixel-level changes in the scene, providing a distinct

advantage over traditional frame-based systems. However, the diverse formats and

characteristics of event-based datasets pose significant challenges for efficient processing

and analysis, hindering their broader adoption and integration. In this paper, we present

a versatile and comprehensive data processing pipeline designed to address these challenges

by supporting multiple event-data formats, including newer formats such as EVT2 and

EVT3. This pipeline not only converts data into widely supported formats like AEDAT

and NPZ, but also ensures that the unique characteristics of event-based data—such

as temporal precision and sparse event representation—are preserved throughout the

conversion process. By applying this pipeline to several open-source datasets, we establish

a standardized, efficient methodology for dataset manipulation that enhances compatibility

and reproducibility in event-based vision research. Additionally, we introduce a novel high-

resolution event-based action dataset, converted into various formats using our pipeline,

which opens new avenues for exploring event-based techniques in action recognition. This

dataset and our pipeline serve as valuable resources for the research community, enabling

advancements in real-time vision applications and fostering greater collaboration and

standardization across studies.

1. Introduction

Event-based vision, also referred to as neuromorphic vision, has emerged as a prominent

area of interest within computer vision research due to its capacity to facilitate real-time,

low-latency perception systems. Unlike conventional frame-based cameras, which capture

images in a sequential manner, event-based vision records changes at the individual pixel level

asynchronously and with high temporal precision. This approach offers distinct advantages

and has found applications in various fields such as robotics, autonomous vehicles, and

augmented reality [1]. However, the proliferation of event-based vision datasets presents
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 2

challenges related to their diverse formats and characteristics. Researchers often encounter

obstacles when processing and analyzing these datasets efficiently. These challenges impede

the comparability and reproducibility of research findings in different studies. To address

these issues, several libraries and tools have been developed to process event data, including

AERmanager [2], aedat [3], tonic [4], and spikingJelly [5]. Tonic and SpikingJelly are widely

used tools for processing spiking neural network data and conducting simulations within

the neuromorphic vision community. However, both tools have notable limitations when

applied to event-based vision datasets. Tonic, for instance, primarily supports AEDAT

format and lacks the capability to handle newer event vision sensor data formats, such as

EVT2 and EVT3, which are crucial for emerging sensors like Prophesee’s Metavision and

CenturArks. This restricts its applicability when working with advanced sensors that use

proprietary formats. SpikingJelly, while effective for spiking neural network simulations,

is not optimized for real-time event-based vision tasks. Its higher computational overhead

results in longer processing times, particularly for large-scale datasets. These limitations

underscore the need for a more versatile and efficient data processing pipeline.

In response to this gap, our research introduces a comprehensive pipeline designed

to support a wide range of event data formats, including those from emerging sensor

technologies. By offering seamless compatibility with newer formats like EVT2 and EVT3,

our pipeline facilitates broader accessibility and usability in the event-based vision research

community, optimizing both speed and scalability. In this article, we first introduce a robust

data processing pipeline meticulously engineered to tackle the complexities associated with

diverse event data formats. This pipeline offers a standardized and efficient approach to

converting event-based vision datasets into widely supported formats, ensuring compatibility

with various event cameras and facilitating seamless integration with event-based vision

systems. Second, as part of our efforts to foster collaboration and innovation within the

research community, we release seven open-source datasets spanning five different formats.

Lastly, we have made our novel, event-based, high-resolution gesture dataset available as an

open-source resource, thereby enriching the tools available to the research community. This

dataset presents a unique opportunity for investigating gesture recognition tasks through

event-based vision techniques [6], enabling researchers to explore new avenues in human-

computer interaction and gesture-based interfaces. By making these contributions, we aim to

facilitate advances in event-based vision research, promote reproducibility and comparability

across studies, and provide valuable resources to fuel further exploration and innovation in

this exciting field.

In section 2, we explore dynamic vision sensors in detail. In section 3, we analyzed key

contributors in the event-based vision sensor industry, highlighting their significant advances

and contributions. Section 4 dives into an in-depth exploration of data formats, elucidating

their specifications and significance in event-based vision applications. In section 5, we

present details of the proposed data processing pipeline. Section 6 provides a concise overview

of the datasets that are converted by our data processing pipeline, shedding light on their
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 3

characteristics and relevance to event-based vision research.

