
A learning from demonstration framework for adaptive task
and motion planning in varying package-to-order
scenarios

MA, Ruidong <http://orcid.org/0000-0002-8035-5746>, CHEN, Jingyu and
OYEKAN, John

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/34198/

This document is the Published Version [VoR]

Citation:

MA, Ruidong, CHEN, Jingyu and OYEKAN, John (2023). A learning from
demonstration framework for adaptive task and motion planning in varying package-
to-order scenarios. Robotics and Computer-Integrated Manufacturing, 82: 102539.
[Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Robotics and Computer–Integrated Manufacturing 82 (2023) 102539

Available online 2 February 2023
0736-5845/Crown Copyright © 2023 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A learning from demonstration framework for adaptive task and motion
planning in varying package-to-order scenarios

Ruidong Ma a,*, Jingyu Chen a, John Oyekan a,b

a Department of Automatic and Control System Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, United Kingdom
b Human-Centred AI for Manufacturing, Institute of Safe Autonomy, Department of Computer Science, University of York, Heslington, York YO10 5GH, United Kingdom

A R T I C L E I N F O

Keywords:
Task and motion planning
Graph neural network
Learning from demonstration
Package-to-Order

A B S T R A C T

Current advances in Task and Motion Planning (TAMP) framework often rely on a specific and static task
structure. A task structure is a sequence of how work pieces should be manipulated towards achieving a goal.
Such systems can be problematic when task structures change as a result of human performance during human-
robot collaboration scenarios in manufacturing or when redundant objects are present in the workspace, for
example, during a Package-To- Order scenario with the same object type fulfilling different package configu-
rations. In this paper, we propose a novel integrated TAMP framework that supports learning from human
demonstrations while tackling variations in object positions and product configurations during massive-Package-
To-Order (mPTO) scenarios in manufacturing as well as during human-robot collaboration scenarios. We design
and apply a Graph Neural Network(GNN) based high-level reasoning module that is capable of handling variant
goal configurations and can generalize to different task structures. Moreover, we also built a two-level motion
module which can produce flexible and collision-free trajectories based on important features and task labels
produced by the reasoning module. Through simulations and physical experiments, we show that our frame-
work holds several advantages when compared with state-of-the-art previous work. The advantages include
sample-efficiency and generalizability to unseen goal configurations as well as task structures.

1. Introduction

The increasing demand for personalized products has caused more
and more manufacturing enterprises to apply a Make-To-Order (MTO)
production strategy. Such an approach usually prepares inventory in
advance and performs the final production and packaging when the
customer orders are placed [1]. There are other variant types of MTO,
such as Assemble-To-Order (ATO), Configure-To-Order (CTO), and
Package-To-Order (PTO). Sometimes, a packaging company has to
configure a batch (e.g. 500 - 10,000) of products in a certain way for a
customer before switching to making a batch of orders in another
configuration. An example of this scenario is packaging companies that
assemble hamper baskets for their employees during festive periods. We
term this massive Package-To-Order (mPTO). In this study, we focus on
the mPTO scenario where the product types are common across different
customers, while the final packaged product is determined by customer
specification (Fig. 1). In this case, if the packaging process relies only on
a human worker, several human factors such as fatigue, boredom from

repetition and repetitive strain injury may introduce errors into the
packaged product hence impacting the quality of the final products and
the productivity of the manufacturing line.

One way of solving this is to automate the line using industrial ro-
bots. However, this requires heavy investment by these companies
which are often small to medium-sized enterprises and cash-strapped.
Furthermore, this approach does not lend itself to flexibility and due
to the continuous changes in customer specifications, automation solu-
tions would need to be reprogrammed often thereby increasing costs
further. Also, there are still some tasks where human dexterity is still
required.

The application of collaborative robots (cobot) is one way of solving
the above challenge. These cobots can work in the same vicinity as
humans and are more cost-effective. Their modularity means that they
can be flexibly moved from one workbench to another. However, the
issue of programming the cobot still remains. Current approaches make
use of classical teach-in methods such as lead-through or kinesthetic
teaching that directly feed the fixed poses and paths to the cobot.

An adaptive TAMP framework with Cobot for varying mPTO problem
* Corresponding author.

E-mail addresses: rma17@sheffield.ac.uk (R. Ma), jchen118@sheffield.ac.uk (J. Chen), j.oyekan@sheffield.ac.uk, john.oyekan@york.ac.uk (J. Oyekan).

Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

https://doi.org/10.1016/j.rcim.2023.102539
Received 26 August 2022; Received in revised form 6 December 2022; Accepted 24 January 2023

mailto:rma17@sheffield.ac.uk
mailto:jchen118@sheffield.ac.uk
mailto:j.oyekan@sheffield.ac.uk
mailto:john.oyekan@york.ac.uk
www.sciencedirect.com/science/journal/07365845
https://www.elsevier.com/locate/rcim
https://doi.org/10.1016/j.rcim.2023.102539
https://doi.org/10.1016/j.rcim.2023.102539
https://doi.org/10.1016/j.rcim.2023.102539
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2023.102539&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

2

However, these are not practical in such a flexible production
problem [2] because these training methods are static and cannot deal
with variations in the environment. In this paper, we want to address a
couple of variations in the mPTO scenario.

The first variation exists in goal configurations. In this variation, we
address various customer orders such as that shown in Fig. 1. Different
customers can request different products from the inventory. In order to
properly package them according to the customer’s specifications, it is
required to assign each selected product with a specific goal position. In
this scenario, due to the different requirements of customers, there will
be different packaging configurations and appearances derived using the
same products. This means that the same product may occupy different
goal positions. The second variation of mPTO is caused by situations in
which humans flexibly collaborate with the cobot. When humans
collaborate with cobots, different humans might decide to use different
sequences to complete a task. In such a flexible production problem, the
cobot needs to acquire knowledge not only about the motions necessary
to complete the task but also about the task structure. The task structure
in this paper refers to the sequence of manipulation of the related
products making up the final goal configuration. For example, the cobot
would pick and place the first product followed by the next one until the
goal configuration is reached. In an unbounded environment, the task
structure could change due to disturbances (e.g. a worker placing
required objects in a different sequence).

For dealing with the above specified mPTO problem and the chal-
lenge of adapting to variations, we define five main aspects that are
required from the cobot:

a) The cobot should have knowledge of the task’s goal configuration.
b) From a scene containing a number of observed objects, the cobot

should be able to identify the appropriate objects needed to complete
the task.

c) The cobot should be able to schedule the necessary sequence to
complete a task.

d) The cobot should be able to complete the sequence if it has been
started by a human. In this case, if the human has started packaging
some of the products randomly, the cobot should be to observe and
understand what has taken place and then manipulate the rest of the
objects in response to the human’s performance. We term this as

responsive Human -Robot-Collaboration (HRC) according to the In-
ternational Federation of Robotics (IFC) [3]

e) The motions generated by the cobot should be able to avoid collisions
with objects in the workspace.

To deal with the aforementioned variations in mPTO scenarios,
traditional approaches often require a detailed manual design that takes
into account the possible variations that can happen. For example,
planning with manipulation trees requires a list of all possible product
combinations [4] and logic operations are conditioned on every possible
action [5].

In contrast to traditional approaches, we apply Learning from
Demonstrations (LfD) in which we unintrusively demonstrate the
required goal configuration (final product positions in the package) and
multi-task manipulations (task structure) to the cobot. By unintrusive,
we mean that we do not use kinesthetic teaching but rely on vision via
passive observation from the demonstration. After passive observation
of the demonstrated task by the cobot, we leave the cobot to learn the
underlying task structures.

We also provide demonstrated motions that are required to complete
tasks by learning the planning strategy. It is important to produce
adaptive motions that ensure objects’ safety

In addition to the above, we make use of the Task and Motion
Planning (TAMP) framework that can integrate discrete high-level de-
cision-making and continuous motion generations. It enables the cobot
to deal with variations in the object positions in the environment as well
as work collaboratively with humans when they decide to use different
sequences to complete a task. Our main contributions in this paper are as
follows:

a) We integrate different machine learning-based algorithms to form a
Task and Motion Planning (TAMP) architecture that can handle long
horizon mPTO tasks (i.e. multiple products packaging tasks) after
small amounts of demonstrations.

b) We apply a high-level reasoning module with a Graph Neural
Network (GNN) in its architecture to enable the handling of variant
goal configurations and directly learn the demonstrated task struc-
ture with raw observations while generalizing to different task
structures caused by variation in human performance. This is

Fig. 1. A real-world example of a package-to-order from Amazon in which the seller often needs to package a variety of products with different goal configurations
according to different customer demands.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

3

different from [6] where their approach could not deal with varia-
tions in the sequences of objects required to complete a task.

c) We propose a motion module that can learn and achieve a safe
planning strategy from demonstrations. By safe, we mean adaptive
collision-free motions for object handling during different stages
including pick and place.

d) Our trained architecture can be easily adapted from simulation to the
physical world without any further training.

The rest of this paper is organized as follows: in Section 2, we present
and discuss related work while in Section 3, we present a detailed design
of our architecture. In Section 4, we present the results of experiments
conducted in both simulation and the physical world while in Section 5,
we conclude and discuss the future directions of our work.

2. Related work

As discussed in the introduction section, we designed, developed and
applied a novel TAMP approach to program a cobot towards achieving
task flexibility as well as to deal with variations in the environment. In
this section, we discuss current advances in high-level decision making,
low-level motion planning techniques as well as integrated Task and
Motion Planning frameworks that researchers have applied to deal with
multi-task scenarios.

2.1. Plan learning from demonstrations

Plan learning from demonstrations refers to techniques that are
capable of learning task-level abstractions [7]. Traditional planning
approaches often require predefined symbolic rules that can recursively
solve a domain-specific problem. For example, in [4], task-level ab-
stractions were defined using the hierarchical properties of a task. In
their work, they were able to form a planning and execution tree for
dynamic planning. [8] adopted Answer Set Programming (ASP) for
checking the feasibility of different levels of task and motion planning.

Planning Domain Definition Language (PDDL) is another traditional
approach that can be used. In [5], an action- centered planner with
symbolic description and logical formulations were used to describe the
effect and applicability of actions. PDDL was extended in [9] to achieve
temporal planning and [10] extended it into hierarchical planning
problems. Hierarchical Task Network (HTN) was utilized in [11]. They
combined symbolic and geometric planners to achieve task and motion
planning. This required constraints and domain expert knowledge to
better understand the geometric side effect produced by the symbolic
planner.

