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Abstract

Globally, we are seeing a transition towards cloud-based storage and computing. To meet this ever-

increasing demand for data, endeavours should be made to find ways of storing digital information at

greater densities and improved efficiencies. At present, cloud-based storage works by storing digital

information in large data centres filled with Hard Disk Drives (HDDs). These drives contain platters

of ferromagnetic grains, which correspond to 0 and 1 bit states. The most efficient means of reversal

is via the resonance mode in ferromagnets, which sits in the GHz range meaning reversal is generally

limited to ns timescales. Antiferromagnets are a class of magnetic material where neighbouring atomic

magnetic moments are aligned antiparallel, resulting in no net magnetisation. For digital storage ap-

plications, antiferromagnets offer high stability and insensitivity to external magnetic fields due to

their inherently strong exchange field that arises from the coupling between the two sublattices. This

opens the possibility for reduced bit sizes because of the lack of stray fields between grains. The

exchange field also gives rise to inherently fast THz magnetisation dynamics, orders of magnitudes

faster than the ferromagnets currently found in HDD technology opening the possibility for switching

on picosecond, or ultrafast, timescales. To better understand the applicability of antiferromagnets for

future storage and memory applications, in this thesis we use computational models to study proper-

ties and switching dynamics of the antiferromagnet Mn2Au and toy models of layered materials with

antiferromagnetic and ferromagnetic order. A multiscale model of Mn2Au is presented and verified

against previous analytical and theoretical work. The feasibility of switching using THz frequency

fields is then investigated using atomistic and micromagnetic models across a range of temperatures.

We then present an atomistic model of Mn2Au coupled ferromagnetically to Permalloy and perform

further switching simulations and show that there is a significant speedup in the switching compared

to a pure ferromagnetic system while still being able to access the information via conventional readout

methods of the ferromagnetic Permalloy layer. Finally, we study toy multilayer and thin film systems

and investigate how standing spinwave modes can be used to reduce the minimum field strengths for

switching.

Keywords: Antiferromagnetism, Ultrafast Magnetism, Atomistic Spin Dynamics, Switching, Spin-

waves.
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Chapter 1

Introduction

The sun did not shine, it was too wet to play, so we sat in the house all that cold, cold

wet day. I sat there with Sally. We sat here we two and we said ’How we wish we had

something to do.

– DR. SEUSS, The Cat in the Hat.
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1.1 Motivation

1.1 Motivation

The demand for data has increased hugely in recent years due to the explosion of

cloud storage and our ever-increasing online presence. Of course, this data must be

stored somewhere, and at present the cheapest and therefore most widely used method

of storing data is using Hard Disk Drives (HDDs). HDDs are comprised of two key

components, the platter and the read-write head. The platter is made of magnetic

domains which, depending on their orientation, correspond to a digital 0 or 1 bit state.

The change in bit state from, say, a 0 to 1 is done by applying a magnetic field to

the bits to reverse the orientation of the magnetisation. The device used to drive

the reversal and read the magnetic data is the read-write head and they can typically

transfer data at speeds between 150 and 250 MB/s [1]. Inducing switching costs energy,

with a current being passed through the read-write head to generate a magnetic field.

As already alluded to, HDDs are the most widely used method of digital data storage,

the majority of which are housed in data centres with the sole purpose of managing and

storing data for digital applications and cloud services. Globally, data centres currently

account for between 0.9 and 1.3% of global electricity demand [2]. Between 2015 and

2021, the workload of data centres increased by 260% with energy usage rising by a

comparatively low value of between 10-60% due to technological advances [2]. Despite

the improvements in hardware and efficiency, if we as a society are to transition to net

zero, this growth in energy consumption cannot be considered sustainable, and other

methods of data storage and processing should be the subject of investigation.

1.2 Fundamentals of Magnetic Materials

To be able to understand the limitations of current magnetic recording methods and the

macroscopic ordering observed in magnetic materials, we must first introduce some of

the key quantities, namely the magnetic moment, exchange, and anisotropy. These fun-

damental quantities provide insights into the behaviour of magnetic materials and gov-

ern their properties. The magnetic moment, arising from the intrinsic spin of electrons

within atoms, forms the basis of a material’s magnetic behaviour. Exchange interac-
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1.2 Fundamentals of Magnetic Materials

tions describe the interplay between neighbouring spins and determines the long-range

order of a magnetic material. Finally, anisotropy refers to the directional preference of

a magnetic material and influences the size response to any external magnetic fields. By

briefly outlining the physics behind these key quantities, we can begin to unravel the

intricacies and shortcomings of magnetic recording techniques and begin to understand

possible ways to improve data storage efficiency and density.

1.2.1 The Magnetic Moment

The idea of a magnetic moment can easily be introduced by considering the Bohr model

of the atom, where we have an electron orbiting a stationary nucleus. The electron has

speed 𝑣 and orbits at a radius 𝑅 meaning the period of rotation is 2𝜋𝑅/𝑣. The current

of the loop is therefore 𝐼 = −𝑒𝑣/2𝜋𝑅 where 𝑒 = −1.6 × 10−19 A s is the charge of the

electron. The magnetic moment generated from a current in a loop is 𝜇 = 𝐼 ∫ 𝑑𝐴 where

𝑑𝐴 is the surface element of the loop. The magnetic moment of the circular motion of

the electron in orbit is therefore

𝜇 = −𝑒𝑣𝑅
2 (1.1)

The angular momentum of the electron is 𝐿 = 𝑚𝑒𝑅𝑣 where 𝑚𝑒 is the mass of the

electron. While this is true for a classical system, quantum mechanics tells us that

angular momentum is quantized in units of ℏ = 1.5054 × 10−34 J s. The orbital

magnetic moment along a particular direction, in this case 𝑧, is therefore

𝜇𝑧 = − 𝑒ℏ
2𝑚𝑒

𝑚𝑙, 𝑚𝑙 = 0, ±1, ±2, … (1.2)

The magnetic moment is therefore quantised in units of 𝜇𝐵 = 𝑒ℏ
2𝑚𝑒

, where 𝜇𝐵 is known

as the Bohr magneton. It has a numerical value 𝜇𝐵 = 9.2740 × 10−24 J T−1. It

follows that since each electron contributes 𝜇𝐵, the total magnetic moment of an atom

would be an integer multiple of this value. In solids, especially metallic materials,

the delocalisation of electrons, and electrostatic interactions means the moment can

be much lower and the magnetic moment arises predominantly from the intrinsic spin.

Unlike orbital angular momentum from particles moving in space, spin is an inherent
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1.2 Fundamentals of Magnetic Materials

property of particles unrelated to motion. The origin of the intrinsic spin can be shown

using relativistic quantum mechanics. The mathematical detials of intrinsic spin do not

significantly impact later sections and therefore an in-depth discussion is not required.

However, it is worth noting that it contributes strongly to the overall local magnetic

moment. The electron intrinsic angular momentum has quantum number s = 1
2 and it

turns out the magnetic moment that arises from the intrinsic spin of electrons is given

by

𝜇 = − 𝑒
2𝑚𝑒

𝑔s (1.3)

where 𝑔 is the electron spin g-factor and takes the value 𝑔 = 2.00232 [3]. The magnetic

quantum number, 𝑚𝑠, can take values 𝑚𝑠 = ±1
2 and so the component projected along

a given axis is therefore

𝜇 = − 𝑒
2𝑚𝑒

𝑔𝑚𝑠ℏ, 𝑚𝑠 = ±1
2. (1.4)

The classic example often found in textbooks is iron (Fe), which with its 4 unpaired

3𝑑 electrons should have a magnetic moment of 4𝜇𝐵. Which is much larger than

the experimentally observed non-integer value of ≈ 2.2𝜇𝐵. In metallic systems such

as this, electrons become partially delocalised, meaning the magnetic moment cannot

be described by quantised orbitals and a band structure description of the system is

required.

