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A B S T R A C T   

Current advances in Task and Motion Planning (TAMP) framework often rely on a specific and static task 
structure. A task structure is a sequence of how work pieces should be manipulated towards achieving a goal. 
Such systems can be problematic when task structures change as a result of human performance during human- 
robot collaboration scenarios in manufacturing or when redundant objects are present in the workspace, for 
example, during a Package-To- Order scenario with the same object type fulfilling different package configu-
rations. In this paper, we propose a novel integrated TAMP framework that supports learning from human 
demonstrations while tackling variations in object positions and product configurations during massive-Package- 
To-Order (mPTO) scenarios in manufacturing as well as during human-robot collaboration scenarios. We design 
and apply a Graph Neural Network(GNN) based high-level reasoning module that is capable of handling variant 
goal configurations and can generalize to different task structures. Moreover, we also built a two-level motion 
module which can produce flexible and collision-free trajectories based on important features and task labels 
produced by the reasoning module. Through simulations and physical experiments, we show that our frame-
work holds several advantages when compared with state-of-the-art previous work. The advantages include 
sample-efficiency and generalizability to unseen goal configurations as well as task structures.   

1. Introduction 

The increasing demand for personalized products has caused more 
and more manufacturing enterprises to apply a Make-To-Order (MTO) 
production strategy. Such an approach usually prepares inventory in 
advance and performs the final production and packaging when the 
customer orders are placed [1]. There are other variant types of MTO, 
such as Assemble-To-Order (ATO), Configure-To-Order (CTO), and 
Package-To-Order (PTO). Sometimes, a packaging company has to 
configure a batch (e.g. 500 - 10,000) of products in a certain way for a 
customer before switching to making a batch of orders in another 
configuration. An example of this scenario is packaging companies that 
assemble hamper baskets for their employees during festive periods. We 
term this massive Package-To-Order (mPTO). In this study, we focus on 
the mPTO scenario where the product types are common across different 
customers, while the final packaged product is determined by customer 
specification (Fig. 1). In this case, if the packaging process relies only on 
a human worker, several human factors such as fatigue, boredom from 

repetition and repetitive strain injury may introduce errors into the 
packaged product hence impacting the quality of the final products and 
the productivity of the manufacturing line. 

One way of solving this is to automate the line using industrial ro-
bots. However, this requires heavy investment by these companies 
which are often small to medium-sized enterprises and cash-strapped. 
Furthermore, this approach does not lend itself to flexibility and due 
to the continuous changes in customer specifications, automation solu-
tions would need to be reprogrammed often thereby increasing costs 
further. Also, there are still some tasks where human dexterity is still 
required. 

The application of collaborative robots (cobot) is one way of solving 
the above challenge. These cobots can work in the same vicinity as 
humans and are more cost-effective. Their modularity means that they 
can be flexibly moved from one workbench to another. However, the 
issue of programming the cobot still remains. Current approaches make 
use of classical teach-in methods such as lead-through or kinesthetic 
teaching that directly feed the fixed poses and paths to the cobot. 
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However, these are not practical in such a flexible production 
problem [2] because these training methods are static and cannot deal 
with variations in the environment. In this paper, we want to address a 
couple of variations in the mPTO scenario. 

The first variation exists in goal configurations. In this variation, we 
address various customer orders such as that shown in Fig. 1. Different 
customers can request different products from the inventory. In order to 
properly package them according to the customer’s specifications, it is 
required to assign each selected product with a specific goal position. In 
this scenario, due to the different requirements of customers, there will 
be different packaging configurations and appearances derived using the 
same products. This means that the same product may occupy different 
goal positions. The second variation of mPTO is caused by situations in 
which humans flexibly collaborate with the cobot. When humans 
collaborate with cobots, different humans might decide to use different 
sequences to complete a task. In such a flexible production problem, the 
cobot needs to acquire knowledge not only about the motions necessary 
to complete the task but also about the task structure. The task structure 
in this paper refers to the sequence of manipulation of the related 
products making up the final goal configuration. For example, the cobot 
would pick and place the first product followed by the next one until the 
goal configuration is reached. In an unbounded environment, the task 
structure could change due to disturbances (e.g. a worker placing 
required objects in a different sequence). 

For dealing with the above specified mPTO problem and the chal-
lenge of adapting to variations, we define five main aspects that are 
required from the cobot:  

a) The cobot should have knowledge of the task’s goal configuration.  
b) From a scene containing a number of observed objects, the cobot 

should be able to identify the appropriate objects needed to complete 
the task.  

c) The cobot should be able to schedule the necessary sequence to 
complete a task.  

d) The cobot should be able to complete the sequence if it has been 
started by a human. In this case, if the human has started packaging 
some of the products randomly, the cobot should be to observe and 
understand what has taken place and then manipulate the rest of the 
objects in response to the human’s performance. We term this as 

responsive Human -Robot-Collaboration (HRC) according to the In-
ternational Federation of Robotics (IFC) [3]  

e) The motions generated by the cobot should be able to avoid collisions 
with objects in the workspace. 

To deal with the aforementioned variations in mPTO scenarios, 
traditional approaches often require a detailed manual design that takes 
into account the possible variations that can happen. For example, 
planning with manipulation trees requires a list of all possible product 
combinations [4] and logic operations are conditioned on every possible 
action [5]. 

In contrast to traditional approaches, we apply Learning from 
Demonstrations (LfD) in which we unintrusively demonstrate the 
required goal configuration (final product positions in the package) and 
multi-task manipulations (task structure) to the cobot. By unintrusive, 
we mean that we do not use kinesthetic teaching but rely on vision via 
passive observation from the demonstration. After passive observation 
of the demonstrated task by the cobot, we leave the cobot to learn the 
underlying task structures. 

We also provide demonstrated motions that are required to complete 
tasks by learning the planning strategy. It is important to produce 
adaptive motions that ensure objects’ safety 

In addition to the above, we make use of the Task and Motion 
Planning (TAMP) framework that can integrate discrete high-level de-
cision-making and continuous motion generations. It enables the cobot 
to deal with variations in the object positions in the environment as well 
as work collaboratively with humans when they decide to use different 
sequences to complete a task. Our main contributions in this paper are as 
follows:  

a) We integrate different machine learning-based algorithms to form a 
Task and Motion Planning (TAMP) architecture that can handle long 
horizon mPTO tasks (i.e. multiple products packaging tasks) after 
small amounts of demonstrations.  

b) We apply a high-level reasoning module with a Graph Neural 
Network (GNN) in its architecture to enable the handling of variant 
goal configurations and directly learn the demonstrated task struc-
ture with raw observations while generalizing to different task 
structures caused by variation in human performance. This is 

Fig. 1. A real-world example of a package-to-order from Amazon in which the seller often needs to package a variety of products with different goal configurations 
according to different customer demands. 
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different from [6] where their approach could not deal with varia-
tions in the sequences of objects required to complete a task.  

c) We propose a motion module that can learn and achieve a safe 
planning strategy from demonstrations. By safe, we mean adaptive 
collision-free motions for object handling during different stages 
including pick and place.  

d) Our trained architecture can be easily adapted from simulation to the 
physical world without any further training. 

The rest of this paper is organized as follows: in Section 2, we present 
and discuss related work while in Section 3, we present a detailed design 
of our architecture. In Section 4, we present the results of experiments 
conducted in both simulation and the physical world while in Section 5, 
we conclude and discuss the future directions of our work. 

2. Related work 

As discussed in the introduction section, we designed, developed and 
applied a novel TAMP approach to program a cobot towards achieving 
task flexibility as well as to deal with variations in the environment. In 
this section, we discuss current advances in high-level decision making, 
low-level motion planning techniques as well as integrated Task and 
Motion Planning frameworks that researchers have applied to deal with 
multi-task scenarios. 

2.1. Plan learning from demonstrations 

Plan learning from demonstrations refers to techniques that are 
capable of learning task-level abstractions [7]. Traditional planning 
approaches often require predefined symbolic rules that can recursively 
solve a domain-specific problem. For example, in [4], task-level ab-
stractions were defined using the hierarchical properties of a task. In 
their work, they were able to form a planning and execution tree for 
dynamic planning. [8] adopted Answer Set Programming (ASP) for 
checking the feasibility of different levels of task and motion planning. 

Planning Domain Definition Language (PDDL) is another traditional 
approach that can be used. In [5], an action- centered planner with 
symbolic description and logical formulations were used to describe the 
effect and applicability of actions. PDDL was extended in [9] to achieve 
temporal planning and [10] extended it into hierarchical planning 
problems. Hierarchical Task Network (HTN) was utilized in [11]. They 
combined symbolic and geometric planners to achieve task and motion 
planning. This required constraints and domain expert knowledge to 
better understand the geometric side effect produced by the symbolic 
planner. 

