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Abstract: One of the challenges in the drying process is decreasing the drying time while preserving
the product quality. This work aimed to assess the impact of pulsed electric field (PEF) treatment
with varying specific energy levels (15.2–26.8 kJ/kg) in conjunction with a microwave vacuum dryer
(operating at energy levels of 100, 200 and 300 W) on the kinetics of drying apple slices (cv. Gravenstein).
The findings demonstrated a notable reduction in the moisture ratio with the application of pulsed
electric field treatment. Based on the findings, implementing PEF reduced the drying time from 4.2
to 31.4% compared to the untreated sample. Moreover, two mathematical models (viz. Page and
Weibull) and two machine learning techniques (viz. artificial neural network and support vector
regression) were used to predict the moisture ratio of the dried samples. Page’s and Weibull’s
models predicted the moisture ratios with R2 = 0.958 and 0.970, respectively. The optimal topology
of machine learning to predict the moisture ratio was derived based on the influential parameters
within the artificial neural network (i.e., training algorithm, transfer function and hidden layer
neurons) and support vector regression (kernel function). The performance of the artificial neural
network (R2 = 0.998, RMSE = 0.038 and MAE = 0.024) surpassed that of support vector regression
(R2 = 0.994, RMSE = 0.012 and MAE = 0.009). Overall, the machine learning approach outperformed
the mathematical models in terms of performance. Hence, machine learning can be used effectively
for both predicting the moisture ratio and facilitating online monitoring and control of the drying
processes. Lastly, the attributes of the dried apple slices, including color, mechanical properties and
sensory analysis, were evaluated. Drying apple slices using PEF treatment and 100 W of microwave
energy not only reduces drying time but also maintains the chemical properties such as the total
phenolic content, total flavonoid content, antioxidant activity), vitamin C, color and sensory qualities
of the product.

Keywords: apple drying; artificial neural networks; machine learning; modeling; support vector
regression; vacuum-assisted microwave drying

1. Introduction

The drying operation is a well-known method to reduce moisture content, chemical
reactions and microbial and enzymatic activities, consequently extending the shelf life
of agricultural products. With the advancement in technology, researchers are working
to improve different drying systems such as hot air [1,2], vacuum [3], freeze [4] and mi-
crowave [5]. However, overcoming the challenges associated with the time-consuming,
costly and energy-intensive drying process remains an ongoing endeavor. Recently, re-
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searchers have tried to overcome these challenges through the development of hybrid
drying systems that are energy efficient and yield superior product quality [6].

Microwave-vacuum (MV) is gaining popularity as one of the hybrid methods for
drying fruit due to its potential for controlled water evaporation, which avoids oxidative
quality degradation while maintaining low surface temperatures of the products [7,8].
The effect of different dryer systems on the drying kinetics indices of pumpkin slices was
assessed by [7]. The authors identified that the drying time of the MV dryer compared to
hot air and freeze drying was 67% less. Further, the appropriate drying of MV for different
fruit and vegetables such as dragon fruit [9], carrot [3], persimmon [6] and mulberry [8]
has been reported. Although the MV method ameliorates the economy and efficiency of
the drying process, preserving retained water-soluble components of some fruits such as
apples is essential. Thus, the extent of the changes produced on the solid matrix of these
kinds of fruit should be reduced and, to achieve this purpose, a pretreatment method
such as a pulsed electric field [3,10] has been recommended. Pretreatment methods not
only preserve product quality during drying but also represent an energy-efficient and
economical manner.

The pulsed electric field (PEF) method is acknowledged as an efficient and nonthermal
pretreatment technique. It not only influences drying rate and energy consumption but
also mitigates excessive temperature elevation, safeguarding against undesirable color
alterations [11,12]. PEF treatment induces an electroporation phenomenon in the cell mem-
branes of the fruit, resulting in enhanced mass transfer and improved water permeability
throughout the drying process [13]. The utilization of PEF as a pretreatment for various
drying techniques and its advantageous outcomes, encompassing decreased drying times
and improved color preservation, have been observed in several studies. For instance,
kiwifruit [14], strawberries [15], spinach [16], tomato [17], carrot [3], potato [18], onion [19]
and apple [20]. However, the inefficiencies in using PEF for drying fruit arise from vari-
ations in product preparation and experimental conditions. Therefore, a comprehensive
understanding of the drying behavior of fruit subjected to PEF pretreatment is required for
the drying process.

Mathematical modeling is widely acknowledged as an appropriate method for elu-
cidating the interpretation of functional data and evaluating the drying kinetic constants.
Diverse mathematical models have been applied to describe the kinetic drying behavior
with minimal error in the literature [21–23]. However, two paramount models, Weibull (a
model incorporating two parameters kinetic constant and initial mass transfer) and Page
(an exponential equation accounting for kinetic constant and an empirical exponent), were
recommended. While the kinetic models demonstrated a satisfactory alignment with exper-
imental outcomes offering reasonable accuracy and optimizing the drying process, they
occasionally encountered limitations. These limitations encompassed insufficient insight
into the underlying drying process mechanism and the potential challenge of predicting a
range of experimental parameters [24,25]. Consequently, utilizing intelligent methods to
address or minimize the limitations is needed.

Machine learning (ML) is a well-proven method for exploiting experimental data to
solve ill-posed problems due to its ability to autonomously train and adapt. ML has the
ability to address complex and nonlinear problems during the drying process by mapping
data on existing multidimensional datasets [23]. Artificial neural networks (ANNs) and
support vector regression (SVR) are recognized as outstanding performance ML tools
that can accomplish the function of kinetic processing using a set of flexible structural
interrelationships among data. Different ML-based studies on drying characteristics of
various fruits and vegetables consisting of pineapple—hot-air dryer [26], potato—infrared
dryer [25], pomelo fruit—freeze dryer [27], dragon fruit—microwave vacuum dryer [9]
and banana—vacuum dryer [28] have already been carried out.

Despite the application of mathematical and intelligent methods in the characterization
of the drying process, no study (to the best of our knowledge) has been performed on
precision kinetic drying of MV pretreated by PEF using ML. Therefore, this work aims
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to (i) assess the impact of PEF pretreatment on the drying kinetics and physicochemical
characteristics of apple slices within the context of the developed MV dryer, (ii) develop a
data-driven model utilizing the ML approach to predict the moisture ratio under different
experimental conditions and (iii) evaluate different mathematical models and compare
them with ANN and SVR outputs to assess drying kinetics.

2. Materials and Methods
2.1. Sample Preparation

Apples (cv. Gravenstein) available on the Danish market and popular with consumers
were purchased from a local market (Copenhagen, Denmark) and stored in a refrigerator at
4 ◦C for 48 h. The samples were washed with tap water and left to reach room temperature
(21 ± 0.5 ◦C) before processing. Each apple was cut into concentric circular rings (diameter:
40 mm and thickness: 5 mm) to obtain four pieces of almost the same geometry. Mois-
ture measurement was carried out using a moisture analyzer (VPB-10, Allscales Europe,
Zaltbommel, The Netherlands) in triplicate and the initial moisture content of the raw
material was observed to be 8.52 ± 0.28 kg water/kg dry matter. It is notable that all of the
experiments were replicated three times in this paper.

