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Abstract: Improving the efficiency and performance of control systems in food processing remains
a significant challenge for engineers and researchers. In this paper, Proportional, Integral, and
Derivative (PID) control; Model Predictive Control (MPC); and Adaptive Model Predictive Control
(AMPC) were implemented on a Continuous Flow Ohmic Heater (CFOH) pilot plant to process
tomato basil sauce. The sauce, composed of tomato puree, basil, spices, and other ingredients,
was used to assess the effectiveness of these advanced control strategies. This research presents a
case study on the pilot-scale heating of tomato basil sauce, with applications in the broader food
industry. The performances and energy efficiencies of the different control techniques were compared,
demonstrating significant improvements in controlling the CFOH process. The results highlight the
industrial practicality of using CFOH technology with advanced process controls for food processing.

Keywords: thermal processing; development; control systems; ohmic heating; tomato sauce

1. Introduction

Ohmic heating (OH) involves the direct application of electric current to food prod-
ucts, where electrical energy is converted into heat within the product itself, similar to
the behavior of a resistor. This process achieves high thermal efficiency by eliminating
the conventional heat transfer mechanisms, such as conduction or radiation, from exter-
nal sources to the food [1,2]. The advantages of OH compared to conventional heating
include faster heating, higher energy efficiency, unlimited heating depth, and volumetric
heating [3–5]. The fundamental structure for OH system consists of at least two electrodes
to pass current to the food medium. The OH can be designed as a batch system or a
continuous flow system. In the batch OH system, a fixed quantity of food remains in
continuous contact with the electrodes throughout the heating process. In contrast, the
Continuous Flow Ohmic Heater (CFOH) allows food products to flow through a heating
chamber where the electrodes are installed, facilitating continuous heating. For industrial
applications that require long holding times during processes like cooking and evaporation,
the batch OH system is typically employed. A notable drawback of the batch OH system
is the occurrence of uneven heating in the absence of a mixing mechanism. This uneven
heating is termed thermal stratification [1]. However, the CFOH offers broader potential for
industrial applications compared to batch and conventional heating systems, primarily due
to its improved processing speed. In addition, the continuous flow design minimizes the
contact time between the food product and the electrodes, reducing the risk of fouling. This,
combined with the uniform heat distribution achieved through ohmic heating, ensures
that food quality is better preserved. The reduced processing time further contributes
to minimizing thermal damage, making CFOH an efficient and quality-focused heating
solution for industrial food processing [6]. Furthermore, CFOH systems offer the potential
for industrial scalability while maintaining precise control over both temperature and
residence time, which is crucial for meeting the specific requirements of different food
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products. This ensures consistent product quality and enhances energy efficiency, making
CFOH systems an ideal solution for large-scale food processing applications [7].

The general design of the CFOH includes an infeed pump to transport the food and
holding tubes to attain the desired lethality, which adds to the complexity of the system.
Various configurations, like parallel plate, co-axial, multi-point, and perforated electrodes,
have been deployed for batch and continuous flow OH systems. The electrode material is
also carefully selected to be highly conductive and corrosion-resistant, as well as compatible
with the food product, to prevent any chemical reactions during the heating process that
could compromise food safety and quality [1–5,8,9].

Foods with a high content of water and ionic salts, whether in homogeneous or
heterogeneous form, are ideal for OH applications [1]. OH is utilized in various industrial
processes, such as preheating [10], cooking [11], extraction [5,6,12], sterilization [13,14], and
pasteurization [15–17], where precise temperature control is essential to achieve effective
microbial lethality while maintaining food quality. Additionally, energy efficiency in
these processes is a growing concern, prompting industries to evaluate and optimize their
control systems.

The Proportional–Integral–Derivative (PID) controller is the most widely used tra-
ditional control method in these systems. However, due to its single-input nature, PID
control often struggles to meet the increasingly stringent requirements for modern heating
processes. It tends to provide limited temperature control precision and lacks built-in
energy-saving features, making it less suitable for advanced applications that demand both
high accuracy and optimized energy consumption [18,19]. This highlights the need for
more intelligent control strategies in the food processing industry.

