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Abstract: Predicting credit default risk is important to financial institutions, as accurately predicting 
the likelihood of a borrower defaulting on their loans will help to reduce financial losses, thereby 
maintaining profitability and stability. Although machine learning models have been used in as-
sessing large applications with complex attributes for these predictions, there is still a need to iden-
tify the most effective techniques for the model development process, including the technique to 
address the issue of data imbalance. In this research, we conducted a comparative analysis of ran-
dom forest, decision tree, SVMs (Support Vector Machines), XGBoost (Extreme Gradient Boosting), 
ADABoost (Adaptive Boosting) and the multi-layered perceptron, to predict credit defaults using 
loan data from LendingClub. Additionally, XGBoost was used as a framework for testing and eval-
uating various techniques. Moreover, we applied this XGBoost framework to handle the issue of 
class imbalance observed, by testing various resampling methods such as Random Over-Sampling 
(ROS), the Synthetic Minority Over-Sampling Technique (SMOTE), Adaptive Synthetic Sampling 
(ADASYN), Random Under-Sampling (RUS), and hybrid approaches like the SMOTE with Tomek 
Links and the SMOTE with Edited Nearest Neighbours (SMOTE + ENNs). The results showed that 
balanced datasets significantly outperformed the imbalanced dataset, with the SMOTE + ENNs de-
livering the best overall performance, achieving an accuracy of 90.49%, a precision of 94.61% and a 
recall of 92.02%. Furthermore, ensemble methods such as voting and stacking were employed to 
enhance performance further. Our proposed model achieved an accuracy of 93.7%, a precision of 
95.6% and a recall of 95.5%, which shows the potential of ensemble methods in improving credit 
default predictions and can provide lending platforms with the tool to reduce default rates and 
financial losses. In conclusion, the findings from this study have broader implications for financial 
institutions, offering a robust approach to risk assessment beyond the LendingClub dataset. 
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1. Introduction 
Numerous financial institutions, such as banks and lending platforms, have relied on 

the interest and fees from loans as a source of revenue [1]. To maintain financial strength 
and profitability, these institutions must ensure that borrowers do not default on their 
payments. This objective becomes crucial when considering past financial crises, such as 
the economic breakdown in the late 2000s, where lending to individuals or businesses 
unable to repay their debts contributed significantly to the crises [2,3]. Predicting credit 
default risk, defined as the likelihood that a borrower will fail to fulfil their loan 
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obligations, remains an important challenge for lenders, helping them avoid large losses 
and maintain public trust [4–7]. 

However, traditional rule-based systems, when presented with complex features and 
data, often struggle, which may be less accurate and may not produce reliable predictions 
[8–10]. Recent developments in machine learning and deep learning have shown promise 
in improving predictive accuracy, as they have significantly changed how loan applica-
tions are assessed, allowing lenders to make use of the characteristics of borrowers, such 
as age, employment status, length of employment, income, etc., to determine which of the 
loans will be fully paid or defaulted on [11]. Additionally, these methods can handle and 
process more data and uncover patterns that are difficult and that may be missed by ex-
pert analysts or rule-based systems [12–14]. Yet, challenges remain. The presence of class 
imbalance in credit default datasets and the diversity of techniques for handling outliers, 
normalisation, feature selection and model development create significant complications 
in building an effective model, as choosing a wrong or suboptimal technique can distort 
the data and reduce the efficiency of the predictive model [15–18]. 

In this paper, we address these complications by testing various methods to identify 
the optimal approach at each stage of the model development process. Our study system-
atically evaluates techniques for handling outliers, normalising data, splitting the dataset, 
balancing class distribution and selecting the most important feature. We also propose an 
ensemble model that combines machine learning and deep learning techniques with 
boosting algorithms such as Extreme Gradient Boosting (XGBoost) and Adaptive Boosting 
(ADABoost). Furthermore, by comparing class imbalance techniques like Random Over-
Sampling (ROS), Random Under-Sampling (RUS), the Synthetic Minority Over-Sampling 
Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), Tomek Links, SMOTE-
Tomek and SMOTE with the Edited Nearest Neighbours (SMOTE + ENNs) and assessing 
model performance with multiple metrics, especially recall, we provide a comprehensive 
solution for improving credit default risk predictions. 

In summary, the main contributions of our research are as follows: 
• We introduced a novel approach by leveraging XGBoost to make decisions at various 

stages of the model development process, which allowed us to select and use optimal 
techniques. 

• We compared different class imbalance techniques, analysing their impact on model 
performance metrics. 

• We proposed an ensemble model that enhances predictive accuracy over traditional 
machine learning models by combining boosting classifiers with machine learning 
and deep learning techniques. 
Unlike prior studies that focus on a single aspect of the model development process, 

this research integrates techniques across multiple stages, resulting in a robust and scala-
ble solution for credit default risk prediction. This study is arranged as follows: with the 
subsequent section exploring existing techniques and methodologies related to credit de-
fault prediction (Section 2), followed by the methodology made use of in this study (Sec-
tion 3), then the results obtained (Section 4) and, finally, the conclusion and recommenda-
tions (Section 5). 

2. Related Works 
Loan default prediction is crucial for financial institutions to minimise losses, as de-

fault rates and profitability are highly correlated [19]; therefore, developing models that 
accurately predict loan defaults has become essential, with machine learning techniques 
increasingly being leveraged due to their significant improvement in predictability across 
various financial applications [20–22]. Several models, including logistic regression, ran-
dom forest, decision tree, the Support Vector Machine (SVM), the Multilayer Perceptron 
(MLP), XGBoost and ADABoost have been widely used in credit default prediction. How-
ever, many studies have not adequately addressed the challenge of class imbalance, which 
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can lead to biased models favouring the majority class (non-defaulters). Moreover, there 
has been a limited exploration of hybrid approaches that ensemble predictions from deep 
learning and machine learning models, particularly when combined with boosting classi-
fiers, which as noted by authors in [23–25], are known to improve model robustness. Ad-
ditionally, some studies have relied heavily on accuracy as the evaluation metric, which 
is insufficient in imbalanced datasets where the models may neglect the minority class 
(defaulters) altogether. 

2.1. Supervised Learning Methods in the Prediction of Credit Default 
Selecting the appropriate model to use depends on the type of tasks or problem that 

needs to be solved [12]. In their research, refs. [26,27] categorised various learning meth-
ods, showing that supervised learning methods are better for solving classification tasks 
(yes/no or true/false) and regression (predicting continuous values), while unsupervised 
learning methods are better suited for clustering (grouping data) and dimensionality re-
duction. Given that credit default prediction typically uses borrowers’ characteristics as 
inputs and binary classification as the target variable, unsupervised learning methods are 
not often considered in this context. 

In the use of supervised machine learning models, ref. [20] compared the perfor-
mance of SVM and logistic regression models for the prediction of credit default using 
data from the portfolio of a Portuguese bank. The dataset (1992 non-defaulting customers 
and 1008 defaulting customers) was split into 75% for model training and 25% for the 
validation. While the SVM achieved a strong Receiver Operating Characteristic (ROC) 
score of 98% compared to logistic regression’s 73%, the study noted the difficulty of se-
lecting optimal parameter values for the SVM kernels. This current study addresses that 
difficulty by employing a grid search to identify optimal parameter values. Furthermore, 
the dataset size raises concerns about the generalisability of the model’s performance to 
larger, more diverse credit portfolios. 

Ref. [1] used a LendingClub dataset from 2007 to 2015, employing 70:30 training and 
a validation split to develop random forest and decision tree models. Similar to this cur-
rent study, columns with null values and variables with strong correlation with other de-
pendent variables (multicollinearity) were removed, and, additionally, to evaluate the 
performance of the models, the accuracy score was used. Although the study observed 
that random forest performed better than decision tree with 80% accuracy and 73% accu-
racy, respectively, this was the only major metric used in the evaluation, and, since the 
class imbalance was not handled, accuracy may not be the best metric to use, as the models 
will be biased to the non-defaulters. This study addresses this limitation by handling the 
class imbalance issue and using more evaluation metrics in the assessment of the models. 