A Markov Decision Process (MDP) was adopted in [1] for production
and inventory control in the MTO problem, while [12] also studied the
MTO problem by using Group-based scheduling with the tabu search
algorithm. [13] utilized AND/OR graph to represent all possible
assemble plans in multi-object manipulation tasks while [14] combined
it with reinforcement learning to achieve the flexible assembly of a
single product.

The aforementioned traditional approaches generally do not need
any training process. However, they need hand- coded task descriptions,
task transition models (i,e task structure) or constraints, for example, if-
else logic to condition possible actions. Thus, these approaches often
require domain experts to design the rules while considering all possible
situations.

Current advances in Learning from Demonstrations (LfD) have raised
the opportunity for automatically learning the tasks without any hand-
coding process. In [15], task-level abstraction was achieved using nat-
ural language to represent action symbols. These action symbols were
obtained from sub-tasks in video demonstrations with Sequence-
to-Sequence model. However, how they integrated their action symbols
with position-based motion plans is not clear. Researchers are also
increasingly using Graph Neural Network (GNN) [16] for task-level

abstraction. This is because of its natural capability to encode graph-
ical relationships between objects or multi-tasks. Some work focus on
encoding the symbolic task descriptions as graph representations. For
example, [17] utilized Conjugate Task Graph (CTG) to form sequences of
sub-tasks while [18] built manipulation graphs containing sets of motor
primitives to perform manipulation tasks. In [19], they propose a Neural
Task Graph (NTG) by using LSTM to interpret demonstration as task
nodes and thus produce action transitions as edges to link valid task
nodes through CTG. Their work shows generalizability to unseen tasks.
Nevertheless, these works still require a lot of effort to design the ground
truths. For example, the ordering of each sub-tasks and how each node is
connected to each other in graph representations must be defined.

On the other hand, some works adopt GNN to reason about the
relationship between each object. In order to form high-level abstrac-
tions, [20] captured the interactions of object-object and robot-objects
through graphical interaction networks [21] and used the relation-
ships as states in a Model Predictive Controller. Moreover, in [22], they
used object properties instead of position information. And then use the
graphic observations to perform importance ranking and incremental
planning among large amounts of objects at once. Nevertheless, their
work is not suitable for a sequential planning problem. [6] has shown
the capability of GNNs to directly learn the underlying task structures
from pure objects’ information without the need of defining symbolic
descriptions of tasks with fully connected graph observations. However,
in their work, they only take the initial state of each sub-task into
consideration. Once the objects and goal positions are known, they leave
the low motion generation to the conventional motion planner.

Compared to traditional approaches, the main scope of our high-
level task planning is to allow a cobot to learn task structures without
any hand-coded task descriptions or rules. Instead, the cobot learns the
underlying task policy with only passive observations of an expert’s
demonstrations. Furthermore, we show that a GNN-based high-level
planner is able to handle multiple environment changes including task
structure changes, customer demand changes and inventory changes
(see Section 4.1 and 4.5)

Compared to current GNN-based works, our high-level planner is
able to provide more detailed guidance for low- level trajectory plan-
ning. Unlike the work in [6], our approach is able to produce different
task abstractions during picking and placing stages. Moreover, in [6]
and [22], they require extensive information regarding the object type,
object fulfillment (i.e. whether the object has reached its goal position)
and goal type. As a result, their trained high-level GNN model still re-
quires extra effort in defining if-else-like statements. In our work, we
release the designer from this burden and make use of only position
information and necessary object features in our GNN-based reasoning
module. These were obtained from passive expert demonstrations.

2.2. Trajectory learning from demonstrations

For solving long-horizon manipulation tasks, learning from demon-
stration (LfD) methods offer a convenient way for easy mapping from
human to robot and fast trajectory level reproduction ability. Gaussian-
based approaches such as Gaussian Mixture Regression (GMR) are often
used to reproduce a trajectory from diverse demonstrations. From these
demonstrations, a joint probability density is derived using Gaussian
Mixture Models (GMM) [23,24]. Similarly, Hidden Markov Model
(HMM) can describe the distribution of data through a mixture of
multivariate Gaussian distribution as transition probabilities [25].
Nevertheless, such methods can only reproduce one single trajectory
based on a specific initial and goal pose. In order to improve variability
and adaptability, Task-Parameterized-GMM has been proposed in [26].
This works by extracting parameterized GMMs from different task
frames. Nevertheless, it requires an extra algorithm to recognize the
different task frames and it cannot generalize to unseen tasks. [27] solve
these issues by using reinforcement learning-based optimization. How-
ever, most of the above methods still only focus on the Cartesian space

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

4

(3-Dimensional spaces) and are unable to directly produce robot joint
actions.

Another common approach is to apply motion primitives. For
example, [28] applied symbols as high-level task instructions while [29]
used symbolic representations to optimize motion primitives. In [30],
they decompose one complex motion as different phases. They then
learnt the transition functions between each phase with model-based
reinforcement learning that relies on a built library of motor primi-
tives. Probabilistic Context-Free Grammars were used to build a
sequence of motor primitives in [31] while [32] used skill trees (a form
of motion primitive) segmented from expert trajectories for
long-horizon manipulation tasks. Nevertheless, these works often
require a careful design of motion primitive symbols.

An alternative way is to take advantage of the hierarchical structures
to decompose a complex goal-oriented trajectory into smaller sub-goals.
[33] adopts deep-learning-based methods to first identify the sub-goals
and switch to reinforcement learning for continuous control. In [34],
sub-goal trees were proposed to recursively predict positions in each
task segment while [35] integrated inverse reinforcement learning with
sub-goal-based demonstrations. These approaches still require rich ex-
plorations of the environment even with demonstrations.

In mPTO problem, there will be various objects to be manipulated.
Thus, learning one trajectory is not enough. The collection of demon-
strated trajectories will also be costly in terms of time. Meanwhile, the
objects’ safety should also be considered. Towards addressing these is-
sues, we adopt a hierarchical structure for our motion module that can
directly map observations to joint actions. The hierarchical structure
consists of sub-goals and their related actions for trajectory learning
from demonstrations. As a result, by accessing a task’s relevant features
and information (i.e. label), our sub-goal planner in the hierarchical
structure is able to integrate different trajectories for various picking and
placing positions. And it is able to learn the expert’s planning strategy.
In carrying out related sub-goal actions via final joint actions, we build
an action planner that directly learns actions by modeling expert pref-
erence through a simple neural network. This is unlike [36] in which
they used neural networks to learn the state transition function and thus
guide the action learning of Deep Reinforcement Learning (DRL). Our
work enables more data efficiency without the need for exploration. It
can also produce adaptive collision-free plans for both unseen picking
and placing positions.

2.3. TAMP architecture

Efforts have been made to integrate the aforementioned discrete plan
planning and continuous trajectory learning methods within the same
architecture. Such methods are defined as integrated Task and Motion
Planning (TAMP) [37]. Nevertheless, the main challenge in a TAMP
architecture is the integration of a discrete task planner with a contin-
uous motion planner. Sampling-based methodologies are one of the
common approaches used to do this. A sampling-based approach merges
the discrete task planning and continuous motion into one common
search space and uses sampling-based probabilistic search to navigate
and find solutions in the search space [2]. In [38], they sampled valid
sub-goals and actions through the use of cascaded variations inference
with a user-specified reward function. The application of a conditional
sampler with domain knowledge to sample actions in large solution
space is another approach that was used in [39]. However, in mPTO
cases, the sampling-based method is inefficient to handle the complex
search at the task level. Furthermore, if the hierarchical character of
trajectories were considered, the sampling-based methods may yield no
solutions [2].

In order to solve this drawback, [2] suggests the use of a technique
called Procedural Attachment. In Procedural Attachment, a high-level
task planner is followed by an external motion planner [2]. There are
several works that apply Procedural Attachment in addressing flexible
production with robots. Examples include prioritizing the object

sequence through the use of mixed linear programming (MILP) [40] as
well as using Ordered Visiting Constraints (OVC) with constraint opti-
mization [41]. However, these techniques require that a description of
the task structure via symbolic representation should be known in
advance so that the workpieces can be manipulated sequentially to-
wards achieving the specific goal configuration. The need for such a task
description means that they are not able to deal with variations in the
environment. Thus, it becomes necessary to redefine the task description
and retrain their model if a customer order changes. Furthermore, in
these implementations, they only consider high-level plans while the
low-level collision-free motion generation is left to an existing motion
planner such as Rapidly exploring Random Tree (RRT). This could be
time-consuming.

In order to deal with variations in observed objects, current advances
in GNN [6] have shown the ability to directly use the graph-encoded
representations to learn the high-level policy instead of using symbolic
representations. For example, [6] showed that such an approach can
learn task-specific rules and generalize to variant geometric goal con-
figurations that make use of the objects’ observation during demon-
strations. In other words, their work only considers cases in which the
task structure is static meaning that their approach cannot deal with
redundant objects in a task structure as well as in between tasks.
Furthermore, their approach cannot deal with variations in the task
sequences of objects which are required for the human varying element
in an HRC scenario.

Consequently, from the above discussions, we raise some questions
that we aim to address for TAMP architecture in mPTO problem:

• Q1: In the mPTO scenario, how can a high-level decision-making
module generate an accurate sequential plan while dealing with
redundant objects in a task structure? It should be noted that the
redundant objects are necessary as they might be needed for the next
customer order which requires a different goal configuration. In
manufacturing systems, this approach would reduce or potentially
eliminate the downtime required during changeovers.

• Q2: How do we translate the change in sequential plan to the lower
level motion planner for subsequent rapid motion generation? Also,
how do we build a motion planner that can produce faster collision-
free trajectories than conventional motion planners as well as handle
variant pick and place positions?

• Q3: Furthermore, assume a human worker gets involved and decides
not to follow the demonstrated task structure, how do we build a
TAMP architecture that can rapidly detect this variation and adapt
the sequential plan?

The next section discusses the methodology and framework that was
applied in addressing these questions.

3. Methodology

In this section, we will describe the problem setup as well as the
framework and methodology that were designed and applied to address
the questions raised at the end of the previous section. We aim to provide
an end-to-end solution learnt from expert demonstrations for a mPTO
scenario. We follow a Procedural Attachment style in TAMP architecture
that can hierarchically decide the useful features to different levels of
planning.