2. Dynamic Vision Sensor (DVS)

Dynamic Vision Sensors (DVS), also known as event-based cameras, represent a significant

shift from traditional frame-based cameras. They are a part of the neuromorphic engineering

field, where the design of sensors and processors is inspired by biological systems, particularly

the human brain and sensory systems. DVS differ from standard cameras in their method

of capturing visual information. Rather than recording frames at set intervals, they

detect changes in light intensity at each pixel. These pixels function independently and

asynchronously, generating an event when changes surpass a specified threshold. The

output comprises a stream of such events, each detailing the pixel’s location, timestamp,

and direction change (an increase or decrease in light intensity) [7] [8].

2.0.1. Advantages of DVS:

• The asynchronous processing of events ensures minimal delay, making DVS suitable for

applications requiring swift responses like drone collision avoidance and real-time object

tracking.

• These sensors maintain effectiveness across diverse lighting conditions.

• DVS are energy-efficient as they activate only in response to changes in the scene.

2.0.2. Event Processing in DVS: An event is produced when a pixel’s light intensity change

crosses a certain threshold. The sparse and asynchronous nature of event generation means

that data is transmitted only when there are alterations in the visual scene. The unique

characteristics of DVS data necessitate specialized processing algorithms. Unlike frame-

based data, DVS data is sporadic and high in temporal resolution, posing challenges in

standard image processing and requiring efficient management to handle the substantial

information volume in dynamic settings [9]. Figure 1 shows the event camera and its basic

circuit diagram. When light hits each pixel, it is transformed into a voltage. This voltage

change from the reference level is identified, and if this change surpasses a certain threshold

in a comparator, an event is then generated. Due to their unique capabilities, DVS are used

in areas where speed and efficiency are crucial, such as robotics, autonomous vehicles, and

surveillance.

A significant issue in this field is the lack of standardization across different DVS

manufacturers. Each company might use different or proprietary data formats, leading

to compatibility issues when trying to process events captured by one event camera in the

software stack of another. This variability hampers the development of universal processing

tools and algorithms, limiting the wider adoption and application of DVS technology [11]

[12]. To address these bottlenecks, this paper presents a specialized event data processing

pipeline designed to handle the unique characteristics of DVS data efficiently. Furthermore,
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 4

Figure 1. CenturyArk SilkyCam VGA (event camera) and its basic circuit [10]. When

light strikes individual pixels, they convert it into an electrical voltage. This alteration in

voltage compared to a baseline is detected, and when this variation exceeds a predefined

threshold within a comparator, it triggers the generation of an +/− event.

by releasing open-source event datasets in multiple formats, RAW (EVT), CSV, NPZ, HDF5,

and AVI, we contribute to the standardization and interoperability in the field. These

formats cater to diverse needs, ranging from direct representation of raw event data to more

complex formats ideal for handling large datasets. Our work not only facilitates a broader

understanding of DVS data but also promotes its standardized and accessible use across

various applications.

3. Prominent DVS Manufacturers

This section offers a comprehensive perspective on how DVS manufacturers’ advancements

influence the development and application of DVS systems, setting the stage for a deeper

understanding of the current and future state of event data processing. We present notable

companies and their technologies, highlighting their contributions to this rapidly advancing

field. Table 1 shows the comparison between these companies.

3.0.1. Prophesee Prophesee, formerly known as Chronocam, is a leading company in

dynamic vision sensor technology. They have pioneered the development of the ”Metavision

SDK”, which leverages event-based sensors to efficiently capture visual information. Their

Metavision sensor and opensource software stack (OpenEB) enable advanced event-based

vision applications in robotics, surveillance, and automation [13].

3.0.2. Insightness Insightness is a prominent player in the field of dynamic vision cameras.

They specialize in creating high-performance vision sensors and systems based on event-

based technology. Insightness focuses on offering low power consumption and high-speed

processing capabilities, making their sensors ideal for demanding applications in robotics,

drones, and scientific research [14].
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 5

Table 1. Comparison of Companies in the Event-Based Vision Camera Sensor Industry

Company Key Features Applications Notable Prod-

ucts

Data For-

mat

Ref.

Prophesee Metavision SDK

for efficient visual

information cap-

ture

Robotics,

surveillance,

automation

Metavision

sensors,

Metavision

SDK, OpenEB

proprietary

(EVT)

[13]

Insightness Low power con-

sumption, high-

speed processing

Robotics,

drones, scien-

tific research

Dynamic vi-

sion sensors,

Development

kit

Address-

Event

Representa-

tion (AER)

[14]

iniVation Wide range of

sensors, suitable

for various appli-

cations

Robotics,

surveillance,

scientific re-

search

DAVIS camera

series, Event

camera mod-

ules

proprietary

(AEDAT)

[15]

Samsung

SAIT

Stacked CMOS

technology

Autonomous

systems,

robotics

Samsung

Event-based

Vision Sensor

Digital

Timing

AER Gen-

erator

(DTAG)

[1]

ProxiVision Compact, high-

speed cameras,

low latency

Robotics,

drones, in-

dustrial

automation

single event

imaging sys-

tem

proprietary

(x, y, t list

mode)

[16]

3.0.3. iniVation iniVation provides event-based vision systems for diverse applications,

including automotive, robotics, and augmented reality. Their sensors and cameras are

engineered to deliver real-time, low-latency perception capabilities, making them suitable for

demanding scenarios. iniVation’s technology empowers autonomous systems and enhances

the performance of robotics and augmented reality applications [15].