In response to the limitations of traditional control methods, studies have introduced
advanced algorithms, such as artificial neural networks, and neuro-fuzzy systems to im-
prove the energy efficiency and thermal comfort of centralized heating systems [20–22].
These algorithms have yielded continuous advancements in system performance. However,
there is an inherent challenge in balancing the conflicting objectives of maximizing thermal
comfort and minimizing energy consumption and computational demands. A promis-
ing solution to this challenge is Model Predictive Control (MPC), which uses predictive
models to optimize control over a set time horizon, thereby minimizing cost functions.
Unlike traditional controllers that target a single objective, MPC allows for a more flexible
control by addressing multiple control goals simultaneously within an optimization frame-
work [23]. Additionally, MPC offers significant potential for reducing energy consumption
and greenhouse gas emissions while enhancing thermal comfort [24].

However, a traditional MPC system is designed around a nominal operating point,
where the control model is valid, often relying on a linearized version of a nonlinear system
to approximate a linear time-invariant (LTI) model. In contrast, Adaptive Model Predictive
Control (AMPC) continuously updates the operating points of the system based on real-
time data. This dynamic adjustment ensures that the control model accurately reflects
the changing conditions of the system, maintaining consistency and improving control
performance over time [25].

These controllers show significant potential for application in industrial processes.
However, gaps remain in the literature regarding the energy efficiency of CFOH systems
at the pilot-plant level and the feasibility of implementing advanced process control in
such settings. This paper aims to address these gaps by analyzing the performance of
the traditional Proportional–Integral–Derivative (PID) control, Model Predictive Control
(MPC), and Adaptive Model Predictive Control (AMPC) in the processing of tomato basil
sauce using a CFOH pilot plant.

2. Materials and Methods
2.1. Sample Preparation

A total of 50 L of tomato sauce was prepared from commercially available pure tomato
puree purchased from a local market (Figure 1a), which was then mixed with basil, spices,
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olive oil, and other ingredients (Figure 1b). The proportion of oil to other ingredients was
approximately 4% of the total volume.
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2.2. Heating Process

The tomato basil sauce was processed using the Continuous Flow Ohmic Heater
(CFOH). Prior to heating, the sauce underwent initial mixing in the infeed tank to ensure
homogeneity. Continuous paddling was maintained throughout the process to ensure
uniform composition during heating. The CFOH heating chamber for processing the sauce
is shown below in Figure 2.
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The Continuous Flow Ohmic Heating (CFOH) system comprises components, in-
cluding a computer, infeed and outfeed tanks, a heating chamber with three colinearly
arranged electrodes, thermocouples, fiber optic temperature sensors, and a control panel.
The system operates at a high voltage (HV) range from 0 to 4.2 kV and a maximum power
output of 10 kW. High voltage is applied to the central electrode, positioned between
the infeed (electrode 1) and outfeed (electrode 3) electrodes, creating two distinct heating
sections: one between the infeed and central electrode, and another between the central
and outfeed electrode. Figure 2 illustrates the configuration of the applicators/electrodes
and the applicator housing, which are connected to the outfeed tank at the top and the
infeed tank via a pump at the bottom.

The system features a human–machine interface (HMI) for manual control and is
also linked to a personal computer (PC) for automated control. The heating chamber,
constructed from peek insulating polymer, has a diameter of 0.02 m and a total length of
1.5 m. Titanium oxide electrodes are used within the system. Voltage, current, power, and
temperature data were simultaneously recorded in real time from the Programmable Logic
Controller (PLC) using an Open Platform Communication (OPC) server (KepserverX) on a
lab-based PC. The OPC communication facilitates read/write access to the PLC, the storage
of real-time data trends, and the implementation of both classical and advanced controllers.
The tomato basil sauce, initially prepared at room temperature, was heated to 90 ◦C at a
constant flow rate of 1 L/min in the CFOH system. The heated sauce was then collected in
the outfeed tank.

Although the ingredients of the tomato basil sauce contained a reasonable quantity
of olive oil, the presence of salt and ionic spices was sufficient to significantly raise the
electrical conductivity of the sauce. During the heating process, the temperature of the
product was monitored using optic fiber temperature sensors positioned along the heating
chamber. Additionally, a set of two thermocouples was used to measure the product infeed
temperature and to validate the outfeed temperature. PID, MPC, and AMPC controllers
were implemented in real time using the Open Platform Communication (OPC) server,
interfaced with the Programmable Logic Controller (PLC) of the Continuous Flow Ohmic
Heater (CFOH) system. The controllers were tasked with maintaining a target temperature
of 90 ◦C. Energy efficiency was evaluated based on the time required to reach the set
reference temperature, temperature precision, and system power consumption. Each
controller was tested over a 6 min operation period to obtain the performance results.