2.2. Pulsed Electric Field Treatment

The PEF treatment was performed using the batch PEF generator (20KV-500A-36KW,
Omnipef model, Vivate, Czech Republic). The batch chamber constitutes two circular
stainless steel electrodes with a surface area of 6.25 cm2. The sample was placed in-
side the chamber on the bottom electrode and 100 mL of tap water (σ = 320 µS/cm and
T = 22 ± 1 ◦C) was added as a conductive medium. Then, the second electrode was placed
on the surface of the sample, resulting in a distance of ~10 mm between the electrodes. The
treatment protocol consisted of monopolar pulses with time intervals and pulse duration
and frequency of 100–300, 10 ms, 10 µs and 100 Hz, respectively. Specific energy equates
to kinetic energy and is the amount of energy required to move a unit of mass [18]. The
electric field strength (1.2 KV/cm) and specific energy (15.2–26.8 kJ/kg) were calculated
by Equations (1) and (2), respectively [18]. The parameters chosen for calculating specific
energy were based on standard practices in the field and the literature [11,12,29].

E = U.d−1 (1)

W = U2.C.n.2m−1 (2)

where U, d, m, n and C are voltage (kV), the distance between the electrodes (cm), sample
mass (kg), number of pulses and capacitance (µF), respectively. Based on the recommenda-
tion by [13,30], the total PEF treatment time should be long enough to ensure the maximum
level of electroporation; hence tPEF = 1 s was considered. Subsequently, the apple samples
were subjected to the developed MV dryer (see Section 2.3).

2.3. Drying Equipment

A pilot-scale MV dryer (Panasonic NN-SD28HS, Tokyo, Japan) with a microwave
capacity from 100 to 600 W operated at 2.15 GHz and a vacuum pump (Lanphan 2XZ-4,
Zhengzhou, China) was used for drying the apple samples. The samples were placed as a
single layer in a thin tray that was attached to polypropylene (on the top of the microwave
chamber). In the preliminary trial, the microwave power was set to 100, 270 and 300 W to
prevent overheating. Also, the system was equipped with a temperature controller that
automatically adjusted the power to attain specified temperatures. Moreover, the vacuum
section line was connected to the rotary system. Silicon dioxide gel was used to absorb
the water vapor throughout the vacuum line. A needle valve was utilized to regulate the
absolute pressure to 5 kPa. Furthermore, to increase the performance of the vacuum, the
water storage tank connections were filled with ice (Figure 1).
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Figure 1. Schematic representation of developed microwave vacuum drying system at DTU.

A fiber optics sensor was placed on the sample surface and the samples were rotated
by 180 degrees to account for any thermal variations. It was noted that the temperature
of the surface of the samples was relatively uniform. Each sample was removed from the
chamber every three minutes to model the drying kinetics. Finally, the pressure of the
chamber and the temperature of the apple surface and the chamber were acquired by the
data acquisition unit every five seconds.

The temperature sensors in the MV dryer should be calibrated and validated to
give proper measurements. First, it was made sure that the microwave was off to avoid
microwave interference. The calibration was carried out in a controlled environment,
after which the temperature sensor was placed at specified points within the dryer where
they were to be used during operation. The sensor was evaluated across a variety of
temperatures that reached the entire operating range of the MV dryer. Readings were taken
at each point for the temperature from both the sensors on the dryer and the reference
thermometer. After calibration, the microwave dryer was run under normal operating
conditions and the calibrated reference thermometer periodically checked the temperature
readings. Finally, we verified the consistency and accuracy of the sensor readings under all
operating conditions, maintaining those capabilities over time.

2.4. Mathematical Modeling Process
2.4.1. Determination of Moisture Content

The moisture content of the apples was expressed as dry matter. The moisture was
plotted as a function of the drying time that presented the drying curve. The moisture
content at any time was calculated by Equation (3).

M =
mw

mdw
(3)

where M, mw and mdw are the moisture content (g water/g dry matter), the mass of water
in the apple (g) and the mass of dry matter (g), respectively. The analyses were performed
in triplicate at each drying power.

2.4.2. Drying Rate

The drying rate (DR) presents the value of evaporated moisture during the drying
time. Equation (4) was used to calculate the DR (g water/g dry matter/min) of the samples.

DR =
Mt − Mt+dt

dt
(4)
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where Mt, Mt+dt and dt are the moisture content of the apple at any time (g water/g dry
matter), the moisture content of the sample at any time + dt (g water/g dry matter) and
the drying time (min), respectively. The overall and interval times were 60 and 3 min,
respectively.

2.4.3. Moisture Ratio and Drying Kinetic

Assuming negligible external resistance moisture from the center to the material, the
moisture ratio (MR) can be calculated by Equation (5).

MR =
Mt − Me

M0 − Me
(5)

where Mt, Me and M0 are the moisture content at any time (kg water/kg dry matter), the
initial moisture content (kg water/kg dry matter) and the equilibrium moisture content
(kg water/kg dry matter), respectively. In this study, two prevalent mathematical models,
namely Page (Equation (6)) and Weibull (Equation (7)), have been applied to assess the
effect of pretreatment on the drying kinetic of each microwave power. The Page model
is a modification to Newton’s empirical model that minimizes the error and has been
extensively applied to define the drying behavior of different fruits [14]. Weibull’s model
explains the behavior of a complex drying process with considerable flexibility. In fact,
various mathematical models have been applied to evaluate the drying kinetic in the
literature [22,23,31] and, based on the desired outcome, some of them were selected as ap-
propriate mathematical models. In this paper, Page and Weibull were applied because they
present better flexibility and fit for nonlinear and complex drying behaviors. Furthermore,
although some mathematical models fit drying data well, they may lack the flexibility
and interpretability of the Page and Weibull model, particularly in describing the entire
drying process.

MR = e−k.tn
(6)

MR = e−( t
α )

β

(7)

where k, t, n, α and β are the kinetic constant, time, empirical exponent, scale parameter
and shape parameter, respectively. The experimental data were fitted to the mathematical
models as a function of dimensionless MR and a regression was carried out in MATLAB
2022.a software, (Mathworks Inc., Natick, MA, USA).

2.5. Chemical Attributes and Chromatographic Test

To increase the accuracy level of the AI model, chemical parameters including total
phenolic content (TP), total flavonoid content (TF), antioxidant activity (AA), and vitamin C
(VC) have been considered. The total phenolic content of the samples was assessed through
an adapted Folin-Ciocalteu colorimetric technique [32]. A solution containing apple extracts
was combined with a diluted Folin-Ciocalteu reagent, which allowed incubation in a dark
room for 40 min. Subsequent measurements were conducted at a wavelength of 800 nm.
The findings were quantified and presented as milligrams of gallic acid equivalent (GAE)
per gram.

The total flavonoid content (TFC) was determined following the methodology out-
lined by [33]. A solution containing 0.25 mL of sample extract was mixed with 80 µL of
10% sodium nitrite and left to incubate for 10 min [33]. After this incubation period, a
solution containing 0.25 mL of 5% aluminum chloride was added to the mixture, followed
by another 10-min incubation at 25 ◦C. Next, 1.2 mL of distilled water and 0.25 mL of 1 M
sodium hydroxide solution were added. The change in color was measured at a 550 nm
wavelength using quercetin as the reference standard. The TFC was then calculated and
expressed as milligrams of quercetin equivalents (QE) per 100 mL of dried weight.

The vitamin C concentration in the samples was assessed utilizing the spectropho-
tometric technique [32]. Initial treatment involved the addition of stabilizing solutions
to the samples. Subsequently, the filtrate obtained after extraction was mixed with 1.8-
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dichlorophenolindophenol solution and the absorbance was recorded at 520 nm. The
vitamin C content was then quantified and reported as milligrams per 100 g of dry matter.
All measurements for the aforementioned parameters were carried out in triplicate.

