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ABSTRACT Industry 4.0 derived technologies have the potential to enable a new wave of digital manu-
facturing solutions for semi and fully automated production. In addition, this paradigm encompasses the
use of communication technologies to transmit data to processing stations as well as the utilization of
cloud based computational resources for data mining. Despite the rise in automation, future manufacturing
systems will initially still require humans in the loop to provide supervisory level mediation for even the
most autonomous production scenarios. Through a structured review, this paper details a number of key
technologies that are most likely to shape this future and describes a range of scenarios for their use in
delivering human mediated automated and autonomous production. This paper argues that in all cases of
future manufacturing management it is key that the human has oversight of critical information flows and
remains an active participant in the delivery of the next generation of production systems.

INDEX TERMS Human computer interaction, intelligent systems, visualization, interactive systems, context
awareness.

I. INTRODUCTION
Recent advances in technology have enabled the possibility
of Industry 4.0 and the digitization of manufacturing sys-
tems. Through the use of miniature and ubiquitous sensors,
Industry 4.0 offers the ability to collect data at source in
real-time. In addition, this paradigm encompasses the use of
communication technologies to transmit data to processing
stations, robotics as well as the utilization of cloud based
computational resources for data mining [1]. For the first time
in the history of Manufacturing, we now have the ability to
collect data from manufacturing systems spanning the globe,
simultaneously linking together production systems [2], [3].
As a result of this connectivity components in supply chains
can be linked, analyzed and optimized for overall perfor-
mance. In this work, nascent technologies are discussed that
could be applied towards building more flexible and resilient
supply chains for manufacturing. This discussion is particu-
larly pertinent in forming a response to the recent COVID-19
pandemic where manufacturing ground to a halt in order to
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stem the spread of the virus. In this paper discussion is made
of technologies that could ensure that future manufacturing
systems are flexible, resilient and robust to disruptions [4].
Such manufacturing systems would also be supported by
business models that are resistant to disruptions.

From the review of literature conducted in this research it is
the case that, despite the rise in automation in the near to mid
future, manufacturing systems will still require humans in the
loop to provide supervisory level mediation for even the most
autonomous implementations. This is supported by [1], [5]
in which the authors highlighted the potential for Industry
4.0 technologies to enhance human-machine integration in
manufacturing systems as well as augment the physical and
cognitive capabilities of workers within them [5].

Nevertheless, [6] discuss the challenges that human in
the loop digitalization presents including the provision of
technological support for humans. They also discuss how
adding knowledge to manufacturing equipment (Intellect),
improving collaboration between humans and manufacturing
equipment (interaction) as well as how humans could exploit
the intelligence of technologies for better communications
with manufacturing equipment (interface) should be taken
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into consideration for the adoption of smart technologies
towards the smart manufacturing vision. In [1], this argu-
ment is taken further in which they present a social human
in the loop cyber physical production system architecture.
In their context, they propose that the understanding of human
roles from a social perspective is important in designing
efficient manufacturing systems of the future. This perspec-
tive becomes even more important when the human agent
is located in a heterogeneous ecosystem of other intelli-
gent agents [7]. In this scenario, human factors consider-
ation becomes important and necessary in order to ensure
that humans are kept safe. The heterogeneous nature of the
ecosystem does present some dynamic multi-level challenges
that need to be addressed [7], [8].

In the state-of-the-art papers presented above, we discover
that there is still a need to discuss why a human will still be
needed in the loop of future manufacturing systems as well
as in what capacity. How will the humans interact with all the
technologies, such as collaborative robotics, swarm robotics,
explainable artificial intelligence, intelligent visualizations
and many other nascent technologies, that are increasingly
present in these manufacturing systems? What will be the
human’s role?.

In order to set the stage to answer this question, we must
start with what a manufacturing system is, the reason why
it exists and what has been driving the evolution of manu-
facturing systems from the earliest of human civilization to
present day. By discussing traditional manufacturing systems
that have signified shifts in manufacturing paradigms, we aim
to set the background for the rest of this manuscript. Since a
majority of manufacturing enterprises still make use of these
traditional manufacturing systems in one form or the other,
we also discuss the potential for introducing the human in the
loop concept into them as shown in Table 1.

Despite advances in technology, a manufacturing system
remains a collection of labor resources and integrated equip-
ment, utilized to process and assemble raw production mate-
rials [9]. Nevertheless, as seen in Fig. 1, the need for bespoke
goods is one of the many factors driving the evolution of
manufacturing systems as well as the aim to create more
volume per variant when market disruptions happen or cus-
tomer tastes change. Job shops and project shops were the
earliest type of manufacturing systems used to meet these
challenges. The project shop is intended for the manufacture
of large-scale products which require multiple components
in one location. Project shops were used to develop many
monumental structures of the human civilization, such as
the Egyptian pyramids and modern-day civil engineering
projects such as bridges [12]. Towards the introduction of
automation in project shops, Bauda et al. [13] proposed ’Air-
Cobot robot’ for visual inspection of production quality. The
Cobot is a form of Collaborative Robot (Cobot) capable of
assisting humans performing, often, manual physical tasks.
In this way Cobots enhance human actions and/or decision-
making capabilities rather than seeking to replicate such
inputs in fully automated implementations.

TABLE 1. Manufacturing system.

Job shops systems were used to develop bespoke goods for
individual customers. They rely mainly on manual labor and
as a result, are limited in the volume that they can produce.
These are still in use today in various manufacturing enter-
prises. A flow shop is a step up from job shops and takes the
form of a product-oriented systemwith an inherently complex
scheduling system that is often required for optimal order
sequencing. The setup of the flow shop supports an increase
in the volume of goods produced but with very low variability
allowed in the product types. Nevertheless, scheduling is a
challenge especially when there are many product varieties
passing through the system. Sadik and Urban [14] introduced
a case study which optimizes the scheduling problem with
Human-Robot-Collaboration (HRC). Cellular manufacturing
which groups similar parts into families and assigns the asso-
ciated machines located in each cell into groups [15] is used
to implement small scale production, often requiring just a
single supervisory worker [16]. The inherent people-oriented
nature enables the human operator’s versatility and flexibility.
However, to improve production efficiency, robot assistance
could be added into the system as the next step.