1.2.2 Exchange Interaction

The Exchange interaction describes the interaction between the spins of electrons in

a many-electron system and is responsible for the macroscopic ordering observed in

magnetic materials. For many body systems, it cannot be calculated directly from the

wave function in a closed-form analytical expression because of the number of electrons

involved making it intractable. In such cases, approaches like density functional the-

ory (DFT) can be employed to compute the ground state energy, with the exchange

constants subsequently determined by constraining the magnetic moments within a su-

percell in a spinwave configuration for a given wavevector. Because of its importance

to the remainder of this thesis, the quantum mechanical description of the exchange
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1.2 Fundamentals of Magnetic Materials

interaction will be introduced by considering the simple case of a two-electron system,

such as the H2 or He atom. In this section, we will follow the approach of Blundell [4],

although similar approaches can be found in other magnetism textbooks [5, 6].

Consider two electrons on neighbouring atoms, the total wavefunction, Ψ(1, 2) =
Φ(r1, r2)𝜒(𝑠1, 𝑠2), where Φ is the total spatial wavefunction, 𝜒 is the total spin wave-

function. Since electrons are fermions, the total wavefunction of the two-electron system

must be antisymmetric under the exchange of electrons, meaning

Ψ(1, 2) = −Ψ(2, 1)

Φ(r1, r2)𝜒(1, 2) = −Φ(r2, r1)𝜒(𝑠2, 𝑠1)
(1.5)

If the above is to be true, either the total spacial wavefunction,Φ, or total spin wave-

function, 𝜒, can be symmetric

Ψ(1, 2) =
⎧{
⎨{⎩

Φsym(r1, r2)𝜒anti(𝑠1, 𝑠2)

Φanti(r1, r2)𝜒sym(𝑠1, 𝑠2)
(1.6)

where we have two possibilities, either the spin component is in an antisymmetric

singlet state 𝜒𝑆, (𝑆 = 0). Or, the case where the spin wavefunction is symmetric, in

which case the spin component is in a symmetric triplet state 𝜒𝑇 , (𝑆 = 1). The total

wavefunctions for each case is given by

ΨS(1, 2) = 1√
2

[𝜙𝑎(r1)𝜙𝑏(r2) + 𝜙𝑎(r2)𝜙𝑏(r1)] 𝜒𝑆 (1.7)

ΨT(1, 2) = 1√
2

[𝜙𝑎(r1)𝜙𝑏(r2) − 𝜙𝑎(r2)𝜙𝑏(r1)] 𝜒𝑇 (1.8)
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1.2 Fundamentals of Magnetic Materials

with 𝜙𝑎,𝑏(r1,2) being the individual wavefunction of electron 1 or 2 in state 𝑎 or 𝑏. The

respective energies are

𝐸𝑆 = ∫ Ψ∗
𝑆ℋΨ𝑆𝑑r1𝑑r2 (1.9)

𝐸𝑇 = ∫ Ψ∗
𝑇 ℋΨ𝑇 𝑑r1𝑑r2 (1.10)

The difference between the two

𝐸𝑆 − 𝐸𝑇 = 2 ∫ 𝜙∗
𝑎 (r1) 𝜙∗

𝑏 (r2) ℋ𝜙𝑎 (r2) 𝜙𝑏 (r1) 𝑑r1𝑑r2 (1.11)

In the above ℋ is the Hamiltonian of the electron system in a spatially varying po-

tential. For full electronic structure calculations, it contains terms for accounting for

the potential arising from external fields, the Coulomb interaction between nuclei and

electrons, and the Coulomb interaction between pairs of electrons. In this example

we are only interested in the Coulomb interaction between electrons and can therefore

safely ignore the other two terms. The singlet state S1 ⋅ S2 = −3
4 and for the triplet

state S1 ⋅ S2 = 1
4 . The Hamiltonian can be written in terms of a spin-independent,

ℋrad, and spin-dependent term, ℋspin

ℋ = ℋrad + ℋspin = 1
4 (𝐸s + 3𝐸T) − (𝐸S − 𝐸T) S1 ⋅ S2 (1.12)

The exchange integral, or constant, is defined as

𝒥 = 𝐸𝑆 − 𝐸𝑇
2 = ∫ 𝜙∗

𝑎 (r1) 𝜙∗
𝑏 (r2) ℋ𝜙𝑎 (r2) 𝜙𝑏 (r1) 𝑑r1𝑑r2 (1.13)

hence the spin-dependent term can be written as

ℋspin = −2𝒥S1 ⋅ S2 (1.14)

For two electrons, the above derivation was fairly straightforward, however for many-

body systems it becomes a non-trivial process and advanced computational methods

must be used to determine the exchange constant 𝒥. Regardless, Heisenberg showed
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in 1928 [7] that the Hamiltonian can be written to describe interactions between any

neighbouring atomic spins

ℋspin = − ∑
𝑖,𝑗

𝐽𝑖𝑗S𝑖 ⋅ S𝑗 (1.15)

with 𝐽𝑖𝑗 denoting the exchange energy between the atomic spins 𝑖 and 𝑗 and S𝑖, S𝑗 are

the atomic spin vectors for each respective site. The above is commonly known as the

extended Heisenberg model, and the key assumption in this model is that the electrons

are localised to each atomic site.

1.2.3 Anisotropy

Magnetocrystalline Anisotropy refers to the preferential orientation of the magnetisa-

tion in relation to a specific crystal lattice. Other forms of anisotropy exist, such as

shape and surface anisotropies, but these will not be the topic of much discussion in

this thesis and the remainder of this section will be devoted to common forms of mag-

netocrystalline anisotropy. It arises from the spin-orbit interaction [5, 4, 8] and the

simplest phenomenological model of magnetocrystalline anisotropy is the lowest order

expansion of a uniaxial anisotropy [5]

𝐸 = 𝐾1 sin2(𝜃) + 𝐾2 sin4(𝜃) + … (1.16)

where 𝜃 is the angle from the easy axis and 𝐾1 and 𝐾2 are the second and fourth order

uniaxial anisotropy constants. It is often the case that the value of 𝐾2 is roughly an

order of magnitude smaller than 𝐾1 and can be ignored [8]. It is also the case that not

all materials have a preferential direction along a single axis. Another common example,

and one that will be used in several chapters in this thesis, is cubic anisotropy. For a

cubic system with easy-axis orientations along either 𝑥, 𝑦 or 𝑧 directions, the anisotropy

energy is given by [5]

𝐸 = 𝐾𝑐
1 (𝑚2

𝑥𝑚2
𝑦 + 𝑚2

𝑥𝑚2
𝑧 + 𝑚2

𝑦𝑚2
𝑧) + 𝐾𝑐

2𝑚2
𝑥𝑚2

𝑦𝑚2
𝑧 … (1.17)
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1.2 Fundamentals of Magnetic Materials

Figure 1.1: Anisotropy energy landscapes for (a) uniaxial anisotropy with positive 𝐾1, (b)
uniaxial anisotropy with negative 𝐾1, (c) cubic anisotropy with positive 𝐾𝑐

1 and (d) cubic
anisotropy with negative 𝐾𝑐

2 . Taken from Ref. [9].

where we have cubic anisotropy constants 𝐾𝑐
1 and 𝐾𝑐

2. Like with the uniaxial case,

𝐾𝑐
1 >> 𝐾𝑐

2 and therefore 𝐾𝑐
2 can often be ignored. 𝑚𝑥, 𝑚𝑦 and 𝑚𝑧 are the Cartesian

components of the reduced magnetisation. An example of the energy landscapes for

uniaxial and cubic anisotropies where the higher order constants have been neglected

can be found in Fig. 1.1. For the uniaxial case with positive 𝐾1, the energy minimum

is along the anisotropy axis. For negative 𝐾1, the energy minimum occurs along any

orientation in the 𝑥𝑦 plane. A similar pattern is seen for the cubic case, with positive

𝐾𝑐
1 having an energy minimum along either the 𝑥, 𝑦, or 𝑧 axis and negative 𝐾𝑐

2 having

energy minimum at 45° from each axis.