The chromatographic analysis utilized the HPLC method outlined by [34], with some
adaptations. The lyophilized extract underwent reconstitution, achieving a concentration of
2 mg/mL through the addition of distilled water, followed by vortexing and filtration using
0.25 µm filters. Both a PDA-DAD detector and an HPLC column (Agilent Technologies
Canada Inc., Mississauga, ON, Canada) were employed in the process. The mobile phase
comprised two solutions: Solution A, consisting of distilled water and 0.5% acetic acid,
and Solution B, composed of 95% acetonitrile and 5% acetic acid. Peak identification was
accomplished through utilization of the NIST 2017 library with the aid of an automated
mass spectral deconvolution and identification system [35].

2.6. Machine Learning Approach
2.6.1. Artificial Neural Network

To design an ANN architecture, the first step is to determine the input (PEF specific
energy, microwave power, surface temperature, HPLC data and drying time), output (mois-
ture content) and the structure of the network (Figure 2a). For developing an efficient neural
network, the parameters of its configuration such as the training algorithm, transfer func-
tion, number of neurons and hidden layers should be assessed to achieve the best results.
Different training algorithms involve backpropagation functions with Jacobian/gradient
derivatives, supervised/semisupervised weight and bias. Moreover, different training
functions such as the Levenberg–Marquardt (LM), scaled conjugate gradient (SCG), BFGS
quasi-Newton (BN), Bayesian regularization (BR), R-backpropagation (RP) and gradient
descent momentum (GDM) have been studied for the evaluation of a network’s robustness
during the drying process [36]. They reported that selecting the best function to present the
best regression depends on the data set and the complexity of the problem. Therefore, to
obtain the best result, the aforementioned algorithms were assessed with different transfer
functions of the hidden layer (Table 1). The applied transfer functions elliotosig (nonlinear
activation function for ANN), tansig (normalizing activation function in ANN), logsig
(binary classification activation in ANN), radbas (local activation for function approxima-
tion), poslin (nonlinear activation for deep networks) and tribas (Piecewise linear activation
for interpolation) were chosen based on the mentioned application that was described
completely in the literature [25,36–39].

Table 1. Applied transfer function.

Transfer Function Matlab Symbol Equation Reference

Elliot symmetric
Sigmoid elliotosig f (x) = x

1+|x| [36]

Tangent Sigmoid tansig f (x) = 2
1+exp(−2x) − 1 [37]

Logistic Sigmoid logsig f (x) = 1
1+exp(−x) [25]

Radial basis radbas f (x) = exp
(
−x2) [38]

Rectified linear unit poslin f (x) =
{

x i f x ≥ 0
0 i f x ≤ 0

[39]

Triangular basis tribas f (x) =
{

1 − abs(x) i f − 1 ≤ x ≤ 1
0 otherwise

[36]
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Also, the number of neurons and hidden layers affect the error rate. Although a
large number of hidden layers and neurons may yield high accuracy, they may increase
the computational complexity and overfit the data [40]. For a primary evaluation of the
ANN structure, the number of hidden layers and neurons were selected 1–3 and 1–30,
respectively. Based on the test and error, we found that one hidden layer did not present
an acceptable accuracy and three hidden layers required a lot of time compared to two
hidden layers, without less error. Thus, two hidden layers and 20 neurons were used in this
research. It should be noted that the neuron layer structure of the networks was odd-odd
and even-even. To prevent overfitting during training, the datasets were divided into
testing, training and validation sets [9,31]. A k-fold cross-validation methodology (with
k = 10), as recommended by [39], was used to split the data into subsets.

2.6.2. Support Vector Regression

SVR is a nonparametric algorithm that maps the data into a higher feature space
dimension and creates a discrete hyperplane using the kernel function [41]. The kernel
function minimizes the model complexity and maximizes the prediction accuracy. Different
kernel functions have been used in the developed nonlinear SVR models to predict the
moisture content of various products after the drying process [31,36,42]. In this study,
four kernel functions consisting of the radial basis function (RBF, Equation (8)), polyno-
mial (Equation (9)), Gaussian (Equation (10)) and Pearson universal (Equation (11)) were
employed due to their computational efficiency.

f (x.y) = e−α∥x−y∥2
(8)

f (x.y) =
[
(xy + 1)n]√

(xy + 1)n(y2 + 1)n
(9)

f (x.y) = exp

(
−∥xi − x∥2

2σ2

)
(10)
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f (x.y) =
11 +

2

√
∥x − y∥2

√
2

1
β − 1

2


β
(11)

where α, x, y, n, σ and β are the kernel dimension, feature vectors, polynomial degree,
Gaussian and Pearson width, respectively. To optimize the polynomial and Gaussian
functions, the penalty factor (C) should be regularized. This parameter controls the SVR
performance by estimating the accuracy of the trained data point. Furthermore, the tuning
parameter (γ) affects the mapping data into the higher dimensional space by controlling
the width of the RBF and Pearson kernel [31]. Therefore, five levels of C (0.01, 0.1, 1, 10
and 100) and three levels of γ (0.01, 0.1 and 1) were applied to define the position of the
hyperplanes. Subsequently, the performance of the developed model was assessed until it
reached the best performance (Figure 2b).

To evaluate the performance of the mathematical models and machine learning meth-
ods, the correlation coefficient (Equation (12)), mean absolute error (Equation (13)) and root
mean squared error (Equation (14)) were considered.

R =

√√√√1 − ∑n
i=1(Ci − Cii)

2

∑n
i=1(Ci − Cm)

2 (12)

MAE =
1
n∑n

i=1|Ci − Cii| (13)

RMSE =

√
1
n ∑n

i=1(Ci − Cii)
2 (14)

where Ci, Cii, Cm and n were the experimental moisture ratio, predicted moisture ratio,
mean value of the moisture ratio and total number of samples, respectively. In addition,
out-of-sample validation was used to analyze the prediction performance of the models.

2.7. Sample Characteristics
2.7.1. Color

The color parameters were evaluated by the L* (whiteness or brightness), a* (redness
or greenness) and b* (yellowness or blueness) using a VidometerLab 2, Videometer A/S,
Denmark. Considering the color of the dried sample, a black background was considered
for calibration and the color parameters were acquired automatically. Afterward, the total
color difference (∆E) was calculated (Equation (15)) to express the color change.

∆E =

√
(∆l∗)2 + (∆a∗)2 + (∆b∗)2 (15)

where ∆L*, ∆a* and ∆b* are the differences of the mean L*, a* and b* parameters, respec-
tively. The analyses were performed for eight repetitions from each treatment for fresh fruit
as a control sample and dried apple slices.

2.7.2. Mechanical Properties

Mechanical properties, including firmness and Young’s modulus, were extracted using
a texture analyzer (TA.XTplus, Stable Micro Systems, Surrey, UK)). Force vs. distance and
stress–strain curves were required to obtain the firmness and Young’s modulus. For this
purpose, a stainless steel blade was utilized for the cutting test. In addition, the best result
could be achieved when the loading rate was below 5 mm·min−1 [43]. Therefore, the
loading rate and load cell were considered as 1 mm·min−1 and 5 N, respectively. After
the deformation reached 0.01 mm (equivalent to 1% of the total strain), a stress diagram
was generated considering the elapsed time. Subsequently, the stress–strain diagram
was obtained.