Flexible Manufacturing System (FMS) is defined as a
production method which is adaptable for production type
and size. Kruger et al. [17] proposed Intelligent Assist Sys-
tems for more flexible assembly tasks. The Reconfigurable
Manufacturing System (RMS), combining the flexibility of
FMS with the high throughput of a dedicated manufacturing
system, is designed to adapt to rapid market changes within
the same part family. Though manufacturing systems such as
Flexible and Reconfigurable manufacturing systems support
the push for bespoke goods (through flexibility and adapt-
ability), there are still challenges in increasing the volume
of goods produced in each variant through automation. This
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FIGURE 1. Evolution of manufacturing paradigm shifts. Adapted from Koren [10] and modifications of Lu et al. [11].

challenge is especially true for Small Medium Sized Enter-
prises that are in the supply chain of Large Enterprises in
the Automotive or Aerospace sectors. One of the reasons for
this challenge is the complexity of these systems and the
high level of expertise required to make use of them. As a
result, the application of AI and simulation concepts as well
as how tomake use of the general flexibility offered by human
labor (through the concept of human in the loop) in the next
generation of manufacturing systems is increasingly being
investigated by researchers. This gap and the need for this
discussion is the focus of this research.

In the next section, we discuss the methodology and struc-
tured literature review informing this research as well as
the research questions we aim to answer. Subsequently the
paper is then divided into the following sections: Automated
and autonomous manufacturing; Explainable artificial intel-
ligence; Audit trails for manufacturing; Context aware com-
puting; Visualization and interaction; Collaborative robotics;
Internet of things intelligence at the edge; Next genera-
tion manufacturing management. The paper then puts for-
ward 5 scenarios for next generation production systems.
A section detailing the research gaps remaining that need
to be addressed for the achievement of the 5 scenarios put
forward paper is then followed by a summary of the main
conclusions drawn from this research.

II. METHODOLGY AND STRUCTURED LITERATURE
REVIEW
This work follows a structured review process in which an
evaluation of existing research literature is carried out in
order to address formulated research questions. The initial
questions that this research set out to explore and investigate
focuses on the roles that humans can and should play in the
decision-making process and oversight of automated (and
even autonomous) systems. Research questions posed were:

RQ1: Why might the human still have a role? In [1],
the authors discuss how humans might be kept in the cen-
ter of a social human-in-the-loop cyber-physical production
system. In this paper, we ask why might humans still have
a role in a smart manufacturing system and is it necessary?
Surely, with advances in technology, collaborative robotics
and other industry 4.0 technologies, human roles should be
potentially limited or at the extreme end removed all together.
This should lead to manufacturing systems that do not need
the environmental comforts (safety, temperature, lights) that
typical humans need thereby resulting in a term called ‘lights
out’ manufacturing. In fact, without humans, environments
could be better tailored to suit the needs of equipment or
the manufacturing conditions optimal to the creation of a
product (e.g. some 3D welding systems require inert gas
environments). This leads us to the next research question that
we posed.

RQ2: Are there limits to ‘lights out’ manufacturing? In
lights out manufacturing, the entire manufacturing process
is conducted entirely by robots with humans feeding raw
materials at the entrance of the factory and collecting man-
ufactured products at the exit [18]. This approach should
potentially increase the efficiency of a plant by increasing
the operational time of the plant as well as reducing the
deficiency in the parts. However, what is the limit to this
approach and under what conditions does the manufacturing
system fail to meet up with expectations? As a result,

RQ3: is the ‘Human in the loop’ concept not just necessary,
but a desirable end goal for research activities involving
automated manufacturing?.

In the completion of this structured review of literature,
a number of search terms were used for the identification of
relevant papers (as shown in Table 2). The search terms were
derived from an initial review of the current topics in man-
ufacturing automation. This was then focused to the topics
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TABLE 2. Structured literature review: search terms and papers.

seen as most relevant by the authors and informed by litera-
ture. Subject areas such as Explainable Artificial Intelligence
(XAI) and Collaborative Robotics have been included as they
are seen by the authors and recent research works as hav-
ing particular pertinence for the development of automated
manufacturing systems with the possibility to include human
inputs and oversight. Distinction is made between context
aware computing in general (where additional metadata con-
cerning the operational context or environment is provided
to an algorithm) and specific industrial (non-services based)
uses of this subject area. The publication database consulted
was Scopus with relevant papers indexed between 2000 and
2021. In addition, the Web of Science and Scholar databases
were used as comparators to identify additional works not
found by Scopus. Table 2 shows the search terms and the peak
paper publishing year followed by the number of publications
in 2020.

For areas that brought back over 1000 papers the ‘PRE/’
term was used with a combination of 0 to 10 intervening
words allowed between the searched for terms (to ensure
the two search terms were found in contiguous fashion);
with collaborative robotics the paper total was reduced to
153 with no intervening words. This first filtering of the
papers helped to establish which works were most relevant to
the questions posed in this study and reduced the considered
paper total to 868. A second stage involved further filtering
with additional attention given to papers that weremore likely
to contribute to the development of the scenarios for Human
mediated technology adoption in manufacturing proposed by
the authors. It was also the case that additional weighting
was given to more recent papers (post 2015 publication date)
leading to a predominance of such works in the completed

FIGURE 2. 2020 papers as a % share of those published since 2000 per
area.

review. As can be seen in Fig 2. certain subject areas contain
a higher proportion of recently published papers than others.
This stage involved the rapid analysis of abstract, introduc-
tion and conclusions (including findings and future research)
for each paper. This second stage reduced the overall total
amount of papers to 190. The final stage of the literature
review commenced with the full reading of the remaining
papers reducing the total to just over 100 relevant works for
inclusion. At this stage, in depth analysis of the remaining
papers involved an assessment of the contribution and rele-
vance of the publication and its impact factor rating (as rated
by Clarivate).

In the next section a brief overview of traditional man-
ufacturing systems is provided, along their features and
capabilities.

III. AUTOMATED AND AUTONOMOUS MANUFACTURING
Research involving machine learning in relation to manu-
facturing activities has achieved a mantuary measurable in
decades, and it is now the case that such software systems
are capable of lending real-time decision-making capability
to implementations of shop floor automation.