Suppose we can obtain demonstrated observations as a tuple Π = {g,
o, p, r, μ, a, I} from environment scenes. We have m products with posi-
tion information o = {om}

m
m=1 from the pending area. According to

customer demand, there will be n selected products with goal position
information g = {gn}

n
n=1 at the packaging box p (n ≤ m).

The cobot should manipulate the selected products to the packaging
area sequentially while considering two different cases under the same
framework. The cases are:

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

5

a) CASE 1: cobot should accomplish this sequential task alone by
following the same task structure that was learnt from demonstra-
tion. In this case, the cobot picks and places the first product followed
by the next one until the goal configuration is reached.

b) CASE 2: In the second case, the cobot should handle different task
structures. This is particularly true when responsive Human-Robot-
Collaboration is considered. In this case, human performance can
be random, for instance, different arm movement trajectories could
be used to pick and place objects. Thereafter, we only monitor the
final states of human actions such as the objects’ final positions.

Fig. 2 illustrates the proposed framework which was inspired by the
natural way by which a human decides to manipulate an object. We
consider that she/he often first focuses on a specific object and then
proceeds to grab it. Once the object has been grabbed, the human then
focuses on a specific goal pose to achieve.

To produce an efficient plan during manipulation, we separate the
observed human demonstrations into two different task stages for each
selected object and its subsequent manipulation:

a) Cobot needs to first focus on the most important object within o and
pick it up. This is called the picking stage.

b) Once the object has been picked up, the cobot should carry the object
to the specified goal pose. In this stage, we let the most important
feature be the packaging box position p and infer the specific goal
position based on the task label l. This is called the placing stage.

At each stage, we decompose the task into task planning and motion
planning through the use of:

a) A high-level reasoning module that focuses on the objects obser-
vations and thus reduces them to the most important observations
with tasks labels l

b) A low-level motion module that generates adaptive motions based
on the selected observations and task information (e.g. labels) from
reasoning module.

3.1. Reasoning module

The high-level reasoning module is built on a Graph Neural Network
(GNN) with an additional Neural Network (NN) classifier. It plans the
raw objects’ sequential manipulation based on the customer’s specifi-
cations. It should be noted that there could exist extraneous objects (n ≤
m) where only a subset of raw objects needs to be manipulated to ach-
ieve the final goal configuration. We aim to model this decision-making
problem as which observations should be focused at what stages during
picking and placing. For instance, at the initial picking stage, the cobot
should focus on the selected object o and its corresponding goal pose,
once it has been picked, the cobot needs to focus on the packaging p area
to achieve the required goal position.

The previous study provides both objects and goals nodes with extra
properties defining the object type and its fulfillment in the graph.
Although the goal positions for the objects can be variants (for example,
when working on different geometric shapes of final goal configura-
tions), such a setting will cause the reasoning module to only follow a
specified task structure. In previous works, extra if-else statements were
used to ascertain if the goal has been fulfilled or not in every step.
However, in our study, our aim is to allow the agent to first distinguish
the important observations and stages only through the object position

Fig. 2. Graphic representation of proposed framework at picking and placing stage. At picking stage, the reasoning module will always focus on the selected
objects in the pending area while at the placing stage, it will always focus on the packaging box observations.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

6

information with necessary features and secondly to become more
generalizable when task structure varies.

To achieve these goals, the main idea is to reduce the high-
dimensional observations through importance ranking. we first assign
the necessary goal positions to each selected object. This will be selected
by the importance score at the beginning of the picking stage. We treat
each single object manipulation task as a graph classification problem.
The output of the graph neural network will be a m +1 dimensional
probabilistic distribution Po

pred = {po
pl, p

o
1, ..., po

m} where {po
1, ..po

m} depict-
ing the object importance within o at the picking stage and an extra po

pl

suggests the importance of packaging area p at placing stage.
The distribution Po

pred is combined with the selected goal position.
This will then be further fed to a fully connected NN classifier for clas-
sifying n + 1 dimensional probability distribution Pg

pred = {pg
pi,p

g
1, ...,p

g
n},

where {pg
1, ..p

g
n} describes the goal labels at placing stage and an extra

pg
pi represents the picking stage. Note that each pg

n in {pg
1, ..p

g
n} represents

a specific goal position, which is demonstrated by the predefined goal
configuration. We refer to it as a position-specified label. Such a design is
to better infer the low-level motion module about the task stages.

Thereafter, the important features selected by Po
pred and the one-hot

encoded label l ∈ {lpi, lg1 ...lgn} converted from Pg
pred are combined

together as the inputs for the motion module (See Fig. 2).
Fig. 1 describes our neural network architecture for reasoning

module. We first introduce a GNN to operate the graph classification.
We encode states as graphs. Let there be n out of m (n ≤ m) objects that
need to be manipulated. There will be m nodes V = {vm}

m
m=1 and each

node contains 4-dimensional features ϕ(vm), including the 3-dimen-
sional objects positions o and an extra binary property I = 0 or 1
describing whether such an object has been selected or not according to
the predefined g = {gn}

n
n=1. We therefore define the directed linking

edges E = {ei,j} for i = 1, ..m − 1 and j = 2,...m, where each node is only
connected with its neighbors nodes.

We mainly adopt a GraphSAGE (Sage) [42] layer for this study. It
holds the advantage of being generalizable to unseen nodes by sampling
and aggregating the target node’s neighbor nodes instead of weighting
the whole neighbor nodes like Graph Convolution Network (GCN) [43].

Assume the initial node embedding is h0
i = ϕ(vm) and there will be K

message passing iterations or K layers. We can thus aggregate its
neighbor nodes hk− 1

j from the previous layer (i.e. K − 1) and to form a
single vector representation as Eq. (1). In this study, fagg is the aggregator
that aggregates the neighbours’ features with an averaging function
1
N

∑

j∈N (i)
hk− 1

j . This aggregated representation hk
N (i) will be concatenated

with the target node’s embedding from the previous layer hk− 1
i and

further multiplied by a weight matrix Wk. Thus, the node embedding of
Kth layer can be represented as Eq. (2), where σ is the ReLu activation
function. fθgnn1

and fθgnn2
are the trainable functions with parameters θgnn1

and θgnn2 for each layer. In order to prevent gradient explosion, we

normalize the obtained node embedding as hk
i ← hk

i
‖hk

i ||2
.

hk
N (i) = fagg

(
hk− 1

j , j ∈ N (i)
)

(1)

hk
i = σ(Wk⋅

(
fθgnnk− 1

(
hk− 1

i

)
+ fθgnnk

(
hk

N (i)

))
(2)

Afterwards, for graph classification, there will be an additional readout
layer that aggregates the node embeddings into a graph embedding as
Eq. (3). A final output layer accepts the graph embedding and produces
m + 1 final categorical distribution Po

pred.

Gk =
1

N (v)

∑

i∈N (v)

hk
i (3)

We further build a classifier with three layers. It takes m + 1 dimensional
distribution Po

pred and a 3D selected goal position g as inputs, which
yields total m + 4 dimensional features with the final outputs Pg

pred.
For training this module, we consider it as a supervised learning

model with the ground truth distribution Po
goal and Pg

goal. For both GNN
and NN classification, we use cross-entropy loss as Eqs. (4) and (5).
These two cost functions are jointly optimized as a linear combined cost
function in Eq. (6).

loss1 = −
∑m

m=1

[
po

goal

]

m
log

(
p0

pred

)

m
(4)

loss2 = −
∑n

n=1

[
pg

goal

]

n
log

(
pg

goal

)

n
(5)

L re = (loss1) + (loss2) (6)

3.2. Motion module

In this section, we focus on building a motion module for a cobot to
generate actions based on the information provided by the reasoning
module. In mPTO scenarios, collision-free motions need to be consid-
ered in order to avoid any damage to the products. Thus, a cobot should
avoid any collisions with itself and with objects at the picking stage. It
should also avoid collisions between various objects already packed
during the placing stage. Thus, the aim of this module is to learn the
expert’s planning strategies and integrate trajectories from different task
demonstrations. In order to achieve this, we decompose the motion
planning problem into two-level steps consisting of:

a) The generation of an effective collision-free plan as sub-goals
conditioned by task labels.

b) The generation of joint actions based on the current end-effector
position and the predicted sub-goal. This can be achieved by
modeling the demonstrator’s preference.

We build a conditional sub-goal planner with variational inference,
which takes the most important observation from the reasoning mod-
ule and cobot end-effector positions as inputs. This is also conditioned
on the task stage label l. By accessing the task information (e.g. label), it
is able to provide 3-dimensional collision-free sub-goals for different
target poses even when similar observations are perceived. Lastly, the
neural dynamic planner is built with simple neural networks to provide
dynamic transition models of the expert preference based on the current
end-effector position and predicted sub-goal.

3.2.1. Task-conditioned sub-goal planner
For sub-goal planning, if the same object was picked for different

locations, similar observations can confuse the planner. Thus, we pro-
vide task parameters (i.e. labels) to differentiate between different tasks.
The sub-goal plan s is based on the current end-effector pose r and
different features obtained from reasoning module at different stages.
In picking stage, the reasoning module will always provide the
selected object position oselected and label indicating the task stage lpi, and
thus lead to total observations O = {oselected, lpi, r}. During the placing
stage, the reasoning module will focus on the packaging box position p
with a label describing different goal positions lgi , and lead to O = {p,lgi ,

r}.
Moreover, instead of using a deterministic model that directly gen-

erates the categorical distribution p(s|O), we use a variational inference-
based probabilistic regressor with additional uncertainty output δ (e.g.
standard deviation(std)). We formulate latent parameters Q(z) ∼
N (μ, δ) to approximate the ground truth sub-goal s as p(z|O). The μ and
δ can be parameterized with neural network as dependency of O , μ =

fθsubμ (O), δ = fθsubδ
(O). According to Bayes rule, the posterior p(z|O) can

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

7

be expressed as Eq. (7). The integral form of marginal likelihood
∫

p(O |z)p(z)dz is often computationally intractable. In variational infer-
ence, it tries to find the optimal distribution p*(z) that approximates the
posterior distribution. It equivalent to performing optimization by
maximizing the Evidence Lower Bound function (ELBO) in Eq. (8),
where Ez∼Q[logp(s|z)] is the likelihood term and Dkl is the Kullback-
Leibler (KL) divergence that regulates the predicted variational proba-
bility q(z) with a prior distribution p(z). The KL divergence can be
rewritten as the expectation form of z and finally, the cost function can
be expressed as Eq. (9). Assuming the likelihood and variational distri-
bution are Gaussian, we can thus replace them with a negative Gaussian
log-likelihood function in Eq. (10). For prior probability, we assume the
ground truth sub-goal has a unit Gaussian distribution p(s) ∼ N (0,1).

