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Abstract: Ensuring a steady supply of drinking water is crucial for communities, but predicting
how much water will be needed is challenging because of uncertainties. As a part of Battle of Water
Demand Forecasting (BWDF), this study delves into the application of Long Short-Term Memory
(LSTM) networks for water demand forecasting in a city situated in the northeast of Italy. The focus
is on forecasting the demand across ten distinct District Metering Areas (DMAs) over four distinct
stages. To enhance the performance of the LSTM model, an evolutionary optimization algorithm
is integrated, aiming to fine-tune the model’s hyper-parameters effectively. Results indicate the
promising potential of this approach for short-term demand forecasting.

Keywords: deep learning; demand forecasting; optimization; water distribution network

1. Introduction

Water distribution networks (WDNs) are critical infrastructure systems that ensure
the supply of clean water to urban areas. Water demand is pivotal in efficient operation
and planning of WDNs. Accurate water demand forecasting is vital for sustainable water
management in the face of population growth, urbanization, and climate change. Forecast-
ing demand models are divided into long-term and short-term models. Long-term demand
forecasting is usually based on a yearly and monthly basis, while short-term models are
limited to smaller horizons, like one or several days, with daily or hourly time steps. There
are a wide range of methods for water demand forecasting, including machine learning
techniques such as artificial neural networks, support vector machines and random forests.
Regression methods such as multilinear and nonlinear, and genetic programming are other
available models [1].

Deep learning models are the next generation of artificial neural networks, which are
widely used in many fields such as image processing and natural language processing
as well as water demand forecasting [2]. A Recurrent Neural Network (RNN) is a deep
learning model which can memorize short-term information. This feature makes the RNN a
powerful tool for time series prediction [3]. The Long Short-Term Memory (LSTM) model is
a variation of an RNN. It can handle long time series by memorizing long-term information
as well as dealing with the vanishing gradient problem [4].

Using the LSTM model requires several hyper-parameters such as the number of
units in the hidden layer, batch size, and window size. Using an optimization algorithm
for the optimal determination of these hyper-parameters is a common idea [5]. In this
study, a coupled Particle Swarm Optimization (PSO) and LSTM model is implemented
for short-term water demand prediction, as a part of Battle of Water Demand Forecasting
(BWDF) in the third WDSA-CCWI joint conference.
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2. Methodology

The proposed model in this study is based on using an optimized LSTM deep learning
mode, which is introduced in the following.

2.1. LSTM

Long Short-Term Memory Networks, a type of deep learning sequential neural net-
work, are designed to address the challenge of retaining information over time. Unlike
traditional RNNs, LSTM was specifically developed by Hochreiter and Schmidhuber [6]
to combat the issue of the vanishing gradient problem encountered in RNNs and other
machine learning algorithms. More details can be found in the literature [4,6,7]. In this
study, the LSTM module of the TensorFlow library is used in Python.

2.2. PSO

The Particle Swarm Optimization (PSO) algorithm is inspired by the movement of
bird flocks and fish schools and is developed based on the concept of swarm intelligence.
In this algorithm, each particle represents a possible solution to the optimization problem.
Initially, an arbitrary number of particles is produced and evaluated. Then, through an
iterative process, the particles move towards the optimal point. The movement of each
particle depends on its previous movement direction, the location of its best position so far,
and the absolute best location reported so far among all particles. The stopping condition
of the algorithm can be defined as a certain number of iterations, no significant change,
and/or the reaching of an acceptable solution [8].

2.3. LSTM-PSO

The proposed model is based on using PSO for minimizing the Mean Squared Error
(MSE) of the forecasting model, considering LSTM hyper-parameters as decision variables
(Figure 1). In other words, PSO tries to find the optimal settings for the LSTM model.
Herein, batch size, number of training epochs and number of units are selected as optimized
hyper-parameters.
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3. Case Study

A real WDN located in the northeast part of Italy is selected as the case study. It
contains ten District Metering Areas (DMAs) and the future forecasting demand for each
DMA is the main question. There are four series of available flow data for each DMA, and
four prediction models for different periods are required. More details can be found in the
BWDF instructions [9].

In this study, 10 parameters in three categories are assumed to be effective in future
demand, including:
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• Weather data: rainfall depth, air temperature, air humidity, and wind speed.
• Calendar data: the hour of the day, day of the week, day of the month, and month of

the year.
• Binary data: holiday or not holiday, and summertime or not summertime indices.

An LSTM model with 10 input nodes (for input parameters) and 10 output nodes (for
DMA flow) is created and trained with different settings. To find the optimal setting, a PSO
algorithm is implemented, and results are discussed in the next section.

4. Results and Discussion

Results for 10 DMAs’ demand forecasting are presented in Figure 2. It contains
10 comparisons for each DMA and two more for training (80%) and testing (20%) data
in all DMAs. For each DMA, the train and test data are plotted as blue and black cir-
cles, respectively. In addition, the identity line is plotted as a dashed red line for a
better comparison.
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Figure 2. Comparing predicted and actual flow for (a–j) DMA 1 to 10, (k) all DMAs train data and
(l) all DMAs test data.

As can be seen, the accuracy of the predicted values is almost acceptable for all DMAs.
To quantify the comparison, the coefficient of determination (R2) for each DMA is presented
in Table 1. In some cases, like DMA 5 and 8, the agreement between actual and predicted
data are at the highest level. In some other cases, like DMA 1 and DMA 6, the model is not
able to provide a good estimation of demand. It seems that there are additional important
factors influencing demand flow within these DMAs.
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Table 1. The coefficient of determination (R2) for the model evaluation.

Data DMA 1 DMA 2 DMA 3 DMA 4 DMA 5 DMA 6 DMA 7 DMA 8 DMA 9 DMA 10 All DMAs

Training 0.718 0.802 0.829 0.867 0.972 0.644 0.870 0.938 0.758 0.872 0.9718

Testing 0.622 0.774 0.816 0.814 0.947 0.589 0.840 0.887 0.691 0.852 0.9501

All 0.699 0.796 0.827 0.857 0.967 0.633 0.964 0.928 0.744 0.868 0.973

5. Conclusions

This study has demonstrated the promising potential of an optimized LSTM network
as a deep learning model, integrated with a PSO algorithm, for short-term water demand
forecasting in a city in northeastern Italy. The analysis of predicted values across various
DMAs reveals generally acceptable levels of accuracy. This research contributes to ongoing
efforts in efficient water demand forecasting by employing deep learning techniques and
optimization algorithms. This methodological framework represents a significant step
towards future advancements in water distribution network management, ultimately
ensuring the availability of clean water for communities.
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