Ref. [28] employed a Light Gradient Boosting Machine (LightGBM) and XGBoost for 
the prediction of loan default using LendingClub data from July 2007 to June 2017. The 
study had an interesting approach to cleaning the data, as two separate cleaning pro-
cesses, multi-observational and multi-dimensional methods, were used to identify and 
correct inconsistencies. The dataset was then randomly split into training and test sets, 
with 91.2% of the data used for training and 8.8% for validation in the multi-observational 
method, while the multi-dimensional method used 95.8% for training and 4.2% for vali-
dation. Both methods were used to develop the LightGBM and XGBoost, which are based 
on the Gradient Boosting Decision Tree (GBDT) and are known for efficiently dealing with 
massive and high-dimensional data. For XGBoost, the multi-observational method 
achieved an accuracy of 80.06% with an error rate of 19.94%, while the multi-dimensional 
method attained an accuracy of 79.9% with an error rate of 20.0%. For the LightGBM, the 
multi-dimensional method recorded 80.06% accuracy and 19.94% error, and the multi-
observational method achieved 80.1% accuracy with a 19.9% error rate, ultimately con-
cluding that the LightGBM slightly outperformed XGBoost in predicting loan defaults. 
This current study builds upon this approach, by balancing the data and testing diverse 
techniques to find the optimal solution. 
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In [29], XGBoost was proposed to build credit risk assessment models using data 
from a financial institution in Taiwan over an eight-year period between 2009 and 2016. 
Missing values were removed; additionally, outliers were handled using the Interquartile 
range (IQR) method. The study observed that most of the data used for credit scoring was 
imbalanced; therefore, they used the cluster-based under-sampling method to process the 
imbalanced data, testing various ratios to sample the dataset. The balanced data were split 
using an 80:20 ratio and applied to the models; furthermore, accuracy and the Area Under 
the ROC Curve (AUC) were used as validation metrics, as the proposed model was com-
pared with other models, including logistic regression and the SVM. The authors observed 
that XGBoost outperformed the other models with an accuracy of 90% against 70% and 
77% accuracy scores for logistic regression and the SVM, respectively, and AUC values of 
94% against 77% and 87%, respectively. Although the study achieved impressive results 
with the XGBoost model, the relatively small dataset of 6271 records presents a potential 
limitation for generalising these results to larger datasets. Additionally, even though the 
authors addressed the class imbalance issue, they focused only on using cluster-based un-
der-sampling, without considering other techniques that might be more effective or suit-
able. 

Deep learning is another method that has been crucial in the prediction of credit or 
loan defaults. Originating from Artificial Neural Networks (ANNs), it uses a multilayered 
neural network and processing to imitate the complexity of the human brain in decision 
making [30,31]. In [32], the authors made use of a deep learning model to predict con-
sumer loan defaults using a dataset with 1000 observations obtained from responses to a 
questionnaire created by the authors. This study used Keras, a neural network library that 
runs on TensorFlow. Although this research made use of a deep learning model in the 
prediction of bad loans, it is not directly comparable to this current study, given the mode 
of data collection, which involved selecting eleven top banks and distributing a survey to 
only participants who had taken out loans, which is significantly different from the da-
taset used in this current study. However, similar to this current study, ref. [32] employed 
stratified random sampling. 

The assessment and prediction of lending risk using an MLP with three hidden layers 
was presented by [33] with the LendingClub dataset from the period of 2007 to 2015 for 
model development and evaluation. To handle categorical features, one-hot encoding 
method was used to convert the features to numerical values. Additionally, the output 
variable was classified into three categories using TensorFlow: safe loans, risky loans and 
bad loans, with a majority of the data belonging to safe loans. The class imbalance issue 
was handled using the SMOTE, with 80% of the data used in training. Furthermore, accu-
racy served as the measure of the model’s performance when compared with other mod-
els. The MLP, with an accuracy of 93.2%, outperformed other models, including logistic 
regression (77.1%), decision tree (50.5%), the linear SVM (78.9%), ADABoost (85.2%) and 
the MLP with one hidden layer (62.8%). In that study, no under-sampling or hybrid 
method was used to handle class imbalance. This current study explores this topic by us-
ing various methods to handle class imbalance. 

2.2. Combining Predictions Using Ensemble Learning Techniques for the Prediction of  
Credit Default 

Ensemble learning is a branch of machine learning where multiple learners (models) 
are trained to solve the same problem [34,35]. Instead of using a single model, ensemble 
learning combines the output of multiple models to obtain better predictions [23]. The 
primary idea behind ensemble learning is that the combination of these models can per-
form better than any of the individual models alone. According to [35], there are two steps 
involved in ensemble learning. The first step is to build different models, while the second 
step involves combining predictions from the models. Commonly used methods include 
voting, stacking, bagging, and boosting. These methods create different models by 
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manipulating the training data and model outputs to improve the performance and obtain 
better predictions [25,35,36]. 

Various studies employed these methods when predicting credit default risks. [37] 
used different ensemble approaches, including the bagging and stacking methods to as-
semble various models, including the SVM in the evaluation of credit risks. The authors 
used a British credit card application approval dataset. The dataset contained 1225 bor-
rowers’ detailed information, including 323 defaults. To balance the data, the authors 
oversampled the defaults by duplicating each case twice, which increased the number of 
defaults to 969. The data were further split. A total of 80% was used to develop a multia-
gent SVM-based ensemble learning system across different stages. Additionally, they em-
ployed GridSearch Cross-Validation (GridSearchCV) to determine the parameters of the 
SVM and the kernel and then developed several ensemble approaches using weighted 
averaging. They further compared the performance with a quadratic discriminant analy-
sis, linear discriminant analysis, logit regression, a Feed-Forward Neural Network (FNN) 
and an SVM model, using total accuracy, Type I and Type II error rate and the total accu-
racy for evaluation. The authors noted that the weight averaging approach combining 
Adaptive Linear Neural Network-based (ALNN) models outperformed the other models; 
however, the SVM-based multiagent approach outperformed the ALNN model. While 
this study explored different ensemble learning methods and kernel diversities, their re-
search was focused on SVM-based approaches alone. In contrast, this current study ex-
plores various models, including the SVM. Additionally, this study uses a larger dataset 
and tests various sampling methods, unlike the approach [37] used in handling the class 
imbalance. 

In the use of ensemble methods, ref. [22] used logistic regression and MLP models to 
predict credit default, randomly using the 70:30 ratio to split the LendingClub data from 
2011 to 2013. The Gini coefficient was used for feature selection, as it measures the sepa-
ration capability of the model. The authors subsequently combined the models with two 
ensemble techniques. The first method involved averaging the probabilities from both 
models to obtain the final predictions, while the second method used logistic regression 
as a meta-model in a stacking ensemble, taking the output probabilities from both models 
as input. The first ensemble method performed better than all the other models with an 
accuracy of 84.1% and an AUC of 67.3%, while the MLP model had an accuracy of 76.14% 
and an AUC of 67.27%. The error ratio also reflected this trend, with the first ensemble 
method yielding a lower error ratio of 15.89%, compared to 21.29% for logistic regression 
and 23.86% for the MLP. While [22]’s study focused on traditional and ensemble methods, 
this current study differs, given that boosting classifiers are also ensembled. Additionally, 
the issue of class imbalance is addressed. 

The issue of class imbalance cannot be overemphasised when it comes to loan da-
tasets, as the model will always be biased toward the non-defaulters if not properly han-
dled. In [38], the authors made use of diverse over-sampling and under-sampling tech-
niques for the prediction of credit card default. Additionally, they used two ensemble 
methods, bagging and stacking, as well as K-Nearest Neighbour (KNN), random forest, 
Logistic Model Trees (LMTs) and Gradient Boosted Decision Tree (GBDT) model. Moreo-
ver, three datasets—a Taiwan client credit dataset with 30,000 observations and 6636 de-
faults, a South-German client credit dataset with 1000 observations and 300 defaults and, 
lastly, a Belgium client credit dataset with 284,299 observations (492 frauds) from Septem-
ber 2013—were used to build the models. Class imbalance was handled using near miss, 
cluster centroid and random under-sampling methods. Additionally, Adaptive Synthetic 
Sampling (ADASYN), the SMOTE, the k-means SMOTE, the borderline SMOTE, SMOTE 
Tomek and the random over-sampling method were tested. The data were balanced after 
using a Min-Max scaler to normalise the numerical features. The balanced data were then 
split using the 70:30 ratio to train and test the models. Their study found that over-sam-
pling techniques, particularly SMOTE combined with the GBDT, outperformed the others 
in terms of accuracy (82.5%), precision (82.0%), recall (81.8%) and AUC (89.0%). Although 
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this current study tests various sampling techniques as performed by [38], it is different, 
as it identifies the best method to normalise the data and further ensembles the boosting 
classifiers with other traditional machine learning models, as well as with the MLP (three 
hidden layers). 