Fig. 2 illustrates our network architecture, we use Stochastic
Gradient Variational Bayes (SVGB) estimator with reparametrization
trick to train the model [44]. By accessing task labels, the sub-goal
planner is able to produce adaptive sub-goals among different tasks.
The variational inference concepts can lead to high likelihood while
penalizing over-fitting when estimated q(z) is far away from the true
prior p(z).

p(z|O) = p(z)
p(O |z)

∫
p(O |z)p(z)dz

(7)

argmaxO z = Ez∼Q[logp(s|z)] − Dkl[q(z)‖ p(z)] (8)

L sub = Ez∼Q[logp(s|z)] − Ez∼Q[logq(z) − logp(z)] (9)

L Gaussian = −
N
2
(
2πσ2

θσ

)
−

1
2σ2

θh

∑N

i=1

(
p′

i − μθμ

)
(10)

3.2.2. Neural dynamic planner
For the final action planer, since we are dealing with a large number

of observations and continuous actions, a small amount of demonstra-
tions are inefficient to directly map the observations to optimal actions
required to achieve the sub-goal.

Instead, we model the expert preference as a dynamic transition
function. Assume experts always prefer to minimize the distance be-
tween current end-effector position rt and sub-goal position st at every
time step t: Δt = st − rt in a consistent way (i.e. they will first minimize
Δt in the x-y plane, and thus approach the final goal vertically). Mean-
while, the joint actions at = [a1, a2, a3, ..., an] will lead to different posi-

Fig. 3. Neural Network Architecture for reasoning module. We first construct a graph representation of the objects states. With three GraphSAGE layers and ReLu
activation function, we obtain the most important observation as the probability distribution and thus select the corresponding goal from goal sets. Thereafter, the
task stage can be classified by combining these two features through 3-layer neural networks with ReLu as activation function.

Algorithm 1
Proposed TAMP architecture for adaptive packaging problem.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

8

tion rt through forward kinematic in robot arm. Thus, we formulate a
dynamic transition function containing a continuous state space as Δt
with action space at = [a1, a2, a3, ..., an]. We aim to obtain the actions
from the expert preference Δt = st − rt inversely through a simple neural
network at = DθD (Δt) as shown in Fig. 3. It is trained with a supervised
loss function as Mean Square Error (MSE), which minimizes the loss
between ground truth action at and prediction as shown in Eq. (11),

where T is the training batch size.

L act =
1
T

Σ
(at ,Δt)∈T

1
2
||at − DθD (Δt)||

2 (11)

Finally, during testing, at the high-level planning, the reasoning
module first identifies the task label and the most important observa-
tion. In motion module, the task-conditioned sub-goal planner will use
the information provided by reasoning module to propose conditioned
mean sub-goals while the neural dynamic planner tries to achieve the
sub-goal during the low-level action execution steps as shown in Algo-
rithm 1.

4. Experiments, results and discussion

In this study, we design our use cases to replicate a mPTO. However,
due to the limitations related to the lack of massive customer orders, we
scoped down the use cases to an adaptive packaging problem while
preserving the nature of the changes that happen between batches of
massive orders.

Fig. 4. Neural Network architecture for our Task-conditioned sub-goal planner with inputs from the reasoning module. We have two fully connected intermediate
layers for pre-processing the observations after which we feed the processed features with task labels to variational inference. We apply a reparameterization process
to train the network with the predicted probability distribution. We adopt Tanh as our activation function.

Fig. 5. Neural Network architecture of neural dynamic planner. We first
calculate the distance between the predicted sub-goal and the current end-
effector position. This will be fed into a sample three -layers neural network
to finally produce the joint actions. The activation function between each layer
is ReLu.

Fig. 6. This figure shows CASE 1: in which a static task structure is handled by cobot and CASE 2: in which the cobot works with a human on a varying and dynamic
task structure. In these examples, the cobot needs to pick and place the target objects into the blue packaging box from the pending area. The human model in the
figures is for illustrative purposes only.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

9

We design n out of m (n ≤ m) adaptive packaging experiments with
Fig. 5 describing an example 4 out of 5 experiment. According to a
customer order, there will be n objects required to be packaged among
total m objects.

We consider diverse goal configurations in every experiment as
shown in Fig. 6 as every object has the potential of being selected. There
will be mCn = m!

(m− n)!n! possible combinations. Moreover, although the
positions in the goal configuration are fixed, same objects may occupy
different positions in the goal configuration. Thus, for each combination,
there will be Pn = n! possible permutations. Therefore, for every
experiment, there will be a total of mCn × Pn different goal
configurations.

We aim to solve two different cases in every experiment under the
same proposed architecture. In CASE 1, the cobot handles the diverse
goal configurations solely as shown in Fig. 6a. In this case, cobot should
follow the underlying task structure learnt from demonstration. For
example, if the selected objects are [2,3,4,5]. The cobot will always
manipulate the selected object with a smaller number until the final goal
is achieved.

In CASE 2, we present the generalization ability of our approach to
unseen task structures as a result of human performance with diverse
goal configurations as stated above. Unlike other previous work (e.g.
[6]), it should be noted that the cobot in our work is free to compute and
use another task structure depending on the perceived and observed
current state of the task structure. This means that if the perceived task
structure changes due to interference by a human, our architecture are
able to support the cobot in understanding the change and responding
accordingly. For example, as shown in Fig. 6b, the human picks the first
and third selected objects while the cobot needs to manipulate the sec-
ond and fourth selected objects sequentially.

To train our architecture, the high-level reasoning module and the
low-level motion module are programmed separately using different
expert demonstrations.

For the high-level reasoning module, we first demonstrate the
desired goal configuration with position-specified labels as Fig. 7 shows.

We thus allow the expert to manipulate the objects by following the
same task structure as shown in Fig. 6a. We only collect two graph-based
observations with the selected goal pose for each single object manip-
ulation at the beginning of picking and placing stages as shown in
Fig. 10. The ground truth distribution Po

goal and Pg
goal are given as one-hot

vector label ensuring that only the probability selected by expert will be
1 and the rest will be 0. The agent is then left to learn the underlying
structures from graph-encoded observations without any hand-coded
task descriptions or rules.

For the low-level motion module demonstration, we manually con-
trol the cobot to pick and place objects. We design 3 sub-goals each for
different stages. For the picking, firstly, the cobot moves above the ob-
ject followed by an approach to the object’s surface and finally grabbing
the object up. For placing, the cobot will approach a certain point ac-
cording to the goal position followed by moving above the goal and then
finally placing the object. For every sub-goal, we sampled 20 actions.
The collected actions contain three most effective joint actions of UR10
including [q′

base,q
′

shoulder,q
′

elbow,].
In the following sections, we evaluate each module step by step with

comparisons against alternative approaches. We train each module with
expert demonstrations and test the trained models with our designed n
out of m experiments in both simulation and the real world. For each
single object manipulation during testing, the reasoning module will
produce important features and task labels at beginning of picking and
placing stages. For motion module, the sub-goal planner will produce
three sub-goals at each stage. We set up a maximum of 30 steps for the
neural dynamic planner to approach the predicted sub-goal. In the
following sections, we present the average testing results over 5 seeds
with standard deviation.

For reasoning module, we aim to demonstrate the adaptability and
the generalizability of such a data-driven and learning-based model on
variations in goal configurations and task structures. For motion
module, we describe its flexibility of trajectory production while
dealing with variations in position changes during both picking and
placing. Thus, we show that our architecture holds the advantages of

Fig. 7. These figures show the different goal configurations including possible combinations and permutations with position-specified labels.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

10

being faster and more accurate than other methodologies. Finally, we
validate our trained architecture on physical experiments.

For both simulation and physical experiments, we adopt a 6-DoF
Universal Robot 10 (UR10) robot arm with a suction cup to interact
with objects. In the simulation, we conducted experiments in the
physical simulator CoppeliaSim [45] with cubes, while we use
real-world products with similar shapes in the physical experiment. To
detect them, we utilize a RealSense Depth Camera with a convolutional
neural network (CNN)-based computer vision detection framework
YOLOV3 [46]. All GNN-based models are written in PyG [43]. And the
neural networks including our architectures and comparison method-
ologies are written in Pytorch [47] and trained on NVIDIA GeForce RTX
2060 GPU.

4.1. Reasoning module

In this section, we aim to show the ability of our GNN-based
reasoning module is able to handle a large amount of goal configura-
tions with redundant objects. We also examine the generalizability of
our module regarding unseen goal configurations and task structures
during different task stages. We compare our reasoning module against
the different methods using the mPTO use case:

1) GNN [6]:We implemented the GNN-based high-level policy from the
work with GraphSAGE Layers. The observations are encoded as a
fully connected graph. This graph provides both objects and goals
nodes with spatial 3D positions and extra properties regarding object
types and fulfillment in the graph. performs the graph classification
to directly output the two probability distribution of the target object
Po

pred and goal Pg
pred. In order to meet the needs of our experiment, we

added an extra binary feature as I describing whether an object has
been selected or not in every node. Their work can handle various
positions for each object’s goal by producing the same distribution
Pg

pred. Hence, this ground truth Pg
goal label does not reflect the specific

goal position. Instead, it only represents the order of goals.
Furthermore, we assign the same ground truth for picking and
placing stages as their work only considers the initial observation at
the beginning of each object manipulation.

2) GNN-task: A design like GNN cannot distinguish between different
goal positions. Hence the low-level motion module will always
follow the same static trajectory regardless of the goal positions. In
the comparisons that follow, we use their approach with our ground
truth Pa

predand Pg
goal

3) MLP: In comparing our approach with a traditional Multi-Layer
Perceptron (MLP), we used flat 1D observations instead of graphs.
And we replace the GraphSAGE Layers with a three-layer fully con-
nected neural network. This was trained with our expert demon-
stration data.

4) RF: We also compare our approach with a Random Forest Classifier
(RF) which is a non Neural Network based traditional approach. This
approach infers the target predictions by using an ensemble of de-
cision trees with each tree containing a sub-sample of data features.
Each tree has branches that use Boolean-type logic to reach a deci-
sion. The RF reaches a decision through a majority vote from an
ensemble of trees. We replace the GraphSAGE Layers with the RF in
our comparisons. This was trained with our expert demonstration
data.