A Markov Decision Process (MDP) was adopted in [1] for production 
and inventory control in the MTO problem, while [12] also studied the 
MTO problem by using Group-based scheduling with the tabu search 
algorithm. [13] utilized AND/OR graph to represent all possible 
assemble plans in multi-object manipulation tasks while [14] combined 
it with reinforcement learning to achieve the flexible assembly of a 
single product. 

The aforementioned traditional approaches generally do not need 
any training process. However, they need hand- coded task descriptions, 
task transition models (i,e task structure) or constraints, for example, if- 
else logic to condition possible actions. Thus, these approaches often 
require domain experts to design the rules while considering all possible 
situations. 

Current advances in Learning from Demonstrations (LfD) have raised 
the opportunity for automatically learning the tasks without any hand- 
coding process. In [15], task-level abstraction was achieved using nat-
ural language to represent action symbols. These action symbols were 
obtained from sub-tasks in video demonstrations with Sequence- 
to-Sequence model. However, how they integrated their action symbols 
with position-based motion plans is not clear. Researchers are also 
increasingly using Graph Neural Network (GNN) [16] for task-level 

abstraction. This is because of its natural capability to encode graph-
ical relationships between objects or multi-tasks. Some work focus on 
encoding the symbolic task descriptions as graph representations. For 
example, [17] utilized Conjugate Task Graph (CTG) to form sequences of 
sub-tasks while [18] built manipulation graphs containing sets of motor 
primitives to perform manipulation tasks. In [19], they propose a Neural 
Task Graph (NTG) by using LSTM to interpret demonstration as task 
nodes and thus produce action transitions as edges to link valid task 
nodes through CTG. Their work shows generalizability to unseen tasks. 
Nevertheless, these works still require a lot of effort to design the ground 
truths. For example, the ordering of each sub-tasks and how each node is 
connected to each other in graph representations must be defined. 

On the other hand, some works adopt GNN to reason about the 
relationship between each object. In order to form high-level abstrac-
tions, [20] captured the interactions of object-object and robot-objects 
through graphical interaction networks [21] and used the relation-
ships as states in a Model Predictive Controller. Moreover, in [22], they 
used object properties instead of position information. And then use the 
graphic observations to perform importance ranking and incremental 
planning among large amounts of objects at once. Nevertheless, their 
work is not suitable for a sequential planning problem. [6] has shown 
the capability of GNNs to directly learn the underlying task structures 
from pure objects’ information without the need of defining symbolic 
descriptions of tasks with fully connected graph observations. However, 
in their work, they only take the initial state of each sub-task into 
consideration. Once the objects and goal positions are known, they leave 
the low motion generation to the conventional motion planner. 

Compared to traditional approaches, the main scope of our high- 
level task planning is to allow a cobot to learn task structures without 
any hand-coded task descriptions or rules. Instead, the cobot learns the 
underlying task policy with only passive observations of an expert’s 
demonstrations. Furthermore, we show that a GNN-based high-level 
planner is able to handle multiple environment changes including task 
structure changes, customer demand changes and inventory changes 
(see Section 4.1 and 4.5) 

Compared to current GNN-based works, our high-level planner is 
able to provide more detailed guidance for low- level trajectory plan-
ning. Unlike the work in [6], our approach is able to produce different 
task abstractions during picking and placing stages. Moreover, in [6] 
and [22], they require extensive information regarding the object type, 
object fulfillment (i.e. whether the object has reached its goal position) 
and goal type. As a result, their trained high-level GNN model still re-
quires extra effort in defining if-else-like statements. In our work, we 
release the designer from this burden and make use of only position 
information and necessary object features in our GNN-based reasoning 
module. These were obtained from passive expert demonstrations. 

2.2. Trajectory learning from demonstrations 

For solving long-horizon manipulation tasks, learning from demon-
stration (LfD) methods offer a convenient way for easy mapping from 
human to robot and fast trajectory level reproduction ability. Gaussian- 
based approaches such as Gaussian Mixture Regression (GMR) are often 
used to reproduce a trajectory from diverse demonstrations. From these 
demonstrations, a joint probability density is derived using Gaussian 
Mixture Models (GMM) [23,24]. Similarly, Hidden Markov Model 
(HMM) can describe the distribution of data through a mixture of 
multivariate Gaussian distribution as transition probabilities [25]. 
Nevertheless, such methods can only reproduce one single trajectory 
based on a specific initial and goal pose. In order to improve variability 
and adaptability, Task-Parameterized-GMM has been proposed in [26]. 
This works by extracting parameterized GMMs from different task 
frames. Nevertheless, it requires an extra algorithm to recognize the 
different task frames and it cannot generalize to unseen tasks. [27] solve 
these issues by using reinforcement learning-based optimization. How-
ever, most of the above methods still only focus on the Cartesian space 
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(3-Dimensional spaces) and are unable to directly produce robot joint 
actions. 

Another common approach is to apply motion primitives. For 
example, [28] applied symbols as high-level task instructions while [29] 
used symbolic representations to optimize motion primitives. In [30], 
they decompose one complex motion as different phases. They then 
learnt the transition functions between each phase with model-based 
reinforcement learning that relies on a built library of motor primi-
tives. Probabilistic Context-Free Grammars were used to build a 
sequence of motor primitives in [31] while [32] used skill trees (a form 
of motion primitive) segmented from expert trajectories for 
long-horizon manipulation tasks. Nevertheless, these works often 
require a careful design of motion primitive symbols. 

An alternative way is to take advantage of the hierarchical structures 
to decompose a complex goal-oriented trajectory into smaller sub-goals. 
[33] adopts deep-learning-based methods to first identify the sub-goals 
and switch to reinforcement learning for continuous control. In [34], 
sub-goal trees were proposed to recursively predict positions in each 
task segment while [35] integrated inverse reinforcement learning with 
sub-goal-based demonstrations. These approaches still require rich ex-
plorations of the environment even with demonstrations. 

In mPTO problem, there will be various objects to be manipulated. 
Thus, learning one trajectory is not enough. The collection of demon-
strated trajectories will also be costly in terms of time. Meanwhile, the 
objects’ safety should also be considered. Towards addressing these is-
sues, we adopt a hierarchical structure for our motion module that can 
directly map observations to joint actions. The hierarchical structure 
consists of sub-goals and their related actions for trajectory learning 
from demonstrations. As a result, by accessing a task’s relevant features 
and information (i.e. label), our sub-goal planner in the hierarchical 
structure is able to integrate different trajectories for various picking and 
placing positions. And it is able to learn the expert’s planning strategy. 
In carrying out related sub-goal actions via final joint actions, we build 
an action planner that directly learns actions by modeling expert pref-
erence through a simple neural network. This is unlike [36] in which 
they used neural networks to learn the state transition function and thus 
guide the action learning of Deep Reinforcement Learning (DRL). Our 
work enables more data efficiency without the need for exploration. It 
can also produce adaptive collision-free plans for both unseen picking 
and placing positions. 

2.3. TAMP architecture 

Efforts have been made to integrate the aforementioned discrete plan 
planning and continuous trajectory learning methods within the same 
architecture. Such methods are defined as integrated Task and Motion 
Planning (TAMP) [37]. Nevertheless, the main challenge in a TAMP 
architecture is the integration of a discrete task planner with a contin-
uous motion planner. Sampling-based methodologies are one of the 
common approaches used to do this. A sampling-based approach merges 
the discrete task planning and continuous motion into one common 
search space and uses sampling-based probabilistic search to navigate 
and find solutions in the search space [2]. In [38], they sampled valid 
sub-goals and actions through the use of cascaded variations inference 
with a user-specified reward function. The application of a conditional 
sampler with domain knowledge to sample actions in large solution 
space is another approach that was used in [39]. However, in mPTO 
cases, the sampling-based method is inefficient to handle the complex 
search at the task level. Furthermore, if the hierarchical character of 
trajectories were considered, the sampling-based methods may yield no 
solutions [2]. 

In order to solve this drawback, [2] suggests the use of a technique 
called Procedural Attachment. In Procedural Attachment, a high-level 
task planner is followed by an external motion planner [2]. There are 
several works that apply Procedural Attachment in addressing flexible 
production with robots. Examples include prioritizing the object 

sequence through the use of mixed linear programming (MILP) [40] as 
well as using Ordered Visiting Constraints (OVC) with constraint opti-
mization [41]. However, these techniques require that a description of 
the task structure via symbolic representation should be known in 
advance so that the workpieces can be manipulated sequentially to-
wards achieving the specific goal configuration. The need for such a task 
description means that they are not able to deal with variations in the 
environment. Thus, it becomes necessary to redefine the task description 
and retrain their model if a customer order changes. Furthermore, in 
these implementations, they only consider high-level plans while the 
low-level collision-free motion generation is left to an existing motion 
planner such as Rapidly exploring Random Tree (RRT). This could be 
time-consuming. 