Jeken et al. [19] describe an approach for autonomous pro-
duction involving intelligent parts that cooperate with the
production system to independently form products and fulfill
orders. The approach of [19] also utilized hybrid simulation
to model how the autonomous objects would interact and to
study the effect of multiple product variants. The autonomous
products in [19] were generic in nature and took the form of
conceptual entities within the simulation model. The research
of Li et al. [20] suggest the extension of the software agent
swam approach to that of product design and multi organiza-
tion R&D projects, citing these directions as key uses of AI
in the development of future manufacturing scenarios. The
notion of intelligent objects in manufacturing has also been
explored in earlier work by Pille [21] who experiment with
RFID transponders embedded in die cast automotive parts
with the aim of establishing their use as in- process health
monitoring sensors.
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The smart factory concept is one envisaged, in part, as a
response to the increasing availability of automation tech-
nology that incorporates or is linked to machine intelligence
driven control systems within the overarching theme of smart
manufacturing.

Suginouchi et al. [22] explore the possibility for customer-
co creation, where a customer’s needs are directly input into
an equation number in parentheses. In utilizing 3D print-
ing [23] explore a CPS (Cyber Physical System) approach
to the production of shoes for individual customers.

In their review of smart manufacturing reference archi-
tectures Moghaddam et al. [24] seek to provide an overall
blueprint, in part, for the smart factory. In this work [24]
make the point that manufacturingmay be broken down into a
set of micro services, described by metadata enhanced com-
munication services such as OPC-UA and AutomationML.
In addition, according to [24] smart or intelligent object
research in manufacturing has focused on communication
between such entities with little research on how they interact
with each other or how humans interact with such systems.
Kusiak [25] describes six pillars of smart manufacturing
as: manufacturing technology and processes; materials; data;
predictive engineering; sustainability; resource sharing and
networking. Kusiak [25] underlines not just the importance
of data to smart manufacturing but the need to employ the
latest visualization methods, such as provided by mixed real-
ity technologies, and predictive capabilities. In the words of
Lu et al. [26], smart manufacturing is: ‘‘fully-integrated, col-
laborative and responsive operations that respond in real-time
to meet changing demands and conditions in the factory,
in the supply network, and in customer needs via data-
driven understanding, reasoning, planning, and execution of
all aspects of manufacturing processes, facilitated by the
pervasive use of advanced sensing, modeling, simulation, and
analytics technologies.’’

The need to simulate and replicate the smart produc-
tion environment in digital form is an area described by
Lu et al. [26]. Such digital twin implementations are in the
opinion of [26] required due to the nature of smart manufac-
turing where real time decisions can be made at any point in
the production process by intelligent systems (the digital twin
concept will be explored in section VII of this paper).

An interesting development concerning scheduling inman-
ufacturing utilizing IoT sensing is illustrated in the work
of Wan et al. [27] who propose the use of semantics in the
communications utilized in the layers of the proposed sys-
tem. The ‘Ontology-Based Dynamic Resource Management’
framework of [27] also features software agents and pro-
vides an avenue for expansion so that humans can potentially
interrogate and understand the decisions made by the system
through use of natural language.

Lights-out manufacturing is a term that describes a fully
automated production facility operated though computer con-
trol and without the need for human intervention [28] In
earlier work Brann [28] detail a study into the provision of
an autonomous control system for the operation of satellites

by NASA. The study of [28] found that the automated system
in place did require a significant amount of human interven-
tions in order to function correctly; it was also found the
inspection of lower level tasks was not possible, in effect
the decision making was not visible or readily explainable
to human operators. Lee [29] make the point that while the
move to lights out factories has advanced over recent years
there are still requirements for human input and, as will be
discussed in more detail in a later section of this paper, much
scope still exists for more advanced forms of automation and
in particular human robot collaboration.

IV. EXPLAINABLE ARTIFICIAL INTELLIGENCE
The field of Explainable Artificial Intelligence (XAI) has
seen a growth in interest in recent years. Increasingly there
is a need for systems employing machine intelligence and
learning techniques to provide explanations in order to justify
the trust Humans are required to invest in such software-based
entities. This has led to a spectrum of research projects whose
central approach ranges from parameter and feature tagging
to the schematic modelling of human reasoning.

Magariño et al. [30] emphasize the potential utility of
explainable AI in its use in establishing and maintaining
Human trust in IoT based systems. The authors [30] go on
to outline an approach based on deep learning capable of
providing explanations of decisions made by the AI tech-
nique. The Human Centric AI (HAI) explanations proposed
in the work of [30] take the form of generated text-based
explanations attached to the features within weighted paths
in the neural net; with this approach, a most weighted path or
feature combination may resolve into a text explanation. HAI
has the aim of achieving human trust in AI in combination
with the effect of further contextualization of the explanations
provided by explainable AI approaches [30].

Hoffman et al. [31] examine the need for metrics for the
assessment of an explainable AI system. The authors examine
the current efforts to mirror human mental models within
software systems and conclude that metrics (and measures)
for XAI will differ by area examined.

Sheh and Monteath [32] propose the following three
dimensions for the categorization of Human requirements of
an XAI capable system: Source - this category considers the
source of the explanation that will be offered by the system,
e.g. is the source black box or a more open system; Depth -
describes how attributes within a given system are used in the
process of decision making, also how a model was generated
(explanation of model generation); Scope - this is the scope
of the explanation, dividing into ‘justification’ or ‘teaching’
which is an accompanying explanation of the justification
given.

Xu et al. [22] note that black box operation algorithms
such as those used for deep learning (neural networks) pro-
vide a particular challenge to interpretability by Humans,
often leading to questions of trust being raised. Chen and
Ran [33] go on to explore so called ‘glass box’ design models
where human understandable explanations are provided by
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the system, stressing that the results produced by such sys-
tems should also be understandable in real-time processing
cycles not just after the results have been collated and pre-
sented as an already actioned decision. The field of Human
and machine teaming is explored by Adadi and Berrada [34]
who point to the absence of Human friendly explanations
as an interface for machine systems, these authors cite XAI
approaches as holding the potential to address this need.