2.3. Implementation of PID, MPC, and AMPC

Before implementing the controllers, it was necessary to calibrate both the power and
the mass flow rate of the system. The calibration of the infeed pump was particularly
important because the pump is regulated by a motor inverter housed within the CFOH
control unit. The motor inverter adjusts the pump’s flow rate by varying the frequency of
the voltage applied to the pump. This calibration is ensures that, when a specific frequency
is set, either manually or automatically by the controller, the corresponding flowrate is
accurately achieved in L/min.

Secondly, the calibration of the HV (0–4.2 kV) thyristor was necessary to ensure the
effective control of the RMS voltage (Vrms) delivered to the primary side of the transformer,
which has a turns ratio of 1:10. A dimensionless input range from 1 to 100 was calibrated to
correspond to a Vrms range from 0 to 415 V that exhibits a non-linear relation. The complete
procedures for both calibrations are detailed in our previous publication [26].

These calibrations are then mapped and communicated with the PLC-based CFOH
control unit using OPC technology. This approach allows seamless real-time data exchange
and facilitates the direct deployment of controllers designed in the MATLAB/Simulink
environment onto the PLC. Figure 3 shows the implemented plant controller architecture
implemented to achieve and control the desired temperature for the processing of the
tomato basil sauce sample.
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2.3.1. Implementation of PID

PID controllers are commonly utilized for the control of closed-loop processes. In
designing the PID controller, we considered a single input single output (SISO) system,
where the primary regulated variable is the output temperature, while other process
parameters, such as mass flow rate, are maintained at a constant level. The equation
governing the PID controller is expressed as follows:

R(t) = Kp·x(t) + Ki

∫ t

0
x(t)dt + Kd

dx(t)
dt

(1)

The proportional term, Kp, is determined by the difference between the desired
reference temperature and the actual measured value of temperature at each time step,
effectively representing the temperature error. The integral term, Ki, Ki

∫ t
0 x(t)dt, accounts

for the cumulative sum of past errors, while the derivative term, Kd, dx(t)/dt, evaluates
the rate at which the error changes, helping to assess whether the error decreases. In
this context, Kp helps to reduce the rise time, Ki addresses the steady-state error, and Kd
improves the settling time and minimizes overshoot. The PID controller was configured
using the Zeigler–Nicholas tuning method to obtain the proportional (P) gain of 2.5, an
integral (I) gain of 0.2, and a derivative (D) gain of 0 [27]. To reduce the influence of noise,
voltage limits were imposed on the controller, constraining its operational range. These
voltage limits were determined based on real-time data, taking into account variations in
electrical conductivity and the system’s power requirements.

During the heating process, the product flow rate is maintained constant at 1 L/min.
The PID controller is provided with a reference for the desired output temperature. The
temperature at the outlet is monitored using two optical fiber temperature sensors posi-
tioned at the heater’s outlet. Additionally, a thermocouple is placed outside the heating
area to further validate the readings from the optical fiber sensors. The measured tem-
perature is compared to the reference temperature, and the resulting error is fed into the
PID controller. The PID controller then sends a dimensionless signal, ranging from 0 to
100, to the HV thyristor. This signal corresponds to a specific high voltage applied to the
electrodes. The effective performance of the PID controller is achieved through careful
tuning of the controller gains.

2.3.2. Implementation of MPC and AMPC

Model-based Predictive Control (MPC) is an advanced approach that employs the
processing model to predict the future outputs of the model according to system behavior.
At each time step, MPC determines the optimal control action by solving a constrained
optimization problem, which takes into account predictions of future costs, disturbances,
and constraints over a moving time horizon. This approach is often referred to as “receding
horizon” control because the optimization process continually updates as new data becomes
available. The fundamental concept is that short-term predictive optimization can lead to
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optimal long-term performance, as the prediction error remains smaller over short intervals
compared to long-term predictions.