Model Optimisation Methods 
In [39], the SMOTE was applied to balance the data used to build a smart application 

for loan approval prediction. The data used were from Kaggle repository and contained 
806 observations and 12 features. Missing values and outliers were handled; moreover, 
the data were normalised and important features selected, with 75% of the data used in 
training logistic regression, decision tree, random forest, the SVM, the KNN, Gaussian 
naïve bayes, ADABoost, dense neural networks, long short-term memory and recurrent 
neural networks, measuring their performance with accuracy, precision, recall and F1-
score. Similar to this current study, the voting approach was used to combine the models 
by taking two approaches: firstly, combining the predictions from all the models and also 
combining three of the best performing models. Ref. [39] observed that the deep learning 
models were less effective when dealing with loan datasets compared to the traditional 
machine learning models, with the second approach outperforming the other models. Alt-
hough [39] handled class imbalance, this current study tested other sampling techniques 
and used more data for the prediction. Additionally, other techniques were explored to 
improve the models’ performance, similar to [40,41], as feature selection techniques were 
used to optimise the models for credit default risk predictions. Ref. [40] used features ex-
tracted from convolution neural networks, as well as Pearson correlation and Recursive 
Feature Elimination (RFE) to select the best features to build a deep learning-optimised 
stacking model to predict joint loan risk, concluding that feature selection played a big 
part in the performance of the final stacking model, with a 6% increase in joint loan ap-
proval. Conversely, [41] used only RFE to select the features used to develop fused logistic 
regression, random forest and Categorical Boosting (CatBoost) models using the blended 
method. Additionally, they balanced the loan dataset using ADASYN. Furthermore, the 
authors highlighted the impact of feature selection, with the fused model performing bet-
ter than the individual models when evaluated on accuracy, recall and F1-score. 

Few studies performed hyperparameter tuning using GridSearchCV. In this regard, 
ref. [42] used GridSearchCV to obtain the parameters to build the MLP, logistic regression, 
random forest, the SVM, decision tree, XGBoost, LightGBM and a 2-layered neural net-
work for credit risk prediction, with XGBoost also serving as the model used to test the 
class balancing method, as well as to obtain the feature importance within the model. Ad-
ditionally, to deal with class imbalance, the authors randomly sampled the default loans 
and non-default loans, thereby under-sampling the data. Accuracy, recall, precision and 
F1-score served as the performance evaluators of the models, with the study identifying 
XGBoost as the best performing model. This study highlighted the effectiveness of 
GridSearchCV in model optimisation. 

This section illustrates how machine and deep learning techniques have been used 
in the prediction of credit default risk. Logistic regression, random forests, decision trees, 
SVMs, and MLPs have been popularly used. Furthermore, the effectiveness of boosting 
classifiers and ensemble techniques in improving model performance and dealing with 
large datasets have been documented. Authors like [29,38,39] have emphasised the im-
portance of handling class imbalance, although different ratios have been used to split the 
dataset. Additionally, hyperparameter tuning and feature selection have been effective at 
enhancing model performance, with metrics like accuracy, precision, recall and the AUC-
ROC commonly used for the evaluation. In conclusion, accurately detecting credit de-
faults remains a concern to financial institutions, especially the role it plays in reducing 
financial losses [43], and, while previous studies have applied various methods to accu-
rately predict credit defaults, no technique has been set as the best. Furthermore, the com-
bining of boosting classifiers, testing different sampling techniques and validating the 



Mathematics 2024, 12, 3423 7 of 32 
 

 

models with various performance metrics remains an area with room for improvement; 
therefore, this current paper aims to solve this issue with a slightly different approach and 
methodology with respect to the existing literature. 

3. Methodology 
This section discusses the methods used in this study, starting with the data collec-

tion process to the model deployment stage. The data collected were from LendingClub, 
which is a lending platform that provides detailed information of each loan that was is-
sued from 2007 to 2018. Given the focus of this study, only the confirmed good and bad 
loans were used; therefore, the target is defined as follows: 

Target(y) = ൜0:         where loan status = “Fully Paid”
1:      where loan status = “Charged off” (1)

To balance the system’s efficiency and have a representative of the data, 30% of the 
data was sampled using a stratified sampling method [44], which resulted in a sample size 
of 403,593, consisting of 323,025 non-defaults and 80,568 defaults, across 152 variables. 
This approach ensured that there were sufficient data without overwhelming the system. 

The framework of our approach, as illustrated in Figure 1, consists of different stages, 
where diverse techniques were tested (when required) to identify the most effective ap-
proach. The process is sequential, which means that each stage must be completed before 
the next stage begins. The subsequent sections outline the data preparation and analysis 
stages. 

 
Figure 1. Research framework. 
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3.1. Data Cleaning 
The next stage involved data cleaning and pre-processing, which prepared the data 

for proper analysis, ensuring the quality and reliability of the data. The approach used 
was similar to [28], which involved performing multi-observation cleaning such as han-
dling missing values, identifying and correcting errors or inconsistencies and removing 
features that could potentially bias the analysis. The dataset contained no duplicates; how-
ever, there were 104 features with missing values. The columns with more than 50% of 
their data missing were excluded from the analysis. Additionally, categorical features 
with a large number of missing values that were deemed as not useful for the analysis 
were removed: �emp_title’ with 142,402 unique values and �title’ with 21,976 unique val-
ues that were similar to the �purpose’ feature and �emp_length’, which showed similar 
bad loan rates (%) across its group, were removed. Moreover, to avoid losing vital infor-
mation from the numerical columns, the strategy to handle the missing values was derived 
based on the distribution (skewness and kurtosis), SciPy, was used in calculating the 
Fisher–Pearson coefficient [45]: 

Skewness = 
m3

m2
3/2 (2)

where 
• 𝑖th central point (𝑚௜) is defined as: 

mi =  1
N෍ (xሾnሿ - xതN

n=1

)

i

 (3)

• N = sample size 
• xത = mean 

Median imputation, which is robust to outliers, was used for skewed features, while 
mode imputation was carried out on features that were multimodal [38,46] to preserve 
data integrity. 

The Pearson correlation coefficient (r) is a filter method that measures the relation-
ship between variables [47] and is consistent with the approach used by [1]. Variables 
above 90% r  with other features were removed, as they could cause multicollinearity, 
which may mislead the model’s performance [48]. It can be calculated as the following: 

Correlation (r) = 
∑ (xi - xത)(yi - yത)ට∑ (xi - xത)2 ∑ (yi - yത)2

 (4)

3.2. Data Analysis 
In this work, we focus our attention to developing a predictive model for credit loan 

defaults and not on the reasons that customers default in their payments. We provided 
the exploratory analysis of the data, to perform further pre-processing, carried out after 
the initial cleaning stage to draw conclusions about the data [49]. Descriptive analysis, 
such as count, mean, median, and standard deviation, were used to summarise the nu-
merical features and identify errors; furthermore, data visualisation was used to analyse 
the features and remove the ones that do not add any information, which allowed some 
features to be excluded, and the state information �addr_state’ to be converted to the re-
gion, so as not to completely miss out on any benefit that the location might have. Addi-
tionally, the descriptive analysis showed that there were outliers and possible errors in 
some features; for instance, �annual_inc’ had a maximum value of GBP 9,522,972, which 
is a possible error and would likely affect the debt-to-income ratio �dti’. The analysis 
showed a maximum DTI of 999.00%. 
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While the full summary of all features was analysed, because of clarity and brevity, 
only features with significant outliers or extreme values (�annual_inc’ and �dti’) are pre-
sented in Table 1. These features were chosen due to their high variability, as indicated by 
the large standard deviations relative to their means, suggesting the presence of extreme 
values that required attention during the data cleaning and preprocessing stages [46]. Spe-
cifically, the standard deviation for �annual_inc’ is approximately equal to its mean, re-
flecting the wide range of incomes in the dataset, including a few exceptionally high val-
ues. Similarly, the standard deviation of �dti’ is high due to outlier values that likely rep-
resent errors or extreme cases in the data. 

Table 1. Descriptive analysis of annual income and DTI. 

features count mean std 50% max 
annual_inc 403,593 76,278.3 71,140.2 65,000 9,522,972 

dti 403,593 18.26 10.38 17.62 999 

These extreme values were further confirmed, as shown in Figure 2. The errors and 
outliers were handled in the data pre-processing stage. 

 
Figure 2. Visualisation of annual income and debt to income ratio (DTI). 

3.3. Data Pre-Processing 
This stage is very important in getting the data ready for model development. Here, 

observed errors were removed, outliers were treated, features were binned and combined 
to capture more information, categorical data were one-hot encoded and transformed to 
numerical data and, finally, the values were normalised [50,51]. At each stage, different 
techniques were tested, using XGBoost, to identify the best technique to utilise, similar to 
[42], who used XGBoost to test the balancing methods and feature selection used on the 
other models. This model was selected because it is simple yet powerful and is known for 
its ability to generalise well to other models; moreover, it is efficient, which helped to save 
time and improve the performance of the models [52]. Furthermore, after the observed 
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errors in features like �annual_inc’ and �dti’ were removed, and categorical features shown 
in Table 2 (full data description can be seen in Table A1) were one-hot encoded, the outliers 
observed in the numerical features were handled, and the data were normalised. 

Table 2. One-hot encoded features. 

Features Categories 
home_ownership (Any, Mortgage, Other, Own, Rent) 
verification_status (Not Verified, Verified) 

purpose 
(car, credit_card, debt_consolidation, educational, home_im-
provement, house, major_purchase, medical, moving, other, 

renewable_energy, small_business, vacation, wedding) 
initial_list_status (F: Fractional, W: Whole) 
application_type (Individual, Joint App) 

region (MidWest, NorthEast, SouthEast, SouthWest, West) 
annual_inc_binned * 

(Very Low, Low, Medium, High, Very High) 
revol_bal_binned * 

* Binned annual income and revolving balance that may capture non-linear relationships. 