V. AUDIT TRAILS FOR MANUFACTURING
One particular avenue of investigation for the communication
of automated system reasoning to humans, and in particular
in relation to explainable AI utilization, is that of audit trail
use. An audit trail can be thought of as a time stamped con-
secutive series of transaction recordings. As such, the audit
trail can provide a construct for verification and assurance of
provenance when considering temporal event based industrial
data [35]. Swartout [36] propose a system that might be
described as an ‘‘audit trail’’ of expert reasoning, where jus-
tification of programing code constructs of a given software
are generated based on execution traces. Turner et al. [35]
illustrate a potential way to use audit trails for the control of
decision making within systems for predictive maintenance
intervention. This work also promotes the ability to ‘mine’
information streams, captured in the form of raw recorded
data logs, in order to derive the major stage gates in the
decision-making process. Process mining as a practice has
been used to identify primary processes from event log data
generated by ERP (Enterprise Resource Planning) systems,
initially for the purposes of conformance checking IEEE
Task Force [37]–[39]. Though, such identified processes
may also be used to outline the route taken by automated
decision-making systems and so reveal the reasoning behind
the decisions made.

Audit style organization and processing of data is also
facilitated through distributed ledger technologies such
blockchain (the technology underpinning the bitcoin cur-
rency [40]). Abeyratne andMonfared [41] put forward a study
examining the use of blockchain in manufacturing and make
the point that the use of this technology aids transparency
in the monitoring of data in real time, increasing trust levels
through its inherent authenticity. Samaniego et al. [42] rec-
ognize the use of blockchain with IoT (Internet of Things)
sensing technologies as a method of ensuring the secure and
ordered storage of streams and configuration data of phys-
ical assets. Lee et al. [43] put forward a framework for the
consideration of blockchain use in the context of Industry 4.0
and CPS (Cyber Physical Systems) technology use, noting
that distributed leger technology can encourage the further
sharing and communication of data within and outside the
organization. Andrews et al. [44] also make the point that
traceability of parameters is possible through Blockchain and
in terms of the supply chain the tracking of the ‘‘‘use’’ and
‘‘effect’’ ’ individual data points.

Data related to both product-based and asset lifecycles can
also provide a rich vein of information [45]. The increasing

availability of intelligent assets and their ability to provide
real time and near to real time views of their in-use behav-
ior is a parameter set that readily lends itself to auditing.
As with Andrews et al. [44] Angrish et al. [46] highlight the
rise of product customization and the need to ensure the often
decentralized and distributed nature of such customer centric
information requires a structured and methodical framework
for its communication and use; a movement that is likely to
accelerate with the rise of the batch size of one/mass person-
alization [47]. Given such granularity of data analysis and
profusion of its potential processing locations the complexity
of the data management challenge becomes obvious along
with the need for artificial intelligence and automated deci-
sion making. Understanding the context in which a decision
making occurs is a vital strand linking both explainable AI
and audit trail use. The field of context aware computing and
its role to this end will examined in the next section.

VI. CONTEXT AWARE COMPUTING
The field of context aware computing involves an intelligent
system gaining the capability to assess potential actions given
additional information about a context or environment in
which it operates [48]. Alegre et al. [48] make the point that
many research works in this field concentrate on solving
specific problem even though a more joined up and holistic
approach is actually required to achieve real world context
awareness in intelligent systems. Closely related in the con-
cept of ambient intelligence which Gross [49] describes as
embedded technology used improve users work and social
interactions. Building on the pervasive physical infrastructure
provided by ubiquitous computing, in the form of smart-
phones and sensorized devices and intelligent products, ambi-
ent intelligence provides the processing and presentation of
data as knowledge to the user. Providing human centric con-
text awareness to such a network of devices is seen as the
next major development step for both ambient intelligence
and ubiquitous computing paradigms [49]. Piccialli and Chi-
anese [50] describe a move towards the ‘intelligence age’
where autonomous sensing will provide contextual inputs
describing the immediate environment of the human user.
These authors [50] point to IoT as the provider of the ubiqui-
tous sensing capability and interconnectivity that may drive
context awareness. Sezer et al. [51] also point to the rise
of intelligent context aware data processing as the next step
leading from IoT heterogeneity and standardization efforts.
Gil et al. [52] Extend this use of IoT and outline Social IoT
(or SIoT) whereby IoT devices acts as a combined social
network.

In terms of establishing context from the sensed environ-
ment the research of Unger et al. [53] adapt recommender
systems to working with data points provided in real time
by environment-based sensors. In particular Unger et al. [53]
detail the extraction of context utilizing mobile devices and
find that challenges exit in data dimensionality and need to
process data over time to extract meaningful context descrip-
tions. The use of context aware computing in a manufacturing
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context is examined by Alexopoulos et al. [54]. In this
work [54] put forward a system for the distribution of sensed
context related information in an industrial environment.
A case study involving a white goods manufacturer is used to
illustrate the approach. The following functionalities are sup-
ported by this system in a context aware mode [54]: Material
handling; Production planning & real time status; Shop Floor
product assembly support; Shop floor notification. These
authors also point to the value of context information in
decision support at an enterprise level.

The need for next level intelligence to assist with or auto-
mate the decision-making process in some systems natu-
rally leads to a consideration at some level of context the
need for computational context awareness. Belkadi et al. [55]
describe an intelligent assistant system with the aim of
providing context aware support to engineers working on
aerospace applications. In this work [55] provide a case
study of an application that allows for workers to study the
effects of their manipulation of aerospace parts. The approach
of [55] required workers to record their expert knowledge and
observations regarding discrete sections of aerospace related
work in a knowledgebase system providing data entry tabs for
the annotation and addition of: simulation model files; basic
task knowledge; best practices; other ad hoc but related doc-
uments. While seen as a beneficial tool the system described
by [55] does highlight the necessity for workers to impart
their knowledge fully and correctly to avoid limitations in the
context awareness of a partially populated knowledgebase.

Emmanoulidis et al. [56] identify different categories of
contextual information relating to the management of indus-
trial assets and make the case for the use of linked data;
where context-based linkages between data and knowledge
are resolved through the use of entity based semantic descrip-
tions. In examining the case for the exploration of linked data
an architecture for its collection and consideration, utilizing
data management and machine learning approaches, is put
forward by Emmanoulidis et al. [56]. Wider research is also
progressing in the direction of semantics and ontology use
to help develop improved context awareness in computa-
tional systems. Hoffmann et al. [57] illustrate the potential
and applications for embedded context aware monitoring
and control devices. In this work the authors [57] conclude
that one of the major barriers to the further development of
context based system is the need for explainable outcomes
from automated decisions noting that ‘correlation alone does
not necessarily imply causation’; these authors also note the
ongoing need for a ‘human in the loop’ to adjudicate where
constraints in a learning based system provide no satisfactory
decision in terms of the processes that may be automatically
enacted [57].