1.2.4 Types of Magnetic Order

Four different types of magnetic ordering will be mentioned throughout this thesis,

those are ferromagnetism, antiferromagnetism, ferrimagnetism, and finally paramag-

netism. A schematic depiction of each can be found in Fig. 1.2. In ferromagnetic

systems, the exchange coupling constant, 𝐽 > 0, is positive, resulting in neighbouring

atomic magnetic moments preferentially aligning parallel to one another, yielding a

net spontaneous magnetisation. The parallel alignment of the atomic spins leads to

a strong magnetisation even in the absence of an external magnetic field, which is a

defining characteristic of ferromagnetism. Contrastingly, in antiferromagnetic materi-
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1.3 The Challenges of Recording Media

als 𝐽 < 0, leading to an antiparallel alignment of adjacent spins and no net moment.

The antiparallel configuration of neighbouring atomic spins means antiferromagnets

do not exhibit any spontaneous magnetisation. Like with antiferromagnets, ferrimag-

netism also possesses negative J, however, the relative concentrations and magnitudes

of the magnetic moments allow a net magnetisation to emerge. The uncompensated

magnetisation is lower than in ferromagnets due to the opposing antiparallel spins.

Finally, paramagnetic systems lack any form of long-range ordering in the absence of

an applied field with thermal effects outweighing any exchange interactions. Under the

application of a strong magnetic field, a net magnetisation can be observed for para-

magnetism as the field partially aligns the randomly oriented atomic moments. Unlike

ferromagnetic materials, this induced magnetisation is lost as soon as the external field

is removed.

Figure 1.2: Schematic representation of the different types of magnetic order. A) Ferromag-
netism B) Antiferromagnetism C) Ferrimagnetism D) Paramagnetism.

1.3 The Challenges of Recording Media

A brief introduction to magnetic recording was provided in the motivation section, here

we will present in greater detail the challenges associated with enhancing the storage

density of FM-based HDD technology. As already mentioned, HDD storage devices

contain two key components: the platter and the read-write head. The platter con-

sists of ferromagnetic grains which are non-uniformly shaped [10], largely due to the

9



1.3 The Challenges of Recording Media

manufacturing process, with each grain being separated by a non-magnetic material

that accumulates at the grain boundaries. This breaks the exchange coupling between

neighbouring grains. Typical diameters are between 5 and 10 nm. In an ideal scenario,

a single grain would be used to represent a bit state, however in reality a collection

of between 10 to 20 grains [11] are grouped together to form the bit state to help

with stability. Current methods make use of having the magnetic bits aligned perpen-

dicularly to the thin FM film in what has become known as perpendicular magnetic

recording (PMR). Fig. 1.3 shows a schematic of the PMR setup. Panel (a) illustrates

the read-write head as it scans the surface of the magnetic recording layer, while panel

(b) displays the distinct, non-uniformly shaped grains alongside their associated bit

states which are shown as red and blue regions. The materials used for the magnetic

recording layer have, for many years, been made of FM CoCr alloys, such as CoCrPt,

CoCrTa, and CoCrNb [12] however a transition to FePt layers promises higher areal

density [13]. The read-write head is made of two distinct components: The inductive

write element, which uses currents pass through a coil to generate a magnetic field, and

the read element, which converts the magnetisation orientation of each bit to a digital

signal, either using giant magnetoresistance (GMR) or tunnelling magnetoresistance

(TMR) - these effects will be discussed in a bit more detail later on. The bit density

on conventional PMR-based hard drives is being pushed towards 1.3 Tb/in2 in 2023

with releases such as Western Digital’s 2nd generation ePMR platform [14]. Further

improvements in density and energy efficiency are still needed to cope with the growth

in cloud-based storage.

An obvious way to improve processing and storage times would be to decrease the time

it takes for the reversal of magnetic bits, reducing the amount of time the write head

spends actively generating a magnetic field. Faster reversal can generally be achieved

by increasing the strength of the applied field in the write element, which means gener-

ating a larger current and an increased loss of energy in the wires in the form of heat.

In addition to this, the resonance frequency of FM materials typically sits in the GHz

range [16], meaning the switching process is generally restricted to nanosecond (ns)
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1.3 The Challenges of Recording Media

Figure 1.3: (a) Schematic diagram of the read-write head passing over the perpendicularly
magnetised bits on the platter. (b) TEM micrograph of the magnetic grains on the platter.
The magnetisation orientation of the bits is denoted by the red and blue regions. Taken from
Ref. [15]. ©2008 IEEE.

timescales. In response to the growing societal need for data, if it is not possible to

enhance data processing speeds by reducing the reversal speed to improve efficiency,

another approach is to increase bit density by reducing the size of ferromagnetic grains.

Shrinking grain size, however, reduces thermal stability, heightening the likelihood of

spontaneous bit orientation flips. The probability of a switching event occurring is

governed by the Arrhenius-Néel law [17]

𝑓 = 𝑓0 exp (− 𝐾𝑉
𝑘𝐵𝑇 ) (1.18)

where 𝐾 is the uniaxial anisotropy constant, 𝑉 is the volume of the grain, 𝑇 is the

temperature, 𝑓0 is the attempt frequency (usually ranging from 10s to 100s GHz for

ferromagnets) and 𝑘𝐵 = 1.38 × 10−23 J K−1 is the Boltzmann constant. By decreasing

the grain volume, you decrease the magnitude of the exponent in the above, which

increases the probability of an individial grain switching. As more grains flip in an

idividual bit, the signal to noise ratio (SNR), which is proportional to
√

𝑁 where 𝑁 is

the number of grains in a bit, decreases - making readout of the bit state more difficult.

To counteract this, ferromagnets with elevated anisotropy barriers can be used instead.

As mentioned in the previous section, the anisotropy keeps the grains pinned along the 1

or 0 directions, with increased anisotropy leading to stronger bit alignment along these

orientations. The downside to this is that larger magnetic fields are then required to
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Figure 1.4: The magnetic recording trilemma. Adapted from Ref. [18].

push the bits over the increased anisotropy energy barrier. This tradeoff between SNR,

stability and field size is known as the trilemma of magnetic recording (A schematic of

which can be found in Fig. 1.4) and is limiting further development of traditional HDD

devices. At the device level, hard disk drives rely on precise electromechanical control to

manipulate stored data. Specifically, reading and writing information heavily depends

on the rotational speed of the platter, positioning and accuracy of the read/write head,

and the switching dynamics of both the ferromagnetic electromagnet in the write heard

and free ferromagnetic layer in the GMT/TMR sensing element. Overcoming these

limitations is vital for the realisation of AFM based HDD devices, but a detailed analysis

of these engineering questions is beyond the focus of the work presented here.

1.4 Heat Assisted Magnetic Recording

Heat Assisted Magnetic Recording (HAMR) is a recent advancement in HDD tech-

nology that makes use of heating to increase the areal density in ferromagnet HDDs

[20–24]. The idea is simple, a near field transducer (NFT) [25] is used to locally heat the

FM grains close to the Curie temperature, 𝑇𝐶 (the temperature at which the material

12
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Figure 1.5: HAMR schematic. Taken from Ref. [19].

undergoes a phase transition from ferromagnetic to paramagnetic, losing its macro-

scopic magnetic properties). This large increase in temperature reduces the coercivity,

making it easier to switch the grains. A schematic of the process can be found in Fig.

1.5 Because of this reduction in coercivity, materials with a larger anisotropic barrier

(such as FePt [13, 26]) can be used with similar fields to those used already in HDD de-

vices when been subject to heating. Because of the higher anisotropy barrier, a higher

areal density of grains can be used for HAMR devices. In a review article from 2016 on

HAMR technology by Weller et al. [27], they expect the areal density to increase from

1 Tb/in2 for conventional HDD to 3-4 Tb/in2 for HAMR devices. HAMR-based HDD

enterprise products have recently been announced by Seagate [28] with the release of

the Mozaic 3+ platform planned for 2024 [29].