3.3.1. Handling Outliers 
Outliers are extreme values that are different from the rest of the data and can influ-

ence some models, which is why it needs to be addressed. The best technique to handle 
the outliers was identified to reduce the effect of the outliers while retaining as much data 
as possible. Z-score, IQR, clip and winsorize methods [53,54] were tested: 
• Standard score (z-score): Informs how far a data value (V) deviates from the mean 

(𝜇), in regard to the standard deviation (𝜎). A Z-score (Z) greater than 3 shows the 
extreme values. It is calculated as follows: 𝑍 =  (V - µ)

σ  (5)

• Interquartile Range (IQR): Q1 (first quartile: 25%) and Q3 (third quartile: 75%) were 
used for the calculation, and values that fall outside these bounds are considered out-
liers. 

• Clip: Considers the values below and above the 1st and 99th quartile as outliers. 
• Winsorize: Limits the extreme values to a specified percentile. 

3.3.2. Data Normalisation 
Features in a dataset with a different range can affect some models. This concern was 

handled by scaling the features using the following normalisation techniques [53,55]: 
• Standard scaler: Scales the new value (n) to follow a normal distribution; however, it 

can be affected by outliers. It is calculated as follows: 

n = 
ni - nmean

σ  (6)

• Min-max scaler: Scales the data to [0, 1] range. Although it is not as sensitive to out-
liers as the standard scaler, it, however, can be influenced by them. It is calculated as 
follows: 

n= 
n - minimum(n)

maximum(n) - minimum(n) (7)

• Robust scaler: Uses the median and the IQR, which reduces the effect of outliers. It is 
calculated as follows: 
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n = 
ni - nmedian

IQR  (8)

3.3.3. Evaluation Metrics 
To assess the effectiveness of the models, including the model used in testing 

(XGBoost), various metrics were used [56]. Additionally, they were used in this stage to 
identify the best pre-processing techniques to use. 
• Accuracy, which measures the ratio of the correct predictions (both “positive” de-

faults and “negative” non-defaults) to the total number of predictions [28,29]: 

Accuracy = 
TP+TN

TP+TN+FT+FN (9)

• Precision, which measures the proportion of the actual defaults among all default 
predictions [38,42]: 

Precision = TP
TP+FP (10)

• Recall, which is also known as sensitivity or the True Positive Rate (TPR), measures 
the proportion of the actual defaults that are correctly identified [38–40], calculated 
as follows: 

Recall(Sensitivity) = 
TP

TP+FN (11)

• AUC, which measures the ability of the model to differentiate between defaulters and 
non-defaulters across all classification thresholds and is particularly useful in an im-
balanced dataset, and the ROC curve plots the TPR against the False Positive Rate 
(FRP) [22,29,38]. 

3.3.4. Identifying Data Pre-Processing Techniques 
Recall, precision and accuracy were metrics used in the selection process, as they pro-

vided a comprehensive view of how the models performed across different dimensions, 
as stated in Section 3.3.3. The results of testing various outlier and normalisation tech-
niques are presented in Table 3, demonstrating how different combinations of pre-pro-
cessing methods impact model performance. 

Table 3. Identifying outlier and normalisation pre-processing methods. 

Outlier Technique Normalisation 
Technique 

Accuracy Recall Precision AUC 

z_score Minmax 0.7961 0.0445 0.5444 0.6969 
z_score Standard 0.7963 0.0449 0.5497 0.6971 
z_score Robust 0.7963 0.0449 0.5497 0.6972 

iqr Minmax 0.8275 0.0035 0.5882 0.6407 
iqr Standard 0.8274 0.0035 0.5263 0.6411 
iqr Robust 0.8274 0.0031 0.5294 0.6410 

winsorize Minmax 0.8040 0.0567 0.5544 0.7032 
winsorize Standard 0.8044 0.0584 0.5625 0.7038 
winsorize robust 0.8045 0.0582 0.5664 0.7039 

clip Minmax 0.8036 0.0544 0.5473 0.7048 
clip Standard 0.8040 0.0556 0.5571 0.7049 
clip Robust 0.8038 0.0550 0.5516 0.7050 
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The combination of the �winsorize’ method for outlier handling and the �robust 
scaler’ for normalisation was the optimal pre-processing strategy, as indicated by slightly 
higher recall (0.0582) and precision (0.5664) compared to other combinations. The �Robust 
scaler’ was selected because it is less sensitive to outliers, as it uses the interquartile range 
to scale features, which is particularly helpful for datasets with significant outliers. Addi-
tionally, Figure 3 shows the distribution of the two critical features �annual_inc’ and �dti’ 
after the outliers were handled, highlighting how the distribution of these features was 
adjusted, with extreme values capped, ensuring that they do not disproportionately influ-
ence the model’s predictions. 

 
Figure 3. Visualisation of the features after handling outliers. 

The �winsorize’ method was selected to handle the outliers, and the �robust scaler’ 
the data normalisation, because of their ability to improve recall without sacrificing the 
overall performance, motivated by the need to prioritise correctly identifying defaults, 
which is important in credit risk prediction. 

3.4. Addressing Class Imbalance 
Class imbalance is a significant issue in predictive modelling, particularly in fields 

like credit risk prediction, where most observations belong to the non-default class [33,37–
41]. This issue can lead to biased models that perform well on the majority class while 
underperforming on the minority class [29,52]. This outcome was evidenced in Section 
3.3.4, when the outlier and normalisation technique were tested, as the model’s accuracy, 
which measures the proportion of correct predictions that the model made [28], was sig-
nificantly biased towards the non-defaults. In contrast, recall, which measures the propor-
tion of the actual defaults correctly predicted by the model [38], showed the model’s 
weaker performance on the minority class. This finding further highlights why the class 
imbalance issue needs to be addressed, especially given this study’s goal of developing a 
model that accurately predicts credit defaults. Additionally, as shown in Figure 4, the 
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LendingClub dataset is imbalanced with 80% more non-default class than the default 
class, making it very important to address this issue. 

 
Figure 4. Distribution of targets. 

There are several techniques that can be used to tackle the issue of class imbalance, 
but no single one is regarded as the best. While popular techniques such as the SMOTE 
and ADASYN are used frequently [38–41], this research requires the identification of the 
best technique to use; therefore, different techniques were tested, as shown in Figure 5. 

 
Figure 5. Class imbalance handling techniques. 

The techniques evaluated are as follows: 
1. Random Over-Sampling (ROS): It works by randomly adding data samples from the 

minority class to the dataset until the whole dataset is balanced, and, although ROS 
uses the majority class (non-defaults) to balance the minority class (defaults), it may 
cause the model to perform well for the training set and poorly for the testing set 
(overfitting), which is due to the duplicated samples, as the model may learn only 
from the defaults (in this case) and may not generalise well to new data [52,57]. It can 
be represented as 

New Sminority = Sminority∪{Sminority duplicated until หSminorityห = Nmajority} (12)

where 
• Sminority = Minority class samples. 
• Nmajority = Number of majority class samples. 
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• |Sminority| = Current size of the minority class. 
2. Random Under-Sampling (RUS): It works by filling the minority class with data from 

the majority class, thereby reducing the majority class until the whole dataset is bal-
anced [52]. This technique may cause a loss of information for the majority, which 
may affect the model when learning new patterns. Unlike ROS, this technique may 
not lead to overfitting [58]. It can be shown as follows: 

New Smajority = Sminority∪{Smajority duplicated until หSmajorityห = Nminority} (13)

3. SMOTE: It works by generating synthetic data through interpolating between the ex-
isting minority class data samples and their nearest neighbour, thereby adding new 
data points without adding duplicates, and, since the minority class samples are in-
creased without duplication, it may prevent overfitting [38,59]. It generates synthetic 
data (xnew) with the following: 

xnew = xi+⋋ ×(xnn - xi) (14)

where 
• xi = minority class. 
• xnn = one of the nearest neighbours. 
• ⋋ = a random value between [0, 1]. 

4. ADASYN: It works in a similar way to the SMOTE, but it focuses on generating more 
synthetic samples for the harder-to-classify minority class [38,41]. The number of the 
synthetic sampled i, (Gi) is calculated as follows: 

Gi = di×G (15)

where 
• di = ratio of the majority neighbours. 
• G = total synthetic samples needed. 
This technique improves classification by focussing on more challenging data. 