In order to deal with variations in observed objects, current advances 
in GNN [6] have shown the ability to directly use the graph-encoded 
representations to learn the high-level policy instead of using symbolic 
representations. For example, [6] showed that such an approach can 
learn task-specific rules and generalize to variant geometric goal con-
figurations that make use of the objects’ observation during demon-
strations. In other words, their work only considers cases in which the 
task structure is static meaning that their approach cannot deal with 
redundant objects in a task structure as well as in between tasks. 
Furthermore, their approach cannot deal with variations in the task 
sequences of objects which are required for the human varying element 
in an HRC scenario. 

Consequently, from the above discussions, we raise some questions 
that we aim to address for TAMP architecture in mPTO problem:  

• Q1: In the mPTO scenario, how can a high-level decision-making 
module generate an accurate sequential plan while dealing with 
redundant objects in a task structure? It should be noted that the 
redundant objects are necessary as they might be needed for the next 
customer order which requires a different goal configuration. In 
manufacturing systems, this approach would reduce or potentially 
eliminate the downtime required during changeovers.  

• Q2: How do we translate the change in sequential plan to the lower 
level motion planner for subsequent rapid motion generation? Also, 
how do we build a motion planner that can produce faster collision- 
free trajectories than conventional motion planners as well as handle 
variant pick and place positions?  

• Q3: Furthermore, assume a human worker gets involved and decides 
not to follow the demonstrated task structure, how do we build a 
TAMP architecture that can rapidly detect this variation and adapt 
the sequential plan? 

The next section discusses the methodology and framework that was 
applied in addressing these questions. 

3. Methodology 

In this section, we will describe the problem setup as well as the 
framework and methodology that were designed and applied to address 
the questions raised at the end of the previous section. We aim to provide 
an end-to-end solution learnt from expert demonstrations for a mPTO 
scenario. We follow a Procedural Attachment style in TAMP architecture 
that can hierarchically decide the useful features to different levels of 
planning. 

Suppose we can obtain demonstrated observations as a tuple Π = {g,
o, p, r, μ, a, I} from environment scenes. We have m products with posi-
tion information o = {om}

m
m=1 from the pending area. According to 

customer demand, there will be n selected products with goal position 
information g = {gn}

n
n=1 at the packaging box p (n ≤ m). 

The cobot should manipulate the selected products to the packaging 
area sequentially while considering two different cases under the same 
framework. The cases are: 
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a) CASE 1: cobot should accomplish this sequential task alone by 
following the same task structure that was learnt from demonstra-
tion. In this case, the cobot picks and places the first product followed 
by the next one until the goal configuration is reached.  

b) CASE 2: In the second case, the cobot should handle different task 
structures. This is particularly true when responsive Human-Robot- 
Collaboration is considered. In this case, human performance can 
be random, for instance, different arm movement trajectories could 
be used to pick and place objects. Thereafter, we only monitor the 
final states of human actions such as the objects’ final positions. 

Fig. 2 illustrates the proposed framework which was inspired by the 
natural way by which a human decides to manipulate an object. We 
consider that she/he often first focuses on a specific object and then 
proceeds to grab it. Once the object has been grabbed, the human then 
focuses on a specific goal pose to achieve. 

To produce an efficient plan during manipulation, we separate the 
observed human demonstrations into two different task stages for each 
selected object and its subsequent manipulation:  

a) Cobot needs to first focus on the most important object within o and 
pick it up. This is called the picking stage.  

b) Once the object has been picked up, the cobot should carry the object 
to the specified goal pose. In this stage, we let the most important 
feature be the packaging box position p and infer the specific goal 
position based on the task label l. This is called the placing stage. 

At each stage, we decompose the task into task planning and motion 
planning through the use of: 

a) A high-level reasoning module that focuses on the objects obser-
vations and thus reduces them to the most important observations 
with tasks labels l  

b) A low-level motion module that generates adaptive motions based 
on the selected observations and task information (e.g. labels) from 
reasoning module. 

3.1. Reasoning module 

The high-level reasoning module is built on a Graph Neural Network 
(GNN) with an additional Neural Network (NN) classifier. It plans the 
raw objects’ sequential manipulation based on the customer’s specifi-
cations. It should be noted that there could exist extraneous objects (n ≤
m) where only a subset of raw objects needs to be manipulated to ach-
ieve the final goal configuration. We aim to model this decision-making 
problem as which observations should be focused at what stages during 
picking and placing. For instance, at the initial picking stage, the cobot 
should focus on the selected object o and its corresponding goal pose, 
once it has been picked, the cobot needs to focus on the packaging p area 
to achieve the required goal position. 

The previous study provides both objects and goals nodes with extra 
properties defining the object type and its fulfillment in the graph. 
Although the goal positions for the objects can be variants (for example, 
when working on different geometric shapes of final goal configura-
tions), such a setting will cause the reasoning module to only follow a 
specified task structure. In previous works, extra if-else statements were 
used to ascertain if the goal has been fulfilled or not in every step. 
However, in our study, our aim is to allow the agent to first distinguish 
the important observations and stages only through the object position 

Fig. 2. Graphic representation of proposed framework at picking and placing stage. At picking stage, the reasoning module will always focus on the selected 
objects in the pending area while at the placing stage, it will always focus on the packaging box observations. 
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information with necessary features and secondly to become more 
generalizable when task structure varies. 

To achieve these goals, the main idea is to reduce the high- 
dimensional observations through importance ranking. we first assign 
the necessary goal positions to each selected object. This will be selected 
by the importance score at the beginning of the picking stage. We treat 
each single object manipulation task as a graph classification problem. 
The output of the graph neural network will be a m +1 dimensional 
probabilistic distribution Po

pred = {po
pl, p

o
1, ..., po

m} where {po
1, ..po

m} depict-
ing the object importance within o at the picking stage and an extra po

pl 

suggests the importance of packaging area p at placing stage. 
The distribution Po

pred is combined with the selected goal position. 
This will then be further fed to a fully connected NN classifier for clas-
sifying n + 1 dimensional probability distribution Pg

pred = {pg
pi,p

g
1, ...,p

g
n}, 

where {pg
1, ..p

g
n} describes the goal labels at placing stage and an extra 

pg
pi represents the picking stage. Note that each pg

n in {pg
1, ..p

g
n} represents 

a specific goal position, which is demonstrated by the predefined goal 
configuration. We refer to it as a position-specified label. Such a design is 
to better infer the low-level motion module about the task stages. 

Thereafter, the important features selected by Po
pred and the one-hot 

encoded label l ∈ {lpi, lg1 ...lgn} converted from Pg
pred are combined 

together as the inputs for the motion module (See Fig. 2). 
Fig. 1 describes our neural network architecture for reasoning 

module. We first introduce a GNN to operate the graph classification. 
We encode states as graphs. Let there be n out of m (n ≤ m) objects that 
need to be manipulated. There will be m nodes V = {vm}

m
m=1 and each 

node contains 4-dimensional features ϕ(vm), including the 3-dimen-
sional objects positions o and an extra binary property I = 0 or 1 
describing whether such an object has been selected or not according to 
the predefined g = {gn}

n
n=1. We therefore define the directed linking 

edges E = {ei,j} for i = 1, ..m − 1 and j = 2,...m, where each node is only 
connected with its neighbors nodes. 

We mainly adopt a GraphSAGE (Sage) [42] layer for this study. It 
holds the advantage of being generalizable to unseen nodes by sampling 
and aggregating the target node’s neighbor nodes instead of weighting 
the whole neighbor nodes like Graph Convolution Network (GCN) [43]. 

Assume the initial node embedding is h0
i = ϕ(vm) and there will be K 

message passing iterations or K layers. We can thus aggregate its 
neighbor nodes hk− 1

j from the previous layer (i.e. K − 1) and to form a 
single vector representation as Eq. (1). In this study, fagg is the aggregator 
that aggregates the neighbours’ features with an averaging function 
1
N

∑

j∈N (i)
hk− 1

j . This aggregated representation hk
N (i) will be concatenated 

with the target node’s embedding from the previous layer hk− 1
i and 

further multiplied by a weight matrix Wk. Thus, the node embedding of 
Kth layer can be represented as Eq. (2), where σ is the ReLu activation 
function. fθgnn1 

and fθgnn2 
are the trainable functions with parameters θgnn1 

and θgnn2 for each layer. In order to prevent gradient explosion, we 

normalize the obtained node embedding as hk
i ← hk

i
‖hk

i ||2
. 

hk
N (i) = fagg

(
hk− 1

j , j ∈ N (i)
)

(1)  

hk
i = σ(Wk⋅

(
fθgnnk− 1

(
hk− 1

i

)
+ fθgnnk

(
hk

N (i)

))
(2)  

Afterwards, for graph classification, there will be an additional readout 
layer that aggregates the node embeddings into a graph embedding as 
Eq. (3). A final output layer accepts the graph embedding and produces 
m + 1 final categorical distribution Po

pred. 