3.0.4. Samsung Advanced Institute of Technology (SAIT) SAIT, the research arm of

Samsung, has been actively engaged in event-based vision research. They have made notable

advancements in the field, including the development of their event-based vision sensor.

Their sensor incorporates stacked CMOS technology, unlocking potential applications in

autonomous systems where low-latency, high-speed perception is crucial [1].

3.0.5. ProxiVision ProxiVision specializes in event-based cameras and systems designed

for robotics, drones, and industrial automation. Their compact and high-speed event-

based cameras offer exceptional performance with low latency and high dynamic

range. ProxiVision’s solutions enable precise and real-time visual perception in dynamic

environments [16].
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 6

4. Data Formats

This section provides a brief description of data formats that are included in our data

processing pipeline.

4.0.1. EVT 2,3 Data Format: Event-based vision technology utilizes data formats like

EVT2 and EVT3 to efficiently represent and store asynchronous event streams generated

by sensors. Both EVT2 and EVT3 employ techniques like delta encoding [17] to minimize

storage requirements and enhance data transmission efficiency. While both formats serve

the same fundamental purpose, they may have differences in their specific encoding

methods, file structures, and compatibility with software libraries. EVT2 and EVT3 likely

share similarities in their overall approach to representing event-based data, but potential

distinctions may arise in the details of their implementation. Understanding these differences

can be crucial for effectively utilizing and integrating data from Prophesee’s vision sensors

into various applications and workflows [13].

4.0.2. AEDAT 2, 3.1, 4 Data Format: The AEDAT (Address-Event Representation Data)

format is pivotal in the realm of neuromorphic vision technology, particularly for storing and

transmitting data from sensors like those developed by iniVation. This format has evolved

through several versions, each designed to cater to the increasing complexity and diversity

of neuromorphic vision data. AEDAT 2 is the foundational format, tailored to capture basic

address-event data, including x and y coordinates, timestamps, and event polarity from early

neuromorphic cameras. This simplicity aids in the direct interpretation of sensor-captured

visual information. Progressing to AEDAT 3.1, the format expands to accommodate more

intricate data structures, supporting a wider variety of sensor types and data payloads.

This version offers enhanced flexibility and the ability to manage additional metadata,

aligning with the needs of more advanced neuromorphic vision systems. The progression

culminates in AEDAT 4, the most advanced iteration, which bolsters support for a multitude

of event types and sensor configurations. Designed to address the sophisticated demands of

modern neuromorphic sensors, AEDAT 4 stands out for its scalability and efficiency in

managing diverse and complex data streams, marking a significant advancement in data

format evolution for neuromorphic vision technology.

4.0.3. Bin Data Format: The Bin data format, commonly used in various computing and

data processing contexts, refers to binary data files. In the context of event-based vision

technology, a Bin file might store raw sensor data in a compact, binary form, enabling efficient

data storage and rapid access times. In the Bin format, event data, including coordinates,

timestamps, and polarity, are stored in a structured manner, allowing for efficient data

retrieval and processing without the overhead associated with more verbose file formats.
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 7

4.0.4. CSV Data Format: In the field of event-based vision technology, CSV (Comma-

Separated Values) format serves as a conventional means of storing event data. In CSV

files, event data is typically organized in a straightforward manner, following a simple x, y,

p, t format. Each row in the CSV file represents an event, with the columns denoting the

pixel coordinates (x, y) where the event occurred, the polarity (p) indicating whether the

event is an ON or OFF event, and the timestamp (t) indicating when the event occurred.

This format allows for easy comprehension and manipulation of event data using standard

spreadsheet software or programming libraries capable of handling CSV files.

4.0.5. HDF5 Data Format: HDF5 (Hierarchical Data Format version 5) is a widely-used

data storage format renowned for its versatility and efficiency in scientific computing and data

analysis. In HDF5 files, data is organized hierarchically into groups and datasets, allowing

for multi-dimensional data representation. This hierarchical structure, coupled with support

for compression and chunking, enables efficient storage and retrieval of large volumes of data.