5. Tomek Links is an under-sampling technique that cleans up the data by locating and 
removing ambiguous or noisy data samples that are near the decision boundary. 
Given a majority class (x1) and a minority class (x2), if they are the nearest neigh-
bours and they belong to different classes, they form a Tomek Link, and removing 
them will help to clean the boundary between classes [59,60]. It can be represented 
as the following: 

Remove (x1,x2) ൝ if x1 and x2 are nearest neighbours
+

if x1 and x2 belong to different classes
 (16)

6. SMOTE-Tomek: It is a combination of the SMOTE and Tomek Links. Firstly, the 
SMOTE is used to generate the synthetic data samples for the minority class, and, 
then, Tomek Links are removed to clean up the boundaries between classes, thereby 
improving the quality of the synthetic data [56]. 

7. SMOTE+ENN: It is a hybrid technique that improves the quality of the synthetic data 
created by the SMOTE, as the Edited Nearest Neighbour (ENN) is used to remove 
instances of misclassification of the nearest neighbour [58,61]. 
ENN cleaning: หIf xi is misclassified by its k nearest neighbours, remove xiห (17)

This technique can be represented as follows: 
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Sbalanced = ENN(SMOTE(Sminority, Smajority)) (18)

• SMOTE(Sminority, Smajority) generates xnew. 
• The ENN removes the noisy data. 
To address the issue of class imbalance in the LendingClub dataset, the resampling 

techniques were tested using XGBoost and evaluated using accuracy, precision, recall and 
the AUC. After balancing the data, the next step involved testing various splits to deter-
mine the best split to use, with 20%, 25%, 30%, 35% and 40% test ratios evaluated. Ulti-
mately, an 80:20 split was selected for the model development in the next stage, ensuring 
that the appropriate features were chosen. 

3.5. Feature Selection 
Feature selection is a crucial step in model development, and the goal here is to obtain 

features that can be used in simple and efficient models, as deploying a model with a large 
number of features can be computationally expensive; therefore, this stage facilitates the 
reduction and removal of redundant features that may not be useful for model develop-
ment [38,62]. The primary method used in this stage was the wrapper feature selection 
method, Recursive Feature Elimination with Cross-Validation (RFECV), which is a 
method that iteratively uses learning algorithms to select the best features to make use of 
by evaluating the performance of the model [63]. This method aims to find the features 
that gives the best performance using a scoring metric (scorer). Given that the focus was 
to correctly predict defaults, recall was used. Additionally, the �step’ parameter was set to 
1, which indicates that one feature is removed per iteration; moreover, redundant features 
were also removed, thereby ensuring that the best features were selected for the model 
development process. 

3.6. Model Development Process 
This process involved using the selected features in the development of predictive 

models to identify the best performing model that can be used to identify credit default 
risk. Additionally, hyperparameter tuning and ensemble methods are further used to op-
timise the models. 

3.6.1. Predictive Models 
1. Decision tree has a tree structure that works by recursively splitting the data into 

subsets of the tree based on a decision rule [1,28]. In this study, it selected the best 
feature to split based on Gini index criteria—the impurity of a node and the values 
closer to 0 are the purer nodes—and is calculated as follows: 

Gini= 1 - ෍ (pi

c

i=1

)2 (19)

where 
• pi = proportion of the data sample that belongs to the class 𝑖 in a tree node. 
• c = number of classes. 

2. Random forest is an ensemble learning method that combines the predictions ob-
tained from training multiple decision trees to obtain the final predictions [60,64]. 
The final predictions were made using majority voting. Since it is a combination of 
decision trees, it used the Gini as well for splitting [39,42]. 

3. The SVM finds the optimal hyperplane that separates the data into different classes 
[20,43]. It used kernel functions to handle non-linear separation by mapping input 
features into high-dimensional spaces [37,43]. The hyperplane is calculated as fol-
lows: 
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h(xi) = sign(w⋅xi + b) (20)

4. XGBoost builds an ensemble of weak learners in an iterative manner in order to im-
prove on the models’ performance [28,29,42]. It used gradient boosting with specific 
loss functions 𝑙 and regularisation terms Ω(𝑓): 

L(t) = ෍ l ቀyi,yො i
(t-1)+ft(Xi)ቁ +Ω(ft)

n

i=1

 (21)

where 
• 𝐿(௧) = total loss at iteration 𝑡. 
• 𝑛 = data points. 
• 𝑙 ቀ𝑦௜ ,𝑦ො௜(௧ିଵ) + 𝑓௧(𝑋௜)ቁ represents the loss function that measures the difference 

between the true and predicted labels. 
• 𝑦ො௜(௧ିଵ) is the previous iteration’s predicted class. 
• 𝑓௧(𝑋௜), is the current model’s prediction. 

5. ADABoost focuses on creating strong classifiers by combining multiple weak classi-
fiers. It trains weaker learners on the errors made by the previous ones, and, when 
there is a misclassification, it assigns more weight to them [23,24,39]. Final predic-
tions are calculated by the following: 

H(x) = sign ൥෍αtht(x)
T

t=1

൩ (22)

where 
• 𝑇 = weak classifiers. 
• 𝛼௧ = weight for the weak classifier. 
• ℎ௧(𝑥) = predictions for the weak classifier. 
• 𝑠𝑖𝑔𝑛 = determines the final prediction. 

6. The MLP is a feedforward type of ANN that consists of the inner layer, multiple hid-
den layers and an outer layer, and each layer is made up of neurons connected to 
those in the previous and following layers [31,33]. Each neuron uses an activation 
function to introduce non-linearity. Common activation functions include the ReLU 
(Rectified Linear Unit), which is widely used due to its efficiency in solving the van-
ishing gradient problem, which may be encountered with other functions, and the 
sigmoid function, used in the output layer for binary classification tasks [21,42]. The 
architecture of the MLP is important in determining the model’s capacity to capture 
and learn complex patterns. During training, the MLP uses backpropagation to adjust 
the weights of the connections based on the error in the output, minimising the loss 
function [30,32]. The loss function is defined as follows: 

𝐿 = − 1𝑛෍[yi𝑙𝑜𝑔 (yො i)  + (1 − yi) 𝑙𝑜𝑔(1 −  yi) ]n

i=1

 (23)

where 
• 𝑛 = data points. 
• yi = true class label [0, 1]. 
• yො i = predicted probability of the positive class. 

In this study, the choice of hyperparameters to use—such as maximum depth, regu-
larisation, number of neurons, number of layers, and learning rates—was determined us-
ing GridSearchCV, an optimisation technique discussed in the next section. 
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3.6.2. Hyperparameter Tuning 
Hyperparameter Tuning is an important technique that can help optimise each 

model, as it directly influences their capacity to generalise to unseen data [35,42]. In this 
study, we used GridSearchCv to identify the optimal parameters used for model devel-
opment. This technique tests combinations of predefined hyperparameter values through 
cross-validation. The values tested and presented in Table A2 were predominantly chosen 
to strike a balance between reducing overfitting and increasing the performance of the 
models. 

For instance, for decision trees and ensemble methods, parameters like max_depth 
and min_sample_leaf were chosen to control the tree’s complexity and prevent overfitting. 
Values (10, 20) for max_depth and (100, 200, 500) for n_estimators options in random for-
est were chosen to allow the model to capture complexity in the data without becoming 
too complex and to balance bias and variance [65]. For the decision tree, the min_sam-
ples_leaf and min_samples_split values were chosen to help control overfitting by ensur-
ing that the splits do not occur with too few samples. Additionally, the criterion of �gini’ 
and �entropy’ enables the model to explore different methods of node impurity [25,28]. 

For the SVM, the C parameter controlled the regularisation strength, where a lower 
value of C allowed for a larger margin, which simplified the decision boundary. The dif-
ferent kernel types (�linear’, �rbf’, �poly’) were tested to determine the best way to trans-
form the input space for better classification performance [20,37]. Additionally, for 
XGBoost, regularisation parameters such as reg_alpha (L1 regularisation) and reg_lambda 
(L2 regularisation) were tested. These parameters helped to control sparsity as well as the 
magnitude of the model’s weights, enhancing the ability to handle noise in the data. The 
learning_rate (0.1, 0.2) and n_estimators (200, 300, 500) were chosen based on standard 
practise, as a lower learning rate usually needs more estimators for optimal performance, 
but it avoided exceeding the minimum during gradient descent [28,29]. 

In ADABoost, the learning_rate (0.15, 0.2) was set to find a balance between how 
much each learner contributes and the risk of overfitting. For the MLP, the hid-
den_layer_sizes (100, 100, 100) and (150, 150, 150) were chosen to strike a balance between 
depth and complexity, which ensured that there was enough capacity to capture complex 
patterns in the data. The �adaptive’ and �constant’ learning rate were tested, where �adap-
tive’ adjusts based on the model performance and �constant’ ensures a stable learning pace 
throughout the training process [42,66]. The best parameters identified through 
GridSearchCV tuning and used for the model development are shown in Table 4. 

Table 4. GridSearchCV best parameters used for model development. 