Gk =
1

N (v)

∑

i∈N (v)

hk
i (3)  

We further build a classifier with three layers. It takes m + 1 dimensional 
distribution Po

pred and a 3D selected goal position g as inputs, which 
yields total m + 4 dimensional features with the final outputs Pg

pred. 
For training this module, we consider it as a supervised learning 

model with the ground truth distribution Po
goal and Pg

goal. For both GNN 
and NN classification, we use cross-entropy loss as Eqs. (4) and (5). 
These two cost functions are jointly optimized as a linear combined cost 
function in Eq. (6). 

loss1 = −
∑m

m=1

[
po

goal

]

m
log

(
p0

pred

)

m
(4)  

loss2 = −
∑n

n=1

[
pg

goal

]

n
log

(
pg

goal

)

n
(5)  

L re = (loss1) + (loss2) (6)  

3.2. Motion module 

In this section, we focus on building a motion module for a cobot to 
generate actions based on the information provided by the reasoning 
module. In mPTO scenarios, collision-free motions need to be consid-
ered in order to avoid any damage to the products. Thus, a cobot should 
avoid any collisions with itself and with objects at the picking stage. It 
should also avoid collisions between various objects already packed 
during the placing stage. Thus, the aim of this module is to learn the 
expert’s planning strategies and integrate trajectories from different task 
demonstrations. In order to achieve this, we decompose the motion 
planning problem into two-level steps consisting of:  

a) The generation of an effective collision-free plan as sub-goals 
conditioned by task labels.  

b) The generation of joint actions based on the current end-effector 
position and the predicted sub-goal. This can be achieved by 
modeling the demonstrator’s preference. 

We build a conditional sub-goal planner with variational inference, 
which takes the most important observation from the reasoning mod-
ule and cobot end-effector positions as inputs. This is also conditioned 
on the task stage label l. By accessing the task information (e.g. label), it 
is able to provide 3-dimensional collision-free sub-goals for different 
target poses even when similar observations are perceived. Lastly, the 
neural dynamic planner is built with simple neural networks to provide 
dynamic transition models of the expert preference based on the current 
end-effector position and predicted sub-goal. 

3.2.1. Task-conditioned sub-goal planner 
For sub-goal planning, if the same object was picked for different 

locations, similar observations can confuse the planner. Thus, we pro-
vide task parameters (i.e. labels) to differentiate between different tasks. 
The sub-goal plan s is based on the current end-effector pose r and 
different features obtained from reasoning module at different stages. 
In picking stage, the reasoning module will always provide the 
selected object position oselected and label indicating the task stage lpi, and 
thus lead to total observations O = {oselected, lpi, r}. During the placing 
stage, the reasoning module will focus on the packaging box position p 
with a label describing different goal positions lgi , and lead to O = {p,lgi ,

r}. 
Moreover, instead of using a deterministic model that directly gen-

erates the categorical distribution p(s|O ), we use a variational inference- 
based probabilistic regressor with additional uncertainty output δ (e.g. 
standard deviation(std)). We formulate latent parameters Q(z) ∼
N (μ, δ) to approximate the ground truth sub-goal s as p(z|O ). The μ and 
δ can be parameterized with neural network as dependency of O , μ =

fθsubμ (O ), δ = fθsubδ
(O ). According to Bayes rule, the posterior p(z|O ) can 
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be expressed as Eq. (7). The integral form of marginal likelihood 
∫

p(O |z)p(z)dz is often computationally intractable. In variational infer-
ence, it tries to find the optimal distribution p*(z) that approximates the 
posterior distribution. It equivalent to performing optimization by 
maximizing the Evidence Lower Bound function (ELBO) in Eq. (8), 
where Ez∼Q[logp(s|z)] is the likelihood term and Dkl is the Kullback- 
Leibler (KL) divergence that regulates the predicted variational proba-
bility q(z) with a prior distribution p(z). The KL divergence can be 
rewritten as the expectation form of z and finally, the cost function can 
be expressed as Eq. (9). Assuming the likelihood and variational distri-
bution are Gaussian, we can thus replace them with a negative Gaussian 
log-likelihood function in Eq. (10). For prior probability, we assume the 
ground truth sub-goal has a unit Gaussian distribution p(s) ∼ N (0,1). 

Fig. 2 illustrates our network architecture, we use Stochastic 
Gradient Variational Bayes (SVGB) estimator with reparametrization 
trick to train the model [44]. By accessing task labels, the sub-goal 
planner is able to produce adaptive sub-goals among different tasks. 
The variational inference concepts can lead to high likelihood while 
penalizing over-fitting when estimated q(z) is far away from the true 
prior p(z). 

p(z|O ) = p(z)
p(O |z)

∫
p(O |z)p(z)dz

(7)  

argmaxO z = Ez∼Q[logp(s|z)] − Dkl[q(z)‖ p(z)] (8)  

L sub = Ez∼Q[logp(s|z)] − Ez∼Q[logq(z) − logp(z)] (9)  

L Gaussian = −
N
2
(
2πσ2

θσ

)
−

1
2σ2

θh

∑N

i=1

(
p′

i − μθμ

)
(10)  

3.2.2. Neural dynamic planner 
For the final action planer, since we are dealing with a large number 

of observations and continuous actions, a small amount of demonstra-
tions are inefficient to directly map the observations to optimal actions 
required to achieve the sub-goal. 

Instead, we model the expert preference as a dynamic transition 
function. Assume experts always prefer to minimize the distance be-
tween current end-effector position rt and sub-goal position st at every 
time step t: Δt = st − rt in a consistent way (i.e. they will first minimize 
Δt in the x-y plane, and thus approach the final goal vertically). Mean-
while, the joint actions at = [a1, a2, a3, ..., an] will lead to different posi-

Fig. 3. Neural Network Architecture for reasoning module. We first construct a graph representation of the objects states. With three GraphSAGE layers and ReLu 
activation function, we obtain the most important observation as the probability distribution and thus select the corresponding goal from goal sets. Thereafter, the 
task stage can be classified by combining these two features through 3-layer neural networks with ReLu as activation function. 

Algorithm 1 
Proposed TAMP architecture for adaptive packaging problem.  
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tion rt through forward kinematic in robot arm. Thus, we formulate a 
dynamic transition function containing a continuous state space as Δt 
with action space at = [a1, a2, a3, ..., an]. We aim to obtain the actions 
from the expert preference Δt = st − rt inversely through a simple neural 
network at = DθD (Δt) as shown in Fig. 3. It is trained with a supervised 
loss function as Mean Square Error (MSE), which minimizes the loss 
between ground truth action at and prediction as shown in Eq. (11), 

where T is the training batch size. 

L act =
1
T

Σ
(at ,Δt)∈T

1
2
||at − DθD (Δt)||

2 (11)  

Finally, during testing, at the high-level planning, the reasoning 
module first identifies the task label and the most important observa-
tion. In motion module, the task-conditioned sub-goal planner will use 
the information provided by reasoning module to propose conditioned 
mean sub-goals while the neural dynamic planner tries to achieve the 
sub-goal during the low-level action execution steps as shown in Algo-
rithm 1. 

4. Experiments, results and discussion 

In this study, we design our use cases to replicate a mPTO. However, 
due to the limitations related to the lack of massive customer orders, we 
scoped down the use cases to an adaptive packaging problem while 
preserving the nature of the changes that happen between batches of 
massive orders. 

Fig. 4. Neural Network architecture for our Task-conditioned sub-goal planner with inputs from the reasoning module. We have two fully connected intermediate 
layers for pre-processing the observations after which we feed the processed features with task labels to variational inference. We apply a reparameterization process 
to train the network with the predicted probability distribution. We adopt Tanh as our activation function. 

Fig. 5. Neural Network architecture of neural dynamic planner. We first 
calculate the distance between the predicted sub-goal and the current end- 
effector position. This will be fed into a sample three -layers neural network 
to finally produce the joint actions. The activation function between each layer 
is ReLu. 

Fig. 6. This figure shows CASE 1: in which a static task structure is handled by cobot and CASE 2: in which the cobot works with a human on a varying and dynamic 
task structure. In these examples, the cobot needs to pick and place the target objects into the blue packaging box from the pending area. The human model in the 
figures is for illustrative purposes only. 
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We design n out of m (n ≤ m) adaptive packaging experiments with 
Fig. 5 describing an example 4 out of 5 experiment. According to a 
customer order, there will be n objects required to be packaged among 
total m objects. 