Appl. Sci. 2024, 14, 7861 9 of 23

2.7.3. Sensory Analysis

All samples were assessed using descriptive quantitative analysis for sensory anal-
ysis by 10 expert panelists. The panelists evaluated the scale of the sensory parameters
consisting of color, taste, odor, sweetness and overall acceptability from 1 (very weak) to
10 (intense) in increments of 1 [14].

2.8. Statistical Analysis

Data analysis was carried out using MATLAB software. An analysis of variance
(ANOVA) was carried out to evaluate the effect of the PEF treatment on the color, me-
chanical properties and moisture ratio. Further, a multiple pairwise comparison using
Tukey’s test was used to determine any significant difference between means at a 95% con-
fidence level.

3. Results and Discussion
3.1. Drying Characteristics

The initial moisture content of the apple slices was 4.25 ± 0.124 (d.b). The drying rate
exhibited higher values during the middle phase of the drying process across all microwave
power settings (Figure 3a–c). Moreover, there was a notable enhancement in the drying rate
as the microwave power was increased. The elevated drying rate during the middle phase
resulted from the rapid mass transfer rate and the evaporation of a substantial volume of
free moisture from the apple’s surface. Furthermore, the drying rates were high at higher
microwave power due to accelerated evaporation, promoting moisture diffusion from the
interior to the exterior [7].

Also, PEF pretreatment had a significant effect on increasing the drying rate for all
drying conditions. The application of PEF treatment led to tissue damage and enhanced the
permeability of cell membranes. This led us to propose the hypothesis that following PEF
treatment, there would be an acceleration in the drying rate during the middle drying phase
due to the expedited moisture supply to the surface. The influence of the PEF treatment on
the drying rate of the current research was in agreement with [16,19,44].

The impact of pretreatment with PEF on the drying rate and changes in spinach quality
during hot air drying was investigated [16]. They reported the drying times for the PEF
samples were shortened to 1.5 h by air drying. They supposed that the moisture supply
to the surface was accelerated after PEF treatment, so the drying rates were increased in
the early stage of drying. Also, the influence of PEF pretreatment on the convective drying
kinetics of onions was assessed by [19]. The drying time and the diffusion coefficient for the
onion in this study were optimal at a medium PEF treatment intensity (4–6 kJ/kg), giving a
Z value in the range of 0.53–0.60. They reported that applying PEF treatment resulted in an
enhancement of the drying rate throughout the drying process. The sharp incline observed
in the middle phase of the drying curve also indicated that liquid moisture diffusion was
the primary mechanism for eliminating water from the sample’s interior.

Figure 3d–f illustrates the correlation between the moisture ratio of the samples as
MR versus drying time progresses under different pretreatment and drying conditions. It
is evident that as the drying time increased, the moisture ratio of the apple consistently
decreased. The moisture ratio dropped rapidly at the beginning of the drying process
and a gradual decrease was noted during the concluding phases of the drying procedure.
The difference in water vapor pressure between the interior and surface of the apple mass
accelerates the internal movement of moisture toward the surface. This phenomenon
explains the decrease in moisture content.
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As the microwave power increased, the amount of moisture decreased considerably
(Figure 3d–f). For example, the required time to reach MR of 0.1 with powers of 100, 200
and 300 W were 54, 36 and 30 min, respectively. As the microwave power increased, there
were improvements in the temperature gradients and surface evaporation rates, leading to
an acceleration in the diffusion of moisture from the interior to the surface. These outcomes
align with the results of other studies that linked higher microwave power to reduced
drying times [42,45].

Also, PEF treatment reduced the rate of MR significantly in all experimental conditions.
However, increasing the frequency from 100 to 300 Hz (which enhanced the specific energy)
had no significant effect. For instance, the MR of control, PEF-100, PEF-200 and PEF-300
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were 0.29 ± 0.02, 0.12 ± 0, 0.14 ± 0.01, 0.12 ± 0, respectively, after 21 min (Figure 3d–f).
Based on the findings, implementing PEF reduced the drying time from 4.2 to 31.4%
compared to the untreated sample. The results could be elucidated by releasing a significant
amount of free water from the samples subjected to PEF electroporation. The released water
from the electroporated apple cells can move unrestrictedly and be efficiently removed
during the drying procedure [13,30]. Similar behavior of PEF treatment on the MR trends
over the drying time was reported for onion [19], carrot [3], spinach [16] and potato [18].
The effects of PEF on the vacuum drying and quality characteristics of dried carrot were
evaluated by [3] under different drying temperatures (25 ◦C, 50 ◦C, 75 ◦C and 90 ◦C). When
the temperature increased from 25 to 90 ◦C, the total drying time decreased from 21,600 s to
5400 s and from 9720 s to 3600 s for untreated and PEF-pretreated samples, respectively. The
application of PEF treatment caused a noticeable decrease in the drying time (by 33–55%)
and acceleration drying kinetics even at a higher temperature (90 ◦C); it evidently reflected
the effects of electroporation by the PEF treatment.

3.2. Mathematical Modeling of Drying

The alteration in moisture content throughout the MV drying of apple slices was
assessed by fitting the Page and Weibull models and, subsequently, the best model was
employed to depict the drying behavior of the sample (Table 2). The applied mathematical
model demonstrated an acceptable fit with the experimental data and exhibited R, RMSE
and MAE values in the range of 0.917–0.977, 0.011–0.075 and 0.006–0.046, respectively.
Based on the statistical parameters, it was recommended that the Weibull model yielded
an average R2 of 0.963 to effectively characterize the moisture loss process in apple slices
during the MV drying. The recent literature has confirmed the robustness of the Weibull
model in accurately fitting the kinetic drying profiles of diverse products exposed to varying
drying conditions [14,25].

Table 2. Statistical parameters and constants from employed drying models to characterize the drying
process of the apple slices.

Model
Microwave
Power (W)

Sample
Statistical Parameters Constant Value

R RMSE MAE k n α β

Page 100 Control 0.974 0.015 0.009 1.241 0.953
PEF1 0.958 0.28 0.173 1.926 0.965
PEF2 0.963 0.022 0.013 1.928 0.957
PEF3 0.943 0.056 0.034 1.929 0.961

200 Control 0.937 0.063 0.039 2.674 1.522
PEF1 0.922 0.073 0.045 3.225 1.683
PEF2 0.917 0.075 0.046 3.226 1.655
PEF3 0.938 0.06 0.037 3.229 1.661

300 Control 0.944 0.055 0.034 3.348 2.565
PEF1 0.949 0.047 0.029 3.926 2.094
PEF2 0.926 0.068 0.042 3.929 2.066
PEF3 0.955 0.03 0.018 3.931 2.101

Weibull 100 Control 0.977 0.011 0.006 0.338 0.953
PEF1 0.951 0.042 0.026 0.217 0.965
PEF2 0.974 0.015 0.009 0.211 0.957
PEF3 0.975 0.013 0.008 0.212 0.961

200 Control 0.962 0.025 0.015 0.186 1.522
PEF1 0.967 0.019 0.011 0.107 1.683
PEF2 0.954 0.034 0.021 0.106 1.655
PEF3 0.968 0.017 0.01 0.101 1.661

300 Control 0.953 0.038 0.023 0.053 2.565
PEF1 0.944 0.054 0.033 0.018 2.094
PEF2 0.947 0.051 0.031 0.014 2.066
PEF3 0.951 0.041 0.025 0.013 2.101
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Although the models successfully created the correlation between average moisture
ratio and drying time, they lack consideration for the underlying principles of the drying
process, such as PEF, resulting in their parameters lacking physical significance. Conse-
quently, understanding the kinetics of drying enables the comprehension and prediction
of drying times, which ultimately lead to enhanced process efficiency through optimiza-
tion [14]. The kinetic constants of each model under different experimental conditions are
presented in Table 2. The kinetic constant of the Page model revealed a notable increase as
microwave power intensified the PEF treatment. The lowest and highest kinetic constants
of the Page model were observed in the control-100 W (1.241) and PEF3-300 W (3.931) cases,
respectively. Conversely, the kinetic constant of the Weibull model decreased with the
augmentation of microwave power and PEF treatment. The influence of PEF treatment on
the upward and downward trends of Page’s and Weibull’s constant values in this study
was similar to the findings of [14,46].