Models Params 

Random Forest 
{�max_depth’: 20, �min_samples_leaf’: 1, �min_samples_split’: 2, 

�n_estimators’: 500} 

Decision Tree 
{�class_weight’: None, �criterion’: �gini’, �max_depth’: 15, 

�max_leaf_nodes’: None, �min_impurity_decrease’: 0.01, �min_sam-
ples_leaf’: 1, �min_samples_split’: 2} 

SVM {�C’: 1, �degree’: 2, �gamma’: 1, �kernel’: �rbf’} 

XGBoost 
{�colsample_bytree’: 0.9, �learning_rate’: 0.1, �max_depth’: 20, �n_esti-

mators’: 200, �reg_alpha’: 1, �reg_lambda’: 1.5, �subsample’: 1.0} 
ADABoost {�learning_rate’: 0.15, �n_estimators’: 300} 

MLP 
{�activation’: �relu’, �alpha’: 0.001, �batch_size’: �auto’, �early_stop-
ping’: True, �hidden_layer_sizes’: (150, 150, 150), �learning_rate’: 

�constant’, �solver’: �adam’} 
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3.6.3. Ensemble Techniques 
In this stage, some of the models, as well as the top three best performing models, are 

combined using the voting and stacking method. The first method, soft voting, takes the 
average probability predictions from the models as the final prediction [39,56]. Addition-
ally, the second method uses the stacking method for the combination. Here, a meta-
model was used to obtain the final prediction. The meta-model learns how best to aggre-
gate the predictions to make the final prediction [35,67]. The ensemble methods used in 
this work and how they are combined are shown in Figures 6 and 7, respectively. 

 
Figure 6. Ensemble methods. 

 
Figure 7. Methods used in combining the model predictions. 

4. Results 
In this section, we present the results of the model development process discussed in 

Section 3.6. Additionally, we compare these results with those from other related studies, 
serving as a baseline to further validate the results obtained in this research. However, 
before we discuss the model performance, we first discuss the results related to addressing 
class imbalance and feature selection as outlined in Sections 3.4 and 3.5. Therefore, Table 
5 shows the results of employing the sampling techniques, while Figure 8 shows the re-
sults from using RFECV. 
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Table 5. Sampling implementation. 

Method Accuracy Precision Recall AUC 
None 0.8047 0.5362 0.1101 0.7171 
ROS 0.6874 0.6807 0.7062 0.7559 

SMOTE 0.8766 0.9684 0.7787 0.9284 
ADASYN 0.8745 0.9686 0.7690 0.9266 

RUS 0.6500 0.6465 0.6683 0.7079 
Tomek-Links 0.7947 0.5368 0.1377 0.7197 

SMOTE-Tomek 0.8762 0.9679 0.7779 0.9295 
SMOTE + ENN 0.9049 0.9461 0.9202 0.9654 

As presented in Table 5, ROS performed better than RUS, which coincides with the 
observation made by [38] that the over-sampling technique always performed better than 
the under-sampling technique. While ADASYN, the SMOTE and SMOTE-Tomek showed 
impressive results, the SMOTE + ENN showed the most impressive performance across 
all the metrics; hence, by combining both the SMOTE and the ENN, the data were not only 
being balanced but also the noise or ambiguous data samples that may affect the model’s 
performance were removed [68]. Additionally, with a recall of 92.02%, it showed that the 
model captures the minority class correctly, which is sometimes more important than ob-
taining a high accuracy. Furthermore, given the result, the SMOTE + ENN was used to 
balance the dataset. 

Additionally, Figure 8 shows how the recall changes as the features are added, with 
the optimal features identified when the score plateaus. It also shows the standard devia-
tion of the CV scores, which show the variability and stability of the model’s performance 
across the folds, with 48 features identified as the optimal number of features to obtain 
the optimal recall score of 92.16%. 

 
Figure 8. Features selected. 

Additionally, the results for the feature importance are shown in Figure 9 below, with 
the interest rate, credit score and the loan term identified as the most important features 
in the prediction of credit defaults. Based on these findings and the best parameters listed 
in Table 4 (Section 3.6.3), the models were subsequently developed. 
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Figure 9. Feature importance. 

4.1. Model Performance Evaluation 
4.1.1. Individual Model Performance 

The metrics discussed in Section 3.3.3 were used in the evaluation of the model per-
formance, with the performance of the individual models presented in Table 6. 

Table 6. Individual model result. 

Model Accuracy Precision Recall AUC 
Random Forest * 0.8987 0.8996 0.9656 0.9589 

Decision Tree 0.7778 0.7743 0.9713 0.7256 
SVM 0.7318 0.9476 0.6601 0.8824 

XGBoost * 0.9156 0.9478 0.9330 0.9726 
ADABoost 0.8458 0.8548 0.9439 0.9305 

MLP * 0.8775 0.9008 0.9305 0.9229 
* Indicates models’ part of the ensemble with 3 base-learners. 

Models with ensembled techniques like random forest and XGBoost outperformed 
simpler models like decision tree and the SVM, which shows the advantages of combining 
model predictions to improve their effectiveness. The models—random forest and 
XGBoost—showed strong performances with an accuracy of 89.87% and 91.56%, respec-
tively. Additionally, the recalls, which indicate that the models can effectively identify 
default cases, were 96.56% (random forest) and 93.30% (XGBoost), with high AUC scores 
of 95.89% and 97.29%, which suggest that the models were able to effectively distinguish 
between the defaulters and the non-defaulters. Similarly, with a recall of 92.48%, the MLP 
had a solid performance; however, the SVM had the lowest score, despite having a high 
precision value of 94.76%, which may suggest that the SVM is not able to address the 
complexity of the credit default data. 
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The ROC curve in Figure 10 shows the performance of the individual models across 
different thresholds, displaying how well the models separate the non-default and the 
default class; furthermore, it shows that all the models performed well. 

 
Figure 10. ROC curve (individual models). 

For the individual models, XGBoost with an accuracy of 91.56%, a precision of 94.78% 
and an AUC of 97.26% achieved the best results, which shows how effective the model is 
at handling complex credit default data. The performance can be attributed to XGBoost’s 
ability to create better predictions by combining the predictions from weaker learners, as 
well as the built-in regularisation that helps to prevent overfitting, giving it an edge, espe-
cially when compared to the other models, shown in Figure 11. 

 
Figure 11. Comparative result (individual model). 
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4.1.2. Ensemble Model Performance 
As detailed in Section 3.6.3, the predictions from the individuals can be combined to 

create stronger learners. The result of combining the models’ predictions is shown in Table 
7. 

Table 7. Ensemble model result. 

Model Accuracy Precision Recall AUC 
Voting A 0.9109 0.9099 0.9710 0.9703 
Voting B 0.9166 0.9314 0.9532 0.9687 

Stacking A 0.9369 0.9559 0.9555 0.9781 
Stacking B 0.9188 0.9409 0.9454 0.9708 

Combining the models led to an overall increase in the performance, especially when 
the predictions are combined with the ensemble model, which uses a learner model (meta-
model)—Stacking. Method A, which combines the predictions from all the models, 
achieved the highest result overall (Stacking A), with an accuracy of 93.69%, a precision of 
95.59 and an AUC of 97.81%, which suggests that combining the models with the stacking 
technique led to an improvement in the performance. 

XGBoost and the ensemble methods—Voting A, B and Stacking A, B—performed 
well, as seen in Figure 12; however, Stacking A’s performance is impressive, as it was 
identified as the best model with the ability to effectively separate the classes. This result 
demonstrates the need for the inclusion of more algorithms in the ensemble process; there-
fore, we propose this technique for the classification of credit default risk. Furthermore, 
with a precision and recall of approximately 96%, the model shows how well the tech-
nique can enhance the individual models, as it uses a meta-model to learn how best to 
combine predictions. 

 
Figure 12. ROC curve (all models). 

The comparative result can be seen in Figure 13 below, with Stacking A outperform-
ing the other models, with an AUC of 98%, thereby showing how effective ensemble meth-
ods can be at optimising the performance of the models. 
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Figure 13. Comparative result (all models). 

4.2. Comparison with Baseline Results 
The performance of the proposed model was compared with other related works that 

used datasets similar to the one used in this study, the LendingClub dataset. This com-
parison served as the baseline for further evaluation, with the results summarised in Table 
8 below: 

Table 8. Baseline comparison. 