The key distinction between MPC and traditional control methods lies in its use of
real-time prediction and optimization, rather than relying on precomputed control laws.
However, a major challenge with MPC is the need to solve the optimization problem at
every time step, which has historically limited its use to systems with slow sampling rates,
typically below 1 Hz. Recent advancements, such as explicit MPC, address this limitation
by solving the optimization problem analytically and storing the results in a lookup ta-
ble, allowing for the rapid evaluation of the control policy. The MPC is mathematically
represented by Equations (2) and (3).

x(k + 1) = Ax(k) + Buu(k) + Bvv(k) + Bdd(k) (2)

y(k) = Cx(k) + Dvv(k) + Ddd(k) (3)

The matrices A, Bu, Bv, Bd, C, Dv, and Dd are parameters that can change over time. u
is the control input or manipulated variable (MV), y is the plant output, x denotes the plant
model states, v represents the measured disturbance, d is the unmeasured disturbance, and
k represents the time index. A conventional MPC controller typically operates around a
linearized and fixed nominal operating point (x), where the plant model determines the
optimal control action (u). For the MPC applied in this study, the specific properties are
outlined below:

A =

[
0.999 0.295

−7.2 × 10−4 0.970

]
, Bu =

[
8.27 × 10−5

5.48 × 10−4

]
, Bv = 0, Bd = 0, C = [1 0] (4)

Dv = 0, Dd = 3.3 × 10−4.

Sample time (ts) = 0.3 s;
Rate of change of manipulated variable (∆u) = 2.78 × 10−4;
Output variable weight = 0.0011;
Prediction horizon = 30;
Control horizon = 3.
The control and prediction horizons were configured based on the residence time

of the food product within the heating chamber. The prediction horizon was selected to
account for the time required for the product to flow from the inlet to the outlet, as well as
to accommodate the temperature build-up in the CFOH chamber. In contrast, the control
horizon was defined to ensure that the controller could take corrective actions within
the necessary time frame to maintain optimal heating conditions. Additionally, matrix
coefficients and the weights for the manipulated and the output variables were selected
based on the constraints and cost functions observed during real-time operation. These
assessments build upon the controller design methodologies detailed in [26].

However, for an Adaptive Model Predictive Control (AMPC), the nominal operating
point is continuously updated over time to align with the evolving plant model. This allows
the operating point to vary as necessary to remain consistent with the updated system dy-
namics. The AMPC can be represented by the equations expressed in Equations (5) and (6).

x(k + 1) = xn + A(x(k)− xn) + B(u(k)− un) + ∆xn (5)

y(k) = yn + C(x(k)− xn) + D(u(k)− un) (6)

For this AMPC, the parameter matrices represented by A, B, C, and D are updated
over time; and xn denotes the nominal operating point of the AMPC. ∆xn represents the
nominal state increments, un is the nominal input, and yn is the nominal output. For the
AMPC implemented in this research, the same properties as those used in the MPC were
applied, with the addition of nominal state increments ∆xn = 0.000278, yn = 0.0010, and un
= 20. The advanced process controls, including PID, MPC, and AMPC, were designed and
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developed prior to the experiment. The development of these controllers, along with the
integration between MATLAB and the PLC-based CFOH unit, has been detailed in [7].

2.3.3. Energy Analysis

In the experiments, the tomato basil sauce was heated to 90 ◦C when PID, MPC, and
AMPC controllers were independently deployed on the Continuous Flow Ohmic Heater.
During the heating process, the flowrate of the tomato basil sauce was kept constant at
1 L/min. The measured infeed temperature of the sauce was 24 ◦C and the measured
infeed electrical conductivity was 0.85 S/m. The energy analysis can be expressed as
Equations (7)–(9).

∑ Energyin= ∑ Energyout (7)

∑ Energyin=
.

mCp(Tin − Troom) in+Eelectrical (8)

∑ Energyout=
.

mCp(Tout − Tin) out+Eloss (9)

where ∑Energyin represents the total energy input to the CFOH, while ∑Energyout cor-
responds to the energy output due to the ohmic heating effect and the thermophysical
properties of the food product. Eelectrical denotes the electrical energy supplied to the ohmic
heater. The term

.
m represents the mass flow rate, Cp is the heat capacity of the food product

being heated, Tin is the inlet temperature of the food product entering from the infeed
tank, Troom is the ambient room temperature, and Tout is the recorded outlet temperature.
The energy losses, Eloss, considered in the system are due to thermal conduction to the
applicators and heat dissipation at the titanium electrodes. These losses are quantified by
Equation (10).

Eloss= ∇·(k(T)·∇T) +
.

mCTi(Tout − Telectrode) loss (10)

In Equation (10), CTi represents the heat capacity of titanium and Telectrode denotes
the initial temperature of the electrodes. The latent heat of vaporization is not taken into
account since the only point of release is through the applicator outlet. The energy efficiency
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3. Results and Discussion

During the ohmic heating of the tomato basil sauce, the controller objectives are:

• Desired transient response to user temperature input: This ensures that the tempera-
ture rise within the heating chamber is not too fast or too slow. This goal also places
emphases on eliminating temperature over-shoots in order to prevent boiling and
pressure build up within the heating chamber.