To assess the relationship between the kinetic parameter and microwave power, the
kinetic constants were graphed against the power and a linear regression was computed
(Figure 4). A linear correlation between the kinetic parameter and microwave power was
observed. The linear regression models offer the potential to predict the drying rate at
a power ranging from 100 to 300 W. The maximum calculated correlation coefficients by
Page’s and Weibull’s models were 0.962 and 0.986, respectively. The pretreatments led to a
more pronounced decrease in drying time at 300 W, whereas the escalation in the specific
energy of PEF did not facilitate any further reduction. This pattern might be associated
with the alteration of the initial water content due to pretreatments, which could potentially
augment the mass transfer rate through the application of PEF.
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Although the overall accuracy and errors of the Page and Weibull models were ac-
ceptable, it appears that all the models assumed a form of drying kinetics that may not
capture all the complexities of the drying process. Thus, it should be combined with other
additional empirical models. Further, the models have the assumption that the drying
characteristics are homogeneous, which may not be the case for sliced apple samples; thus,
this model could prove to be useful for materials with relatively uniform properties or
perhaps be integrated together with other models accounting for heterogeneity.

3.3. Chemical Analysis and Chromatographic Method

The results obtained from HPLC analyses show a wide range of chemical compounds
constituting the extract (Figure 5a). It is noticeable that the HPLC method was performed
for using its data as an input dataset to increase the accuracy of the ML model. The
antioxidant activity, assessed using DPPH radicals, ranged from 0.98 to 1.24 mg TE/100 g
dry weight for the obtained dried apple slices (Figure 5b). There was a notable decrease
in antioxidant activity with increasing microwave energy. However, pretreatment with
PEF showed a positive impact on reducing antioxidant levels. For instance, with PEF1, the
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antioxidant content at an energy level of 200 W was ten units higher and, intriguingly, as
the energy level of PEF increased, the antioxidant levels remained consistent. Nevertheless,
no significant difference was observed with PEF2 and PEF3. During treatment with PEF, it
can potentially disrupt cell membranes and eventually lead to the release of intracellular
components. The disruption may result in the degradation or oxidation of certain sensitive
antioxidants during the process when otherwise protected in cell structures [47]. Similarly,
the total polyphenol content exhibited a notable decrease with increasing microwave
energy, with a significant distinction observed between PEF1 and PEF2 at 100 W (Figure 5c).
However, there was no significant contrast between the PEF treatments when the device
operated at 200 and 300 W. Polyphenols are very sensitive to heat and drying is carried out
at high temperatures, so the degradation of polyphenols can easily occur by oxidation or
simple thermal degradation. The applied PEF may enhance the cell membrane permeability,
facilitating easy access to polyphenols and, hence, their bioavailability.
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indicate significant differences between sample means (p < 0.05). (TP: phenolic content, TF: total
flavonoid content, AA: antioxidant activity, and VC: vitamin C).

Also, both the level of microwave energy and the application of PEF treatment influ-
enced the total flavonoid (Figure 5d) and vitamin C contents (Figure 5e). As the microwave
energy escalated from 100 to 300 W, the flavonoid content decreased from 265.5 to 97.3 TFmg
QE/100 g dry weight. Nevertheless, the findings indicated that PEF treatment mitigated
this decline rate. Based on the literature, PEF treatment could induce reversible breakdowns
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in the cell membrane at the moment of application, called electroporation. As a result, there
was an increase in the permeability of the cell membrane and intracellular flavonoids were
released into the surrounding medium for preservation [47]. While PEF treatment led to
enhanced preservation of vitamin C at 300 W microwave energy, no significant contrast was
noted between the control and PEF-treated samples. It seems PEF decreased the generation
of some reactive oxygen species, inducing oxidative stress, and thus oxidized and could
preserve the vitamin C content. Ascorbic acid is easily oxidized and high oxidative stress
due to PEF treatment could maintain the vitamin C content [24,44].

The influence of microwave energy and the application of PEF treatment on bioactive
compounds in this study mirrored findings by [29,33,48]. These studies revealed that
PEF pretreatment could expedite the drying process without compromising the nutritional
integrity of foods. Samples subjected to PEF before drying retained higher levels of polyphe-
nols, anthocyanins and flavonoids, exhibiting improved color and flavor. Moreover, this
method mitigated the risk of localized high temperatures, which could otherwise induce
undesirable changes in color, flavor, nutrition and texture. However, it was observed that
after intense PEF treatment, the antioxidant capacity of dried apples diminished.

3.4. Machine Learning Approach

The outcome of training using various training functions is depicted in Figure 6a,
enabling the identification of the optimal number of hidden neurons that yield the highest
R2 value and the lowest RMSE value. The statistical parameters revealed that the Levenberg–
Marquardt (R2 = 0.998, RMSE = 0.041) and RPROP (R2 = 0.86, RMSE = 0.129) were the
best and worst training functions, respectively. The optimum topology of neuron number
for LM, BR, SCG, BN, GDM and RP were 20–20, 16–16, 18–18, 13–13, 15–15 and 17–17,
respectively. Notably, the most favorable outcomes for each training function were achieved
within the neuron range of 13–20. This suggests that augmenting the number of neurons to
a certain threshold can enhance accuracy [39].
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Figure 6. Best statistical parameters of test set for (a) identification of the optimal number of hidden
neurons and (b) different transfer functions.

Afterward, the performance of different transfer functions was evaluated (Figure 6b).
The Logsig function, with the corresponding train and test of correlation coefficient and
root mean squared error with the neuron topology of 18–18 and epoch of 156 had the best
performance. It was followed by tansig, radbas, elliotosig, poslin and tribas. It is noticeable
that the transfer function of the first and second hidden layers was the same in Figure 5b.
Thus, to achieve improved outcomes through distinct transfer functions for the first and
second layers, the network was subjected to retraining using the Levenberg–Marquardt
algorithm and the top 10 models are presented in Table 3.
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Table 3. Assessment of the developed ANN models.

Model
No.