Reference 
Class Imbalance 

Method Models 
Ensemble 
Technique Data Split 

Performance 
Metrics Best Model 

Best 
Model 
Score 

This study 

ROS, RUS, SMOTE, 
ADASYN, Tomek 

Links, SMOTE-
Tomek, SMOTE + 

ENN 

Random Forest, 
Decision Tree, 

SVM, XGBoost, 
ADABoost, MLP 

(three hidden 
layer) 

Voting, 
Stacking 80:20 

Accuracy, 
Precision, Re-

call,  
AUC 

Stacking 
Based 
Model 

94%, 
96%, 
96%, 
98% 

[1] None 
Random Forest, 
Decision Tree  None 70:30 Accuracy 

Random 
Forest 80% 

[27] None 
LightGBM, 

XGBoost None 91:9 
Accuracy, 
Error Rate LightGBM 

80%, 
20% 



Mathematics 2024, 12, 3423 24 of 32 
 

 

[29] 
Cluster-based un-

der-sampling  

Logistic Regres-
sion, SVM, 

XGBoost, Group 
Method of Data 

Handling 

None 80:20 
Accuracy, 

AUC XGBoost 
90%, 
94% 

[33] SMOTE 

Logistic Regres-
sion, Decision 

Tree, SVM, ADA-
Boost, MLP (one-

hidden layer), 
MLP (three hidden 

layer) 

None 80:20 Accuracy 
MLP (three 

hidden 
layer) 

93% 

The proposed method showed a higher accuracy when compared to baseline results. 
[1] achieved an accuracy score of 80% using random forest on a 70:30 split. Ref. [27] 
reached an accuracy of 80% with the LightGBM on a 91:9 split, while [29] attained a 90% 
accuracy and a 94% AUC with XGBoost using Cluster-based under-sampling on an 80:20 
split. Furthermore, ref. [33] achieved an accuracy of 93% with the MLP using the SMOTE. 
In contrast, our proposed model performed better with 94% accuracy, 96% precision, 96% 
recall and 98% AUC, which shows how well the model predicts credit default risk. The 
combination of identifying the optimal method to use at each stage, including the ad-
vanced class imbalance method (the SMOTE + ENN) and the ensemble technique (stack-
ing), significantly contributed to this improved performance. 

Additionally, SHAPs (SHapley Additive exPlanations) with the XGBoost model were 
used to analyse and explain the features as shown in Table A3, with the features resulting 
in negative values, contributing to the predictions being lower, thereby increasing the like-
lihood of defaults. For instance, a negative �int_rate’ means that higher interest rate 
pushed the prediction towards default, while positive values contributed to the predic-
tions being higher. For instance, positive �fico_range_low’ means that higher credit scores 
moved the prediction away from being classed as a default. With the proposed model 
developed, tested and evaluated, this research shows how well the used methodology 
worked, as testing the techniques to identify the most suitable one contributed to the over-
all performance of the models; additionally, combining the predictions from weaker clas-
sifiers contributed as well. 

5. Conclusions and Recommendations 
In this study, we experimented with data pre-processing techniques such as feature 

normalisation, class imbalance handling and feature extraction to determine the optimal 
solution of feature pre-processing for the LendingClub data. Additionally, different ma-
chine learning and deep learning models were explored to predict the likelihood of loan 
default: random forest, decision tree, Support Vector Machines (SVMs), Extreme Gradient 
Boosting (XGBoost), Adaptive Boosting (ADABoost) and Multi-Layered Perceptrons 
(MLPs) with a three hidden layer. We also experimented with different ensemble tech-
niques such as voting and stacking for model optimisation. The contributions of this re-
search are outlined below: 
1. Developed Model: The stacking ensemble model that combines the predictions from 

all the models were developed and identified as the best performing model. The pro-
posed model is capable of precisely gauging default risk, with a recall of 95.5%, which 
is the true default rate. 

2. Identifying Suitable Techniques: The performance of diverse methods was tested at 
different stages to identify suitable methods to make use of, with the identification of 
suitable methods for data pre-processing (data normalisation and outlier handling 
techniques) tested and documented in Section 3.3. Additionally, the exploration of 
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diverse sampling methods to handle the issue of class imbalance, with the perfor-
mance of each method, was documented in Sections 3 and 4. 

3. An explainable model: SHapley Additive exPlanations (SHAPs) were used in creat-
ing an explainable model that shows the contribution of each feature in making the 
predictions, as shown in Table A3, which explains why each application or borrower 
is classed as default or non-default. 
Moreover, when comparing the results from this study with the baseline results as 

shown in Section 4.2, this study achieved a higher accuracy (93.7%) with the proposed 
model. This study can help lending platforms with the reduction in credit default. It can 
also help in further research, as the performance of diverse techniques and models were 
explored and documented. 

One of the limitations of this study is data availability. The data collection process 
was a bit constrained due to the limited large financial dataset being publicly available; 
moreover, having a recent dataset would have been beneficial in this project. Additionally, 
the techniques and models used were memory intensive, which influenced the decision 
to make use of XGBoost as a test model similar to the approach used by [42], and, since 
this study was carried out under a time constraint, this action further put a limitation on 
the test and refinements that could have been performed. 

Despite the identified limitations, they do not detract from the contribution; rather, 
they serve as an area for improvement and exploration. Furthermore, the techniques and 
findings obtained from this study may create interesting avenues for future research. For 
instance, in the selection of suitable techniques to use, instead of using XGBoost as a test 
model, each technique can be tested on each model to see if different techniques work 
better with different models. Additionally, the methodology can be tested on other credit 
datasets, to further validate the selected framework. 
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Appendix A 

Table A1. Feature description. 

Features Description Remark 
id ID for the loan Excluded 

loan_amnt Loan applied for by the borrower Included 
funded_amnt Amount committed to the loan Excluded: Post-Loan 

funded_amnt_inv Amount committed by the investors Excluded: Post-Loan 
term Loan term, either 36 or 60 months Included 

int_rate Interest rate on the loan Included 

instalment The monthly payment owed by the borrower if the loan originates Excluded: Merged 
with annual_inc 

grade Loan grade Excluded: Assigned 
by LendingClub 
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sub_grade Loan subgrade Excluded: Assigned 
by LendingClub 

emp_title Borrower’s job title Excluded 

emp_length 
Length of employment: 

0: < 1 year 
10: ≥ 10 years 

Excluded 

home_ownership Type of home owned by the borrower Included 
annual_inc Income provided by the borrower Included 

verification_status If the income is verified by LendingClub Included 
loan_status The status of the loan Included: Converted 
pymnt_plan Payment plan for the loan Excluded: Post-Loan 

url The page’s URL Excluded: 
Ambiguous 

purpose Purpose of the loan Included 
title Title of the loan Excluded 

zip_code Borrower’s zip code Excluded: PPI 
addr_state Borrower’s state Included: Converted 

dti 
The debt-to-income ratio using the total debt payments (per 

month) to the total debt obligations, (minus the mortgage, loan) 
divided by the income (per month) 

Included 

delinq_2yrs 
Incidences of delinquency in the past 2 yrs that are 30+ days past 

due Excluded: Post-Loan 

fico_range_low Borrower’s lower FICO boundary range Included 
fico_range_high Borrower’s higher FICO boundary range Excluded: Correlation 
inq_last_6mths Last 6 months inquiries minus inquiries on mortgage and auto Excluded 

open_acc Total credit lines opened by the borrower Included 
pub_rec Number of derogatory public records Included 

revol_bal Total credit revolving balance Included 

revol_util Amount of credit the borrower is using, which is relative to all 
revolving credit Excluded 

total_acc Total credit lines owned by the borrower Included 
initial_list_status Listing status of the loan Excluded 

out_prncp Principal left for the funded amount Excluded: Post-Loan 
out_prncp_inv Principal left for the investors’ funded amount Excluded: Post-Loan 

total_pymnt Total payments on the funded amount Excluded: Post-Loan 
total_pymnt_inv Total payments on the investors’ funded amount Excluded: Post-Loan 
total_rec_prncp Total principal paid Excluded: Post-Loan 

total_rec_int Total interest paid Excluded: Post-Loan 
total_rec_late_fee Total late fees paid Excluded: Post-Loan 

recoveries Post gross charge-off recovery Excluded: Post-Loan 
collection_recovery_fee Post collection charge-off fee Excluded: Post-Loan 

last_pymnt_d Last payment date (month) Excluded: Post-Loan 
last_pymnt_amnt Last payment amount paid Excluded: Post-Loan 
last_credit_pull_d Recent credit pulled by LendingClub for the loan Excluded: Post-Loan 

last_fico_range_high 
The last borrower’s upper FICO boundary range pulled by 

LendingClub  Excluded: Post-Loan 

last_fico_range_low 
The last borrower’s lower FICO boundary range pulled by 

LendingClub Excluded: Post-Loan 

collections_12_mths_ex_me
d Collections in 12 months minus the medical collections Excluded: Post-Loan 



Mathematics 2024, 12, 3423 27 of 32 
 

 

policy_code publicly available policy_code = 1 new products not publicly 
available policy_code = 2 

Excluded: Single 
value column 

application_type Indicates whether the loan is an individual application or a joint 
application with two co-borrowers 