We trained these methods with 5-fold cross-validation. The learning
rates were set to 1 × 10− 3. During the test stages, we assess their per-
formance by using a Success Rate (SR) metric. SR refers to the per-
centage of successful trials among the total attempts. We obtain the
classification result for Po

pred and Pg
pred at both picking and placing stages

respectively. This is computed for every single object manipulation and

one success trial is counted when all predictions for n objects are correct.
For instance, in one n out of m experiment, there will be total n × 2
predictions for both Po

pred and Pg
pred.

Table 1 describes the performance on CASE 1. Each model is trained
with the full demo data. The objects’ positions are initialized randomly
within the pending area and their performance with the trained sce-
narios are assessed. As shown in Table 1, our approach has a competitive
performance when compared with GNN achieving a 100% SR among a
large amount of diverse scenarios. For example, there are 120 different
scenarios in 4 out of 5 experiment. RF method also shows comparable
performance. However, the GNN-task performs the worst as it suffers
from directly producing the positions specified labels from the extracted
GNN features. This indicates our design of using an extra classifier is
efficient to infer different task stages, especially when producing
different position-specified labels at placing stage. The MLP method
decreases in SR because of the challenge of dealing with variations in
positions.

Next, we highlight the generalization ability of our module for
dealing with an observation distribution outside the training data. In
this study, we train the modules with only partial goal configurations
using a proportion (which we call the training ratio λ) of the dataset.

In CASE 1, we randomly select λ×mCn combinations with their
possible permutations Pn from the total goal configurations to train the
models. Each goal configuration is trained only once. And the initial
objects’ positions are also randomized. We assess their SR on the unseen
(1 − λ)×mCn × Pn tasks. This means that during testing, the module needs
to produce task structures on previously unseen goal configurations as
well as in the presence of previously unseen redundant objects in the
observed scene.

Fig. 8a shows the results on CASE 1. Our model can achieve 100%
success on unseen goal configurations with λ = 0.6 in 3 out of 5 exper-
iment and is able to handle 24 unseen goal configurations with 94
trained demos in 4 out of 5 experiments. GNN and GNN-task fail to
generalize to unseen goal configurations with redundant objects. RF
suffers to generalize to unseen goal configurations.

In CASE 2, similar to the study in CASE 1, we train the models with
partial goal configurations λ×mCn × Pn. During testing, we augment
testing data that perform the task in different task structures with
randomly selected goal configurations (see Fig. 6b as an example). We
have 300 testing scenarios for each n out of m experiment. We aim to
prove that if our module is able to handle unseen task structures under
unseen goal configurations.

CASE 2 as shown in Fig. 8b, is challenging due to the increase in the
amount of unseen scenarios. Our module can achieve the best average of
96.3% and 93.7% success rates in unseen task structures for 3 out of 5
and 4 out of 5 experiments respectively when trained with full goal
configurations (λ = 1). The GNN cannot handle different task struc-
tures. It fails to produce correct importance Pa

pred. We also notice that
MLP even has better performance than GNN and GNN-task. The reason
may be that, by using a fully connected graph, it may aggregate irrele-
vant neighbor node features and hence affect the prediction accuracy.
Compared to RF, it indeed can solve part of the problem, while it still
suffers from generalizing to varying task structures. We show our
reasoning module’s results for generalization on unseen goal config-
urations and task structures as Fig. 9.

Table 1
Success rates of different methodologies on n out of m objects reasoning in
simulation.

n out of m 2 out of 3 3 out of 3 3 out of 5 4 out of 5

Ours 1 ± 0.000 1 ± 0.000 1 ± 0.000 1 ± 0.000
GNN 1 ± 0.000 1 ± 0.000 1 ± 0.000 1 ± 0.000
GNN-task 0.83 ± 0.015 0.72 ± 0.017 0.58 ± 0.024 0.24 ± 0.031
MLP 1 ± 0.000 1 ± 0.000 0.96 ± 0.013 0.86 ± 0.025
RF 1 ± 0.000 1 ± 0.000 1 ± 0.000 1 ± 0.000

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

11

Finally, we interpret the learnt importance ranking results with
GNNExplanier [48] as Fig. 10. GNNExplanier aims to explain the trained
graph model by determining the most important features and edges. As
shown in Fig. 10, the feature I is necessary in our case as it allows the
GNN to determine which subsets of objects need to be focused. Our
reasoning module is able to produce efficient object importance with
position information and its neighbor nodes at the picking stage. The
spatial feature of the object height z infers the placing stages. Mean-
while, our module is robust to handle different task structures as we
notice that it has identical masks in both CASE 1 and CASE 2. This in-
dicates that our graph construction enables the trained GNN to effi-
ciently identify if some of the objects with I = 1 have been packaged (i.e.
human performance) through only position information. And thus, it is
still able to correctly plan the rest selected objects with the learnt task
structure as shown in Fig. 9.

To conclude, our reasoning module can handle large amounts of
different goal configurations and is data-efficient because it can gener-
alize to unseen goal configurations under the same task during different
task stages for cobot manipulation without any hand-coded task de-
scriptions. Furthermore, our work is capable of handling different task
structures and as a result, can support human-robot collaborative work.

4.2. Motion module

In this section, we present the motion module ’s performance. Since
we have two separate neural network-based models (Task-Conditioned
Sub-goal planner and Neural Dynamic Planner) in this module, we assess
them individually.

4.2.1. Task-conditioned sub-goal planner
In this section, we aim to justify the importance of providing task

information from the high-level module and the effectiveness of our sub-
goal planner in dealing with variations in object positions. Since we used
a regressor in our work, we compare our sub-goal planner with different
regression methodologies as discussed below. All the models are trained
with expert demonstration data.

1) VI: This is a variational inference regressor without any task label.
2) GPR [49,50]: Gaussian Process Regression (GPR) is a non-parametric

regression method based on the Bayes method. We provide the task
label and train it with Radial basis function (RBF) kernel.

Fig. 8. A study of the generalization over training ratio in simulation. A successful trial is defined when all predictions are correct for every single object.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

12

3) MLP: We also build a simple neural network-based deterministic
regression model with task labels (i.e. it does not measure the un-
certainty of p(s|O).

The learning rates were set to 1 × 10− 3 and we measure the
regression results based on the 3-fold cross-validation with R2 score, the
Coefficient of determination. A higher R2 score indicates that the model
can better explain the variability of data. Afterwards, we apply different
models as sub-goal planners in our architecture and evaluate them in the
simulation experiments. Furthermore, one object is only allowed to be
manipulated to one goal during demonstration (training phase), while in
testing, we studied the generalization ability of our approach.

We thus investigate if the sub-goal planner can produce an efficient
plan when the same object needs to be used in different goal positions.

For example, when considering the permutations under the same com-
bination as shown in Figs. 7a and 13b. In this situation, an object might
need to be manipulated into different goal positions starting from the
same position. We illustrate one successful example as shown in Fig. 11.

During testing, we test 100 trials which are randomly selected from
CASE 1 and CASE 2 as discussed in the previous section. One success in
an object’s manipulation is defined as when the Euclidean Distance
between object pose and goal position is under a certain threshold δr =

0.06m (See Eq. (12)). One success trial is one in which all target objects
have been fulfilled to the predefined goal without any collision during
the execution. We still use Success Rate (SR) to evaluate their
performances.

Fig. 9. We present the simulation results in 4 out 5 experiment. Our reasoning module produces the feature importance and task labels at the beginning of picking
and placing stages for each object manipulation, where P (Pick) stands for picking stage, P (packaging) is the feature importance of packaging box at placing stage.
Our model can handle unseen tasks in terms of goal configurations and task structures that are different from demonstrations.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

13

success =
{

1
⃒
⃒Poseobj − Posegoal

⃒
⃒ < δr

0 otherwise
(12)

Our task-conditioned sub-goal planner can handle up to 4 different
goal positions as shown in Table 2. The MLP has the worst performance,
and we also notice it can only handle up to 2 different goal positions. In
comparison, the VI has a better R2 score in the training data set.
Nevertheless, we notice that it is unable to produce a stable sub-goal
without accessing the task information thereby indicating the impor-
tance of task labels.

For GPR, it uses the whole training sample information to perform
predictions of sub-goals. Although it has task information, it is still un-
able to handle the unseen goal positions which are different from
training distribution. Our task-conditioned variational-inference-based
sub-goal planner shows better performance when dealing with varia-
tions in the testing experiment.

As shown in Fig. 11, our sub-goal planner can imitate the planning

strategy from the demonstration. It is also generalizable when different
goal positions are provided while guaranteeing safety between objects.
We also found that it can produce sub-goals when the cobot needs to
pick an object at previously unseen positions as shown in Fig. 13a.
However, it should be noted that these positions should remain within a
particular range (see Section 4.3). The main failure case in our sub-goal
planner happens when the predicted sub-goal is not efficient in catching
the object at its surface.

4.2.2. Neural dynamic planner
In this section, we examine the efficiency of only modeling the expert

preference (i.e. state-sub-goal distance) to produce effective actions in
cobot joints.

We compare different inputs as shown in Fig. 12. If the inputs
become full observation including current end-effector position and sub-
goal as π(rt , st). Such a model will become a simple actor-network in
actor-critic based reinforcement learning like Deep Deterministic Policy

Fig. 10. We interpret the learnt reasoning module at picking and placing in two different cases. For each sub-figure above, the first row (Feature mask) describes
the most important features and the second row (Edge mask) indicates the most important edges as solid lines. The third row describes the manipulation scenes from
the simulation.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

14

Gradient (DDPG) [51]. We train these models with 5-fold
cross-validation with the learning rates as 1 × 10− 3. We allow the
cobot to approach to the predicted sub-goal within maximum 30 steps

and record the absolute mean distance at each time step.
As Fig. 12 shows, full observations π(rt , st) fail for producing optimal

actions, and the predicted actions remain always the same as the red

Fig. 11. We show the simulation results of our sub-goal planner at placing stage in 4 out of 5 experiment. The first graph of each figure shows the initial state of the
stage. The sub-goal planner will predict three collision-free sub-goals followed by actions from Neural Dynamics Planner. As the figure shows, our sub-goal planner is
adaptable according to different task information (i.e. task labels) without any collisions.

Table 2
Different sub-goal regression methods’ results on demonstration data, and success rates on the adaptive packaging experiments. We perform 100 testing trials in each
experiment.