HDF5 also offers cross-language compatibility, parallel I/O capabilities, and robust support

for metadata, making it an ideal choice for storing event data and facilitating seamless

integration with various analysis and machine-learning workflows.

4.0.6. NPZ Data Format: NPZ (NumPy Zip) format serves as a compact and efficient

means of storing event-based data, particularly in the context of event-based vision

technology. For event data, NPZ format can store arrays representing event streams,

with each array element containing information such as pixel coordinates, timestamps, and

event polarities. The compressed nature of NPZ files makes them suitable for storing large

volumes of event data while minimizing storage space requirements. This format’s simplicity,

portability, and compatibility with Python-based tools make it a popular choice for storing

and exchanging event-based data in research and development environments.

4.0.7. AVI Data Format: AVI (Audio Video Interleave) is a multimedia container format

developed by Microsoft. It stores video data in a single file, allowing for synchronized

playback. AVI files typically use lossy compression methods to reduce file size while

maintaining acceptable quality.

5. Conversion Methodology

In this section, we detail the methodologies employed for processing data stored in AEDAT,

binary (bin), and EVT formats. Specifically, we explain the algorithms designed to

efficiently handle and extract information from these diverse data structures. Our approach

encompasses data parsing techniques tailored to each format’s unique specifications, ensuring

accurate extraction and conversion into standardized event formats for downstream analysis

and interpretation.
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 8

Algorithm 1 Load AEDAT v3 File

1: procedure load aedat v3(file name)

2: Initialize txyp← {′t′ : [],′ x′ : [],′ y′ : [],′ p′ : []}
3: Open file name and skip ASCII header

4: while reading data from file do

5: Read and unpack event header

6: if event type is Polarity event then

7: while reading event data do

8: Unpack event data into x, y, t, p

9: Append x, y, t, p to respective lists in txyp

10: end while

11: end if

12: end while

13: Convert lists in txyp to numpy arrays

14: return txyp

15: end procedure

Figure 2. Aedat Event Data Structure - 64-bit Encoding of DV sensor.

Aedat data format (Figure 2) presents a complex 64-bit structure that conveys not only

temporal information but also spatial coordinates and type identifiers for each event. The

first bit distinguishes between DVS and APS types of events, followed by 15 bits for the

y-coordinate and another 15 bits for the x-coordinate. Then there is a multipurpose 16-bit

field that can either contain the ADC sample for APS events or specify the read type for

DVS events, including reset, signal, or IMU reads. Lastly, there’s a 16-bit timestamp field.

The algorithm 1 reads data from a file in the AEDAT v3 format, which contains events

generated by neuromorphic sensors. It initializes a dictionary called txyp with keys ’t’, ’x’,

’y’, and ’p’, representing time, x-coordinate, y-coordinate, and polarity, respectively. After

opening the file and skipping the ASCII header, the algorithm enters a loop to read the

data. For each event, it unpacks the event header and checks if the event type is a polarity

event. If it is, the algorithm enters another loop to read the event data, unpacks the data

into individual components (x-coordinate, y-coordinate, time, and polarity), and appends

them to the respective lists in the txyp dictionary. Once all the data has been read from the

file, the lists in the txyp dictionary are converted into numpy arrays before being returned.

This algorithm effectively parses AEDAT v3 files, extracting event data and organizing it

into numpy arrays for further analysis or processing.
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 9

Algorithm 2 Read Binary File

1: procedure load ATIS bin(file name)

2: Input: Path of the ATIS binary file file name

3: Output: A dictionary with keys {′t′,′ x′,′ y′,′ p′} and values as numpy arrays

4: ▷ Each event in the binary file consists of Xaddress, Yaddress, Polarity, and

Timestamp

5: Open file name in binary mode

6: Read raw data from the binary file

7: Extract Xaddress, Yaddress, Polarity, and Timestamp from the raw data

8: return {′t′ : t,′ x′ : x,′ y′ : y,′ p′ : p}
9: end procedure

Algorithm 3 EVT3.0 Data Processing

1: Initialize input and output files for CD events

2: if trigger output file provided then

3: Initialize output file for trigger events

4: end if

5: Skip input file header if present

6: while input file has data do

7: Read a batch of data from input file into buffer

8: Initialize state variables for decoding

9: for each raw event in the buffer do

10: Determine the type of the raw event

11: Process the raw event based on its type

12: if address X event then

13: Extract x, y, polarity, and timestamp

14: Convert event to XYPT format

15: else if vector event (12 or 8 bits) then

16: Determine validity of events in the vector

17: Extract x, y, polarity, and timestamp information

18: Convert valid events to XYPT format

19: end if

20: end for

21: Write processed CD events to CD output file

22: if trigger output file provided then

23: Write processed trigger events to trigger output file

24: end if

25: end while
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Efficient Data Processing Pipeline for Event-Based Vision Datasets 10

Figure 3. EVT3 Timestamp Encoding - 24-bit division for event timing.