• Desired steady-state response: This objective eliminates steady-state errors at the
setpoint temperature.

• Robustness: This ensures that the CFOH has a stable and controllable response.

Figure 4 shows the temperature response of the CFOH when the tomato basil sauce
was heated to a desired reference temperature of 90 ◦C using a PID controller. The electrical
power supplied by the controller during heating is also shown as recorded by an onboard
power meter in the control panel. The performance of the PID controller is shown by the
deviation of the output temperature from the setpoint temperature. The trend of the energy
efficiency was also shown. As seen in Figure 4, the rapid heating derived from OH was an
advantage as the outfeed temperature is close to the setpoint of 90 ◦C in less than 2 min of
run time.

Figure 5 shows the temperature response presented when the MPC controller is used
for heating. The MPC controller has a shorter settling time of 90 s compared to that of the
PID controller of 117 s, as shown in Table 1.
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Table 1. Performance comparison of the PID, MPC, and AMPC controllers.

Controller Settling Time-2% Criteria
(s)

Max. Overshoot
(◦C)

Max. Undershoots
(◦C)

PID 117 91.2 88.8
MPC 90 91.2 88.8

AMPC 76 91.6 89.7

The response from applying the AMPC controller is shown in Figure 6. The perfor-
mance of the AMPC controller in terms of temperature transient time, steady-state error,
temperature overshoots, temperature undershoots, and settling time exceed those of both
the PID and MPC controllers. The settling time from the AMPC controller was observed to
be 76 s—a much shorter time compared to the 117 s and 90 s of PID and MPC, respectively.



Appl. Sci. 2024, 14, 8740 9 of 12

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 12 
 

to be 76 s—a much shorter time compared to the 117 s and 90 s of PID and MPC, respec-
tively. 

 
Figure 6. Temperature response of heating tomato basil sauce with the AMPC controller. 

The performances of the PID, MPC, and AMPC controllers are further evaluated in 
Table 1 below based on the objectives of the controller. According to Table 1, the AMPC 
controller has the shortest settling time of 76 s, which indicates that the final and setpoint 
temperature of 90 °C is reached (with a 2% criterion) the quickest. The PID controller is 
the slowest to reach the setpoint, at 117 s. The performance of the PID and MPC controllers 
are similar in terms of the maximum overshoot and maximum undershoot temperature 
observed. With the AMPC, the maximum overshoot observed was 91.6 °C, which is higher 
than that of both MPC and PID. However, the AMPC has a higher maximum temperature 
undershoot of 89.7 °C, which indicates that the deviation from the setpoint temperature is 
the lowest compared to other two implemented controllers. 

Table 1. Performance comparison of the PID, MPC, and AMPC controllers. 

Controller 
Settling Time-2% 

Criteria 
(s) 

Max. Overshoot (°C) Max. Undershoots 
(°C) 

PID 117 91.2 88.8 
MPC 90 91.2 88.8 

AMPC 76 91.6 89.7 

Table 2 shows the root-mean-square error (RMSE) of the temperature response of the 
PID, MPC, and AMPC controllers when compared to the temperature setpoint of 90 °C. 
The RMSE comparison is taken after the first 60 s of heating. From Table 2, the weighted 
average error between the setpoint temperature and actual temperature for the AMPC is 
1.18, which is the lowest compared to the PID and MPC controllers. A low RMSE value of 
1.18 indicates a good value when compared to 90 °C. This indicates less than 2% deviation 
from the setpoint temperature. In terms of performance comparison between the control-
lers, the AMPC has the lowest RMSE value. 

Figure 6. Temperature response of heating tomato basil sauce with the AMPC controller.

The performances of the PID, MPC, and AMPC controllers are further evaluated in
Table 1 below based on the objectives of the controller. According to Table 1, the AMPC
controller has the shortest settling time of 76 s, which indicates that the final and setpoint
temperature of 90 ◦C is reached (with a 2% criterion) the quickest. The PID controller is the
slowest to reach the setpoint, at 117 s. The performance of the PID and MPC controllers
are similar in terms of the maximum overshoot and maximum undershoot temperature
observed. With the AMPC, the maximum overshoot observed was 91.6 ◦C, which is higher
than that of both MPC and PID. However, the AMPC has a higher maximum temperature
undershoot of 89.7 ◦C, which indicates that the deviation from the setpoint temperature is
the lowest compared to other two implemented controllers.