1.5 Ultrafast Magnetism

The area of ultrafast magnetism was born in 1996 following the pioneering work of

Beaurepaire et al. [30] who showed that following the application of a femtosecond

(fs) laser pulse to FM Nickel (Ni), the magnetisation would drop significantly within a

single picosecond. A figure of the demagnetisation process recorded using time-resolved

magneto-optical Kerr effect (MOKE) measurements can be found in Fig. 1.6. It was

found that the electron and spin temperatures exhibit different dynamics following the

application of the laser, indicating the spin system heats separately from the electronic

13
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Figure 1.6: Transient longitudinal magneto-optical Kerr effect (MOKE) of a Ni(20
nm)/MgF2(100 nm) film for a 7 mJ cm−2 laser pump fluece. Image taken from [? ]

system on the picosecond timescale (see Fig. 3 of Ref. [30]). Beaurepaire et al. in-

troduced a phenomenological model, known as the three-temperature model (3TM) to

describe the demagnetisation process. They attributed it to the laser heating of the

electron bath, which is coupled directly to the spin and lattice degrees of freedom. Not

long after this initial discovery, picosecond timescale demagnetisation was reported in

the other ferromagnetic transition metals (Co, Fe) [31, 32]. The exact mechanisms

for ultrafast demagnetisation remains an open topic, although much of the discussion

has attributed it to either spin-flip or spin-transport properties, with seminal works

supporting both arguments discussed briefly over the next two paragraphs.

In the paper of Koopmans et al. [33], they looked to explain the fact that certain

elements, such as Gadolinium (Gd), undergo a much slower relaxation, with the de-

magnetisation taking approximately 100 ps compared to the sub-ps timescales seen for

Ni, Fe and Co. They attributed the differing timescales to Elliott-Yafet spin-flip pro-

cesses, which, without going into much detail, allowed the authors to derive a simple

equation for the demagnetisation dynamics that contained an element-specific scaling

factor that described the different relaxation times. They determined the scaling factor

to be 𝑅 ∝ 𝑎sf𝑇 2
𝐶/𝜇𝑠 where 𝑇𝐶 is the Curie temperature, 𝜇𝑠 is the magnetic moment
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and 𝑎sf is the probability of a spin flip occurring. In essence, a smaller ratio of 𝑇𝐶 to

𝜇𝑠, which is the case in Gd, leads to much slower relaxation. For a spin-flip induced

change in angular momentum to occur, which would be required for this description of

ultrafast demagnetisation, there must be a transfer from electronic spin to the lattice

subsystem [34, 35], which at the time of publication had not been observed experimen-

tally.

Another mechanism used to explain the ultrafast demagnetisation in the transition

metals came from Battiato et al. [36], who proposed that demagnetisation arose from

superdiffusive spin transport of laser-excited electrons. They developed a semiclassical

model of finite elapsed time and transport in space between multiple electronic collisions

and numerical results compared well with the experimental data for Ni with roughly

a 50% quenching of the magnetisation predicted in the first 200 fs. This prediction

challenged the notion that ultrafast angular momentum dissipation was required in

any capacity and instead suggested transport effects play a primary role.

Recently, work by Dornes et al. [37] demonstrated experimentally using femtosecond

time-resolved X-ray diffraction that in ultrafast demagnetisation of thin films of Fe,

80% of the spin angular momentum is transferred to the lattice on a sub-ps timescale.

This result showed that interactions between the lattice is essential for fully describing

ultrafast demagnetisation in ferromagnetic materials, thus providing strong evidence

for a spin-flip mechanism occurring.

1.5.1 All Optical Switching (AOS) in Ferri & Ferromagnets

Since the work of Beaurepaire et al. [30], much work has gone into the understanding

of how optical excitations can be used as a method for ultrafast and efficient magnetic

switching. The first observation of all optical switching (AOS) was shown by Stanciu

et al [38] in 2007, where it was shown in ferrimagnetic GdFeCo that a single 40 fs

circularly polarised laser pulse could reverse the magnetic FeCo sublattice within 700

fs. In addition to the heating from the laser, the circular polarisation generates an ef-
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Figure 1.7: The effect of ultrashort polarised laser pulses on magnetic domains in Gd22
Fe74.6Co3.4. (a) Magneto-optical image of the initial magnetic state of the sample before laser
exposure. White and black areas correspond to up and down orientations of the magnetisation,
respectively. (b) Domain pattern obtained by sweeping at low speed (∼ 30𝜇m/s) linearly (L)
right-handed (𝜎+), and left-handed (𝜎−) circularly polarised beams across the surface of the
sample, with a laser fluence of about 11.4 mJ/cm2. Taken from Ref. [38].

fective magnetic field via the inverse Faraday effect (IFE) with the magnetisation being

induced in different directions depending on the helicity of the optical pulse. Fig. 1.8

shows the main result of their work, with the linearly polarised beam generating ran-

domly distributed domains of up and down orientations of the magnetisation in sharp

contrast to the left & right-handed helicities, which entirely switch the magnetisation

into either an up or down state.

In the experiments of Stanciu et al., the magnetisation dynamics were not measured,

and it was not until the experiments of Radu et al [39] who revealed that the heat-

ing over the compensation point brings the system into what they describe as a non-

equilibrium transient ferromagnetic state. The Fe and Gd sublattices exhibit different

magnetisation dynamics, as shown in Fig. 1.9, and lose their sublattice magnetisation

independently of one another. The ferromagnetic-like state emerges because of the

differing speeds in the demagnetisation and reaches a magnitude of 25% of the equilib-

rium value during the remagnetisation process. The measurements were made with an

external field of ±0.5 T to reinitialise the magnetic order and to allow for independent

measurements of the magnetic response of both sublattices. It was believed the exter-

nal field was essential for triggering switching.
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Figure 1.8: Panels (a) and (b) show the equilibrium state of a Gd24Fe66.5Co9.5. The light
and dark grey region represents spin-down and spin-up orientations of the magnetisation. The
remaining panels show the film after a 100 fs excitation with N = 1, 2...5 pulses with a fluence
of 2.30 mJ/cm2. Each laser pulse excites the same circular region of the film and reverses the
magnetisation within it. The scale bar corresponds to 20 𝜇m. Taken from Ref. [40].

One year later, Ostler et al. [40] showed that heating alone can trigger determinis-

tic switching in GdFeCo. Using atomistic simulations following fs laser heating, the

net magnetisation could switch due to the transfer of angular momentum between

the antiferromagnetically coupled sublattices. Experiments confirmed the result, with

single laser pulses reversing the magnetisation regardless of polarisation or initial orien-

tation of the magnetisation. Since then, the interest in deterministic switching using fs

lasers in ferrimagnets has grown [41–43], with other systems containing transition and

rare-earth metals such as Pt/Co/Gd stacks [44], Tb/Co multilayers [45] and Mn2RuGa

[46] have also been shown to switch following single-shot laser excitation.

Being able to achieve deterministic switching in ferrimagnets using fs laser pulses has

been well understood for over a decade now, but it has been only recently that devel-

opments in FMs have been made. It has been shown that by combining a FiM with an

FM to create a bilayer-type structure, it is possible to induce switching in a FM within

7 ps as a result of the exchange coupling between the two layers [47]. Earlier this year,

it was shown that a femtosecond laser pulse can induce switching in layered FM spin

valves [48] without the presence of any FiM layers. The reversal in the spin valves

has been shown to occur on ps timescales - orders of magnitude faster than the GHz

dynamics normally found in ferromagnets. While the mechanism behind switching in
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Figure 1.9: Time resolved XMCD measurements of Gd and Fe sublattices in the ferrimagnet
GdFeCo. Magnetisation dynamics for the first 3 ps following a laser pulse are shown in panel
(a) and 12 ps in panel (b). The experiment was performed at a sample temperature of 𝑇 = 83
K for an incident laser fluence of 4.4 mJ cm−2. Taken from Ref. [39].

FiMs is well understood, the exact mechanism behind this recent observation is not

fully understood.