We consider diverse goal configurations in every experiment as 
shown in Fig. 6 as every object has the potential of being selected. There 
will be mCn = m!

(m− n)!n! possible combinations. Moreover, although the 
positions in the goal configuration are fixed, same objects may occupy 
different positions in the goal configuration. Thus, for each combination, 
there will be Pn = n! possible permutations. Therefore, for every 
experiment, there will be a total of mCn × Pn different goal 
configurations. 

We aim to solve two different cases in every experiment under the 
same proposed architecture. In CASE 1, the cobot handles the diverse 
goal configurations solely as shown in Fig. 6a. In this case, cobot should 
follow the underlying task structure learnt from demonstration. For 
example, if the selected objects are [2,3,4,5]. The cobot will always 
manipulate the selected object with a smaller number until the final goal 
is achieved. 

In CASE 2, we present the generalization ability of our approach to 
unseen task structures as a result of human performance with diverse 
goal configurations as stated above. Unlike other previous work (e.g. 
[6]), it should be noted that the cobot in our work is free to compute and 
use another task structure depending on the perceived and observed 
current state of the task structure. This means that if the perceived task 
structure changes due to interference by a human, our architecture are 
able to support the cobot in understanding the change and responding 
accordingly. For example, as shown in Fig. 6b, the human picks the first 
and third selected objects while the cobot needs to manipulate the sec-
ond and fourth selected objects sequentially. 

To train our architecture, the high-level reasoning module and the 
low-level motion module are programmed separately using different 
expert demonstrations. 

For the high-level reasoning module, we first demonstrate the 
desired goal configuration with position-specified labels as Fig. 7 shows. 

We thus allow the expert to manipulate the objects by following the 
same task structure as shown in Fig. 6a. We only collect two graph-based 
observations with the selected goal pose for each single object manip-
ulation at the beginning of picking and placing stages as shown in 
Fig. 10. The ground truth distribution Po

goal and Pg
goal are given as one-hot 

vector label ensuring that only the probability selected by expert will be 
1 and the rest will be 0. The agent is then left to learn the underlying 
structures from graph-encoded observations without any hand-coded 
task descriptions or rules. 

For the low-level motion module demonstration, we manually con-
trol the cobot to pick and place objects. We design 3 sub-goals each for 
different stages. For the picking, firstly, the cobot moves above the ob-
ject followed by an approach to the object’s surface and finally grabbing 
the object up. For placing, the cobot will approach a certain point ac-
cording to the goal position followed by moving above the goal and then 
finally placing the object. For every sub-goal, we sampled 20 actions. 
The collected actions contain three most effective joint actions of UR10 
including [q′

base,q
′

shoulder,q
′

elbow, ]. 
In the following sections, we evaluate each module step by step with 

comparisons against alternative approaches. We train each module with 
expert demonstrations and test the trained models with our designed n 
out of m experiments in both simulation and the real world. For each 
single object manipulation during testing, the reasoning module will 
produce important features and task labels at beginning of picking and 
placing stages. For motion module, the sub-goal planner will produce 
three sub-goals at each stage. We set up a maximum of 30 steps for the 
neural dynamic planner to approach the predicted sub-goal. In the 
following sections, we present the average testing results over 5 seeds 
with standard deviation. 

For reasoning module, we aim to demonstrate the adaptability and 
the generalizability of such a data-driven and learning-based model on 
variations in goal configurations and task structures. For motion 
module, we describe its flexibility of trajectory production while 
dealing with variations in position changes during both picking and 
placing. Thus, we show that our architecture holds the advantages of 

Fig. 7. These figures show the different goal configurations including possible combinations and permutations with position-specified labels.  
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being faster and more accurate than other methodologies. Finally, we 
validate our trained architecture on physical experiments. 

For both simulation and physical experiments, we adopt a 6-DoF 
Universal Robot 10 (UR10) robot arm with a suction cup to interact 
with objects. In the simulation, we conducted experiments in the 
physical simulator CoppeliaSim [45] with cubes, while we use 
real-world products with similar shapes in the physical experiment. To 
detect them, we utilize a RealSense Depth Camera with a convolutional 
neural network (CNN)-based computer vision detection framework 
YOLOV3 [46]. All GNN-based models are written in PyG [43]. And the 
neural networks including our architectures and comparison method-
ologies are written in Pytorch [47] and trained on NVIDIA GeForce RTX 
2060 GPU. 

4.1. Reasoning module 

In this section, we aim to show the ability of our GNN-based 
reasoning module is able to handle a large amount of goal configura-
tions with redundant objects. We also examine the generalizability of 
our module regarding unseen goal configurations and task structures 
during different task stages. We compare our reasoning module against 
the different methods using the mPTO use case:  

1) GNN [6]:We implemented the GNN-based high-level policy from the 
work with GraphSAGE Layers. The observations are encoded as a 
fully connected graph. This graph provides both objects and goals 
nodes with spatial 3D positions and extra properties regarding object 
types and fulfillment in the graph. performs the graph classification 
to directly output the two probability distribution of the target object 
Po

pred and goal Pg
pred. In order to meet the needs of our experiment, we 

added an extra binary feature as I describing whether an object has 
been selected or not in every node. Their work can handle various 
positions for each object’s goal by producing the same distribution 
Pg

pred. Hence, this ground truth Pg
goal label does not reflect the specific 

goal position. Instead, it only represents the order of goals. 
Furthermore, we assign the same ground truth for picking and 
placing stages as their work only considers the initial observation at 
the beginning of each object manipulation.  

2) GNN-task: A design like GNN cannot distinguish between different 
goal positions. Hence the low-level motion module will always 
follow the same static trajectory regardless of the goal positions. In 
the comparisons that follow, we use their approach with our ground 
truth Pa

predand Pg
goal  

3) MLP: In comparing our approach with a traditional Multi-Layer 
Perceptron (MLP), we used flat 1D observations instead of graphs. 
And we replace the GraphSAGE Layers with a three-layer fully con-
nected neural network. This was trained with our expert demon-
stration data.  

4) RF: We also compare our approach with a Random Forest Classifier 
(RF) which is a non Neural Network based traditional approach. This 
approach infers the target predictions by using an ensemble of de-
cision trees with each tree containing a sub-sample of data features. 
Each tree has branches that use Boolean-type logic to reach a deci-
sion. The RF reaches a decision through a majority vote from an 
ensemble of trees. We replace the GraphSAGE Layers with the RF in 
our comparisons. This was trained with our expert demonstration 
data. 

We trained these methods with 5-fold cross-validation. The learning 
rates were set to 1 × 10− 3. During the test stages, we assess their per-
formance by using a Success Rate (SR) metric. SR refers to the per-
centage of successful trials among the total attempts. We obtain the 
classification result for Po

pred and Pg
pred at both picking and placing stages 

respectively. This is computed for every single object manipulation and 

one success trial is counted when all predictions for n objects are correct. 
For instance, in one n out of m experiment, there will be total n × 2 
predictions for both Po

pred and Pg
pred. 

Table 1 describes the performance on CASE 1. Each model is trained 
with the full demo data. The objects’ positions are initialized randomly 
within the pending area and their performance with the trained sce-
narios are assessed. As shown in Table 1, our approach has a competitive 
performance when compared with GNN achieving a 100% SR among a 
large amount of diverse scenarios. For example, there are 120 different 
scenarios in 4 out of 5 experiment. RF method also shows comparable 
performance. However, the GNN-task performs the worst as it suffers 
from directly producing the positions specified labels from the extracted 
GNN features. This indicates our design of using an extra classifier is 
efficient to infer different task stages, especially when producing 
different position-specified labels at placing stage. The MLP method 
decreases in SR because of the challenge of dealing with variations in 
positions. 

Next, we highlight the generalization ability of our module for 
dealing with an observation distribution outside the training data. In 
this study, we train the modules with only partial goal configurations 
using a proportion (which we call the training ratio λ) of the dataset. 

In CASE 1, we randomly select λ×mCn combinations with their 
possible permutations Pn from the total goal configurations to train the 
models. Each goal configuration is trained only once. And the initial 
objects’ positions are also randomized. We assess their SR on the unseen 
(1 − λ)×mCn × Pn tasks. This means that during testing, the module needs 
to produce task structures on previously unseen goal configurations as 
well as in the presence of previously unseen redundant objects in the 
observed scene. 

Fig. 8a shows the results on CASE 1. Our model can achieve 100% 
success on unseen goal configurations with λ = 0.6 in 3 out of 5 exper-
iment and is able to handle 24 unseen goal configurations with 94 
trained demos in 4 out of 5 experiments. GNN and GNN-task fail to 
generalize to unseen goal configurations with redundant objects. RF 
suffers to generalize to unseen goal configurations. 