VII. VISUALIZATION AND INTERACTION
The role of visualization is key in the operation of any human
mediated system. As the possible interactions and data sets
for consideration as learning materials for automated systems
increases at an exponential level the value of clear communi-

FIGURE 3. Using a digital twin to study human-robot collaborations [65].

cation media is paramount. Li et al. [58] provide a categoriza-
tion of visualization methods for use with Human Computer
Interaction (HCI) designs. In this study [58] a process for the
selection of an appropriate HCI design method is outlined.
Tran and Li [59] explore the human vision system in order to
derive better visualizations that are more appropriate for the
understanding of complex data sets and streams. Acknowl-
edging the limitations of human vision and perception the
authors propose a set of multidimensional graph types more
suited to increased ease of perception by the human subject.

In terms of visualization for manufacturing applications
Zhou et al. [60] highlight the importance of the role of
visualization in an Industry 4.0 and Smart systems enabled
environment; acknowledging the need for human legible
communication across automation, product design and devel-
opment and production scenarios. In terms of the content
most likely to be depicted visually Lade et al. [61] pro-
vide five categories of analytics seen as key to produc-
tivity improvements in manufacturing: Reducing test time
and calibration; Improving quality, Reducing warranty cost;
Improving yield (benchmarking lines and plants); Predic-
tive maintenance. Golfarelli et al. [62] propose a method to
automate the graphical presentation of analytics source data
sets, where particular graph types are matched to best resolve
patterns in the data.

The Digital Twin concept promises to provide real time
connectivity with and control of manufacturing systems [63].
Digital Twin has been defined as the linking of a physical
entity with a digital representation for the entirety of the phys-
ical entity’s lifespan [64]. Visualization, often multi-mode in
nature, is key to the implementation of this concept. These
visualizations offer a user a close to real life representation
of the application domain (Fig. 3) which could then be used
for the training of workers (Fig. 4).

The inherent real time representative nature of Digital Twin
is different to a simulation, which focuses more on offline
what-if experimentation [26]; though simulation technology
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may play a role within the overall concept. Turner et al. [66]
make the point that the use of Augmented Reality technolo-
gies may allow for the real time overlay of Discrete Event
Simulation model layouts over live production line scenes,
via headsets and handheld devices, allowing for round trip
decision making to be facilitated though such Mixed Reality
environments. Hutabarat et al. [67] make the case that Vir-
tual Reality renderings of manufacturing scenarios may be
enhanced through the use of motion and depth sensing tech-
nologies such as Kinect. In [67] industrial shop floor layouts
are considered and models built that allow for user manip-
ulation of Discrete Event Simulations via workers’ voice
commands and movements in real time. The use of RFID
(Radio-Frequency IDentification) tags to track and control
logistics processes on the shop floor has been explored
by [68]; with a particular focus on the visualization of logis-
tics trajectories the paper proposes a logistics object based on
RFID cuboid data structure, enabling simplified views of raw
sensor derived data.

Negri et al. [69] and Cimino et al. [70] highlight the role
that Cyber Physical Systems are likely to play in the future
of manufacturing and discuss their management and control
via Digital Twin visualizations. In these works, the need for
more research on control loops between Manufacturing Exe-
cution Systems and shop floor production via Digital Twin
is highlighted. Digital twin has also been explored as a way
of controlling and visualizing information flows for holistic
product development, where the performance of developed
products in the field can be fed back into new designs at
the CAD (Computer Aided Design) stage [71], [72]. Often
seen as the preserve of large corporations [73] make the point
that SMEs (Small and Medium Size organizations) can also
benefit from the Digital Twin; in providing an approach for
unified data acquisition from production systems this paper
provides the potential for the emergence of a lower price
point solution of relevance to a wider range of companies.
Lu et al. [26] go onto highlight a number of areas open for
additional research relating to Digital Twin and visualization
as: How much should autonomous operation of and feedback
from manufacturing systems be facilitated through Digital
Twins; Need for improved integration of humans with Digital
Twin technologies.

Certain innovations in the graphical display of data partic-
ularly lend themselves to the visualization and snapshot anal-
ysis of streaming sensor data. Vosough et al. [74] introduce a
refinement to the display of ribbon flow diagrams involving
the communication of uncertainty; the work involves the
utilization of a case study based on data sets relating to an
industrial pump product, mixing both technical parameters
with market data in the same graph. Qin et al. [75] explore
the possibility to automate the process of matching data with
appropriate diagrammatic visualization types. Luo et al. [76]
go on to further develop this approach, achieving a system
that make a rage of visualization recommendations when
presented with data; utilizing a learning technique that makes
use of existing examples, users can also enter keywords to

TABLE 3. Some state-of-the-art in using cobot for idustry tasks.

further influence the systems choice of visualization.With the
aim of further exploring the automated generation of graphs
from data the field of Graph Grammars may lend itself to
such context-based display of industrial data. Zou et al. [77]
provide a commentary on Graph Grammars in relation to the
comprehension of complex systemswithin visual programing
languages; in this work the focus on the establishment of con-
text is realized, this is examined in relation to the successful
combination of disparate parameter sets. Lensen et al. [78]
approach the generation of graphs from data with the aim of
providing a reasoning for how such visualizations are gen-
erated. In this work Genetic programming is used to ‘evolve
interpretable mappings from the data set to high quality visu-
alizations’ [78]. Finally Silva et al. [79] highlight the role
of ontologies in relation to visual data analytics. Proposing
an approach capable of eliciting undiscovered relationships
between data.

VIII. COLLABORATIVE ROBOTICS
The main advantages for human-robot collaborative systems
specifically in manufacturing system is that robots can assist
human operators. In this manner, the machines do not replace
humans, but they supplement their ability to perform tasks.
Unlike traditional industrial robotics, collaborative robots
(also known as Cobots) in manufacturing systems can offer a
higher degree of safety and flexibility [80], [65], [81]. Such
Robots can combine the precision and speed ofmachines with
the dexterity of human hands [82]. A robot can also learn
from human and programmatic demonstration [82]. In order
to adapt to market demand, manual assembly systems can be
used, although this may lead to a decline in productivity due
to changes in quality and fluctuating labor rates. By com-
paring the capability of the manual operator with that of the
automated system, it can be seen that the performance ofman-
ual assembly is greatly affected by ergonomic factors, with
limiting factors being the part weight and precision of the of
the manual operator. Thus, these limitations reduce the abil-
ity of human operators to maneuver and select heavy/large
parts.