The algorithm 2 is designed to process ATIS (Asynchronous Time-based Image Sensor)

binary files, commonly used for neuromorphic event-based cameras. It takes the path of

an ATIS binary file as input and returns a dictionary with keys representing timestamps

(’t’), x-coordinates (’x’), y-coordinates (’y’), and polarities (’p’). Each event in the binary

file encapsulates information about Xaddress, Yaddress, Polarity, and Timestamp. The

algorithm first opens the specified file in binary mode, reads the raw data, and then extracts

the relevant components - Xaddress, Yaddress, Polarity, and Timestamp - from the raw

data. Finally, it organizes these components into a dictionary and returns it, with each key

corresponding to its respective numpy array containing the extracted data. This algorithm

serves as a fundamental step in parsing ATIS binary files, enabling further analysis and

processing of event-based camera data.

Table 2. Data handling capabilities

Aedat2 Aedat3.1 Bin Npz Csv EVT2 EVT3

Aedat 2 - x

Aedat 3.1 x -

Bin -

Npz -

Csv -

EVT 2 - x

EVT 3 x -

The EVT3 format (Figure 3) encodes timestamp information using a 24-bit structure,

where the ’Time High’ and ’Time Low’ fields, each comprising 12 bits, must be concatenated

to form the full 24-bit timestamp. This allows for high temporal precision, essential in

event-based vision systems where accurate timing is crucial for interpreting dynamic visual

changes. Algorithm 3 outlines the complete process for handling EVT3.0 data. The

algorithm is designed to efficiently parse and process raw EVT3 events and convert them

into a standardized CD event format. Optionally, it also handles the conversion of trigger

events, providing a versatile solution for applications requiring both types of event data.

The processing begins with the initialization of input and output files for CD events. If

trigger events are to be processed, an additional output file for these events is initialized.

The algorithm then skips any headers present in the input file to focus directly on the event

data.

The EVT3.0 data is processed in batches, with each batch loaded into a buffer to ensure

Page 10 of 19AUTHOR SUBMITTED MANUSCRIPT - ERX-105596.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Efficient Data Processing Pipeline for Event-Based Vision Datasets 11

efficient memory usage when working with large datasets. Within each batch, individual

raw events are decoded to identify the event type. The algorithm distinguishes between

Address X events (spatial events with x, y coordinates, polarity, and timestamp) and vector

events, which encode multiple events in either 12-bit or 8-bit structures. For Address X

events, the algorithm extracts the x and y coordinates, the polarity (indicating an increase

or decrease in light intensity), and the timestamp (derived from concatenating ’Time High’

and ’Time Low’). These values are then formatted into the XYPT format, which is a

standard representation of event data, ensuring compatibility with various data analysis

tools. Vector events are processed by checking the validity of each event within the vector

and then extracting x, y, polarity, and timestamp information for each valid event. This step

ensures that only meaningful events are retained, reducing noise and enhancing the accuracy

of the data processing pipeline. After all events within a batch have been processed, the

resulting CD events are written to the output file. If trigger events are also present, these are

written to a separate output file to maintain clarity between different event types. The use

of batch processing and efficient parsing techniques ensures that the algorithm can handle

large-scale datasets, maintaining both speed and accuracy. To further optimize the EVT3.0

data processing, our algorithm incorporates error-checking mechanisms that validate event

data before it is written to the output files. This minimizes the likelihood of corrupted data

affecting downstream applications and enhances the reliability of the entire data pipeline.

This detailed breakdown of the EVT3.0 processing algorithm highlights the steps taken to

ensure accurate event data extraction and conversion. By addressing both CD and trigger

events, the algorithm provides a comprehensive solution for working with EVT3.0 data,

ensuring high temporal precision and compatibility with a wide range of event-based vision

applications.

Table 2 shows the compatibility of different data handling formats, including aedat

2, aedat 3.1, Bin, npz, csv, EVT 2, and EVT 3. Each cell denotes whether a particular

format can be converted or handled from one format to another, with a checkmark indicating

compatibility and an ’x’ indicating incompatibility. The scalability of the proposed pipeline

was tested on larger datasets such as CIFAR10-DVS and EB-HandGesture, each containing

several gigabytes of event-based data. To ensure efficient processing of these larger datasets,

we implemented a chunking strategy that divides the input data into smaller segments,

enabling parallel processing across multiple cores. This approach not only reduces memory

usage but also accelerates processing times, making the pipeline suitable for handling datasets

of over 50GB. Refer to Section 6 for more details about these datasets.