Transfer Function
Neurons
Topology Epoch

Train Cross Validation

First
Hidden
Layer

Second
Hidden
Layer

R2 RMSE MAE R2 RMSE MAE

1 Logsig Tansig 18–18 87 0.996 0.047 0.031 0.992 0.053 0.036
2 Logsig Tansig 17–17 108 0.995 0.049 0.033 0.990 0.055 0.037
3 Logsig Tansig 17–17 95 0.991 0.055 0.037 0.987 0.062 0.042
4 Logsig Tansig 11–11 136 0.990 0.057 0.038 0.984 0.067 0.045
5 Logsig Radbas 12–12 117 0.993 0.052 0.035 0.988 0.060 0.04
6 Logsig Radbas 16–16 168 0.992 0.053 0.036 0.988 0.060 0.04
7 Logsig Radbas 19–19 65 0.991 0.055 0.037 0.987 0.060 0.04
8 Tansig Radbas 14–14 93 0.992 0.053 0.036 0.988 0.060 0.04
9 Tansig Radbas 11–11 144 0.989 0.058 0.039 0.983 0.069 0.046
10 Logsig Logsig 18–18 156 0.989 0.058 0.039 0.983 0.069 0.046

For each architecture of the developed ANN model trained using the complete dataset,
the cross-validation procedure was implemented across the whole data set, excluding one
group from the dataset at each iteration. Statistical parameters indicated that employing
diverse transfer functions in the first and second hidden layers can enhance model per-
formance. Notably, the most proper outcomes were achieved when the network utilized
Logsig and Tansig functions in the first and second layers, respectively. Furthermore, the
findings revealed that all of the top-performing networks reached convergence within
fewer than 170 training epochs and an increase in the number of neurons corresponded
to an enhancement in network accuracy. The investigation of different transfer functions
along with varying network structures in this study is consistent with the observations
made by [36,39]. The findings from their studies were largely in agreement, with the
primary difference between their research lying in the arrangement of hidden layers. In
their work, [36] asserted that one hidden layer was sufficient to attain high performance.

Upon establishing the optimal topology (4–18–18–1), the performance of the developed
network to predict the moisture content of the apple slices was evaluated. The statistical
parameters presented favorable outcomes in both the test and cross-validation sets (Table 4).
The maximum error rates for test and cross-validation were 0.038 and 0.047, respectively.
Although the network’s performance was satisfactory, a decline in accuracy was observed
with higher microwave energy and PEF treatment levels. This outcome suggests that
alterations in temperature and cellular structure can introduce complexity into predic-
tion conditions, thereby influencing network performance (similar to the mathematical
modeling findings).

Table 4. Performance evaluation of the best network structure for different experimental conditions.

Microwave
Power (W)

Sample
Training Set Cross-Validation Set

R2 RMSE MAE R2 RMSE MAE

100 Control 0.998 0.038 0.024 0.996 0.047 0.030
PEF1 0.993 0.044 0.030 0.992 0.071 0.036
PEF2 0.994 0.056 0.035 0.989 0.059 0.041
PEF3 0.993 0.051 0.032 0.989 0.061 0.041

200 Control 0.996 0.047 0.030 0.993 0.052 0.034
PEF1 0.994 0.049 0.031 0.990 0.060 0.041
PEF2 0.987 0.057 0.041 0.989 0.060 0.039
PEF3 0.988 0.057 0.040 0.988 0.060 0.038

300 Control 0.988 0.053 0.040 0. 979 0.068 0.046
PEF1 0.986 0.063 0.040 0.977 0.071 0.046
PEF2 0.987 0.062 0.041 0.979 0.071 0.047
PEF3 0.985 0.067 0.042 0.978 0.061 0.040
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The predictive ability of artificial neural networks (ANN) in determining the moisture
ratio kinetic has been corroborated in previous studies by [26,27]. Ref. [26] developed an
intelligent interface to assess various drying techniques for pomelo fruit (Citrus maxima)
peel, reporting a minimum correlation coefficient of 0.993. Similarly, ref. [27] employed
the ANN approach to predict moisture content in coated pineapple cubes. Their findings
demonstrated a highly effective model (R2 = 0.999, RMSE = 0.001 and MAE = 0.0007) with a
topology of 3–14–14–1. However, they underscored that the appropriateness of the chosen
topology depends on factors such as the type of sample, the drying methodology, the
inputs, the number of samples, the number of neurons and the configuration of hidden
layers employed in the analysis. Furthermore, their findings affirmed that the selection
of the neuron number is contingent upon the available number of samples. In instances
where there are numerous samples yet few neurons, the ANN learning process might
prove inadequate, leading to an underfitted estimation. Conversely, when confronted with
few samples and an abundance of neurons, the process could become time consuming,
resulting in an overfitted estimation.

Also, to comprehensively assess the robustness of the ML approach, the performance
of the developed SVR model was examined. Various regression parameters were employed
to fine-tune different kernels and the most favorable outcomes are presented (Table 5).
Although all the optimized kernel functions exhibited satisfactory performance, the radial
basis (RB) model was identified as the superior choice to predict the moisture ratio across
diverse experimental conditions.

Table 5. Best result of optimized SVR models with different kernel functions.

Kernel Function
Statistical Parameters Best Regression Parameters

R2 RMSE MAE C γ ε

RBF 0.994 0.012 0.009 10 0.1
Polynomial 0.982 0.091 0.059 0.1
Gaussian 0.991 0.051 0.032 0.0001
Pearson 0.990 0.073 0.045

Figure 7 depicts the prediction models developed using the RBF network under
various experimental conditions. The most optimal and least favorable outcomes were
exhibited in the laboratory conditions of 200 W-control (R2 = 0.994, RMSE = 0.012) and
300 W-PEF3 (R2 = 0.847, RMSE = 0.127), respectively. Similar to the findings from mathemat-
ical and ANN modeling, the prediction accuracy was notably influenced by the quantity of
microwave energy and the application of PEF treatment. The potential of SVR to predict
the moisture ratio in the drying process has been confirmed by previous studies [36,42].
Ref. [36] optimized the SVR model by investigating the Gaussian kernel regression parame-
ters for the online prediction of the moisture ratio of lentil seeds in a microwave-fluidized
bed dryer. Further, Ref. [42] presented a novel modeling approach employing support
vector regression methods enhanced by the dragonfly algorithm techniques to predict the
drying kinetics of pea pods. They found that the optimized hyperparameters derived from
the dragonfly algorithm effectively revealed the nonlinear characteristics of pea pod drying
(R2 = 0.9983 and RMSE = 0.0132).

The comparison of the employed models in this study aimed to ascertain their efficacy
in predicting the drying kinetics of apple slices using the applied MV (Table 6). The findings
underscored the ANN’s robust performance as the highest among the considered models.
Overall, the accuracy achieved through machine learning approaches surpassed that of the
mathematical models, a notion supported by [9,25,31].
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Table 6. Summary of the best models to predict the drying kinetics of apple slices.

Model R2 RMSE MAE Description

ANN 0.998 0. 038 0.024
The train algorithm, transfer function and
topology were Levenberg–Marquardt,
Tansig and 6–17–17–2, respectively.

SVR-RBF 0.994 0.012 0.009 The penalty coefficient and kernel width
were radial basis, 10 and 0.1, respectively.

Ref. [31] employed diverse mathematical models and machine learning techniques,
including ANN, KNN and SVR, to model the drying process of chanterelle mushrooms
using a heat pump dryer. Due to the elevated accuracy of the ML model, they suggested its
applicability in the online monitoring and control of the drying processes of chanterelle
mushrooms. Additionally, Ref. [25] developed an ANN model to predict enzyme inactiva-
tion kinetics of Irish potatoes using infrared and microwave as dry blanching tools. They
reported that ML accuracy surpassed that of mathematical methods. They highlighted the
superior performance of ANNs, as evidenced by an elevated coefficient of determination
(R2 = 0.963–1) compared to the best-fitting mathematical model, Weibull (R2 = 0.862–0.969),
underscoring the advantage of ANNs over mathematical modeling. Moreover, their study
revealed that ANNs provide a more comprehensive comprehension of the modeling and
data prediction process compared to mathematical models. This is achieved by elucidating
the relationship between input and output factors through a set of rules governing data
management.

