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Abstract—The increasing prevalence of social robots in today’s
world has made it crucial to have autonomous systems that can
interact with humans and adjust to their behaviour. Doing so
requires a deep understanding of the human mind, including
complex mental states such as beliefs and preferences. To tackle
this issue, we have developed a model that can identify false
beliefs using the principles of Theory of Mind (ToM), a unique
human cognitive mechanism that attributes mental states to
others. False belief understanding has always been the primary
benchmark used to evaluate ToM in psychology, and this still
remain true when testing it in machine systems such as robots.
Our model is a modified version of the Bayesian Theory of Mind
(BToM), a probabilistic model that reasons on agents’ mental
states regarding their interactions within the environment. To
test the model’s performance, we set up a complex assistive
scenario with a robot and two human agents playing with toys.
In this scenario, the model serves as the cognitive component
of the robot, responsible for organising a room with toys while
considering the preferences and beliefs of the agents regarding
the toys’ locations. We have provided results to demonstrate
the model’s performance in different conditions. Additionally,
we have used the Unity Engine as a platform to simulate the
cleaning scenario and show the robot’s role in such situations.

Index Terms—Theory of Mind, False Belief understanding,
Social Robotics, Bayesian Network, Reinforcement Learning

I. INTRODUCTION

Nowadays, we are facing a rising amount of autonomous
robots in our everyday lives, whether in personal environ-
ments, like household cleaning using devices such as Roomba
[1], or in public spaces, including museums [2], [3]. Those
robots are supposed to engage with people to facilitate com-
munication with each other autonomously. They require ex-
ceptional behaviours to engage multiple people according to
their preferences, personalities and needs. This adaptability is
commonly referred to as “personalisation”, the ability to tailor
the robot’s behaviour to various users according to their traits.
Numerous studies have demonstrated that personalisation is
a key factor in fostering trust, engagement and long-term
human-robot interaction (HRI) [2], [4], [5].

Identify applicable funding agency here. If none, delete this.

Fig. 1. Simulated environment created with Unity Engine, including the
agents, the robot and the items. The agent A1 is skating in P1 (playground
1), while A2 is playing with the ball in P2 (playground 2). The robot is at the
entrance E, waiting to help the human if needed. More information regarding
the environment is provided in Section IV.

These adaptations are challenging and necessitate that the
robot be fully aware of its users and surroundings. To achieve
this goal, we have shifted our focus to psychology, exploring
the cognitive ability known as Theory of Mind (ToM). ToM
involves the human capacity to infer the mental states of
others, including their beliefs, desires, and intentions [6].
By delving deeply into this cognitive process, ToM endows
humans with the ability to predict the actions of others based
on their visual perceptions.

As an extension of our recent work [7], we have developed
a cognitive model to bestow social robots with ToM in an
assistive task. The environment, which was created by using
the Unity Engine, involves a robot organising rooms in a



complex setting with two toys and two human agents who can
interact with them (overview of the environment in Figure 1).
Within the simulation, the robot adopts various strategies to
assist the agents in playing with their preferred items according
to their beliefs. To achieve this, we aim to implement the
model proposed by Baker et al. the Bayesian Theory of Mind
(BToM) [8]. BToM is a probabilistic model that leverages
Bayesian inferences and partially observable Markov decision
processes (POMDPs) to predict people’s beliefs and desires.
By using POMDPs to represent the agent’s planning and
inference about the world, BToM reasons about the agent’s
intention to accomplish a specific task based on its beliefs.

In this project, we are interested in predicting agents’
mental states in “false beliefs understanding” (FBu) through
their interactions within the environment. Researchers have
predominantly explored FBu understanding to investigate ToM
capabilities in human psychology, particularly with infants.
This exploration aims to analyse infants’ ability to discern mo-
ments when individuals hold beliefs that contradict reality [9]–
[12]. A foundational experiment, known as “Sally-Anne” test
(SA) as been widely used not only in the field of psychology
research but also in robotics, with various adaptations [7]. The
experiment introduces two characters, Sally and Anne, wherein
Sally has a basket, and Anne has a box. Sally puts a marble
in her basket and leaves the room. While away, Anne moves
the marble from Sally’s basket to her box. Subsequently,
participants are asked, “Where will Sally look for her marble
when she returns?”. A significant part of people who have
developed ToM will answer “Sally’s basket”.

In this context, we are keen on implementing this process
within our scenario, involving an agent adopting false beliefs
during interactions. The cognitive model is subsequently em-
ployed to comprehend the agents’ actions by predicting their
beliefs and preferences. We demonstrate the model’s perfor-
mance in various conditions, where agents exhibit specific
behaviours. As a results, we endorse the model’s efficacy in
inferring and tracking the agents’ mental states.