Traditional robotic systems fill this gap, assigning robots to
heavy load handling tasks (e.g. FANUC m-2000 series, 2.3t)
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with repetitive cycles. However, the flexibility and agility
required for complex assembly tasks may be too expensive to
achieve even with traditional robotic systems [82]. This gap
can be closed through collaborative systems as they combine
the capabilities of traditional robots with the flexibility and
agility of human operators. Collaborative robots are partic-
ularly advantageous in assembly tasks, especially when the
task is performed by a human operator. They can also be
used to pick and place items, although using traditional robots
or processing systems can provide better results in terms of
speed, accuracy, and load. Some examples of the industrial
use of collaborative robots in manufacturing systems are
presented in Table 3.

In order to better understand human and infer human
intention, a collaborative robot should have the perception to
collect raw input data to the internal system representation
for cognitive tasks [87], [65]. There are three main sensory
modalities used in research including vision, impendence
control, and audition. Robot vision is a feature developed
in the 1980s and 1990s. Engineers have developed various
intelligent software programs that provide robots with the
capability to ‘‘see’’ their environment. This often comprises
of a camera mounted on the robot or in a static position
to take pictures of each artifact the robot will interact with.
If this part does not match the algorithm, it will be rejected
– the robot will not interact with it. Vision can also be used
in non-robotic ways. For example, a camera can be placed
on the conveyor belt to take pictures and compare them
with the loaded algorithm to accept or reject the product’s
quality control. If accepted, send in one direction, if rejected,
send in the other. Vision could also be used to collect data
from legacy machines using techniques described in [67].
The quality of visual processing has improved considerably
with the popularity of software/hardware toolkits. Vision can
also be used in a digital assistive system that digitizes man-
ufacturing tasks in real time and provide feedback to work-
ers [88]. Teke et. al. [89] adopts Kinect V2 sensor’s RGB-D
image on a Universal robot based utilizing Euclidean distance
to improve the efficiency of interaction. Fang et.al. [90]
adopts Cloud Point Library to segment the depth image
for object localization. Song et al. [91] utilized RealSense
SR300 RGB-D camera and depth image for 3D vision object
grasp. In human-robot interaction, the impedance control is
used to measure the force where the manipulator interacts
with the operator and infer the relationship between the force
and position. Rozo et. al. [92] implemented stiffness estima-
tion via force sensors to measure the interaction model from
demonstration. Townsend et.al. [93] measures the force and
velocity between two operators co-manipulation to estimate
the intention of the humans [80]. Audition is another com-
mon modality as sounds or voice can be used to guide an
intelligent system or communicate with it. Zhu et. al [94]
proposed a methodology to combine speech recognition and
haptic control to teach the robot by demonstration utilizing
a universal robot in the completion of automotive assembly
tasks [65].

IX. INTERNET OF THINGS INTELLIGENCE AT THE EDGE
Edge computing is a relatively recent innovation involving
the use of miniaturized low power consumption computer
processing devices utilized for the intelligent filtering of
streaming data for local decision making, with such data
often produced by discrete or machine-based sensors. It has
been seen in section III that sensor outputs from intelli-
gent products can form a valid part of an auditing process,
especially in order to understand the in-situ Edge mediated
decision making that may occur in the operation of such
assets. The role of Edge technology in IoT applications has
been a relatively early application of this computing approach
with [95] proposing an architecture designed to utilize the
power of localized processing in combination with compu-
tationally intensive Artificial Intelligence (AI) algorithms.
In [95] Cloud resources host the machine learning algorithms
with local processing of streaming sensor data.

The need to perform data analytics at the Edge is outlined
by [96] who also identify the need for localized deploy-
ment of intelligent techniques for initial data processing with
more involved machine learning based work performed in the
cloud. Chen et al. [97] and Sun et al. [98] acknowledge the
value of Edge in the delivery of manufacturing and indus-
trial solutions to the need for localized processing of data
streams, with the assistance of machine learning techniques
[99] including Deep Learning [100], [33]. Novel contribu-
tions utilizing Edge can also be found in [101] who examine
the connection of production line Robots relying on localized
processing and [102] in relation to Edge based context aware
monitoring of workers via wearable sensors. A concern, par-
tially addressed by Edge computing’s ability to preprocess
and filter voluminous data streams before forwarding to
requesters, is that of network bandwidth (especially con-
sidering the need for the use of wireless transmission).
Cheng et al. [103] provide an overview of the potential for 5G
mobile communication technologies to enable high rates of
data transmission with increased reliability and heterogenous
acceptance of diverse machine and sensor types with (even-
tual) plug and play ease; this work has particular relevance
to Industrial IoT (IIoT) applications. The application of 5G
would support the possibility of having ‘‘connected’’ workers
that are able to acquire more granular data regarding the
manufacturing system efficiency and performance as well as
receive up to datemachine intelligence processed information
and knowledge to decide the next steps. This scenario would
make for a more ‘‘hive-like’’ interconnected heterogeneous
entity (man, machine, machine intelligence hub).

X. NEXT GENERATION MANUFACTURING MANAGEMENT
Swarm engineering [104] has the aim goal of enabling a
collection of robots to collaboratively solve the real-world
challenges in manufacturing. The robots in such a collective
are called swarm robots. Swarm robots are low cost agents
that run simple computational cheap algorithms. By deploy-
ing them in large numbers, they have the capability to com-
plete tasks that a large and expensive robot will struggle
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FIGURE 4. A digital representation of a physical space [65]: (i) A real
world workshop; (ii) Workshop environment replicated in unity.

to perform on its own. Although swarm robots have been
successfully applied for surveillance [104], mapping spatio-
temporal quantities [105], [106], the applications in industry
mainly comprise of manipulation [92], [93], transportation
[106], [108], and assembly tasks [109], [107]. Nevertheless,
in swarm engineering there are still a number of open research
challenges including: (1) how to develop human-multi-swarm
collaboration strategies in such a way that the human is not
overloaded cognitively; (2) how to engineer and reconfigure
swarms to new tasks with very little effort (3) and how
to optimize the swarm behavior. These research challenges
become evenmore sophisticated and interesting when hetero-
geneous cyber-physical swarms are considered. It is possible
that a multi-disciplinary approach including manufacturing,
psychology, engineering, embedded AI and complexity sci-
ence could offer relevant tools to address the aforementioned
scenarios. Combining the efforts of researchers in these fields
could result in new trans-disciplinary theoretical frameworks
that integrate and move beyond the current state of the art.
Nevertheless, human intervention in a supervisory role might
still be needed in ensuring that the swarm system is still oper-
ating according to goals and within the confines specified.
Also, humans would still be needed to ensure that damaged
swarm individuals are repaired timely for redeployment.