One of the key advantages of our pipeline is its broad support for multiple event-data

formats, particularly newer formats such as EVT2 and EVT3, which are not well supported

by existing frameworks like Tonic and AERmanager. Unlike Tonic, which is primarily

designed for spiking neural networks, our pipeline is optimized for both event-based vision

data and more traditional neuromorphic datasets, making it suitable for a wider range of

applications. Additionally, our method uses a more efficient encoding and decoding algorithm

Page 11 of 19 AUTHOR SUBMITTED MANUSCRIPT - ERX-105596.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Efficient Data Processing Pipeline for Event-Based Vision Datasets 12

Table 3. Comparison with existing solutions

Npz Aedat 2 Aedat 3.1 Aedat 4 Bin Csv EVT 2 EVT 3

Aermanager x x x x

Aedat x x x x x x x

Tonic x x

SpikingJelly x x x

This Work x

Figure 4. The figure shows the execution time and estimated power consumption for

processing DVS data across various libraries/frameworks. Each framework’s performance

is benchmarked using consistent parameters on identical hardware and system conditions

to ensure a fair comparison. The results show that the proposed pipeline outperforms the

existing libraries/frameworks on several occasions.

for EVT data, resulting in faster execution times compared to AERmanager. In Table 3 we

compared our proposed pipeline with the existing libraries/frameworks. None of the existing

solutions can’t handle EVT 2, EVT 3 data format. To evaluate the execution time and

power consumption of our proposed pipeline, we conducted experiments using a standardized

benchmarking setup. All tests were performed on a system equipped with an Intel i7-9700K

CPU, 16GB of RAM, and an Nvidia RTX 2080 GPU. The software environment consisted

of Python 3.8, with relevant libraries for data processing (NumPy, Tonic, etc.) installed.
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Figure 5. Comparison of accuracy and execution efficiency, showing our pipeline

outperforms Tonic and SpikingJelly in both accuracy (left) and resource efficiency (right).

Power consumption was measured using Intel Power Gadget, and execution time was logged

using Python’s built-in time module. For each dataset format (AEDAT, EVT, NPZ, etc.),

we processed identical samples and compared the results with those obtained using other

libraries such as AERmanager and SpikingJelly. Each test was repeated three times, and the

average value was taken to ensure reliability. Figure 4 shows the comparison of execution

time and power consumption of ’Aermanager’[2], ’Tonic’[4], ’Spikingjelly’, and proposed

pipeline for three data formats: AEDAT 2, AEDAT 3.1, and Bin. In AEDAT 2, proposed

pipeline showcases the shortest execution time and least power usage. For AEDAT 3.1, the

proposed pipeline again leads with minimal execution time, although its power advantage

is less pronounced. In the Bin configuration, the proposed pipeline achieves competitive

execution time and maintains second place in power efficiency. Overall, our proposed pipeline

appears to provide the best performance when considering both execution speed and energy

consumption.

To further evaluate the performance of our proposed pipeline, we conducted another

experiment focused on two key aspects: accuracy in preserving event data temporal coherence

and execution efficiency in terms of memory usage and processing time. These tests compared

our pipeline against two widely used frameworks in the event-based vision community,

Tonic and SpikingJelly. Accuracy was measured by assessing the preservation of temporal

coherence during conversion from EVT to AEDAT formats. Our pipeline demonstrated

superior precision, maintaining timestamp alignment for over 95% of events, compared

to 85% for Tonic and 81% for SpikingJelly. To quantify accuracy, we evaluated the

alignment of event timestamps before and after conversion, using a 1-microsecond precision

threshold. Events that retained timestamp alignment within this threshold were considered

accurately converted. The proportion of such events in the total stream was used as

the primary accuracy metric. Execution efficiency was evaluated by comparing memory
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Figure 6. Schematic Overview of Data Format Conversion and Processing Pipeline.

usage and processing time on large datasets such as CIFAR10-DVS and NMNIST-DVS.

Our pipeline used 25% less memory than both Tonic and SpikingJelly, thanks to optimized

memory management techniques. Additionally, our pipeline processed data 20% faster than

Tonic, making it more suitable for large-scale and real-time applications. These results are

illustrated in Figure 5.

Figure 6 outlines a streamlined data processing pipeline. It begins with an input file,

which is then passed through a format identification stage where the input data format is

determined. Following this, there’s a decision point where the desired data format (like

AEDAT, Bin, EVT, etc.) is selected. After the format is provided, the data undergoes

processing, resulting in an output file with a specified format (X, Y, P, T) indicative of the

data’s spatial (X, Y) and temporal (P, T) attributes.