II. RELATED WORKS

ToM has been extensively studied in the field of psychology,
with a particular focus on children’s understanding of people’s
mental states. Several researchers have indicated that children
undergo cognitive development, enabling them to understand
others’ mental states, including beliefs, desires, emotions,
and intentions [9]–[14]. As mentioned earlier, the experiment
widely used as measurement for FBu understanding is the SA
test. Some experiments involve the active participation of chil-
dren interacting directly with the environment [15]–[17]. The
interaction of children serves as the basis for evaluating FBu.
Other experiments focus on participants’ ability to understand
FBu and manipulate it in specific game scenarios [18].

The application of ToM principles has gained significant
interest in advancing autonomous and intelligent systems in
computer science and robotics. Traditionally, ToM research
has been associated with psychology. However, leveraging
Bayesian Networks (BN) [19], widely used graphical models

Fig. 2. The cognitive model incorporates the principles of BToM. This
modified version involves the robot in the loop, taking the human’s mental
state as input and making decisions accordingly, such as bringing items and
explaining their locations.

in data analysis, has enabled the development of ToM-capable
agents. This technique has empowered psychologists and re-
searchers to better understand how beliefs influence decision-
making in children when faced with FBu situations [20], [21].

After this breakthrough, other researchers delved into the
world of probabilistic graphical models (PGMs) to create ToM
for social robots. For instance, Vinanzi et al. [22] developed a
BN that can predict a robot’s action based on the beliefs and
actions of a human informant. Another remarkable example is
Baker et al.’s BToM [8], [23], which employs Bayesian and
POMDPs to represent how individuals infer others’ goals or
preferences. The authors compared their model to the cognitive
process through an interactive experiment involving an agent’s
movement in a grid-world environment. Given the promising
outcomes, numerous studies have incorporated this model into
their work. For instance, [7] utilises a modified version of
BToM to ascertain the cognitive states of users involved in
HRI, while [24] learns individual preferences of drivers.

There are other models found in literature that utilised
neural networks as interpreters for human mental states. In
fact, Oguntola et al. [25] have created an interpretable modular
neural framework to model the intentions of observed entities.
This framework was put to the test in a rescue task within a
Minecraft’s 2D grid world.

III. PROPOSED APPROACH

Inspired by the BToM model proposed by Baker et al.
[8], [23], our cognitive model predicts the mental states of
a dynamic agent for the decision-making of an autonomous
robot providing support. Figure 2 presents an overview of
the model, with the addition of the robot in the loop, in-
fluencing the human during action execution. The robot is
capable of moving items, delivering them to specific places,



and providing explanations to users, such as the location of
preferred items and their availability. It can also request users
to relinquish items they are playing with so that others can use
them. These actions are rooted in the robot’s understanding
of human minds as observed through their interactions with
the world. The robot’s model predictions follow three steps:
(1) given the world’s disposition and the agent’s position,
the robot’s BToM model determines beliefs through Bayesian
Inference; (2) based on the agent’s beliefs and actions, the
robotic cognitive model infers the agent’s preferences using
rational plans designed as POMDPs; (3) the prediction of the
agent’s intentions is defined as a combination of beliefs and
preferences. Further details are provided in the subsequent
paragraphs.

The Bayesian inference enables the robot-embedded cog-
nitive model to update the agent’s beliefs regarding location
and the world’s disposition. In contrast to the method in
[8], [23], we create a dynamic environment where the items
can move at different locations, making it more challenging
for agents to accurately perceive their surroundings. The
update of the agent’s beliefs is based on prior knowledge,
the current state of the world and the agent’s observation.
It represents the agent’s beliefs as a probability distribution
over the set of possible worlds W = {w1, . . . , wn}. This
take into account the observation space O, including all the
possible observations the agent can make {o1, . . . , on} where
on represent the observation of the world wn. The action space
A includes motion actions {Up, Down, Right, Left and Stay}
and interaction with items {Take and Drop}.