1.5.2 Conventional Applications of Antiferromagnetism

As already mentioned in an earlier section, AFM ordering occurs when the lowest en-

ergy state is when neighbouring magnetic moments align antiparallel such that on a

macroscopic scale, the net magnetisation of the material is 0. As a result, they react

weakly to external magnetic fields and do not produce any stray fields. They were

famously described by the discoverer of antiferromagnetism, Louis Néel, in his Nobel

Prize winning lecture as “extremely interesting from the theoretical viewpoint, but do

not seem to have any practical application” [49]. Since his speech, it has been realised

that AFMs do indeed have a role to play in magnetic recording when, in the 1980s,

the GMR effect was discovered [50, 51]. What was observed was a change in the elec-

trical resistance in a non-magnetic conductor sandwiched by two ferromagnetic layers

depending on the relative orientation of the two surrounding magnetic layers. If the

electron spin is misaligned, there is a higher probability of a scattering event occuring

when an electron travel from one layer to another. This leads to an increase in the elec-
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trical resistance. When the layers are aligned, the electron spin moving through each

layer tend to be aligned, resulting in less scattering events. To keep one of the layers

fixed while the other is allowed to change orientation, an antiferromagnet is coupled to

one of the ferromagnetic layers which pins the magnetisation orientation [52].

GMR heads became the standard method of magnetisation readout in magnetic record-

ing technology up until the industry transitioned to TMR in 2006 [53]. Unlike GMR,

TMR works on the principle of quantum tunnelling of electrons from two FM layers

(one pinned by an AFM layer) separated by a thin insulator film. Very simply put, if

the magnetisation of the two FM are aligned and a current is applied, tunnelling is more

likely to occur meaning the system has a lower resistance. The parallel or antiparallel

alignment of the layers returns high and low resistance values, which can be used as a

binary signal.

1.5.3 Néel Spin-Orbit Torques and Switching in Antiferromagnets

Besides their use as pinning layers in read-write heads, the fact AFMs react weakly to

external magnetic fields is seen as a potential benefit for use as recording media as it

ensures the stability of data well beyond that of ferromagnets, which typically have a

retention of ∼ 10 years [54]. AFMs also have intrinsically ultrafast dynamics, orders

of magnitudes quicker than their ferromagnetic counterparts. The large exchange field

that arises as a result of the oppositely aligned sublattices means the resonant frequen-

cies of AFMs is in the THz range [55] compared to GHz for ferromagnets - opening

the possibility of magnetic reversal on ultrafast timescales and for uses in THz emitters

[56–59] and magnonics [60].

The immunity of AFMs to external applied magnetic fields (the conventional way of

generating reversal in FMs) is a barrier holding back the development of AFM devices

for spintronic applications. However, recent developments have shown that electrical
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switching is possible using current-induced Néel spin-orbit torques (NSOTs). In sys-

tems with broken inversion symmetry the spin-orbit coupling leads to carriers with

opposite momentum having opposite spin polarization. For example, an electron mov-

ing from left to right will have the opposite spin compared to an electron moving from

right to left. When a current is applied to a material with broken inversion symme-

try and strong Spin-orbit coupling will leads to a non-equilibrium spin polarisation

which induces a torque on local magnetic moments [61]. AFMs such as CuMnAs and

Mn2Au have locally broken inversion symmetry (inversion symmetry is preserved over

the overall crystal structure, but broken locally due to the ordering at specific lat-

tice sites) meaning an electrical current can induce a spin polarisation local to each

sublattice with the resultant torque having an alternate sign for each sublattice. The

magnetic moments undergo a rotation in opposite directions while keeping the AFM

order.

Switching in AFMs has already been achieved using this technique. In metallic CuM-

nAs, reversal of the Néel vector (n = m1 − m2 where m1 and m2 are the reduced

magnetisations of each sublattice) was first observed in the work of Wadley et al. [62]

who used electrical currents to generate spin-orbit-torques (SOTs) which induce switch-

ing. Similar results have been observed experimentally in Mn2Au [63–66] and NiO [67].

While switching in AFMs in possible, it has not yet been done on ultrafast timescales,

with reversal being attributed to domain propagation processes rather than coherent

rotation of the Néel vector. The closest the community has come to experimentally

achieving coherent switching is the recent work of Behovits et al., who achieved a

deflection of 30° of the Néel vector in Mn2Au on picosecond timescales following the

application of a THz electric field. Much of this thesis will be spent investigating con-

ditions for ultrafast switching in Mn2Au using computational modelling techniques.

The benefits of AFMs are clear, however, the control of the Néel vector is a prob-

lem due to the lack of macroscopic magnetisation, and sophisticated techniques are

required to access information on the magnetic order. Computationally, this is not a
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Figure 1.10: Unit cell configuration of two AFM materials that are drawing interest for
switching applications. (a) NiO, with the Ni sublattices shown in blue/red and the O atoms
shown in gold.(b) Mn2Au, with the Mn sublattices shown in blue/red with the Au atoms shown
in gold. Images taken from [68] (NiO) and [69] Mn2Au.

problem. Several studies have shown it is possible to induce a reversal in antiferromag-

netic NiO [70] and Mn2Au [71, 72]. In the case of NiO, it was shown that switching

using incredibly large square field pulses, with strengths upwards of 15 Tesla, is pos-

sible. A comparison of the two crystal structures can be found in Fig. 1.10 While

the switching was shown to be on picosecond timescales, being able to generate fields

of this size experimentally requires energy-intensive setups. For Mn2Au it was shown

that using staggered fields (i.e. each sublattice receives an equal but opposite magnetic

field) that arise from electric field-induced SOTs can lead to picosecond reversal. Much

remains unexplored regarding switching in Mn2Au, with open questions regarding sim-

ple access to the magnetic order and the effects of pumping at the intrinsic resonant

frequencies.

1.6 Thesis Outline

The next chapter will detail of the modelling techniques employed within this research

project. This is the first multiscale model of an AFM that combines DFT, atomistic

and LLB modelling methods. Tests are performed validating the newly developed

AFM-LLB in a range of scenarios such as the transverse & longitudinal dynamics,
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antiferromagnetic resonance, and thermally induced domain wall motion. Chapter 4

investigates switching in Mn2Au with the emphasis on driving Néel vector reversal using

THz frequency pulses using atomistic spin dynamics with comparisons being made to

analytical and additional LLB modelling. Chapter 5 investigates magnetisation reversal

in Py/Mn2Au bilayers as a possible route to overcome the difficulties in read-out of the

antiferromagnetic order vector while only observing a moderate slowdown in the THz

dynamics as a result of coupling to an FM. Chapter 6 is the final results chapter, and

delves into the properties of hypothetical multilayer and thin-films materials further

and the possibility of using naturally occurring standing spinwaves as a mediator for

more efficient magnetic switching. Concluding remarks and a discussion of possible

future work are presented in chapter 7.
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Chapter 2

Modelling Methods

We’re building something, here, detective, we’re building it from scratch.

All the pieces matter.

– DET. LESTER FREAMON, The Wire. Created by David Simon.
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2.1 Introduction

The choice of modelling method generally depends on the length, timescales and type

of processes under investigation. On the smallest time and length scales are ab initio

methods, such as Density Functional Theory (DFT), which is able to describe the be-

haviour over distances of several unit cells, typically in the Å to nm range. Ideally, the

electronic structure and inter-atomic interactions would be solved using the many-body

Schrödinger equation for the electron system, but this is computationally impossible

due to what is essentially an infinite number of electrons in solids. Calculations of elec-

tronic structure using DFT is based on the Hohenberg-Kohn theorems [73], which state

that; (i) the ground state electron density is uniquely determined by the external static

potential between electrons and nuclei and (ii) the electron density that minimises the

total energy gives the ground state electron density and energy. Computationally, work-

ing with the electron density is more tractable than the full many-body wave function,

thus making calculations of electronic structure for many-electron systems possible. For

magnetic systems, DFT is capable of determining exchange interactions, atomic mag-

netic moments and magnetocrystalline anisotropy. Time-dependent DFT (TD-DFT)

can be used to describe some dynamic processes, but the timescale is generally on the

order of femtoseconds, making simulations of switching on ps and ns timescales unfea-

sible. There are a wide range of DFT software packages that have been widely used

for electronic structure calculations of magnetic materials, such as QuantumEspresso

[74], SPRKKR [75], VASP [76] to name just a few. While no DFT calculations were

performed by the author, results from DFT calculations were used as input parameters

to modelling work completed as part hence the inclusion of the above short description.