6. Selected Datasets

Here are the open-source datasets we selected for our processing pipeline. Table 4 provides

basic comparisons of these datasets, including their data format, size, and license. We applied

the proposed pipeline to these datasets, converting them into the data formats outlined in

Section IV. Since all the selected datasets are open-source, and licensed under CC BY 4.0,

we are able to publicly release the converted datasets, thereby facilitating future research.

6.0.1. N-MNIST: This dataset captures event-based data of handwritten digits. It consists

of 60,000 training samples and 10,000 testing samples. Each sample contains a sequence of

events with pixel-level information. The dataset is commonly provided in a binary format,

with each sample including information about the events’ timestamps and pixel locations.

The dataset’s official website offers access to the dataset and further details on its usage and

applications [18].

6.0.2. N-Caltech101: It is a subset of the Caltech101 dataset specifically designed for event-

based vision. It contains images from 40 different object categories. The dataset is tailored

for evaluating event-based object recognition algorithms. The dataset is typically provided

in a binary format, with each sample containing event data representing the visual scene

[19].
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Table 4. Comparison of Selected Event-based Datasets

Index Dataset Recognition Data Format # Samples Size License Reference

1 NMNIST Digit Binary 70,000 1.2 GB CC 4.0 [18]

2 N-Caltech101 Object Binary 9,146 4.0 GB CC 4.0 [19]

3 Bullying10k Action Binary 10,000 47.5 GB CC 4.0 [20]

4 MNIST-DVS Digit AEDAT 60,000 3.72 GB CC 4.0 [21]

5 CIFAR10-DVS Image AEDAT 10,000 8.4 GB CC 4.0 [22]

6 DVS128Gesture Gesture AEDAT 1342 2.9 GB open-source [23]

7 EB-HandGesture Gesture RAW (EVT) 9000 58.7 GB CC 4.0 [6]

6.0.3. Bullying 10K: The Bullying10K dataset is a significant neuromorphic dataset aimed

at fostering privacy-preserving bullying recognition. It comprises a substantial collection

of instances, exceeding 10,000, derived from various sources. Each entry is meticulously

annotated, indicating whether it pertains to bullying or not, providing invaluable ground

truth for algorithmic development. Notably, this dataset stands out for its focus on privacy

preservation, a crucial aspect in contemporary data analysis. With its expansive scale and

nuanced annotations, the Bullying10K dataset serves as a cornerstone for advancing research

in cyberbullying detection while prioritizing individual privacy concerns [20].

6.0.4. MNIST-DVS: The MNIST-DVS dataset is a variant of the traditional MNIST

dataset, specifically tailored for event-based vision systems. It consists of digit images

captured using Dynamic Vision Sensor (DVS) cameras, offering a unique perspective on

handwritten digit recognition tasks. MNIST-DVS employs a setup where the digit is moved

on the screen while the camera remains stationary, capturing the dynamic changes in pixel

intensity asynchronously. In contrast, N-MNIST (NMNIST) keeps the digit stationary and

instead moves the camera to induce motion, capturing events based on changes in the scene’s

visual information. This distinction in setup leads to differing dynamics in the generated

event data, impacting the characteristics and applicability of each dataset in neuromorphic

vision research [21].

6.0.5. CIFAR10-DVS: This dataset is a modified version of the CIFAR10 dataset designed

for event-based vision. It is created by converting the original CIFAR10 static dataset into

an event-based format suitable for event-based cameras. The conversion process involves

transforming the RGB images into event-based representations capturing pixel-level changes

over time. This dataset allows researchers to evaluate image classification algorithms

specifically designed for event-based vision systems. The dataset’s official publication

provides further details on the conversion process and its applications in event-based vision

research [22].
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Figure 7. In this example showcasing the EB-HandGesture dataset, the top section

exhibits RGB images capturing a hand gesture (wave). The bottom section provides the

corresponding DVS event data reflecting the executed gesture.

6.0.6. DVS128 Gesture: IBM DVS128Gesture is a gesture recognition dataset captured

using a DVS128 event camera. It consists of gesture sequences performed by different

individuals, enabling the evaluation of event-based gesture recognition algorithms. The

dataset is stored in the AEDAT 3.1 file format, which organizes the DVS data as polarity

events. Each event in the dataset contains information about the x, y coordinates, and

polarity, which can be extracted from the data field using bitwise operations [23].