Table 2 shows the root-mean-square error (RMSE) of the temperature response of the
PID, MPC, and AMPC controllers when compared to the temperature setpoint of 90 ◦C. The
RMSE comparison is taken after the first 60 s of heating. From Table 2, the weighted average
error between the setpoint temperature and actual temperature for the AMPC is 1.18, which
is the lowest compared to the PID and MPC controllers. A low RMSE value of 1.18 indicates
a good value when compared to 90 ◦C. This indicates less than 2% deviation from the
setpoint temperature. In terms of performance comparison between the controllers, the
AMPC has the lowest RMSE value.

Table 2. RMSE values of the PID, MPC, and AMPC controllers.

Controller Setpoint Temperature (◦C) RMSE Value

PID 90 2.99
MPC 90 1.83

AMPC 90 1.18

Table 3 shows the mean energy comparison of the different controllers in Figures 4–6.
The mean efficiency of the controller is recorded from 60 s to 300 s. The mean efficiency is
taken after 60 s to ensure appropriate temperature build up within the heating chamber.
Table 3 reveals that the conversion of electrical energy to heat with the CFOH is highest
when the AMPC controller is adopted, compared to PID and MPC. This indicates that the
rate of conversion of electrical energy to heat is the highest with AMPC. When heating
up the tomato sauce (in the first 60 s), low energy efficiencies were observed for all three
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deployed controllers. This is due to the initial temperature building up within the heating
chamber and the viscosity of the tomato sauce. The heating rate and energy efficiency
conversion is generally low in the initial build up for product with a higher viscosity [1].

Table 3. Energy consumption and energy efficiency of the implemented controllers.

Time (s) PID Power
(KWh)

MPC
Power
(KWh)

AMPC
Power
(KWh)

PID EF (%) MPC EF
(%)

AMPC EF
(%)

0–60 4.41 4.70 4.70 35.14 33.57 33.98
60–300 71.47 71.89 70.76 88.72 88.96 89.81

The faster heating rate of the CFOH comes with detrimental effects, such as temper-
ature overshoots, uneven heating, boiling, and large steady-state errors. Hence, a steady
rise in temperature is preferred. This steady rise in temperature is seen in Figures 4–6
and ensures the uniform heating of the tomato sauce and that the tomato sauce does not
boil within the heating chamber. Therefore, the PID, MPC, and AMPC controllers were
tuned to remove temperature overshoots for achieving the desired temperature profiles.
The efficiency seen from the results does not take into consideration the energy loss in the
positive displacement infeed pump. The energy dissipated in the pump is assumed to be
isolated from the heating process.

The CFOH process demonstrated in this study shows a comparable results with the
various heating technologies discussed in [28]. The study assessed several innovative and
conventional food preservation methods, with the aim of evaluating and comparing the en-
ergy efficiency of high-pressure processing, microwave volumetric heating, ohmic heating,
and conventional thermal treatments. Their findings indicated that energy efficiency for
ohmic heating systems tends to improve as the scale of the equipment increases.

4. Conclusions

The results presented in this research suggest that the industrial application of Con-
tinuous Flow Ohmic Heating for tomato basil sauce can be a more sustainable and viable
alternative to conventional heating methods. The heating experiments were conducted
using tomato basil sauce prepared with pure tomato puree, basil, olive oil, and other
spices proprietary to the recipe. A classical PID controller and advanced controllers (MPC
and AMPC) were developed using a validated mathematical model, and were uniquely
implemented using an OPC server via MATLAB/Simulink for effective control in real time.
This study presents the first instance of obtaining and reporting such experimental results.

The experimental results established that the CFOH system has an energy conversion
efficiency of at least 88.72%. Additionally, the analysis showed that this efficiency can be
further increased by applying advanced controllers, such as MPC and AMPC. It was also
observed that there were no significant differences in electrical power consumption when
comparing PID, MPC, and AMPC controllers, indicating that the observed energy efficiency
was largely a function of the controller performance.

Future work will focus on enhancing the CFOH system to include pasteurization
and sterilization capabilities. Plans include adding holding tubes to assess the degree of
lethality in comparison with conventional heating methods. Furthermore, the potential for
heat recovery during the cooling phase of the food materials will also be explored.
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