To update the agent’s belief about the next world wi is true
at time t, we consider the prior knowledge, the current state of
the world, and the agent’s observation. We denote the belief
that the next world wi is true at time t knowing the prior
world wj at t− 1 as bt(w

i
t), where i, j ∈ {1, . . . , n}. Hence,

we update the belief of wi
t at t, regarding the prior belief

bt−1(w
j
t−1) of the world wj , the likelihood P

(
oit | xt, w

i
t

)
of observing the agent state xt and the world wi at t, and
the probability P

(
xt, w

i
t | xt−1, w

j
t−1, at−1

)
of observing the

agent move from position xt−1 to xt and the world changing
from wj

t−1 to wi
t given the action at−1, with a ∈ A. We

defined a transition function f(wi
t, w

j
t−1) to represent unex-

pected change in the world (i.e., when i ̸= j) and emphasise
the belief when the agent has FBu. Using the Bayes rules, we
can update the Bayesian belief bt(wi

t) as followed:
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with:

f(wi
t, w

j
t−1) =

{
r

len(PW ) , if i ̸= j
1

len(PW ) , else

where r is a numerical factor determined to highlight the
importance of FBu, and len(PW ) represents the size of all
possible worlds the agent can observe when moving from xt−1

to xt. After conducting various tests, we decided to set the

Fig. 3. Start of the scenario where A1 is using S and A2 is using B. The
paths of A1 and A2 are represented by the red and blue lines, respectively.
The steps taken by A1 serve as reference for Section V.

factor to r = 8, as it appeared to be the most appropriate
value to represent the change in the agent’s belief.

As mentioned earlier, POMDPs represent the possible plans
of an agent regarding their preferences and beliefs. This part of
the robotic cognitive model uses a Boltzmann Value iteration
algorithm [26], [27] to learn the possible policies that the
agents follow regarding their preferences. The agent’s POMDP
state space includes the agents’ position and beliefs, and the
reward function R(x,wi, a) generates the utility to be in a state
x according to a certain world wi and an action a. Each action
has a cost of 1, except the ”playing” action, which is valued as
the reward of the agents to play with the item according to their
preferences. When the agents are in goal states, the reward
appears as the distance between them and their preferences.
In the end, the convergence of the algorithm generates the Q-
Values for each state-action pair describing the likelihood of
the agents performing action regarding their beliefs b, positions
x, and the world’s setting wi: P

(
a | b, x, wi

)
.

In the last step of our process, we calculate the joint beliefs
and preferences to determine the agent’s intention. Essentially,
the agent’s desire to achieve a specific goal through internal
motivation, such as their beliefs and desires, can be defined
as their intention [28]. The agent’s intention in this context
reflects their reasons for interacting with their preferred items
based on their beliefs. The goal of this computation is to
deduce the agent’s beliefs and desires regarding their observed
actions. We represent the joint probability at a given time step
t ≤ T , by considering the sequence of actions {a0, ...., aT−1}
executed by the agents regarding their positions along a path
x0, ...., xT−1 starting from time 0 and going up to T − 1:

P (bt, dt | x0:T−1, a0:T−1) ∝ P (bt, dt | x0:t−1, a0:t−1)

P (xt:T−1, at:T−1 | bt, dt)

This give the joint probabilities of both mental states and the
computation is similar to the forward-backward algorithm (FB)
in Hidden Markov Model [29], [30].



Fig. 4. Representation of the different scenario where A2 is playing with S and A1 is following three different paths according to its behaviour. The steps
taken by A1 serve as reference for Section IV and V.

(a) The subsequent steps taken by the robot to deliver the skate to A1

and the ball to A2.
(b) The overall path followed by the robot to assist the agents.

Fig. 5. Here is an example of the robot’s role in organising the environment while taking into consideration the mental states of the agents.



IV. EXPERIMENT

A. Incorporation of multiple scenarios

As explained in Section I, we use the scenario of a cleaning
robot that organises a playground environment to assist two
agents playing with toys. The environment consists of two
playground areas, P1 and P2, where two agents, A1 and A2,
can play with different toys, such as a ball B and a skate
S. Each playground has an assigned storage room, S1 and S2,
respectively, that are interconnected and linked to the entrance
room E, which connects to the external environment O. When
the agents are located in S1 or P1, they have full observations
about those locations and cannot observe what is happening
in S2, P2, E, and O. The same applies when they are in the
second part (S2 and P2) of the environment. When the agents
are in the entrance room E or the outside environment O, they
can only observe what is happening inside of those rooms.
In other words, they can not observe any other rooms. By
observing the agents’ behaviours interacting with the toys and
navigating within the environment, the robot’s model infers
their mental states regarding their preferences and beliefs
about the environment (i.e., their locations). These mental
states serve as decisions for the robot when interacting with
humans, e.g. acknowledging agents when their preferred toy
is not available or avoiding them to have FBu by returning the
toys to their original location.