XI. SCENARIOS FOR NEXT GENERATION PRODUCTION
SYSTEMS
Fig. 5 illustrates five scenarios utilizing the digital manufac-
turing technologies detailed in this paper. The scenarios range
from simple automation with data mining of event logs to
the integration of sensed data streams and the context-based
audit trail description of machine learning decision making
systems to the realization of fully automated production with
human in the loop oversight. In next generation production

systems as described in scenario 5 (shown in Fig. 5), humans
would benefit from intelligent manufacturing technology to
perform more supervisory level activities required by lights-
out type factory scenarios, either at a local site or remotely.
This would raise many challenges in the sense that new
paradigms of controlling a fleet of robots would need to
be developed. An example of such a paradigm could be
swarm robotics. This would give the human an opportunity
to provide a high-level command which could then be broken
down into individual level actions. This would necessitate a
paradigm in which the human is kept in an automation loop
that involves multiple autonomous agents feeding ‘‘knowl-
edge’’ to the human to assist high level decision making.
To date, industrial robots have been successfully deployed in
manufacturing in a variety of forms. Moreover, as the manu-
facturing environment is dynamic and uncertain, it cannot be
expected that one single robot can fulfil all the given tasks.
Therefore, to enhance the efficiency and robustness of the
system, the concept of swarm robotics, which is inspired by
the collective behaviors of social insects, can be introduced.

XII. RESEARCH GAPS IN ACHIEVING THE SCENARIOS
FOR NEXT GENERATION PRODUCTION SYSTEMS
The scenarios outlined in section XI are challenging in their
scope and provide a research agenda in their use of new
technology. Table 4 details a range of technologies utilized
in the scenarios and summarizes the main reasons these
approaches are required, highlighting the areas still requiring
further research. From Table 4 it can be seen that Explain-
able AI (XAI) techniques are envisaged to play a central
role in the delivery of narrative reasonings to supervisors
of automated production line systems. The enhancement
and incorporation of human reasoning to be used in con-
cert with automated systems is receiving greater attention.
Romero et al. [110] provide a new direction in putting for-
ward the Operator 4.0 paradigm, where humans are empow-
ered by Cyber Physical Systems (CPS) rather than replaced.
In the engagement of human operators, it is important to con-
textualize the responses from automated systems providing
additional detail and relevance for the recipient. This may in
part be achieved through the use of metadata tagging for col-
lected data streams and semantic processing to establish and
present context relevant reasoning. Work in a similar direc-
tion includes [111] where workers are equipped with wireless
sensing tools and devices with the intention to improve the
safety of workers in industrial settings through monitoring
of human vital signs and interactions with machines they
operate.

It is the case, from the findings of this research, that future
work must be directed towards the further development and
use of XAI along with semantic mining of sensor streams to
provide stage gate style decision reasoning to production line
workers. In addition, further attention needs to be given to the
visual presentation of such information in a context relevant
manner. To this end the use of Mixed Reality technologies,
in particular Augmented Reality (AR) graphical overlays
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FIGURE 5. Scenarios for human mediated technology adoption in manufacturing practice.

(presented though line of workers sight via. headsets), and
even outline simulation models need to be developed to com-
municated automated decisions and their potential effects (in
the locality of the production line itself) [66].

The use of the Audit Trail concept in data mining is well
known, especially in the area of business process mining [39].
The potential exists for the use of Audit Trail in the mining
of data produced by production line machines and manu-
facturing control systems such as SCADA. Audit trail use
in the recording and organization of manufacturing sensor
stream data is currently limited, more research is required
to investigate the types of data and sources that are best
suited as contributors to the realization of structured event or
activity capture and description. In addition, the application
of machine learning to this area to identify the potential major
stage gate decision points within semi-automated production
systems is required in order to identify such trends in fully
automated production scenarios.

The use of XAI to relate automated decision to humans
in the form of a stage gate audit trail is the eventual ‘con-

trol’ accompaniment to future highly automated or even
autonomous systems. Such systems will, in the opinion
of the authors of this paper, still require human over-
sight and in some cases intervention. Easily communica-
ble event status data needs to be presented to humans in a
form that facilitates drill down and reasoning so that prob-
lems and deviations from normal operation can be rectified
with the minimum of delay and disruption to production
runs.

The research area of human to machine interaction is also
relevant due to the need for human inputs to be interpretable
by production line automation and robots. The use ofmachine
learning as an enabler for human to machine communication
requires additional research and the scenarios in this paper
provide an agenda for that work.

In the application of swarm to manufacturing, reinforce-
ment learning or swarm evolutionary machine learning
paradigms will need to be further developed. This is neces-
sary to develop reconfigurable and general-purpose swarms
that adapt to the goals of the manufacturing enterprise such
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TABLE 4. Research gaps in achieving the scenarios for next generation production systems.

as shifting the swarm goal from transportation of discrete
materials to using them to perform rapid inspection of large-
scale artefacts and structures such as airplane wings. The
challenge here will be to develop algorithms such that control
rules can be rapidly found and deploy. Algorithms such as
reinforcement learning, especially multi-agent reinforcement
learning, require a significant amount of computation time
to find the right policies that are useful for the task at hand.
This is a challenge that needs to be overcome. Ensuring

even energy utilization across the swarm members is another
challenge that needs to be solved in order to ensure that the
swarm as a whole completes the task [112].

According to conclusions in [113], several challenges of
multi-agent reinforcement learning also include:

• The curse of dimensionality: The dimension of action or
observation space will grow exponentially with increas-
ing number of agents
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• Difficult reward shaping and assignment: correlated
reward of agents cannot be optimized independently as
the number of task scenarios and the noise of returns are
increased.