In CASE 2, similar to the study in CASE 1, we train the models with 
partial goal configurations λ×mCn × Pn. During testing, we augment 
testing data that perform the task in different task structures with 
randomly selected goal configurations (see Fig. 6b as an example). We 
have 300 testing scenarios for each n out of m experiment. We aim to 
prove that if our module is able to handle unseen task structures under 
unseen goal configurations. 

CASE 2 as shown in Fig. 8b, is challenging due to the increase in the 
amount of unseen scenarios. Our module can achieve the best average of 
96.3% and 93.7% success rates in unseen task structures for 3 out of 5 
and 4 out of 5 experiments respectively when trained with full goal 
configurations (λ = 1). The GNN cannot handle different task struc-
tures. It fails to produce correct importance Pa

pred. We also notice that 
MLP even has better performance than GNN and GNN-task. The reason 
may be that, by using a fully connected graph, it may aggregate irrele-
vant neighbor node features and hence affect the prediction accuracy. 
Compared to RF, it indeed can solve part of the problem, while it still 
suffers from generalizing to varying task structures. We show our 
reasoning module’s results for generalization on unseen goal config-
urations and task structures as Fig. 9. 

Table 1 
Success rates of different methodologies on n out of m objects reasoning in 
simulation.  

n out of m 2 out of 3 3 out of 3 3 out of 5 4 out of 5 

Ours 1 ± 0.000 1 ± 0.000 1 ± 0.000 1 ± 0.000 
GNN 1 ± 0.000 1 ± 0.000 1 ± 0.000 1 ± 0.000 
GNN-task 0.83 ± 0.015 0.72 ± 0.017 0.58 ± 0.024 0.24 ± 0.031 
MLP 1 ± 0.000 1 ± 0.000 0.96 ± 0.013 0.86 ± 0.025 
RF 1 ± 0.000 1 ± 0.000 1 ± 0.000 1 ± 0.000  
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Finally, we interpret the learnt importance ranking results with 
GNNExplanier [48] as Fig. 10. GNNExplanier aims to explain the trained 
graph model by determining the most important features and edges. As 
shown in Fig. 10, the feature I is necessary in our case as it allows the 
GNN to determine which subsets of objects need to be focused. Our 
reasoning module is able to produce efficient object importance with 
position information and its neighbor nodes at the picking stage. The 
spatial feature of the object height z infers the placing stages. Mean-
while, our module is robust to handle different task structures as we 
notice that it has identical masks in both CASE 1 and CASE 2. This in-
dicates that our graph construction enables the trained GNN to effi-
ciently identify if some of the objects with I = 1 have been packaged (i.e. 
human performance) through only position information. And thus, it is 
still able to correctly plan the rest selected objects with the learnt task 
structure as shown in Fig. 9. 

To conclude, our reasoning module can handle large amounts of 
different goal configurations and is data-efficient because it can gener-
alize to unseen goal configurations under the same task during different 
task stages for cobot manipulation without any hand-coded task de-
scriptions. Furthermore, our work is capable of handling different task 
structures and as a result, can support human-robot collaborative work. 

4.2. Motion module 

In this section, we present the motion module ’s performance. Since 
we have two separate neural network-based models (Task-Conditioned 
Sub-goal planner and Neural Dynamic Planner) in this module, we assess 
them individually. 

4.2.1. Task-conditioned sub-goal planner 
In this section, we aim to justify the importance of providing task 

information from the high-level module and the effectiveness of our sub- 
goal planner in dealing with variations in object positions. Since we used 
a regressor in our work, we compare our sub-goal planner with different 
regression methodologies as discussed below. All the models are trained 
with expert demonstration data.  

1) VI: This is a variational inference regressor without any task label.  
2) GPR [49,50]: Gaussian Process Regression (GPR) is a non-parametric 

regression method based on the Bayes method. We provide the task 
label and train it with Radial basis function (RBF) kernel. 

Fig. 8. A study of the generalization over training ratio in simulation. A successful trial is defined when all predictions are correct for every single object.  
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3) MLP: We also build a simple neural network-based deterministic 
regression model with task labels (i.e. it does not measure the un-
certainty of p(s|O ). 

The learning rates were set to 1 × 10− 3 and we measure the 
regression results based on the 3-fold cross-validation with R2 score, the 
Coefficient of determination. A higher R2 score indicates that the model 
can better explain the variability of data. Afterwards, we apply different 
models as sub-goal planners in our architecture and evaluate them in the 
simulation experiments. Furthermore, one object is only allowed to be 
manipulated to one goal during demonstration (training phase), while in 
testing, we studied the generalization ability of our approach. 

We thus investigate if the sub-goal planner can produce an efficient 
plan when the same object needs to be used in different goal positions. 

For example, when considering the permutations under the same com-
bination as shown in Figs. 7a and 13b. In this situation, an object might 
need to be manipulated into different goal positions starting from the 
same position. We illustrate one successful example as shown in Fig. 11. 

During testing, we test 100 trials which are randomly selected from 
CASE 1 and CASE 2 as discussed in the previous section. One success in 
an object’s manipulation is defined as when the Euclidean Distance 
between object pose and goal position is under a certain threshold δr =

0.06m (See Eq. (12)). One success trial is one in which all target objects 
have been fulfilled to the predefined goal without any collision during 
the execution. We still use Success Rate (SR) to evaluate their 
performances. 

Fig. 9. We present the simulation results in 4 out 5 experiment. Our reasoning module produces the feature importance and task labels at the beginning of picking 
and placing stages for each object manipulation, where P (Pick) stands for picking stage, P (packaging) is the feature importance of packaging box at placing stage. 
Our model can handle unseen tasks in terms of goal configurations and task structures that are different from demonstrations. 
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success =
{

1
⃒
⃒Poseobj − Posegoal

⃒
⃒ < δr

0 otherwise
(12) 

Our task-conditioned sub-goal planner can handle up to 4 different 
goal positions as shown in Table 2. The MLP has the worst performance, 
and we also notice it can only handle up to 2 different goal positions. In 
comparison, the VI has a better R2 score in the training data set. 
Nevertheless, we notice that it is unable to produce a stable sub-goal 
without accessing the task information thereby indicating the impor-
tance of task labels. 

For GPR, it uses the whole training sample information to perform 
predictions of sub-goals. Although it has task information, it is still un-
able to handle the unseen goal positions which are different from 
training distribution. Our task-conditioned variational-inference-based 
sub-goal planner shows better performance when dealing with varia-
tions in the testing experiment. 

As shown in Fig. 11, our sub-goal planner can imitate the planning 

strategy from the demonstration. It is also generalizable when different 
goal positions are provided while guaranteeing safety between objects. 
We also found that it can produce sub-goals when the cobot needs to 
pick an object at previously unseen positions as shown in Fig. 13a. 
However, it should be noted that these positions should remain within a 
particular range (see Section 4.3). The main failure case in our sub-goal 
planner happens when the predicted sub-goal is not efficient in catching 
the object at its surface. 

4.2.2. Neural dynamic planner 
In this section, we examine the efficiency of only modeling the expert 

preference (i.e. state-sub-goal distance) to produce effective actions in 
cobot joints. 

We compare different inputs as shown in Fig. 12. If the inputs 
become full observation including current end-effector position and sub- 
goal as π(rt , st). Such a model will become a simple actor-network in 
actor-critic based reinforcement learning like Deep Deterministic Policy 

Fig. 10. We interpret the learnt reasoning module at picking and placing in two different cases. For each sub-figure above, the first row (Feature mask) describes 
the most important features and the second row (Edge mask) indicates the most important edges as solid lines. The third row describes the manipulation scenes from 
the simulation. 
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Gradient (DDPG) [51]. We train these models with 5-fold 
cross-validation with the learning rates as 1 × 10− 3. We allow the 
cobot to approach to the predicted sub-goal within maximum 30 steps 

and record the absolute mean distance at each time step. 
As Fig. 12 shows, full observations π(rt , st) fail for producing optimal 

actions, and the predicted actions remain always the same as the red 

Fig. 11. We show the simulation results of our sub-goal planner at placing stage in 4 out of 5 experiment. The first graph of each figure shows the initial state of the 
stage. The sub-goal planner will predict three collision-free sub-goals followed by actions from Neural Dynamics Planner. As the figure shows, our sub-goal planner is 
adaptable according to different task information (i.e. task labels) without any collisions. 

Table 2 
Different sub-goal regression methods’ results on demonstration data, and success rates on the adaptive packaging experiments. We perform 100 testing trials in each 
experiment.   