Based on the results of this paper and the literature [6,25–28,39,40], it can be claimed
that the ANN and SVR models are prominent MLs that can be used for evidence predict-
ing and optimizing the drying process in industrial settings. ANN models, as complex,
nonlinear relationship learners, are characterized by their layered architecture approach.
Their major advantage is high computational performance and adaptability to real-time
applications, which are extremely necessary for under-equipped modern hardware with
optimized algorithms. They can be used to process volumes of large datasets from drying
operations quickly to provide correct predictions and adjustments in real time [26,28]. On
the other side, whereas, in general, less computationally intensive and quite robust with
smaller datasets, SVR models may not scale to achieve real-time performance because the
computational complexity in dealing with large feature spaces and nonlinear mappings
may be an issue [40]. In this sense, in the industrial field, where dryers work against
variable conditions and quick, adaptive responses to their actions are required, always an
important choice will be the ANN model, due to better handling of dynamic and complex
data, while the SVR models can be very useful in cases with constrained dimensions of
data and simpler relationships. While both models help improve operational efficiency,
ANN’s computational efficiency closely relates to it as being the instant model of choice for
large industrial models.

3.5. Characterization of the Dried Samples

Variations in the color attributes of dried apples were explored across different experi-
mental conditions. The initial color parameters for fresh fruit were measured as follows:
L* = 77.25 ± 3.19, a* = 3.48 ± 0.27 and ∆E = 12.09 ± 0.89. As the microwave energy
increased, the L* and ∆E values exhibited a significant decrease. For instance, in the case
of the control dried apples, the L* values under 100 W, 200 W and 300 W were recorded
as 75.68 ± 3.82, 69.81 ± 2.17 and 55.42 ± 2.86, respectively. Conversely, the a* values
significantly decreased, indicating that the microwave’s lower average energy could inhibit
the browning of apple slices. An additional factor contributing to the notable decline in
the L* index during drying at 300 W power was the occurrence of darkened areas result-
ing from overheating. This effect can be attributed to the elevated energy levels (which
result in higher temperatures) during the drying process, leading to the deactivation of
enzymes such as polyphenol oxidase and peroxidase, while simultaneously augmenting
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the incidence of enzymatic browning reactions. Nevertheless, the vacuum part effectively
eliminated the oxygen within the chamber and the inclusion of a condensation unit expe-
dited the drying process. This combination of vacuum drying assisted by condensation
is a highly effective method for preserving the color of dried apples. Ref. [45] evaluated
the color change of peaches under a combination of convective and microwave methods
and they claimed that increasing the temperature considerably affected the color of the
samples. Similarly Ref. [32] used microwave drying and combined microwave-convective
drying for drying blueberry fruit and assessed the effect of increasing the power on the
color and some chemical aspects of blueberry fruit. They revealed that the results could be
attributed to the fact that microwave-assisted hot-air-dried blueberries had no difference
compared to convective drying due to pigment loss related to the higher temperature
attained by samples during the process, which led to surface damage [32]. Therefore, we
can conclude that the utilization of PEF treatment can significantly improve the drying
process of perishable fruit.

The PEF treatment influenced the maintenance of the color changing during the
drying process; however, the value was not statistically significant. The samples subjected
to PEF treatment and dried at 100 W exhibited the least noticeable color differences. This
favorable impact on the sample’s color could be attributed to the alteration in cell membrane
permeability caused by electroporation. This phenomenon led to reduced enzyme release
and the release of substrates involved in enzymatic browning reactions as well as a decrease
in pigment oxidation through thermal decomposition. Similarly, Ref. [17] evaluated the
effect of PEF on the quality parameters of osmotically dehydrated tomatoes and they
revealed that PEF treatment could improve the color change of the samples during the heat
treatment. On the other hand, Ref. [29] assessed the effect of air humidity and temperature
on the convective drying of apples with PEF and reported that the color of the untreated
and the PEF-pretreated dried samples was similar.

The firmness and Young’s modulus values for both fresh and dried samples were
assessed (Table 7). The initial firmness and Young’s modulus of the fresh apple slices were
16.47 ± 1.57 N and 0.14 ± 0.02 MPa, respectively. The application of different levels of
microwave energy and PEF treatment exerted an influence on the mechanical attributes.
The findings indicated a significant decrease in the mechanical properties with escalating
energy levels. Specifically, based on Young’s modulus and firmness values of the fruit
dried under 300 W (F = 6.76 ± 0.71 N and Y = 0.05 ± 0.00 MPa), it became evident that the
dried sample was susceptible to early breakage. This occurrence was due to the uneven
dispersion of water molecules within the fruit matrix, rendering their reorganization within
the structure unattainable [30].

Table 7. Result of fresh and dried apple slices characteristics. Data are expressed as means ± standard
(n = 3). Different letter superscripts in the same column indicate significant differences. The abbreviations
include firmness (F), Young’s modulus (Y), color (Co), taste (Ta), odor (Od), sweetness (Sw) and overall
acceptability (Oa).

Power (W) Sample Color Mechanical Properties Sensory Evaluation

L* a* b* ∆E F (N) Y (MPa) Co Ta Od Sw Oa

Fresh 77.25 ± 3.19 a 3.48 ± 0.27 d 65.43 ± 4.2 a 12.09± 0.89 h 16.47 ± 1.57 a 0.14 ± 0.02 f 8 9 8 8 10

100 C 75.68 ± 3.82 a 4.59 ± 0.25 e 52.90 ± 3.51 a 11.54 ± 0.62 h 10.26 ± 0.72 b 0.11 ± 0.01 g 7 9 7 7 9
PEF1 76.55 ± 2.81 a 3.81 ± 0.35 ed 61.01 ± 4.38 a 11.89 ± 0.42 h 13.45 ± 0.62 ab 0.12 ± 0.01 g 8 9 7 6 9
PEF2 75.98 ± 1.54 a 4.02 ± 0.27 ed 61.13 ± 5.77 a 11.88 ± 0.63 h 13.69 ± 0.75 ab 0.12 ± 0.01 g 8 9 7 7 9
PEF3 76.62 ± 2.11 a 3.95 ± 0.38 ed 61.99 ± 5.06 a 11.94 ± 0.47 h 13.11 ± 0.63 ab 0.12 ± 0.01 g 8 9 7 7 9

200 C 69.81 ± 2.17 b 6.71 ± 0.54 f 4.84 ± 0.35 e 9.02 ± 0.36 i 9.51 ± 0.53 c 0.09 ± 0.01 h 6 7 5 4 5
PEF1 70.15 ± 1.34 b 6.22 ± 0.43 f 6.07 ± 0.71 e 9.08 ± 0.42 i 11.05 ± 0.44 bd 0.09 ± 0.01 h 6 7 5 4 5
PEF2 70.57 ± 2.61 b 6.48 ± 0.39 f 8.88 ± 0.95 e 9.27 ± 0.31 i 11.01 ± 0.67 bd 0.09 ± 0.01 h 6 7 5 4 5
PEF3 71.20 ± 1.84 b 6.65 ± 0.53 f 7.71 ± 0.91 e 9.25 ± 0.28 i 11.37 ± 0.55 bd 0.09 ± 0.01 h 6 7 5 3 5