2 out of 3 3 out of 3 3 out of 5 4 out of 5
Model R2 SR R2 SR R2 SR R2 SR

Ours 0.98 0.96±0.012 0.98 0.94±0.008 0.97 0.92±0.012 0.97 0.89±0.017
VI 0.96 0 0.94 0 0.95 0 0.97 0
GPR 0.98 0.35±0.046 0.99 0.43±0.076 0.99 0.32±0.047 0.99 0.21±0.031
MLP 0.87 0.26±0.041 0.73 0.12±0.023 0.621 0.08±0.019 0.43 0.06±0.016

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

15

curve shows. With inefficient state-action pairs, the actor-network may
fail by getting trapped in local optimal. Also, the similarity between
observations may also cause difficulty during training. Our neural dy-
namic planner as shown by the blue line in Fig. 12 can converge to a
distance under 0.02 m at around 15 steps. That shows the data-efficient
and adaptability of our proposed method.

Fig. 13 shows the 3D trajectories produced by our motion module.
In the picking stage of Fig. 13a, the motion module follows the expert
planning strategy by first moving above the object and thus picking the

object. As seen in Fig. 13b, our module is able to deal with various object
positions in the picking stage and capable of producing effective tra-
jectories to various goal positions even with the same starting positions
during the placing stage.

4.3. Overall performance

In this section, we discuss our whole architecture performance in
every experiment. We randomly select scenarios in both CASE 1 and
CASE 2. The performance is assessed using the approach discussed in
Section 4.2.1.

We compare different baseline methods including:

1) DRL: A Deep Reinforcement Learning (DRL) method uses a flat
structure to generate actions directly from full observations. The
observations contain objects positions o = {o1, o2, o3...om} and end-
effector positions r. The action space is the same as our neural dy-
namic planner. For every trial, the goal also contains m objects po-
sitions including g = {g1, g2, …, gn} for the selected objects while
the rest objects’ positions remain the same. We implement DDPG and
Hindsight Experience Replay (HER) Buffer [52] with sparse reward.
We allow the DRL agent to be trained for 5000 iterations for every
experiment.

2) RMþRRT-Connect [53]: RRT-Connect refers to a conventional
path planning algorithm that searches a configuration space with
two rapidly expanding random trees growing from both the initial
start point and target point. Since it requires both starting and target
position, we use the reasoning module (RM) to produce the target
object’s position and its goal. We then replace our motion module
with RRT-Connect. Moreover, in order to produce collision-free
motions in mPTO problems, we provide environmental information
in simulation via OMPL library [54].

In regards to object position variations in the environment, our
proposed system can handle variations of 0.3 m on the x-axis and 0.15 m

Fig. 12. We compare different inputs. The figure shows the absolute mean
distance between the state and the goal with standard deviation over steps. We
perform 20 trials with the random initial and sub-goal positions. The blue curve
represents the performance of our neural dynamic planner. While the red curve
is a simple actor-network.

Fig. 13. The 3D reproduction trajectory from our motion module trained from 4 out 5 objects experiments.

Table 3
We compare the overall performance of different methods over two different cases (CASE 1 and CASE 2). We trained the DRL agent with both CASE 1 as well as CASE 2.
We only trained our approach on CASE 1 and show the average planning and execution time for our method and RRT-Connect in 4 out of 5 experiment.

2 out of 3 3 out of 3 3 out of 5 4 out of 5
Model SR SR SR SR Avg. planning time Avg. execution time

Ours 0.96±0.012 0.94±0.008 0.92±0.012 0.89±0.017 7.8ms±0.32ms 14.25 s ± 2.9s
DRL 0.41±0.032 0.31±0.023 0.18 ± 0.018 0.07±0.011 – –
RM+RRT-Connect 0.94±0.008 0.93±0.012 0.89±0.01 0.88 ± 0.012 9.6 s ± 3.32s 21.75 s ± 2.2s

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

16

on the y-axis respectively regarding the object picking positions. It can
also handle variations of 0.35 m on the x-axis and 0.2 m on the y-axis
respectively regarding the goal positions. Also, the Euclidean Distance
between objects and objects’ goals can vary from 0.38 m to 0.82 m.

As shown in Table 3, the DRL algorithm struggles in dealing with
high dimensional observations and goal spaces. Meanwhile, it is also
inefficient in data, meaning that it needs a large amount of exploration.
The hierarchical property of our proposed TAMP system is able to pro-
duce an efficient plan by reducing the high dimensional observations
into the informative features for each module. Meanwhile, our motion
module has a competitive performance with collision-free RRT-
Connect.

We also compare the planning and execution time for our proposed
motion module with the RRT-Connect. As mentioned before, for each
object manipulation in our proposed system, our system will plan three
sub-goals sequentially to achieve specific positions during each stage.
We allow a maximum of 30 action steps to achieve each sub-goal. During
testing, the planning time for our NN-based planner is around 1.3 ms for
one of the sub-goals. During manipulation, the joint actions are con-
strained within [− 5, 5] degrees. As a result, the total action steps for one
single object manipulation can vary between 27 and 47 steps while the
execution time can vary between 10.51 s and 17.94 s.

For comparing our motion module with RRT-Connect, we adopt
RRT-Connect in both picking and placing stages. An inverse kinematic
solver is used to iteratively find the optimized joint configurations. We
also provide environmental information at the beginning of each object
manipulation in order to achieve collision-free motions. This means that
the objects that do not need to be manipulated are considered as ob-
stacles. It was discovered that RRT-Connect often requires longer

average planning time (9.6 s). And the execution time varies between
18.3 s to 25.2 s. Also, the configuration space becomes more complex as
the number of objects increases and this affects the SR values. Moreover,
we noticed that the inverse kinematic solver may produce dangerous
joint configurations due to redundancy.

4.4. Physical experiment

We conduct the physical experiments with a similar setting as in
simulations. As long as the distribution of positions remains similar as in
simulation, our architecture can directly accomplish the physical ex-
periments without extra training. We utilize a RealSense 3D camera in
front of the workspace to sense the environment as shown in Fig. 14. To
obtain the real-world products’ information with respect to the cobot
base, we collect and train the object detection with CNN-based detection
network YoloV3 and perform coordinate transformation through Robot
Operating System (ROS) [55]. The suction cap is activated or deacti-
vated by controlling the digital I/O output on the UR10 during a single
object manipulation cycle. The desired joint actions produced from our
system control the cobot through ROS and MoveIt [56]. One drawback
of our neural dynamic planner is that it cannot adjust the orientation of
the end-effector in real-time. Nevertheless, we adjust the orientation
with MoveIt for picking objects with predicted sub-goal during picking
stage and the final step of placing stage for better detection of objects.

Fig. 18 illustrates one example of our experiment in 3 out 5 experi-
ment in CASE 1. As shown in Fig. 18, our architecture still follows the
same learnt task structure as in simulation, (i.e. from A to B … until the
final goal configuration is achieved). In CASE 2, we allow the worker to
first package the products with his own preference. Afterwards, the
cobot gets involved and starts to plan and package the rest of the
selected products through our architecture as shown in Figs. 16 and 17.
Note that in achieving these results, our architecture was not trained by
CASE 2 scenarios. We also show the performance of our motion module
in the physical experiment as shown in Fig. 15. This demonstrates the
generalizability of our approach. We conduct 20 runs for each case in
every experiment including 2 out of 3, 3 out of 3 and 3 out of 5. The
success rate results in both cases have shown that our proposed system

Fig. 14. The physical experiment in 3 out of 5
experiments. We utilize a RealSense 3D camera
in front of the workspace as shown in Fig. 14a
and b. Similar to the simulation, we first feed
the predefined goal positions. The objects
placed in the right pending area need to be
manipulated to the left fixed packaging tray.
The texts at the right top of the first two pic-
tures indicate the real-time high-level task plan
produced by our reasoning module. The yel-
low texts "Task Label" include the task label
classification as different goals and Ca indicates
the picking probability. The red texts "Impor-
tance" is the result of the feature importance of
objects and P are packaging importance.

Table 4
Physical experiment results in both cases, we also show the total time of each
object manipulation.

2 out of 3 3 out of 3 3 out of 5

SR in Case 1 0.98±0.002 0.95±0.01 0.93±0.008
SR in Case 2 0.91±0.012 0.91±0.007 0.87±0.034
Avg. time 44.3s±1.45 43.2s±2.3 43.5s±1.8

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

17

trained on simulation can efficiently generalize to hardware for both
reasoning module and motion module as shown in Table 4. It will take
around 5 ms for reasoning module to construct graph and make pre-
dictions. The planning time for the sub-goal planner is similar to the
simulation. The Euclidean Distance between the object and the goal
varies from 0.25 m to 0.83 m. Thus, the steps taken for each object
manipulation vary from 20 to 47 steps. We set the velocity scaling factor
for UR10 to 0.05 to ensure safety between cobot and human. Therefore,
the average time for one step taken will be around 0.7 s. Furthermore,
the extra orientation correction will take an average of 10.2 s at each

stage. We did not implement collision-free RRT in real-time, as it needs
rich environmental information.

Nevertheless, the main cause of failure is the unpredictable dynamics
of the real products during manipulation, which may cause unexpected
motions during the placing stage and collide with other products. The
misclassification of the products in YOLOV3 detection may also decrease
the success rate during the experiments. Furthermore, due to the extra
orientation correction with inverse kinematics at task stages, the
average time for one single object manipulation increases. Nevertheless,
as seen from the results above, our architecture can still achieve faster

Fig. 15. The performance of our motion module in adapting to various goal positions during physical experiments. For example, the motion module was trained to
put object C at Goal 3 as in Fig.15a. However, the motion module can adaptively produce trajectories for other unseen task goals as seen in Fig.15b and Fig.15c.