6.1. EB-HandGesture:

Various datasets have been developed for gesture recognition, with S. Ruffieux conducting

a comprehensive survey in this domain. While most of these datasets rely on frame-based

cameras like Kinect or stereo cameras, there are also publicly available event-based datasets.

Event cameras such as DAVIS128, DAVIS240, DAVIS346, and ATIS are commonly used for

creating these datasets, with their resolution significantly impacting performance. Higher-

resolution event cameras offer notable advantages across multiple applications. They capture

finer spatial details, facilitating more comprehensive scene representation, crucial for tasks

like precise object tracking and detailed motion analysis. Additionally, higher resolution

enhances object recognition accuracy by capturing more distinct visual cues. Despite

the benefits, existing gesture datasets predominantly employ low-resolution event cameras,

highlighting the necessity for a high-resolution alternative.

We are making our novel EB-HandGesture dataset available open-source. This dataset

was created using the CenturyArk SilkyCam Gen3.0, which offers a resolution of 640x480

and a temporal resolution of 1 microsecond. For data collection, we utilized the Prophesee

Metavision SDK along with the OpenEB framework. The dataset features ground-truth

files with gesture labels and corresponding start and stop times, all obtained through a

Page 16 of 19AUTHOR SUBMITTED MANUSCRIPT - ERX-105596.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Efficient Data Processing Pipeline for Event-Based Vision Datasets 17

customized labeling system designed for event-based data. It encompasses 9000 instances

across 6 hand gestures, performed by 5 participants. These gestures include hand waves,

pointing, the ’rock’ sign, ’scissors’ sign, claps, and arm rolls, and were captured under varying

speeds and lighting conditions. Each instance has a duration of 0.5 seconds, culminating in

1500 instances for each gesture. Figure 5 provides an example from the EB-HandGesture

dataset. A detailed analysis of this new open-source dataset is available here [6].

One key feature of our pipeline is the ability to convert any event-based data format

into the widely-supported .avi format, enabling the visualization of event streams as

video files. These converted avi files, provide a dynamic representation of the event

stream, including changes in pixel intensity and temporal event occurrences. This

feature is particularly useful for analyzing sensor activity, comparing event sequences,

and presenting results in a visually intuitive manner. The sample code of converting

any event data format to avi is publicly available on our GitHub repository [https :

//github.com/aitsam12/Eventdataprocessingpipeline].

7. Future Work

Our proposed pipeline has demonstrated strong performance in handling various event-

data formats with superior accuracy and execution efficiency. Its flexibility, scalability, and

compatibility with emerging sensor technologies make it a valuable tool for event-based vision

research. However, as the field of event vision processing evolves, several new and more

advanced frameworks and algorithms have emerged. Notable examples include the latest

versions of Prophesee’s Metavision SDK 5 (launched on October 2024) [24], which integrates

more robust data processing pipelines and advanced machine learning capabilities for event

data handling, and iniVation’s DVXplorer SDK [15], known for its enhanced performance in

real-time neuromorphic vision tasks. Additionally, frameworks such as ESIM (Event-based

Simulator) [25] have been developed for generating high-fidelity simulated event data, which

has opened new avenues for testing and benchmarking event-based processing systems. In

the future, it will be essential to conduct comprehensive performance analyses comparing

our pipeline with these newer solutions. This will include benchmarking key metrics such

as accuracy, execution efficiency, power consumption, and scalability across larger and more

diverse datasets. Conducting detailed evaluations, particularly in real-time applications and

resource-constrained environments, will help illustrate the strengths and limitations of each

approach. Future work will also include visual comparisons to better understand where

our pipeline stands against these state-of-the-art methods. Additionally, integrating our

pipeline with neuromorphic hardware like Loihi, SpiNNaker platforms will unlock further

performance improvements.

Page 17 of 19 AUTHOR SUBMITTED MANUSCRIPT - ERX-105596.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Efficient Data Processing Pipeline for Event-Based Vision Datasets 18

8. Conclusion

Dynamic Vision Sensors (DVS), representing the core of event-based vision systems, capture

visual information in an asynchronous fashion, responding to changes in scene illumination at

each pixel independently. This article presents our contribution to this evolving field through

the development of a comprehensive data processing pipeline, capable of handling diverse

event-data formats and converting them to widely supported standards, thus addressing the

need for uniformity and efficiency in event-based dataset analysis. We have applied our

pipeline to transform several open-source datasets into five standard data formats and have

introduced a novel high-resolution event-based action dataset to further support research

efforts. Our pipeline not only facilitates a standardized approach for dataset conversion but

also demonstrates superior performance in terms of accuracy, execution speed and power

consumption when compared to existing tools.
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