In cases where the dynamics of atomic spins occur over a much longer timescale than

the motion of electrons, alternative methods such as Ising models or Atomistic Spin

dynamics (ASD) can be used in place of DFT. These models are capable of describing

the magnetisation dynamics of discretised atomic spins localised to specific lattice sites

using a classical Heisenberg Hamiltonian. Because of these simplifications, simulation

timescales can range from fs to ns, making it an ideal modelling technique for applica-
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Figure 2.1: Schematic showing the differing length and time scales for the magnetic modelling
methods in this PhD. By linking the stages together, magnetic processes on µs timescales and
µm lengthscales can be investigated with only the unit cell configuration used as an initial
input in the DFT stage. This process of linking together different modelling techniques across
multiple scales is known as multiscale modelling.

tions from ultrafast switching to domain wall dynamics and will be the main modelling

method used as part of this thesis. A short discussion of the Ising model and mean-field

approximations (MFA) will be presented in section 2.2 while a more detailed descrip-

tion of ASD, including the Heisenberg Hamiltonian and computational implementation

will be given in section 2.3 because of its use throughout all results chapters.

The final modelling method that will be seen in this thesis is micromagnetics. In conven-

tional micromagnetics using the LLG equation, the magnetisation vector is treated as a

continuous vector field with the anisotropy and exchange energies being coarse-grained

on nm lengthscales. This form of micromagnetics is formulated on the assumption

that the strength of the magnetisation remains constant limiting it to simulations at

static temperature. Several codes are available with a plethora of features and are

implemented with various parallelisation capabilities. These micromagnetic models are

particularly useful when attempting to model scenarios in which the dynamics occur

across 𝜇m distances and where high frequency spinwaves do not contribute to the

dynamics, for example, when modelling domain structures or vortex core dynamics.

Some of the more notable software packages for LLG-based micromagnetics are Mu-
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max [77] and OOMMF [78], which, according to Google Scholar, have 2856 and 2214

citations respectively as of 27/09/23. Another micromagnetic option is the use of the

Landau-Lifshitz-Bloch (LLB) equation which has an intrinsic temperature dependence

and describes a collection of atomistic spins, using what is known as a macrospin, which

typically has dimensions between 10-100 nm. The substitution of usually 104 to 105

atomistic spins with a single macrospin allows for simulations with dynamics varia-

tions in temperature on time and lengthscales that are not achievable using atomistic

models. Using the LLB model, it is possible to replicate atomistic simulations with a

fraction of the computational cost and also simulate up to µs with µm system sizes.

A more detailed introduction and mathematical description of the LLB model will be

presented in section 2.4.

It is possible to link together the different modelling processes in what has become

multiscale modelling. The input parameters in DFT are the crystal structure and

ground state magnetic configuration. The outputs are the atomic magnetic moments,

exchange, and anisotropy constants. These are then used as inputs into the atomistic

model, which is able to calculate the temperature dependence of the magnetisation,

anisotropy and exchange that can then be used as input into an LLB model to describe

processes on 𝜇m and 𝜇s length and timescales without having to use any experimental

results.

2.2 Ising and Mean Field Models

In cases where the precessional dynamics of the magnetisation are not important, it is

possible to calculate equilibrium properties using static models. The first of which to

be discussed briefly in this section is the atomistic Ising model [79, 80]. This model only

includes spin-up and spin-down states, meaning the anisotropy energy is, in essence, in-

finite as the spin orientation cannot deviate from the anisotropy axis. The Hamiltonian
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for the Ising model is given by

ℋ = − ∑
𝑖≠𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 − 𝜇𝑜𝜇𝐵 ∑
𝑖

𝐻𝑖𝑠𝑖 (2.1)

where spin 𝑖 is 𝑠𝑖 = ±1 and 𝐽𝑖𝑗 is the exchange energy between spin 𝑖 and spin 𝑗. The

most common solver for the Ising model is the metropolis algorithm [81]. The steps are

simple: (i) randomly select a spin in the lattice, (ii) flip it, (iii) calculate the change

in energy Δℋ using Eq. 2.1, (iv) if Δℋ < 0, accept the change, (v) if Δℋ < 0, the

change can be accepted with probability 𝑒−Δℋ/𝑘𝐵𝑇 .

Instead of using Monte-Carlo algorithms, Mean Field Approximations (MFA) can be

used to describe magnetic systems by reasoning that a magnetic spin experiences an

average exchange field arising from the neighbouring spins. This effective field is as-

sumed to be equal for all atomic spins. This approach was first proposed by Weiss in

the early 20th century [82] who stated that the effective field is directly proportional

to the magnetisation 𝐻eff = 𝑘⟨𝑠⟩ where 𝑘 is the molecular field constant. For a lattice

with 𝑧 nearest neighbours with interacting with exchange 𝐽𝑖𝑗 subject to a magnetic

field 𝐻 incorporated into a mean-field approach, Eq. 2.1 becomes

ℋ = − ∑
𝑖

𝑠𝑖 (𝑧𝐽𝑖𝑗⟨𝑠⟩ − 𝜇𝑜𝜇𝐵𝐻) (2.2)

where we have effective field 𝐻eff = 𝑧𝐽𝑖𝑗⟨𝑠⟩ − 𝜇𝑜𝜇𝐵𝐻. It can be shown [5] that the

magnetisation is given by the equation

⟨𝑠⟩ = tanh
𝜇𝑜𝜇𝐵𝐻 + 𝑧𝐽𝑖𝑗⟨𝑠⟩

𝑘𝐵𝑇 (2.3)

Other mean-field quantities will be introduced as and when needed for the remainder of

the thesis, but the magnetisation was provided here as an example of how the simplicity

of these approximations allows for first approximation to the static properties of a

magnetic system and a fast comparison to experiment. The downside to the above

approximations is that magnetic materials cannot always be accurately described with
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Figure 2.2: (a) The Ising model with 𝑠𝑖 = ±1 and (b) the mean field approximation where
the spins experience an effective field which contains contributions from the exchange and any
externally applied fields.

a simple nearest-neighbour exchange approach as the exchange constants can vary

greatly along different directions in real-space. Mean field approximations also fail

to account for the propagation of spin deviations (spinwaves) at low temperatures -

leading to an overestimation of the magnetisation. At high temperatures, long-range

thermodynamic fluctuations govern the magnetisation, and therefore a local exchange

field gives a poor approximation and again underestimates the true value. For a more

accurate description, dynamical equations of motion that treat spin as a quantity that

can vary in 3D can be used.

2.3 Atomistic Spin Dynamics

Atomistic Spin dynamics will be the most used modelling method used in this thesis.

Like with the Ising model, the magnetic moment is treated as localised to each atomic

site however the moment is not restricted to up or down states, but instead can orientate

itself along any direction on a unit sphere. The dynamic evolution of the magnetisation

undergoes a damped precession in the presence of a magnetic field and it was Landau

and Lifshitz in the 1930’s that first derived an equation of motion that described the

equation of motion [83]

𝜕M
𝜕𝑡 = −𝛾(M × B) − 𝛾𝛼

𝑀 M × (M × B) (2.4)
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Where M is the magnetisation, B is an external magnetic field and 𝛾 = 1.76 × 1011

T−1 s−1 is the gyromagnetic ratio of the electron. The first term in the above is the

precession of the magnetisation around the magnetic field axis, and the second term

describes the damping towards the field direction. A schematic of the two terms can be

found in Fig. 2.3. The damping parameter, 𝛼, determines the relaxation rate towards

the direction of the effective field. Gilbert later derived an equation that accounted for

damping effects on the precession of the magnetisation and this form of the equation

became the preferred choice in micromagnetic and atomistic simulation methods [84].