Fig. 16. Physical experiment for 3 out of 5 in CASE 2, where the human picks the second and third objects and lets the cobot do the rest.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

18

planning and execution time than the conventional motion planner. 4.5. Practical scenarios

In this section, we further explore the ability of our proposed method
of dealing with variations in practical scenarios. Towards this, we

Fig. 17. Physical experiment for 3 out of 5 in CASE 2, where the human picked the second object and lets the cobot do the rest.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

19

present two practical problems that may exist in mPTO scenarios.
Firstly, we consider one practical problem in which some items are

lacking in the inventory of the pending area and waiting to be replen-
ished. In this scenario, in the interest of meeting a customer order
fulfillment time, the cobot needs to first pack the available products to
the corresponding goals while waiting for the replenishment of the
missing products. Thus, such a problem will need a different task
structure rather than the previously learnt task structure. This scenario
can be recognized as a partial observable problem, where the di-
mensions of observations can vary. When the MLP and RF approaches
are applied in the reasoning module, they are unable to handle this
problem because they require the observations to have the same di-
mensions during both training and testing. On the other hand, a GNN-

based approach is more powerful for handling such a problem as it
can process different numbers of nodes. In this situation, our reasoning
module requires partial retraining with extra augmented data of 50
randomly chosen partial observable expert demonstrations from 3 out of
5 experiment. This step allows our reasoning module to perform better
inferences based on each object’s position information. To test our
reasoning module, we conducted 180 experiments five times with 3
out of 5 scenario and with 1 or 2 products lacking. Our reasoning module
can achieve an average SR of 0.97. We also conducted 20 physical ex-
periments with our whole system as shown in Fig. 19. Our approach was
able to achieve an average SR of 0.92 among 5 test sets.

Secondly, we considered that customers can choose different product
combinations (for instance: 2 out of 5, 3 out of 5 and 4 out of 5). This

Fig. 18. Physical experiment for 3 out of 5 in CASE 1, where cobot packages the customer order solely.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

20

requires the cobot to handle various combinations and different task
lengths at the same time. We train reasoning module in 2 out of 5 with
expert demonstration in CASE 1. The end goal position for each object
can be randomly selected as described in Fig. 7. We then analyze our
approach’s generalizability to handle 3 out of 5, and 4 out of 5 in both
CASE 1 and CASE 2 as shown in Fig. 20. For each experiment, we
randomly select 100 test sets with our proposed system. We compared
our approach with MLP and RF. They were unable to generalize to
variations in customer choices. However, our approach trained with a
simple scenario (2 out of 5), can adapt to more complex unseen tasks (i.
e. 3 out of 5 and 4 out of 5).

The above experiments show that our graph-based reasoning
module is efficient in directly learning the underlying task structure
without any specific hand-coding rules. It can also generalize a learnt
task structure to more complex problems. Compared to other baseline
methods, our approach is more capable of processing varying lengths of
observations making it suitable for practical industrial mPTO problems.

4.6. Discussion and limitation

In this section, we discuss our proposed architecture and revisit the
research questions raised in Section 2.3 based on the results from the
experiments conducted.

For the high-level decision-making problem, we have shown that our
reasoning module is capable of directly learning the underlying task
structure from observations without any specific design of task struc-
tures or extra effort that is without the need to use specific if-else rules.
This answers Q1 raised in Section 2.3.

Towards addressing Q2, our architecture efficiently translates the
changes in the high-level plan to low-level motion generations by
separating a single object manipulation into picking and placing task
stages. This allows the reasoning module to identify different necessary
features via Po

pred for motion module at different manipulation stages.
Furthermore, we use the classified labels Pg

pred in order to help the mo-
tion module to differentiate between sub-tasks. Furthermore, our mo-
tion module can efficiently learn an expert’s planning strategy and can
be adaptive when different observations are obtained. For the sub-goal
planner, our results have shown that a neural-network-based probabi-
listic model (i.e. Variational Inference) can handle larger variations than

a deterministic model or a non-parametric approach. We have also
shown that our neural dynamic planner based on expert preference is
also data-efficient.

In addressing Q3, we have also shown that our approach can deal
with observed redundant objects through embedding extra property I in
our GNN and thus enabling GNN to focus on a specific subset of products
during a mPTO task. Furthermore, our results highlight that our archi-
tecture has zero-shot generalization ability regarding different task
structures caused by human performance. Our reasoning module is
robust to handle these variations, as it is able to first distinguish if some
of the selected objects have already been packaged through position
information, and thus plan the rest of selected objects via learnt task
structure (i.e. from smaller numbered object to the bigger one as
described in Fig. 6b). Finally, based on the above, our architecture has
enabled a cobot to meet the mPTO requirements raised in the intro-
duction section of this manuscript.

In regards to limitations of our work, when comparing our work with
[6], their work holds the advantages of being generalizable to the
diverse geometric shapes of final goals while ours is constrained to the
pose-specified labels in order to enable the use of our low-level motion
module. Nevertheless, our reasoning module is more capable of
handling different task structures and thus it is more possible to cater for
the varying and different preferences of humans in a Human-Robot
Collaboration scenario.

Another limitation for our motion module is that the sub-goal
planner is unable to handle too large variations in observations as
they are multivariate Gaussian distributions and may lead to an ineffi-
cient plan to pick the object precisely at its surface. Moreover, the neural
dynamic planner only considers the 3D positions of the robot’s end-
effector. This is less important when dealing with rigid objects but be-
comes more important if the objects to be manipulated are semi-rigid or
soft.

5. Conclusion

In this work, we designed and developed a novel integrated task and
motion planning (TAMP) architecture to tackle the adaptive mPTO
problem with expert demonstrations. By taking inspiration from the way
humans manipulate objects, we separate an expert demonstration into
picking and placing stages.

Fig. 18. (continued).

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

21

We build a GNN-based high-level reasoning module that can
identify the important features and task stages. Compare to previous
works [6,22], our reasoning module does not need scaffolding code in
the form of if-else structures to support the distinguishing of variations
in both diverse goal configurations and task stages. It also shows
zero-shot generalization to handle variant task structures without any
additional training. This suggests its potential for use in HRC scenarios
where different preferences of human workers need to be taken into
consideration. From the reasoning module, we can efficiently identify
the necessary features and task stages for use by a motion module to
generate low-level motions.

Our motion module utilizes a two-step structure that can first pro-
duce sub-goals through conditioned variational inference as well as

produce final joint actions by modeling expert preference through a
simple neural network. By accessing the task labels, our sub-goal
planner has also shown the ability to efficiently integrate diverse dem-
onstrations for different picking and placing stages. It is also able to
generalize trajectory production regarding variations in positions for
both initial and goal objects‘ positions. Lastly, our TAMP architecture
also has the advantage of being sample-efficient during training and
testing in both simulation and physical experiments.

In future work, we mainly want to address the problem of when a
product’s orientation needs to be considered during its manipulation.
This is because our current approach only focuses on the 3D position
information in both modules. Also, we would like to investigate syn-
chronous and simultaneous random movements during human

Fig. 19. Physical experiment for 3 out of 5 in CASE 1, where some products are out of stock while cobot needs to firstly pack the rests and come back to pack the
restocked product.

R. Ma et al.

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

22

collaboration in an HRC scenario as well as what effects this will
introduce to the final product configurations. This will lead to safe and
adaptive solutions in HRC scenarios (Fig. 4).

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We would like to acknowledge the support of the Engineering and
Physical Sciences Research Council (EPSRC) funding: DigiCORTEX (EP/
W014688/1), for the work carried out in this manuscript.

References

[1] S. Benjaafar and M. Elhafsi, “Production and inventory control of a single product
assemble-to-order system with multiple customer classes,” Manage. Sci., vol. 52,
no. 12, pp. 1896–1912, 2006.

[2] M. Mansouri, F. Pecora, P. Schüller, Combining Task and Motion Planning:
Challenges and Guidelines, Front. Robot. AI 8 (2021) 1–12. May.

[3] International F. of Robotics, Demystifying Collaborative Industrial Robots, Int.
Feder. Robot. (2019) 2–3. no. October.

[4] L.P. Kaelbling, T. Lozano-Pérez, Hierarchical task and motion planning in the now,
in: 2011 IEEE International Conference on Robotics and Automation, 2011,
pp. 1470–1477, may.

Fig. 19. (continued).

Fig. 20. We consider a practical problem where customers can have multiple
choices regarding the number of selected products. We train our approach with
2 out of 5 products. It can generalize to 3 out of 5 products with an average SR
of 0.97 and 0.91 as well as generalize to 4 out of 5 with an average SR of 0.92
and 0.86 in both CASE 1 and CASE 2.

R. Ma et al.

http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0002
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0002
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0003
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0003
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0004
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0004
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0004

Robotics and Computer-Integrated Manufacturing 82 (2023) 102539

23

[5] D. McDermott, M. Ghallab, A.E. Howe, C.A. Knoblock, A. Ram, M.M. Veloso, D.S.
Weld, and D.E. Wilkins, “PDDL-the planning domain definition language,” 1998.

[6] Y. Lin, A.S. Wang, E. Undersander, A. Rai, Efficient and Interpretable Robot
Manipulation with Graph Neural Networks, IEEE Robot. Autom. Lett. 7 (2) (2022)
2740–2747.

[7] H. Ravichandar, A.S. Polydoros, S. Chernova, A. Billard, Recent Advances in Robot
Learning from Demonstration, Annu. Rev. Control. Robot. Auton. Syst. 3 (1) (2020)
1–34.

[8] E. Erdem, V. Patoglu, P. Schüller, T. Mancini, M. Maratea, F. Ricca, A Systematic
Analysis of Levels of Integration between High-Level Task Planning and Low-Level
Feasibility Checks, AI Commun. 29 (2016) 319–349, jan.

[9] Maria Fox, Derek Long, PDDL2.1: An extension to PDDL for expressing temporal
planning domains, J. Artif. Intellig. Res. 20 (2003) 1–48.

[10] D. Holler, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier, R. Alford, HDDL:
An Extension to PDDL for Expressing Hierarchical Planning Problems, in: AAAI
2020 - 34th AAAI Conference on Artificial Intelligence, 2020, pp. 9883–9891.

[11] M. Gharbi, R. Lallement, R. Alami, Combining symbolic and geometric planning to
synthesize human-aware plans: Toward more efficient combined search, in: IEEE
International Conference on Intelligent Robots and Systems, 2015, pp. 6360–6365,
vol. 2015-December.

[12] C. Yu, Y. Ji, G. Qi, X. Gu, L. Tao, Group-based production scheduling for make-to-
order production, J. Intell. Manuf. 26 (3) (2015) 585–600.

[13] L.S. de Mello, A.C. Sanderson, AND/OR graph representation of assembly plans,
IEEE Trans. Rob. Autom. 6 (1990) 188–199, apr.

[14] R. Zhang, J. Lv, J. Li, J. Bao, P. Zheng, T. Peng, A graph-based reinforcement
learning-enabled approach for adaptive human-robot collaborative assembly
operations, J. Manuf. Syst. 63 (2022) 491–503. April.