2 out of 3 3 out of 3 3 out of 5 4 out of 5 
Model R2 SR R2 SR R2 SR R2 SR 

Ours 0.98 0.96±0.012 0.98 0.94±0.008 0.97 0.92±0.012 0.97 0.89±0.017 
VI 0.96 0 0.94 0 0.95 0 0.97 0 
GPR 0.98 0.35±0.046 0.99 0.43±0.076 0.99 0.32±0.047 0.99 0.21±0.031 
MLP 0.87 0.26±0.041 0.73 0.12±0.023 0.621 0.08±0.019 0.43 0.06±0.016  
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curve shows. With inefficient state-action pairs, the actor-network may 
fail by getting trapped in local optimal. Also, the similarity between 
observations may also cause difficulty during training. Our neural dy-
namic planner as shown by the blue line in Fig. 12 can converge to a 
distance under 0.02 m at around 15 steps. That shows the data-efficient 
and adaptability of our proposed method. 

Fig. 13 shows the 3D trajectories produced by our motion module. 
In the picking stage of Fig. 13a, the motion module follows the expert 
planning strategy by first moving above the object and thus picking the 

object. As seen in Fig. 13b, our module is able to deal with various object 
positions in the picking stage and capable of producing effective tra-
jectories to various goal positions even with the same starting positions 
during the placing stage. 

4.3. Overall performance 

In this section, we discuss our whole architecture performance in 
every experiment. We randomly select scenarios in both CASE 1 and 
CASE 2. The performance is assessed using the approach discussed in 
Section 4.2.1. 

We compare different baseline methods including:  

1) DRL: A Deep Reinforcement Learning (DRL) method uses a flat 
structure to generate actions directly from full observations. The 
observations contain objects positions o = {o1, o2, o3...om} and end- 
effector positions r. The action space is the same as our neural dy-
namic planner. For every trial, the goal also contains m objects po-
sitions including g = {g1, g2, …, gn} for the selected objects while 
the rest objects’ positions remain the same. We implement DDPG and 
Hindsight Experience Replay (HER) Buffer [52] with sparse reward. 
We allow the DRL agent to be trained for 5000 iterations for every 
experiment.  

2) RMþRRT-Connect [53]: RRT-Connect refers to a conventional 
path planning algorithm that searches a configuration space with 
two rapidly expanding random trees growing from both the initial 
start point and target point. Since it requires both starting and target 
position, we use the reasoning module (RM) to produce the target 
object’s position and its goal. We then replace our motion module 
with RRT-Connect. Moreover, in order to produce collision-free 
motions in mPTO problems, we provide environmental information 
in simulation via OMPL library [54]. 

In regards to object position variations in the environment, our 
proposed system can handle variations of 0.3 m on the x-axis and 0.15 m 

Fig. 12. We compare different inputs. The figure shows the absolute mean 
distance between the state and the goal with standard deviation over steps. We 
perform 20 trials with the random initial and sub-goal positions. The blue curve 
represents the performance of our neural dynamic planner. While the red curve 
is a simple actor-network. 

Fig. 13. The 3D reproduction trajectory from our motion module trained from 4 out 5 objects experiments.  

Table 3 
We compare the overall performance of different methods over two different cases (CASE 1 and CASE 2). We trained the DRL agent with both CASE 1 as well as CASE 2. 
We only trained our approach on CASE 1 and show the average planning and execution time for our method and RRT-Connect in 4 out of 5 experiment.   

2 out of 3 3 out of 3 3 out of 5 4 out of 5   
Model SR SR SR SR Avg. planning time Avg. execution time 

Ours 0.96±0.012 0.94±0.008 0.92±0.012 0.89±0.017 7.8ms±0.32ms 14.25 s ± 2.9s 
DRL 0.41±0.032 0.31±0.023 0.18 ± 0.018 0.07±0.011 – – 
RM+RRT-Connect 0.94±0.008 0.93±0.012 0.89±0.01 0.88 ± 0.012 9.6 s ± 3.32s 21.75 s ± 2.2s  
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on the y-axis respectively regarding the object picking positions. It can 
also handle variations of 0.35 m on the x-axis and 0.2 m on the y-axis 
respectively regarding the goal positions. Also, the Euclidean Distance 
between objects and objects’ goals can vary from 0.38 m to 0.82 m. 

As shown in Table 3, the DRL algorithm struggles in dealing with 
high dimensional observations and goal spaces. Meanwhile, it is also 
inefficient in data, meaning that it needs a large amount of exploration. 
The hierarchical property of our proposed TAMP system is able to pro-
duce an efficient plan by reducing the high dimensional observations 
into the informative features for each module. Meanwhile, our motion 
module has a competitive performance with collision-free RRT- 
Connect. 

We also compare the planning and execution time for our proposed 
motion module with the RRT-Connect. As mentioned before, for each 
object manipulation in our proposed system, our system will plan three 
sub-goals sequentially to achieve specific positions during each stage. 
We allow a maximum of 30 action steps to achieve each sub-goal. During 
testing, the planning time for our NN-based planner is around 1.3 ms for 
one of the sub-goals. During manipulation, the joint actions are con-
strained within [− 5, 5] degrees. As a result, the total action steps for one 
single object manipulation can vary between 27 and 47 steps while the 
execution time can vary between 10.51 s and 17.94 s. 

For comparing our motion module with RRT-Connect, we adopt 
RRT-Connect in both picking and placing stages. An inverse kinematic 
solver is used to iteratively find the optimized joint configurations. We 
also provide environmental information at the beginning of each object 
manipulation in order to achieve collision-free motions. This means that 
the objects that do not need to be manipulated are considered as ob-
stacles. It was discovered that RRT-Connect often requires longer 

average planning time (9.6 s). And the execution time varies between 
18.3 s to 25.2 s. Also, the configuration space becomes more complex as 
the number of objects increases and this affects the SR values. Moreover, 
we noticed that the inverse kinematic solver may produce dangerous 
joint configurations due to redundancy. 

4.4. Physical experiment 

We conduct the physical experiments with a similar setting as in 
simulations. As long as the distribution of positions remains similar as in 
simulation, our architecture can directly accomplish the physical ex-
periments without extra training. We utilize a RealSense 3D camera in 
front of the workspace to sense the environment as shown in Fig. 14. To 
obtain the real-world products’ information with respect to the cobot 
base, we collect and train the object detection with CNN-based detection 
network YoloV3 and perform coordinate transformation through Robot 
Operating System (ROS) [55]. The suction cap is activated or deacti-
vated by controlling the digital I/O output on the UR10 during a single 
object manipulation cycle. The desired joint actions produced from our 
system control the cobot through ROS and MoveIt [56]. One drawback 
of our neural dynamic planner is that it cannot adjust the orientation of 
the end-effector in real-time. Nevertheless, we adjust the orientation 
with MoveIt for picking objects with predicted sub-goal during picking 
stage and the final step of placing stage for better detection of objects. 

Fig. 18 illustrates one example of our experiment in 3 out 5 experi-
ment in CASE 1. As shown in Fig. 18, our architecture still follows the 
same learnt task structure as in simulation, (i.e. from A to B … until the 
final goal configuration is achieved). In CASE 2, we allow the worker to 
first package the products with his own preference. Afterwards, the 
cobot gets involved and starts to plan and package the rest of the 
selected products through our architecture as shown in Figs. 16 and 17. 
Note that in achieving these results, our architecture was not trained by 
CASE 2 scenarios. We also show the performance of our motion module 
in the physical experiment as shown in Fig. 15. This demonstrates the 
generalizability of our approach. We conduct 20 runs for each case in 
every experiment including 2 out of 3, 3 out of 3 and 3 out of 5. The 
success rate results in both cases have shown that our proposed system 

Fig. 14. The physical experiment in 3 out of 5 
experiments. We utilize a RealSense 3D camera 
in front of the workspace as shown in Fig. 14a 
and b. Similar to the simulation, we first feed 
the predefined goal positions. The objects 
placed in the right pending area need to be 
manipulated to the left fixed packaging tray. 
The texts at the right top of the first two pic-
tures indicate the real-time high-level task plan 
produced by our reasoning module. The yel-
low texts "Task Label" include the task label 
classification as different goals and Ca indicates 
the picking probability. The red texts "Impor-
tance" is the result of the feature importance of 
objects and P are packaging importance.   

Table 4 
Physical experiment results in both cases, we also show the total time of each 
object manipulation.   

2 out of 3 3 out of 3 3 out of 5 

SR in Case 1 0.98±0.002 0.95±0.01 0.93±0.008 
SR in Case 2 0.91±0.012 0.91±0.007 0.87±0.034 
Avg. time 44.3s±1.45 43.2s±2.3 43.5s±1.8  
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trained on simulation can efficiently generalize to hardware for both 
reasoning module and motion module as shown in Table 4. It will take 
around 5 ms for reasoning module to construct graph and make pre-
dictions. The planning time for the sub-goal planner is similar to the 
simulation. The Euclidean Distance between the object and the goal 
varies from 0.25 m to 0.83 m. Thus, the steps taken for each object 
manipulation vary from 20 to 47 steps. We set the velocity scaling factor 
for UR10 to 0.05 to ensure safety between cobot and human. Therefore, 
the average time for one step taken will be around 0.7 s. Furthermore, 
the extra orientation correction will take an average of 10.2 s at each 

stage. We did not implement collision-free RRT in real-time, as it needs 
rich environmental information. 