To assess the robotic cognitive model, we analyse it in
different scenarios where one of the agents, here A2, misleads
the other agent A1 into developing false beliefs. Figure 3 and
4 depicts the scenario we describe in the following lines. In
Figure 3, A1 and A2 are respectively playing with the skate
and the ball in P1 and P2 (A). A1 decide to store the skate
in S1 (B) and take a walk outside (D and E). Meanwhile,
A2 wants to play with S and decides to retrieve it on the
opposite side of the room (C and D). However, A2 exchanges
the location of S with B and takes S in the other playground
P2 to dupe the other agent (E and F). As a result, we have at
this moment A2 playing skate in P2 and B in the storage room
S1. Then, the first agent returns to the entrance (F) and follows
different paths relating to the conditions. Figure 4 depicts the
different paths followed by A1 according to the conditions
explained in detail below:

• Scenario 1: A1, located outside of room (step 4), enters
S1 where the agent initially placed S in (step 5). Upon
discovering that the ball is present instead, A1 decides
to move to the other storage room, S2 (step 6). Upon
realising that A2 is playing with the skate (step 7), A1

decides to leave and returns to the entrance, E (step 8).
• Scenario 2: In the second scenario, A1 follows the same

pattern as the previous one (steps 4 to 7). However,
instead of leaving for the entrance, the agent decides to
return to S1 (E2), takes B (step 8), and plays with it in
area P1 (step 9).

• Scenario 3: In the third scenario, A1 is not interested in
playing with S and prefers to play with B. Consequently,
the agent moves to its belief’s location in S2 (step 6),

notices that the ball is not present (step 6), and goes to
S1 (step 7) to play with the ball in P1 (step 8).

Using those various scenarios, we test the robot’s model
inference regarding the beliefs and the preferences in Section
V.

B. Tasks performed by the robot

This work focuses on integrating an autonomous system
with ToM as an assistive machine. The robot’s task involves
cleaning and organising the environment, all while interacting
with agents and adjusting its behaviours based on their beliefs
and preferences. More specifically, the robot uses the cognitive
model in Figure 2 to represent each agent’s mental states and
take decisions. It considers the activity performs by A1 and
A2 and performs the action such as bring(item,location) (bring
an item to a location). For example, consider the scenario
depicted in Figure 5, where A1 strongly desires to play with
S.

When entering storage room S1, the robot can predict the
desire of A1 and explain to the agent that S is currently
occupied (steps 1 and 2). The robot can also act as an
intermediary between the agents by requesting A2 to leave
the skate for A1 and play with the ball instead (step 3).
Subsequently, the robot delivers the skate to A1 so that the
agent can play with it (step 4) and the ball to A2 (steps 5 and
6) before returning to its initial position (step 7). Importantly,
the entire process is conducted with the approval of A2, as
the robot is designed to interact in a positive manner with
users. This interaction demonstrates the potential of using ToM
to guide the robot’s decisions in facilitating seamless user
interactions.

V. RESULTS

For the purpose of validating the performance, we analyse
the inferences made by the robot-embedded cognitive model
regarding the preferences and beliefs of A1. Results are
depicted in Figures 6 and 7 representing how the model track
the agent A1’s mental states based on the path it followed.
These results are then provided to guide the simulated robot
bringing the appropriate items to the agent according to its
beliefs and preference.

A. Beliefs

For the beliefs, the robot’s model tracks and infers the
locations where A1 thinks B and S are located (P1, P2, S1,
S2). We compared the ground truth and predictions regarding
the agent’s beliefs for each item in Figure 6. To determine the
ground truth, we manually represented the expected beliefs
according to the scenario, assuming that the agent starts
with equiprobability for both items. The model’s predictions
are generally in accordance with the true beliefs with some
difference when the agent’s belief changes, e.g. the ball’s
belief between steps 8 and 9 in scenario Scenario 2. This
is common occurence when using the forward-backwards
algorithm, which requires time for the information to pass
through and adjust to the actual value. We will explain in



Fig. 6. The robot’s model prediction and ground truth about A1 beliefs regarding the ball’s and skate’s location. The x-axis depict the position of A1

regarding the agent’s position and the steps depicted in Figure 3 and 4. The y-axis represent the agent’s beliefs as a probability distribution.

detail how the information about A1’s belief aligns with each
scenario.

In the initial steps, which are common to all scenarios (step
0 to 5), the robotic cognitive model correctly implies that S
is located in storage S1 since A1 is directly interacting with
the skate and knows its location. On the other hand, the agent
has no precise knowledge regarding the ball’s location, but it
knows that this one is either present in S2 or P2. That follows
our initial hypothesis since the agent could observe the objects
present in S1 and P1 during the first steps (steps 0 and 2) but
not in S2 or P2.