[15] S. Pirk, K. Hausman, A. Toshev, M. Khansari, Modeling Long-horizon Tasks As
Sequential Interaction Landscapes, CoRL, 2020, pp. 1–14.

[16] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The Graph Neural
Network Model, IEEE Trans. Neural Netw. 20 (1) (2009) 61–80.

[17] B. Hayes, B. Scassellati, Autonomously constructing hierarchical task networks for
planning and human-robot collaboration, in: 2016 IEEE International Conference
on Robotics and Automation (ICRA), 2016, pp. 5469–5476, may.

[18] Z. Su, O. Kroemer, G.E. Loeb, G.S. Sukhatme, S. Schaal, Learning Manipulation
Graphs from Demonstrations Using Multimodal Sensory Signals, in: 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 2758–2765, may.

[19] D.A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, J.C. Niebles,
Neural task graphs: Generalizing to unseen tasks from a single video
demonstration, in: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2019, pp. 8557–8566. -June2019.

[20] Y. Ye, D. Gandhi, A. Gupta, S. Tulsiani, Object-centric Forward Modeling For Model
Predictive Control, CoRL, 2019, pp. 1–13.

[21] P. Battaglia, R. Pascanu, M. Lai, D. Rezende, K. Kavukcuoglu, Interaction Networks
For Learning About objects, Relations and Physics, Advances in Neural Information
Processing Systems, 2016, pp. 4509–4517.

[22] T. Silver, R. Chitnis, A. Curtis, J. Tenenbaum, T. Lozano-Pérez, L.P. Kaelbling,
Planning with Learned Object Importance in Large Problem Instances using Graph
Neural Networks, in: 35th AAAI Conference on Artificial Intelligence, AAAI 2021
13B, 2021, pp. 11962–11971.

[23] S. Calinon, F. Guenter, A. Billard, On Learning the Statistical Representation of a
Task and Generalizing it to Various Contexts, Proc. 2006 IEEE Int. Conf. Robot.
Automat. (2006) 2978–2983. May.

[24] L. Rozo, S. Calinon, D.G. Caldwell, P. Jim, Learning Physical Collaborative Robot
Behaviors From Human Demonstrations, IEEE Trans. Rob. 32 (3) (2016) 513–527.

[25] D. Vogt, S. Stepputtis, S. Grehl, B. Jung, H. Ben Amor, A system for learning
continuous human-robot interactions from human-human demonstrations, in:
Proceedings - IEEE International Conference on Robotics and Automation, 2017,
pp. 2882–2889.

[26] S. Calinon, A tutorial on task-parameterized movement learning and retrieval,
Intell. Serv. Robot. 9 (1) (2016) 1–29.

[27] Y.Q. Wang, Y.D. Hu, S.E. Zaatari, W.D. Li, Y. Zhou, Optimised Learning from
Demonstrations for Collaborative Robots, Rob. Comput. Integr. Manuf. 71 (2021)
no. March.

[28] M. Gharbi, R. Lallement, R. Alami, Combining symbolic and geometric planning to
synthesize human-aware plans: toward more efficient combined search, in: 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 6360–6365.

[29] A. Orthey, M. Toussaint, N. Jetchev, Optimizing motion primitives to make
symbolic models more predictive, in: Proceedings - IEEE International Conference
on Robotics and Automation, 2013, pp. 2868–2873.

[30] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, J. Peters, Towards learning
hierarchical skills for multi-phase manipulation tasks, in: Proceedings - IEEE
International Conference on Robotics and Automation, 2015, pp. 1503–1510,
2015-June, no. June.

[31] R. Lioutikov, G. Maeda, F. Veiga, K. Kersting, J. Peters, Inducing Probabilistic
Context-Free Grammars for the Sequencing of Movement Primitives, in: 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 5651–5658, may.

[32] G. Konidaris, S. Kuindersma, R. Grupen, A. Barto, Robot learning from
demonstration by constructing skill trees, Int. J. Rob. Res. 31 (3) (2012) 360–375.

[33] S. Paul, J. van Baar, A.K. Roy-Chowdhury, Learning from trajectories via subgoal
discovery, Adv. Neural. Inf. Process. Syst. 32 (2019) 1–11. NeurIPS.

[34] T. Jurgenson, E. Groshev, and A. Tamar, “Sub-Goal Trees – a Framework for Goal-
Directed Trajectory Prediction and Optimization,” 2019.

[35] X. Pan, Y. Shen, Human-interactive subgoal supervision for efficient inverse
reinforcement learning, in: Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems 2, AAMAS, 2018, pp. 1380–1387.

[36] A. Nagabandi, G. Kahn, R.S. Fearing, S. Levine, Neural Network Dynamics for
Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning, in:
Proceedings - IEEE International Conference on Robotics and Automation, 2018,
pp. 7579–7586.

[37] C.R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L.P. Kaelbling, and T.
Lozano-Perez, “Integrated Task and Motion Planning,” 2021.

[38] K. Fang, Y. Zhu, A. Garg, S. Savarese, L. Fei-Fei, Dynamics Learning with Cascaded
Variational Inference for Multi-Step Manipulation, in: Conference on Robot
Learning (CoRL), 2019.

[39] C.R. Garrett, T. Lozano-Pérez, L.P. Kaelbling, Sampling-based methods for factored
task and motion planning, Int. J. Rob. Res. 37 (13-14) (2018) 1796–1825.

[40] J. Kurosu, A. Yorozu, M. Takahashi, Simultaneous dual-arm motion planning for
minimizing operation time, Appl. Sci. (Switzerland) 7 (12) (2017).

[41] J.K. Behrens, R. Lange, M. Mansouri, A constraint programming approach to
simultaneous task allocation and motion scheduling for industrial dual-arm
manipulation tasks, in: Proceedings - IEEE International Conference on Robotics
and Automation, 2019, pp. 8705–8711, vol. 2019-May.

[42] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation Learning on
Large Graphs,” in Advances in Neural Information Processing Systems (I. Guyon, U.
V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds.), vol. 30, Curran Associates, Inc., 2017.

[43] M. Fey, J.E. Lenssen, Fast Graph Representation Learning with PyTorch Geometric.
ICLR Workshop on Representation Learning On Graphs and Manifolds, 2019,
pp. 1–9.

[44] D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, 6, CoRR, 2014 vol.
abs/1312.

[45] E. Rohmer, S.P. Singh, M. Freese, V-REP: A versatile and scalable robot simulation
framework, in: IEEE International Conference on Intelligent Robots and Systems,
2013, pp. 1321–1326.

[46] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018.
[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An
imperative style, high-performance deep learning library, Adv. Neural. Inf. Process.
Syst. 32 (2019).

[48] R. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec, GNNExplainer: Generating
explanations for graph neural networks, in: Advances in Neural Information
Processing Systems 32, 2019.

[49] J. Wang, An Intuitive Tutorial to Gaussian processes Regression, arXiv preprint,
2020.

[50] V. Joukov, D. Kulic, Gaussian process based model predictive controller for
imitation learning, in: 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids), 2017, pp. 850–855.

[51] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
D. Wierstra, Continuous control with deep reinforcement learning, in: 4th
International Conference on Learning Representations, ICLR 2016 - Conference
Track Proceedings, 2016.

[52] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, W. Zaremba, Hindsight experience replay, in:
Advances in Neural Information Processing Systems 2017, 2017, pp. 5049–5059.
-Decem, no. Nips.

[53] J.J. Kuffner, S.M. La Valle, RRT-connect: an efficient approach to single-query path
planning, in: Proceedings - IEEE International Conference on Robotics and
Automation 2, 2000, pp. 995–1001, no. April.

[54] I.A. Sucan, M. Moll, L.E. Kavraki, The Open Motion Planning Library, IEEE Robot.
Automat. Mag. 19 (4) (2012) 72–82.

[55] A. Koubaa, Robot Operating System (ROS): The Complete Reference, 1st ed., 2,
Springer Publishing Company, Incorporated, 2017. Volume.

[56] M. Gorner, R. Haschke, H. Ritter, J. Zhang, Moveit! task constructor for task-level
motion planning, in: Proceedings - IEEE International Conference on Robotics and
Automation 2019-May, 2019, pp. 190–196.

R. Ma et al.

http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0006
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0006
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0006
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0007
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0007
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0007
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0008
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0008
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0008
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0009
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0009
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0010
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0010
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0010
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0011
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0011
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0011
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0011
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0012
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0012
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0013
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0013
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0014
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0014
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0014
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0015
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0015
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0016
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0016
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0017
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0017
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0017
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0018
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0018
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0018
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0018
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0019
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0019
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0019
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0019
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0020
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0020
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0021
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0021
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0021
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0022
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0022
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0022
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0022
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0023
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0023
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0023
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0024
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0024
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0025
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0025
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0025
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0025
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0026
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0026
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0027
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0027
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0027
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0028
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0028
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0028
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0028
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0029
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0029
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0029
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0030
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0030
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0030
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0030
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0031
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0031
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0031
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0031
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0032
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0032
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0033
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0033
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0035
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0035
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0035
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0036
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0036
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0036
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0036
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0038
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0038
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0038
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0039
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0039
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0040
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0040
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0041
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0041
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0041
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0041
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0043
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0043
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0043
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0044
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0044
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0045
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0045
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0045
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0047
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0047
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0047
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0047
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0047
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0048
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0048
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0048
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0049
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0049
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0050
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0050
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0050
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0051
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0051
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0051
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0051
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0052
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0052
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0052
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0052
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0053
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0053
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0053
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0054
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0054
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0055
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0055
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0056
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0056
http://refhub.elsevier.com/S0736-5845(23)00015-7/sbref0056

	A learning from demonstration framework for adaptive task and motion planning in varying package-to-order scenarios
	1 Introduction
	2 Related work
	2.1 Plan learning from demonstrations
	2.2 Trajectory learning from demonstrations
	2.3 TAMP architecture

	3 Methodology
	3.1 Reasoning module
	3.2 Motion module
	3.2.1 Task-conditioned sub-goal planner
	3.2.2 Neural dynamic planner

	4 Experiments, results and discussion
	4.1 Reasoning module
	4.2 Motion module
	4.2.1 Task-conditioned sub-goal planner
	4.2.2 Neural dynamic planner

	4.3 Overall performance
	4.4 Physical experiment
	4.5 Practical scenarios
	4.6 Discussion and limitation

	5 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