Excluded 

acc_now_delinq The number of accounts on which the borrower is now delinquent Excluded: Post-Loan 
tot_coll_amt Total collection amounts ever owed Excluded: Post-Loan 
tot_cur_bal Total current balance of all accounts Excluded: Post-Loan 

total_rev_hi_lim Description not found Excluded: Unknown 
acc_open_past_24mths Number of trades opened in past 24 months Excluded: Post-Loan 

avg_cur_bal Average current balance of all accounts Included 
bc_open_to_buy Total open to buy on revolving bankcards Included 

bc_util 
Ratio of total current balance to high credit/credit limit for all 

bankcard accounts Excluded 

chargeoff_within_12_mths Number of charge-offs within 12 months Excluded: Post-Loan 

delinq_amnt 
The past-due amount owed for the accounts on which the 

borrower is now delinquent Included 

mo_sin_old_il_acct Months since oldest bank instalment account opened Excluded 
mo_sin_old_rev_tl_op Months since oldest revolving account opened Included 
mo_sin_rcnt_rev_tl_op Months since most recent revolving account opened Included 

mo_sin_rcnt_tl Months since most recent account opened Included 
mort_acc Number of mortgage accounts Included 

mths_since_recent_bc Months since most recent bankcard account opened Included 
mths_since_recent_inq Months since most recent inquiry Excluded 

num_accts_ever_120_pd Number of accounts ever 120 or more days past due Excluded 
num_actv_bc_tl Number of currently active bankcard accounts Included 
num_actv_rev_tl Number of currently active revolving trades Included 

num_bc_sats Number of satisfactory bankcard accounts Included 
num_bc_tl Number of bankcard accounts Included 
num_il_tl Number of instalment accounts Excluded 

num_op_rev_tl Number of open revolving accounts Included 
num_rev_accts Number of revolving accounts Excluded 

num_rev_tl_bal_gt_0 Number of revolving trades with balance >0 Excluded 
num_sats Number of satisfactory accounts Excluded 

num_tl_120dpd_2m Number of accounts currently 120 days past due (updated in past 2 
months) Excluded: Post-Loan 

num_tl_30dpd Number of accounts currently 30 days past due (updated in past 2 
months) Excluded: Post-Loan 

num_tl_90g_dpd_24m Number of accounts 90 or more days past due in last 24 months Excluded: Post-Loan 
num_tl_op_past_12m Number of accounts opened in past 12 months Excluded: Post-Loan 

pct_tl_nvr_dlq Percent of trades never delinquent Excluded 
percent_bc_gt_75 Percentage of all bankcard accounts > 75% of limit Included 

pub_rec_bankruptcies Number of public record bankruptcies Included 
tax_liens Number of tax liens Excluded 

tot_hi_cred_lim Total high credit/credit limit Included 
total_bal_ex_mort Total credit balance minus mortgage Excluded 

total_bc_limit Total bankcard limit Excluded 
total_il_high_credit_limit Total instalment limit Excluded 

hardship_flag Description not found Unknown 
disbursement_method Description not found Unknown 
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debt_settlement_flag Description not found Unknown 
issue_d_yr Loan issue date (year) Excluded: Post-Loan 

earliest_cr_line_yr The earliest credit line reported for the borrower (year) Excluded: Correlation 

Table A2. Hyperparameter grids for model tuning. 

Model Hyperparameters Values 

Random Forest 

max_depth [10, 20] 
min_samples_split [1, 4] 
min_samples_leaf [2, 5] 

n_estimators [100, 200, 500] 

Decision Tree 

max_depth [15, 20, 25] 
max_leaf_nodes [20, 50] 

min_impurity_decrease [0, 0.01] 
min_samples_split [2, 5] 
min_samples_leaf [1, 2, 4] 

criterion [�gini’, �entropy’] 
class_weight [�balanced’, None] 

SVM 

C [1, 10] 
kernel [�linear’, �rbf’, �poly’] 

gamma [�scale’, �auto’, 1] 
degree [2, 3] 

XGBoost 

colsample_bytree [0.7, 0.9] 
max_depth [3, 6, 10, 20] 

learning_rate [0.1, 0.2] 
n_estimators [200, 300, 500] 
subsample [1, 2] 
reg_alpha [1] 

reg_lambda [1.5] 

ADABoost n_estimators [100, 200, 300] 
learning_rate [0.15, 0.2] 

MLP 

activation [�relu’, �tanh’] 
batch_size [�auto’] 

early_stopping [True] 
hidden_layer_sizes [(100, 100, 100), (150, 150, 150)] 

alpha [0.001, 0.002] 
learning_rate [�adaptive’, �constant’] 

solver [�adam’, �sgd’] 

Table A3. Feature contribution. 

Prediction Results 
ID: 865040 1555274 449256 501313 508884 

Status: Default Default Default 
Non-De-

fault 
Non-De-

fault 
Feature Contribution 

int_rate −0.9235 0.1532 −0.1252 0.6710 0.7091 
term −0.3001 −0.3291 −0.2929 −0.4548 −0.5768 

fico_range_low 0.1290 0.0504 −0.3363 0.1065 −0.1803 
dti 0.4284 −0.4859 −0.3480 0.0451 0.4179 

loan_amnt_dti 0.0517 0.0811 −0.0047 0.0663 0.0750 
annual_inc_installment: 0.0011 −0.2472 −0.2640 0.0040 −0.1360 
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bc_open_to_buy 0.0246 −0.0556 −0.0025 0.0364 0.0064 
avg_cur_bal −0.0456 −0.0184 0.0624 −0.0297 −0.0748 

tot_hi_cred_lim −0.0271 0.0088 0.0685 0.0064 −0.1719 
percent_bc_gt_75 1.0439 1.2103 1.3094 0.5351 0.1701 
num_actv_rev_tl −0.2787 −0.1123 −0.3886 −0.1407 −0.0883 

loan_amnt −0.0648 −0.2035 0.2745 −0.0134 −0.2907 
total_bc_limit 0.0304 0.1285 −0.0521 −0.1556 0.0642 

mort_acc −0.0928 −0.1118 −0.1172 −1.1850 −0.5271 
home_ownership_MORTGAGE 0.0250 0.0895 0.1417 −0.1235 −0.1263 

verification_status_Verified −0.0960 −0.0439 −0.0346 −0.0851 0.1597 
home_ownership_RENT 0.0818 0.1043 −0.1973 −0.1385 −0.2050 

annual_inc −0.0110 −0.0312 −0.0881 −0.0814 −0.0116 
total_rev_hi_lim 0.0697 0.1249 −0.0004 −0.1864 −0.0205 
mo_sin_rcnt_tl 0.1624 0.1267 0.1272 0.0026 0.0109 

mths_since_recent_bc 0.1239 −0.5703 0.2025 −0.4710 −0.0046 
mo_sin_rcnt_rev_tl_op 0.1539 0.0383 0.0950 0.0473 −0.0932 

annual_inc_binned_Low 0.0463 0.0340 −0.0008 −0.0401 0.0505 
mo_sin_old_rev_tl_op 0.0286 0.0686 0.0593 −0.1941 −0.1120 

num_actv_bc_tl −0.2203 −0.3038 −0.2853 −0.0558 −0.2246 
purpose_credit_card 0.0523 0.0309 0.0200 0.0375 0.0565 

purpose_debt_consolidation −0.0543 −0.0278 −0.1285 −0.1087 −0.0390 
num_op_rev_tl 0.2198 0.2315 0.1212 0.1651 0.0660 

open_acc 0.0202 0.2411 0.0883 0.0907 0.2031 
pub_rec −0.0108 0.0214 0.0047 0.0118 −0.0085 

purpose_small_business −0.0019 −0.0033 −0.0046 −0.0037 −0.0027 
verification_status_Source Verified −0.0145 −0.2025 0.0056 −0.0941 −0.1220 

pub_rec_bankruptcies −0.0099 −0.0014 −0.0009 −0.0039 −0.0064 
delinq_2yrs 0.1062 −0.0984 −0.0384 −0.0562 0.1431 

revol_bal 0.0037 −0.0216 0.0848 0.0135 0.0657 
region_West −0.0075 0.0516 −0.2981 −0.0250 −0.0322 

purpose_home_improvement −0.0029 −0.0005 −0.0054 −0.0081 −0.0018 
num_bc_sats 0.4341 0.6630 0.4305 0.4034 0.0938 

revol_bal_binned_Very Low 0.0175 0.0072 −0.0849 −0.0346 0.0011 
pct_tl_nvr_dlq 0.0440 0.0280 −0.0540 0.0231 −0.0063 

num_bc_tl −0.0849 −0.0105 −0.1792 −0.0441 −0.0190 
annual_inc_binned_Very Low 0.0005 −0.0012 0.0002 −0.0001 −0.0011 

application_type_Joint App −0.0005 −0.0019 −0.0053 −0.0698 −0.0009 
total_acc 0.0227 0.0935 0.0834 −0.0461 0.0854 

revol_bal_binned_Medium −0.0020 −0.0014 −0.0032 −0.0011 −0.0032 
region_SouthEast −0.0004 −0.0194 −0.0257 0.0106 −0.0222 

annual_inc_binned_Medium −0.0210 0.0002 −0.0368 −0.0064 0.0117 
annual_inc_dti 0.0061 −0.0343 −0.0108 0.0032 0.0064 
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