300 C 55.42 ± 2.86 c 11.34 ± 0.74 g 14.63 ± 1.42 h 7.22 ± 0.36 j 6.76 ± 0.71 e 0.05 ± 0.00 i 3 3 2 2 2
PEF1 54.67 ± 1.08 c 11.08 ± 0.66 g 13.76 ± 1.58 h 7.21 ± 0.44 j 6.54 ± 0.68 e 0.05 ± 0.00 i 3 3 3 2 2
PEF2 55.94 ± 2.62 c 11.06 ± 0.72 g 10.14 ± 0.94 h 7.54 ± 0.36 j 6.81 ± 0.49 e 0.05 ± 0.00 i 3 3 3 2 2
PEF3 54.17 ± 2.28 c 10.89 ± 0.53 g 9.10 ± 0.95 h 7.48 ± 0.22 j 6.33 ± 0.57 e 0.05 ± 0.00 i 3 3 3 2 2
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Although the firmness of the treated samples decreased, this decline was not statisti-
cally significant at 100 W and the firmness was able to be moderately maintained during the
drying process. However, the impact of PEF treatment on the mechanical properties did not
exhibit significance when subjected to drying conditions of 200 and 300 W. This mechanical
response indicates an antiplasticizing effect induced by the presence of slight amounts of
adsorbed water. At elevated microwave levels, a reduction in the maximum force, along
with a significant refinement in the force-deformation relationship, has been observed. This
corresponds to the plasticizing influence of water on the structure, resulting in an enhanced
cohesion and toughness of the material. The effect of PEF on similar mechanical behavior
was studied by [14,49]. Ref. [14] reported that PEF improved the firmness parameter of
kiwifruit when a low temperature of drying (50 and 60 ◦C) was used, while an increasing
temperature resulted in less firmness (apart from the samples dried at 60 ◦C) compared to
other pretreated samples. Similarly, ref. [49] revealed that the PEF maintained the texture
during the storage period. The 25, 50 and 100 kV/m of firmness loss in atemoya were
78.56%, 72.23% and 88.41%, respectively. They reported that when PEF was administered
to partially dehydrated tissue, it led to increased cell disintegration.

A sensory evaluation was conducted by experts and the results have been detailed in
Table 7. The most favorable appearance quality in terms of color was observed when the
sample was treated by PEF dried at 100 W. As the microwave energy increased, the visual
color quality of the dried samples deteriorated due to the appearance of scorch marks
caused by excessive heat. Consequently, the PEF treatment exhibited a beneficial effect on
color preservation (only for the 100 W treatment). Similarly, experts expressed satisfaction
with the taste quality of samples treated under 100 W, both in the controlled and treated
groups, receiving a high score of 9. In contrast, the sweetness score for samples dried at
200 W and 300 W was below the acceptable threshold (i.e., 5). Finally, the total admissibility
scores for dried samples subjected to 100 W, 200 W and 300 W conditions were high (9),
near the threshold of acceptability (5) and under the acceptability threshold (2), respectively.
Notably, the PEF treatment displayed no discernible impact on the toral acceptability score.
In a similar way, ref. [14] reported the sensory parameters of kiwifruit samples that were
treated by PEF, when dried at a lower temperature (50 and 60 ◦C) showed an intermediate
value of all parameters while, when dried at 70 ◦C, in addition to having the lowest score
for the overall acceptability, showed the minimum texture and a balance between the
sweetness and acidity level. Overall, a comparison of the current research and literature
demonstrates that PEF could improve the physical, chemical and physical properties of the
fruit under the heating process.

While the model developed in this study focused on pulsed electric fields and apple
slices, its optimization renders it applicable to various devices and products. Initially,
artificial intelligence models are employed to determine the optimal network topology.
Subsequently, network inputs are tailored according to specified parameters. There is even
flexibility to adjust input parameters and tailor the network based on datasets encompassing
dryer specifications, PEF system characteristics and product attributes.

4. Conclusions

The utilization of a microwave vacuum dryer combined with PEF treatment exerted a
substantial influence on the moisture ratio of the sample throughout the drying process.
With a rise in the quantity of microwave energy, the drying rate increased significantly.
However, elevating the specific energy of PEF did not impact the drying kinetics. The
employed mathematical models for predicting the MR yielded satisfactory results, with
the Weibull model offering the most accurate prediction (R2 = 0.970, RMSE = 0.099 and
MAE = 0.064). Furthermore, in pursuit of enhanced accuracy and the incorporation of
more parameters for MR prediction, the optimized computational intelligence methods
were employed. The outcomes from the developed ANN and SVR highlight that the
machine learning approach can be contemplated for online control of the drying process
due to its outstanding performance. Finally, an exploration of various qualitative indices
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of dried apples was conducted, revealing that the escalation of microwave energy exerted
an influence on the color parameters, mechanical properties and sensory evaluation of the
dried apple slices. Also, the PEF treatment influenced the characterization of the dried
samples, even though not in a statistically significant manner. In conclusion, drying apple
slices under 100 W of microwave energy with the aid of PEF treatment not only shortens
the drying time but also preserves the product’s quality.

The results obtained indicated that employing PEF as a pretreatment prior to drying
holds promise for fostering more sustainable processes, ensuring the nutritional attributes
and maintaining the flavor of agricultural products. In addition, by leveraging ML al-
gorithms, drying parameters such as temperature and humidity can be optimized for
improved efficiency and product quality. ML models can analyze real-time data from sen-
sors to predict drying times, detect anomalies or irregularities in the process and suggest
adjustments to enhance energy usage and reduce waste. Additionally, ML techniques
enable the development of predictive maintenance systems, allowing for proactive iden-
tification of equipment failures or performance degradation, thus minimizing downtime
and ensuring continuous operation of drying systems. However, some challenges such as
achieving more accuracy and versatility of developed MV dryers and applied ML models
were found in this study. To overcome these kinds of challenges, it is suggested that the dyer
be integrated with some novel technologies such as machine vision systems. This involves
aligning the imaging setup to monitor the product consistently and possibly synchronizing
it with the drying parameters. In addition, implementing the trained models within the
drying system’s control software can be a helpful action to achieve more accuracy. The
models should process image processing data in real time to predict moisture content and
other relevant parameters. Moreover, closing a feedback loop in which the predictions of
the model can enable a dynamic adjustment of the drying conditions.
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23. Kaleta, A.; Górnicki, K.; Obranović, M.; Kosiorek, K. Some aspects of the modelling of dried red beets rehydration process. Appl.
Sci. 2024, 14, 1016. [CrossRef]

24. Punthi, F.; Yudhistira, B.; Gavahian, M.; Chang, C.K.; Cheng, K.C.; Hou, C.Y.; Hsieh, C.W. Pulsed electric field-assisted drying: A
review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Compr. Rev. Food Sci.
Food Saf. 2022, 21, 5109–5130. [CrossRef] [PubMed]

25. Okonkwo, C.E.; Moses, O.I.; Nwonuma, C.; Abiola, T.; Benjamin, B.O.; Folorunsho, J.O.; Olaniran, A.F.; Pan, Z. Infrared and
microwave as a dry blanching tool for Irish potato: Product quality, cell integrity, and artificial neural networks (ANNs) modeling
of enzyme inactivation kinetic. Innov. Food Sci. Emerg. Technol. 2022, 78, 103010. [CrossRef]

26. Meerasri, J.; Sothornvit, R. Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture
content for coated pineapple cubes. Case Stud. Therm. Eng. 2022, 33, 101942. [CrossRef]
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