The LLG equation in its implicit form as derived by Gilbert was given by

𝜕M
𝜕𝑡 = −𝛾M × H + 𝜆

𝑀 M × 𝜕M
𝜕𝑡 (2.5)

where 𝜆 is the Gilbert damping parameter. The above is difficult to solve numerically

due to the differential being present on both sides of the equation and it can be shown

that in the case of isotropic damping, i.e the damping is equal for all magnetisation

directions, the LL and LLG equations take identical forms (see Appendix A for a

derivation) with the damping parameters for the LL and LLG equation being related

with the expression 𝛼 = 𝛾𝜆/(1 + 𝜆2). For the modelling of atomic spin moments, the

preferred form of the Landau-Lifshitz-Gilbert equation is given as [85]

𝜕S𝑖
𝜕𝑡 = − 𝛾𝑖

(1 + 𝜆2
𝑖 ) 𝜇𝑖

(S𝑖 × H𝑖 + 𝜆𝑖S𝑖 × S𝑖 × H𝑖) (2.6)

where, instead of M, we have S𝑖 which is the unit vector orientation of a spin at lattice

site 𝑖 with magnetic moment 𝜇𝑖, and H𝑖 is the effective field. The exact form and

contributing terms to the effective field in an atomistic framework will be discussed

shortly. The macroscopic magnetisation can be related to S𝑖 via

m = 1
𝑁

𝑁
∑

𝑖
S𝑖 (2.7)

where 𝑁 is the total number of atoms in the system. Much of this thesis will be on the

discussion of AFMs. For AFMs with two opposing sublattices, the above will always
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Figure 2.3: LLG schematic. Image taken from Ref. [86].

be zero and it is therefore useful to describe the order vector in AFMs (known as the

Néel vector) as

n = 1
𝑁𝜅

𝑁𝜅

∑
𝑖

S𝑖 − 1
𝑁𝜈

𝑁𝜈

∑
𝑖

S𝑖 (2.8)

where 𝑛 denotes the Néel vector, and 𝜅 and 𝜈 denote the two different sublattices. ASD

as a modelling tool has proved incredibly useful for the magnetism community.

2.3.1 Generalised Heisenberg Hamiltonian

An atomistic system has a spin Hamiltonian that combines all magnetic interactions

into a single equation. Perhaps the most common form of spin Hamiltonian that con-

tains the three most common terms found in atomistic modelling of magnetic materials:

the exchange energy, anisotropy energy and Zeeman energy, is written as

ℋ = − ∑
⟨𝑖𝑗⟩

𝐽𝑖𝑗S𝑖 ⋅ S𝑗
⏟⏟⏟⏟⏟

exchange

− 𝑑𝑧 ∑
𝑖

(𝑆𝑧
𝑖 )2

⏟⏟⏟⏟⏟
uniaxial anisotropy

− 𝜇𝑠B ⋅ ∑
𝑖

S𝑖
⏟⏟⏟⏟⏟
magnetic field

(2.9)

The constant 𝐽𝑖𝑗 is the exchange coupling constant between site 𝑖 and site 𝑗. The sec-

ond term describes the uniaxial anisotropy with constant 𝑑𝑧 acting on site 𝑖 along the

𝑧-axis. The final term is the Zeeman energy, which describes the interaction between
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the atomistic spins and any applied fields. The Zeeman energy is at a minimum when

the spins are in alignment with the magnetic field. There exists some cases where the

exchange is anisotropic, such as FePt [87] where the exchange can be written as a 3x3

tensor Jij. For isotropic systems, which will be the case for all results chapters, the

isotropic exchange constant can be related to the extended 3x3 tensor through the re-

lation 𝐽𝑖𝑗 = 1
3 Tr {Jij}.

Many additional terms have not been included here as they will not feature for the

remainder of this thesis, but they do deserve a mention because of their importance in

different atomistic studies. For example, there exists other forms of exchange, such as

the Dzyaloshinskii–Moriya interaction (DMI) [88, 89], ℋDMI
𝑖,𝑗 = D𝑖𝑗 ⋅ (S𝑖 × S𝑗), which

competes with the Heisenberg exchange seen above and leads to non-collinear align-

ment of neighbouring atomic spins giving rise to structures such as skyrmions [90], spin

spirals [91] and vortices [92]. The existence of DMI was first proposed and observed in

non-centrosymmetric crystals [88, 93]. Tunable DMI was shown to exist in at the inter-

face between ferromagnetic and heavy metals with a large spin-orbit coupling [94, 95].

The majority of this thesis will be focused on collinear AFMs, and therefore the inclu-

sion of antisymmetric exchange terms in the atomistic Hamiltonian have been neglected.

Contributions from the dipolar interactions, which gives rise to a demagnetising field,

have also been ignored. The demagnetising field that arises from dipole-dipole inter-

actions is generally much weaker on the length scales usually considered in atomistic

modelling and, in the particular case of AFMs, the antiparallel alignment of neigh-

bouring moments cancels out any macroscopic magnetisation, and thus, there is no net

magnetisation to generate the demagnetization field. For this thesis, it will be neglected

because of the focuse on AFMs, and the 𝜇m (typical distances for continuum based

micromagnetics) lengthscales at which it plays an important role compared to mostly

nm sized systems that will be simulated as part of this thesis. The Hamiltonian is
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related to the effective field found in the LLG equation through the relation

H𝑖
eff = −𝜕ℋ

𝜕S𝑖
+ H𝑖

th (2.10)

where H𝑖
th describes the thermal effects, which will be discussed in the next section.

2.3.2 Langevin Dynamics

The addition of a thermal contribution was first proposed by Brown in the 60s [96]. It is

described by a Gaussian white noise process with the spin fluctuations from the thermal

fields being of a much higher frequency than the spin precession [97]. Throughout this

thesis, the noise in the atomistic spin model will remain uncorrelated on all time-scales,

although coloured noise processes have been investigated as an alternative to frequency-

independent noise processes [98, 99]. The stochastic Gaussian white noise process is

described by the following set of equations [100]

⟨𝜉𝑖𝛼(𝑡)⟩ = 0

⟨𝜉𝑖𝛼(𝑡)𝜉𝑗𝛽 (𝑡′)⟩ = 2𝜆𝑘𝐵𝑇
𝛾𝜇𝑠

𝛿𝑖𝑗𝛿𝛼𝛽𝛿 (𝑡 − 𝑡′)
(2.11)

where ⟨...⟩ denotes the average, 𝑖, 𝑗 are atom locations, 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧 are the Cartesian

coordinates, 𝛿𝑖𝑗 is the Kronecker delta function and the prefactor 2𝜆𝑘𝐵𝑇 /𝛾𝜇𝑠 is the

strength of the fluctuations. The Kronecker deltas state that the Cartesian components

of 𝜉𝑖 are uncorrelated, and the random thermal fields acting on different magnetic

moments are independent [101]. The term H𝑖
th in Eq. 2.10 is given by [102]

H𝑖
Th = 𝜉(𝑡)√2𝜆𝑘𝐵𝑇

𝛾𝜇𝑠Δ𝑡 , (2.12)

where 𝑇 is the temperature of the simulation, Δ𝑡 is the size of the timestep, 𝑘𝐵 is the

Boltzmann constant and 𝜉(𝑡) is a Gaussian distribution with a mean of zero.
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2.3.3 Implementation

Several open-source software packages exist each with a wide large range of features

and parallelisation capabilities. Some of the more notable ones are VAMPIRE [85]

originating from the University of York, UPPASD [101] from Uppsala University in

Sweden, and Spirit [103] from the universities of Iceland and Aachen. While a number

of atomistic packages are available, all the atomistic modelling as part of this work has

been completed using a code that has been developed entirely as part of this PhD. The

reason for this is two-fold; firstly, some of the modelling methods and analysis techniques

required as part of this PhD are simply not available in other packages. And secondly,

it is a good exercise in enhancing understanding the key physics in ASD, as well as a

knowledge of high-performance and parallel scientific computing software development.

The atomistic code built as part of this PhD has been written with C++ for the serial

CPU implementation and CUDA for the parallelised GPU implementation. The next

three sections will cover some of the key components of the package, including the

integration method, GPU parallelisation and calculation of the exchange field, which

is the main overhead in the integration process.