• The non-stationary environment: the individual learning
of an optimal policy is influenced as other agents act.
This is also supported by [114] in which they suggested
that observation of policies of other agents would stabi-
lize training of MARL

• Exploration-exploitation problem: multiple agents
learning simultaneously can bring much exploration
resulting in instability.

In more recent work Nguyen et al. [115] details progress
made in the combined use of deep learning approaches with
multi-agent reinforcement learning. In Nguyen et al. [115]
the addition of deep learning can help to address the dimen-
sionality problems encountered in earlier approaches though
challenges still remain in its application to more complex
areas outside the realm of relatively simple resource alloca-
tion and planning and optimization systems. In [116] they
designed critics for each agent. Each agent had access to
global states of the system in a multi-agent actor-critic frame-
work. However, these frameworks may not fit the swarm
system due to the large number of critic neural networks.
Thus, inspired by distributed optimization, a scalable cen-
tralized multi-agent policy gradient algorithm is suggested
in [117] where they only update one centralized policy by
taking the projection on the individual policies. Oroojlooy
and Hajinezhad [118] make the case for future research in
the direction of optimization algorithm use with multi agent
deep reinforcement algorithms; and in the implementation
of both deep learning and optimization algorithm theory to
provide new levels of applicability to more complex problem
spaces, such as that posed by nonconvex and non-smooth
optimization challenges posed by manufacturing automation
and robot/human collaborations. Papoudakis et al. [119] pro-
vide additional commentary on the use of independent learn-
ing, value decomposition and centralized training with multi
agent deep reinforcement algorithms.

The above considerations become even more complex
when humans are introduced into the loop. This is because
of the variability that humans use to perform tasks. Even
the same tasks are performed differently by different
humans [120]. This is because when introduced to a new
task, humans tend to explore various strategies to ensure that
the task is performed optimally while using as little energy
as possible. Once a strategy is found, it is used repeatedly.
When given similar task families in the future, the human
makes use of the past strategies learnt is similar tasks and
apply them. As a result, robots should be given the capability
to understand the human intentions, goals as well as their
preferred way of completing a task. This involves research
into the psychology principle of theory of mind [121].

So far, reinforcement learning which has its roots in
Psychology has been applied by numerous researchers in

robotics. Reinforcement Learning (RL) approach offers
another possible solution for Human Robot Collaboration.
Instead of trying to understand human performance, Rein-
forcement Learning treats them as a system of states [122].
The quest to find an optimal policy, multiple optimization
algorithms could be used. However, as the variations in the
environment increases so does the number of states to explore
and this also leads to a combinatorial explosion. It will be
advantageous to find alternative optimization algorithms or
a transfer learning mechanism by which robots do not have
to start learning from scratch for various tasks. Until these
are found, it is most likely that for the foreseeable future,
human directed kinesthetic training of robots will continue
to be utilized. This answers the first research question posed:

RQ1: Why might the human still have a role? In other
words, it is expected that human interventions, especially
as the variation needed in the manufacturing system grows
with an increased volume of bespoke goods, will still be
required. Humans offer levels of flexibility and decision-
making capabilities that are still beyond the current gener-
ation of AI applications and robotics; this situation ensures
that the need for humans to intervene in automated sce-
narios will still exist in both medium and long-term future
scenarios.

RQ2 Are there limits to ‘lights out’ manufacturing? It
seems that with the current state of manufacturing systems
paradigm, there will be a limit based on the type of product
beingmanufactured. If it is possible to know beforehand what
types of product variants are going to be manufactured, then
it is possible that a factory can be operated in lights out mode
without the need for human interventions except when break
down occurs. However, as the various regions of the world
become more connected with changes in trends spreading
overnight across geographical boundaries, it is the companies
with the ability to quickly adapt their manufacturing systems
to these changing trends that will remain competitive. Since
humans have the ability to quickly adapt, they will be needed
in such scenarios. As a result, this is a limit to the concept of
‘lights out’ manufacturing.

RQ3: Is the ‘Human in the loop’ concept required? The
‘Human in the loop’ concept is not just necessary, but a
desirable end goal for research activities involving automated
manufacturing.

As a result, of the above, the ‘human in the loop’ concept
will still be necessary for some time to come and we propose
that this should be a desirable end goal for research activities
involving automated manufacturing. In fact, it is interesting
to note in [123] that, in the latest research agenda of the
European Union, that so termed Human Centric technology
are now central to the delivery of next generation manufac-
turing systems of a conceptual Industry 5.0 paradigm. These;
systems that aim to empower Human workers, enriching
their job roles while improving productivity levels within
an environmentally sustainable and resilient manufacturing
ecosystem. It is the ethos of [123] that human needs and
interests should be the central motivation behind the new

103962 VOLUME 9, 2021



C. J. Turner et al.: Human in Loop: Industry 4.0 Technologies and Scenarios

production processes of the future so that workers’ rights
within manufacturing should not be degraded but respected.

XIII. CONCLUSION
This paper has identified a need in existing research works to
justify for the present and future need for ‘humans in the loop’
and the effective role that they may play. In addressing this
gap, the research questions posed in section I and discussed
in section XII, along with the outlined scenarios, provide a
more focused agenda for the further development of human
centric automated manufacturing in the future.

It is clear that for more complex automation projects
involving manufacturing systems engaged in mass produc-
tion of highly customized or personalized products the
human decision maker is still going to be a key component.
Even autonomous production scenarios, employing advanced
machine learning techniques, still benefit from the human
operator as an active collaborator with overall executive pow-
ers. Realized in Scenario 5 (shown in Fig. 5) the factory is a
complex cyber-physical system requiring more advanced AI
to control the shop floor with the human enabled to provide
fine grain oversight of the entire operation.

This paper has set out a research agenda to address remain-
ing gaps in approaches that aim to realize human centric next
generation manufacturing systems; with a particular focus on
the role that Explainable Artificial Intelligence (XAI) tech-
nologies may play along with Collaborative Robots (Cobots),
summarizing the work still required and ongoing to optimize
such systems to a level acceptable to all human workers
engaged in manufacturing industry.

While many manufacturers will seek to employ some of
the technologies described in this paper, utilizing scenarios
not too dissimilar to those described here, it is key that for the
foreseeable future, humans have oversight of the information
flows and remain an active participant in the delivery of the
next generation of production systems.
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