Nevertheless, the main cause of failure is the unpredictable dynamics 
of the real products during manipulation, which may cause unexpected 
motions during the placing stage and collide with other products. The 
misclassification of the products in YOLOV3 detection may also decrease 
the success rate during the experiments. Furthermore, due to the extra 
orientation correction with inverse kinematics at task stages, the 
average time for one single object manipulation increases. Nevertheless, 
as seen from the results above, our architecture can still achieve faster 

Fig. 15. The performance of our motion module in adapting to various goal positions during physical experiments. For example, the motion module was trained to 
put object C at Goal 3 as in Fig.15a. However, the motion module can adaptively produce trajectories for other unseen task goals as seen in Fig.15b and Fig.15c. 

Fig. 16. Physical experiment for 3 out of 5 in CASE 2, where the human picks the second and third objects and lets the cobot do the rest.  
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planning and execution time than the conventional motion planner. 4.5. Practical scenarios 

In this section, we further explore the ability of our proposed method 
of dealing with variations in practical scenarios. Towards this, we 

Fig. 17. Physical experiment for 3 out of 5 in CASE 2, where the human picked the second object and lets the cobot do the rest.  
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present two practical problems that may exist in mPTO scenarios. 
Firstly, we consider one practical problem in which some items are 

lacking in the inventory of the pending area and waiting to be replen-
ished. In this scenario, in the interest of meeting a customer order 
fulfillment time, the cobot needs to first pack the available products to 
the corresponding goals while waiting for the replenishment of the 
missing products. Thus, such a problem will need a different task 
structure rather than the previously learnt task structure. This scenario 
can be recognized as a partial observable problem, where the di-
mensions of observations can vary. When the MLP and RF approaches 
are applied in the reasoning module, they are unable to handle this 
problem because they require the observations to have the same di-
mensions during both training and testing. On the other hand, a GNN- 

based approach is more powerful for handling such a problem as it 
can process different numbers of nodes. In this situation, our reasoning 
module requires partial retraining with extra augmented data of 50 
randomly chosen partial observable expert demonstrations from 3 out of 
5 experiment. This step allows our reasoning module to perform better 
inferences based on each object’s position information. To test our 
reasoning module, we conducted 180 experiments five times with 3 
out of 5 scenario and with 1 or 2 products lacking. Our reasoning module 
can achieve an average SR of 0.97. We also conducted 20 physical ex-
periments with our whole system as shown in Fig. 19. Our approach was 
able to achieve an average SR of 0.92 among 5 test sets. 

Secondly, we considered that customers can choose different product 
combinations (for instance: 2 out of 5, 3 out of 5 and 4 out of 5). This 

Fig. 18. Physical experiment for 3 out of 5 in CASE 1, where cobot packages the customer order solely.  
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requires the cobot to handle various combinations and different task 
lengths at the same time. We train reasoning module in 2 out of 5 with 
expert demonstration in CASE 1. The end goal position for each object 
can be randomly selected as described in Fig. 7. We then analyze our 
approach’s generalizability to handle 3 out of 5, and 4 out of 5 in both 
CASE 1 and CASE 2 as shown in Fig. 20. For each experiment, we 
randomly select 100 test sets with our proposed system. We compared 
our approach with MLP and RF. They were unable to generalize to 
variations in customer choices. However, our approach trained with a 
simple scenario (2 out of 5), can adapt to more complex unseen tasks (i. 
e. 3 out of 5 and 4 out of 5). 

The above experiments show that our graph-based reasoning 
module is efficient in directly learning the underlying task structure 
without any specific hand-coding rules. It can also generalize a learnt 
task structure to more complex problems. Compared to other baseline 
methods, our approach is more capable of processing varying lengths of 
observations making it suitable for practical industrial mPTO problems. 

4.6. Discussion and limitation 

In this section, we discuss our proposed architecture and revisit the 
research questions raised in Section 2.3 based on the results from the 
experiments conducted. 

For the high-level decision-making problem, we have shown that our 
reasoning module is capable of directly learning the underlying task 
structure from observations without any specific design of task struc-
tures or extra effort that is without the need to use specific if-else rules. 
This answers Q1 raised in Section 2.3. 

Towards addressing Q2, our architecture efficiently translates the 
changes in the high-level plan to low-level motion generations by 
separating a single object manipulation into picking and placing task 
stages. This allows the reasoning module to identify different necessary 
features via Po

pred for motion module at different manipulation stages. 
Furthermore, we use the classified labels Pg

pred in order to help the mo-
tion module to differentiate between sub-tasks. Furthermore, our mo-
tion module can efficiently learn an expert’s planning strategy and can 
be adaptive when different observations are obtained. For the sub-goal 
planner, our results have shown that a neural-network-based probabi-
listic model (i.e. Variational Inference) can handle larger variations than 

a deterministic model or a non-parametric approach. We have also 
shown that our neural dynamic planner based on expert preference is 
also data-efficient. 

In addressing Q3, we have also shown that our approach can deal 
with observed redundant objects through embedding extra property I in 
our GNN and thus enabling GNN to focus on a specific subset of products 
during a mPTO task. Furthermore, our results highlight that our archi-
tecture has zero-shot generalization ability regarding different task 
structures caused by human performance. Our reasoning module is 
robust to handle these variations, as it is able to first distinguish if some 
of the selected objects have already been packaged through position 
information, and thus plan the rest of selected objects via learnt task 
structure (i.e. from smaller numbered object to the bigger one as 
described in Fig. 6b). Finally, based on the above, our architecture has 
enabled a cobot to meet the mPTO requirements raised in the intro-
duction section of this manuscript. 

In regards to limitations of our work, when comparing our work with 
[6], their work holds the advantages of being generalizable to the 
diverse geometric shapes of final goals while ours is constrained to the 
pose-specified labels in order to enable the use of our low-level motion 
module. Nevertheless, our reasoning module is more capable of 
handling different task structures and thus it is more possible to cater for 
the varying and different preferences of humans in a Human-Robot 
Collaboration scenario. 

Another limitation for our motion module is that the sub-goal 
planner is unable to handle too large variations in observations as 
they are multivariate Gaussian distributions and may lead to an ineffi-
cient plan to pick the object precisely at its surface. Moreover, the neural 
dynamic planner only considers the 3D positions of the robot’s end- 
effector. This is less important when dealing with rigid objects but be-
comes more important if the objects to be manipulated are semi-rigid or 
soft. 

5. Conclusion 

In this work, we designed and developed a novel integrated task and 
motion planning (TAMP) architecture to tackle the adaptive mPTO 
problem with expert demonstrations. By taking inspiration from the way 
humans manipulate objects, we separate an expert demonstration into 
picking and placing stages. 

Fig. 18. (continued). 
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We build a GNN-based high-level reasoning module that can 
identify the important features and task stages. Compare to previous 
works [6,22], our reasoning module does not need scaffolding code in 
the form of if-else structures to support the distinguishing of variations 
in both diverse goal configurations and task stages. It also shows 
zero-shot generalization to handle variant task structures without any 
additional training. This suggests its potential for use in HRC scenarios 
where different preferences of human workers need to be taken into 
consideration. From the reasoning module, we can efficiently identify 
the necessary features and task stages for use by a motion module to 
generate low-level motions. 

Our motion module utilizes a two-step structure that can first pro-
duce sub-goals through conditioned variational inference as well as 

produce final joint actions by modeling expert preference through a 
simple neural network. By accessing the task labels, our sub-goal 
planner has also shown the ability to efficiently integrate diverse dem-
onstrations for different picking and placing stages. It is also able to 
generalize trajectory production regarding variations in positions for 
both initial and goal objects‘ positions. Lastly, our TAMP architecture 
also has the advantage of being sample-efficient during training and 
testing in both simulation and physical experiments. 

In future work, we mainly want to address the problem of when a 
product’s orientation needs to be considered during its manipulation. 
This is because our current approach only focuses on the 3D position 
information in both modules. Also, we would like to investigate syn-
chronous and simultaneous random movements during human 

Fig. 19. Physical experiment for 3 out of 5 in CASE 1, where some products are out of stock while cobot needs to firstly pack the rests and come back to pack the 
restocked product. 
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collaboration in an HRC scenario as well as what effects this will 
introduce to the final product configurations. This will lead to safe and 
adaptive solutions in HRC scenarios (Fig. 4). 
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