In scenarios Scenario 1 and Scenario 2, when the agent

goes back to visit the first storage, it finds the ball instead of
the skate and updates its beliefs (step 6). When A1 decides to
go to S2 (step 7), the agent’s beliefs match the world’s actual
state (B in S1 and S in P2). The agent then updates its beliefs
in step 9, about its actions when taking the ball to play with
it in P1 (Scenario 2), or not modifying the belief when going
back to the entrance (step 8 in Scenario 1).

In Scenario 3, we observe that the robot’s model has already
predicted a strong belief for the agent to retrieve B in S1,
despite the possibility of the object also being in P1, when
compared to the ground truth (step 6). This demonstrates a
particularity of the forward-backward algorithm [31], which



Fig. 7. The robotic cognitive model prediction about A1 preferences regarding the ball’s (left bars) and skate’s (right bars). The x-axis depict the position
of A1 regarding the agent’s position and the steps depicted in Figure 3 and 4. The y-axis represent the agent’s preference as probabilities.

uses both past and future information to make predictions.
Since the agent is moving to the next state in S1 and retrieving
B in S1 (step 7), the robotic cognitive model anticipates this
behaviour in the prior step.

B. Preferences

Similarly to the beliefs, we manually establish the ground
truth for the preferences regarding the scenario. In all condi-
tions, we assume that the agent has no preferences regarding
both items since it goes outside (step 0 to 4). However, the
robot’s BToM model infers that the agent prefers the ball
because it places the skate into the storage S1. The reason
is that we consider an important reward when the agent plays
with one of the items, which decreases considerably when
the agent disposes of them. Although we did not capture this
specific behaviour, it was intentional, as we wanted to focus
on tracking preferences during false belief situations.

This is particularly portrayed in step 5 when the agent
returns to play with one of the toys. In Scenario 1, the agent
prefers to play with S, which is accurately captured by the
model when A1 enters S1 (step 6). Similarly, in Scenario 2,
the cognitive model identifies the preference for the skate when
entering S1. Conversely, in Scenario 3, the preferences switch

to the ball when the agent goes in S2 (step 6). This implies that
A1 will enter the storage rooms where it believes its preferred
item is located. There is a symmetry between Scenario 1 and
Scenario 3, illustrating the agent’s inclination to be drawn to
its first choice. In Scenario 3, the agent can play with its
favourite item (B), whereas in Scenario 1, it faces a limitation
due to the non-availability of the skate, currently in use by A2

(steps 7 and 8). Therefore, we did not change the preference in
Scenario 1 with the ground truth since the agent preferred to
go to the entrance instead of playing with the ball. The model
understands this difference between the two scenarios, which
is consistent with the values depicted by the ground truth.

Alternatively, in Scenario 2, the robot’s model captures the
evolution of the agent’s interest in items when A1 decides to
play with the ball instead of the skate (steps 8 and 9). As
a result, the model effectively captures the evolution of the
preferences for A1 regarding its actions. Moreover, the model
dynamically captured the preferences, a feature that has been
previously noted in [8] but has yet to be fully demonstrated.
However, further research is needed to verify the effectiveness
of the robot’s model in a wider range of situations.



VI. CONCLUSION

Our research paper proposes a cognitive model that in-
tegrates ToM into social robots, enabling them to predict
mental states in a cleaning scenario where two human agents
are playing with toys based on their preferences and beliefs.
Building on our previous work [7], this updated robotic cog-
nitive model incorporates the baseline of BToM to enhance its
adaptability in complex false belief scenarios within dynamic
environments. Our results have demonstrated its ability to infer
and track an agent’s beliefs and preferences through their
interactions. Furthermore, we have implemented a simulated
assistive scenario wherein a social robot supports agents with
false beliefs. Our findings reinforce the robot’s model per-
formance in various conditions and highlight the potential of
ToM in autonomous systems to aid in complex situations. They
also emphasise the importance of allowing machine to adapt
their behaviours to users when predicting their cognitive states
and actively participate by interacting them, particularly when
individual has beliefs that contradict the reality ( FBu). This
processing approach aligns with the procedural steps employed
in certain psychological experiments to measure ToM ability
for people [15]–[17].

Moving forward, we plan to test this robot-embedded
cognitive model in a real-world HRI experiment to gather
direct inputs from participants and enrich the decision-making
process. This experiment will not only serve as additional
validation for our model but also offer insights into people’s
perceptions when interacting with a robot equipped with such
a cognitive process.
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