Heun Integration

The choice of numerical integration method for the LLG equation is a trade-off be-

tween speed and stability of the numerical solution. The LLG equation can be solved

using implicit schemes which generally allows for greater numerical stability for larger

timesteps. These schemes usually involve solving a set of linear equations, which for

ASD systems with atomic moments numbering in the range 105-106 for a typical sys-

tem, is not a computationally viable option. For ASD it is therefore necessary to

use explicit and semi-implicit solvers. Some of the more notable methods include the

Depondt-Mertens [104] scheme and Mentinks semi-implicit scheme [105]. By far the

the most common integration method for ASD is the Heun scheme [102], which will

be used for all ASD and micromagnetic LLB simulations in the thesis. This method

makes use of a predictor and corrector Euler steps, from which the average gives the

result of the spin orientation at the next time step. A schematic of the method can be
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Figure 2.4: Heun schematic. Adapted from Ref. [106].

found in Fig. 2.4. The predictor is a straightforward Euler step. For the LLG equation,

this would be

S′(𝑡 + Δ𝑡) = S(𝑡) + Δ𝑡𝜕S(𝑡)
𝜕𝑡 (2.13)

the predictor step is used in the corrector step to calculate the final spin position

S(𝑡 + Δ𝑡) = S(𝑡) + 1
2 [𝜕S(𝑡)

𝜕𝑡 + 𝜕S′(𝑡 + Δ𝑡)
𝜕𝑡 ] Δ𝑡 (2.14)

the length of the spin vector is not preserved after the predictor and corrector and

therefore must be renormalised to ensure stability. The other important point is that

the effective field must also be updated for both corrector and predictor steps. The

stochastic term remains the same between the two.

Calculation of the Exchange Interaction

The exchange interaction is usually the main cause of computational expense. If we

imagine an atomistic system whereby each spin interacts with all others, the integration

time scales quadratically process, 𝑂(𝑁2), making simulations using single CPU cores

increasingly difficult with increasing system size. It is often the case that long-range

interaction can be neglected while still accurately capturing the relevant magnetisation

dynamics. However, in cases such as FePt [107], the interactions are usually taken

34



2.3 Atomistic Spin Dynamics

into account up to 5 unit cells away meaning the calculation of the exchange field at

site 𝑖 involves the summation of upwards of 1000 neighbours. To ease the workload it

is possible to perform the summation over the neighbouring spins as a convolution in

systems where there exists a translationally invariant lattice. By transforming the spin

and exchange matrices into Fourier space via a fast-Fourier transform, performing a

straightforward multiplication of the two transformed matrices, then converting back

to real space. The integration time reduces to 𝑂(𝑁 log 𝑁) [108]. In real space the

exchange field for site 𝑖 is given by the equation

𝐻𝑖
ex = ∑

⟨𝑖𝑗⟩
𝐽𝑖𝑗S𝑗 (2.15)

After applying a Fourier transform of the spin lattice and exchange matrix. The field

in Fourier space becomes

𝐻𝑘
ex = 𝐽𝑘S𝑘 (2.16)

The Fourier transform of the exchange matrix has to be performed only once prior to

any integration of the LLG equation. Once the above element-wise multiplication has

been completed in Fourier space, the result is inverse Fourier transformed to give the

updated exchange field.

GPU parallelisation

Graphical Processing Units are pieces of computer hardware that have seen a tremen-

dous amount of development over the course of the 21st century due to the growing

popularity in video games, and, more recently, the birth of cryptocurrency, which re-

lies on GPUs for the verification of transactions. GPUs contain a larger number of

processing cores connected to the global memory of the card. Because the integration

of the LLG equation depends only on the effective field at the previous timestep, the

memory requirements are generally pretty low, with 5-10s GB needed for say a simple

cubic system with nearest neighbour exchange containing upwards of 106 atomic spins.

The entire spin system can be passed to a single GPU without having to transfer data

back and forth from the GPU to CPU for a single integration step. The integration
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Figure 2.5: The relative speed-up of using GPU hardware compared to the single core of an
Intel Xeon 2.6 GHz CPU. The neighbouring exchange interactions were calculated using the
real space method which is a 𝑂(𝑁2) process for single CPU core computation.

of the spin system can be passed to separate GPU cores which can be completed in-

dependently of one another and then transferred back to the CPU for analysis and

producing outputs. The increase in performance can be significant and a comparison

of the relative speedup for three GPUs against a single core of an Intel Xeon 2.6GHz

CPU can be found in Fig. 2.5. The three GPUs differ greatly in performance, with the

Quadro P1000 (blue squares) being a small form factor card, the Tesla P100 (red circles)

being found in some older generation HPC facilities, and the A100 (green triangles)

representing the state of the art in GPU units. Most large-scale tier-1 and tier-2 HPC

facilities are in the process of transitioning to GPU nodes with A100, which can cost

upwards of £5000 in today’s market. The Intel Xeon is a relatively low performance

CPU by today’s standards with much higher performing units being available on the

market. Its selection rests on the fact it is the most widely used CPU on the Sheffield

Hallam HPC cluster.

2.4 The Landau-Lifshitz-Bloch Equation

In a classical micromagnetic framework, the length of the magnetisation vector, M,

cannot vary and therefore simulations with transient changes in temperature are not
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possible. In the case of Atomistic Spin Dynamics (ASD), the change in magnetisation

length arises from the increased magnitude of the noise processes and when averaged

over every spin, there is a reduction in the magnetisation length. In the 1990s, Garanin

[109] derived a macroscopic equation specifically for FMs that could account for dy-

namic changes in magnetisation length known as the Landau-Lifshitz-Bloch (LLB)

equation. Instead of atomistic spins localised to lattice sites, we simulate a collection of

spins, known as a macrospin, using a single equation of motion. A schematic represen-

tation can be found in Fig. 2.6. The number of spins that can be approximated using a

single macrospin generally depends on the process under investigation. For cases where

the magnetisation varies coherently at all points in space, a single macrospin would be

sufficient to accurately describe the dynamics of the system. For systems with spa-

tial variation in the magnetisation, such as domain walls, the size of the macrospin

depends on the exchange length. For simple uniaxial anisotropy can be calculate via

√𝐴/𝐾 where 𝐴 is the exchange stiffness and 𝐾 is the uniaxail anisotropy constant.

For soft materials where 𝐾 is small, the exchange length is often 10s nm thus allowing

for larger cell sizes while ensuring an accurate numerical solution. For hard magnets

such as FePt, the exchange length can be around 1 nm, meaning small cell sizes are

essential to ensure stability [5]. It is common to determine the optimal cell size through

a convergence study, where the relative energy error of the domain wall compared to

an analytical expression for a domain wall is calculated as a function of micromagnetic

cell size.

Unlike the atomistic model where the input parameters are material constants, the

inputs into the LLB model are rather temperature-dependent functions, namely: (i)

the magnetisation, 𝑚(𝑡), which describes how the magnetisation reduces as a function

of temperature. (ii) the susceptibility, �̃�(𝑇 ), which refers to the response of a system

to a magnetic field, 𝜕𝑚/𝜕𝐵, and (iii) the exchange stiffness, 𝐴(𝑇 ), which quantifies the

resistance to changes in the magnetisation orientation of neighbouring spins. These

values can either be taken from experimental measurements, analytical approxima-

tions, or, taken from simulation results from atomistic models as part of a multiscale
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Figure 2.6: Schematic representation of the LLG and LLB models for a ferromagnet. In
an atomistic model, the dynamics are calculated for every spin S𝑖 using the stochastic LLG
equation. The macrospin model described the dynamics of the average magnetisation of a
collection of spins m = ∑𝑖 ⟨S𝑖⟩ /𝑁 , where 𝑁 is the number of spins in the macrospin, using
the LLB equation. Image taken from Ref. [110].

modelling approach. The LLB model was later extended for ferrimagnets with mag-

netisation below the critical temperature [111]. Extensive work already exists using

the LLB formalism for ferro and ferrimagnets, some of the more notable works include

multiscale modelling and simulations of ferromagnetic resonance [26, 112] in FePt, ul-

trafast magnetisation dynamics in ferromagnetic alloys [113], and ultrafast switching in

ferrimagnetic TbFeCo [114]. The general LLB equation excluding any stochastic noise

is given by [109]

1
𝛾

𝑑m𝜈
𝑑𝑡 = − [m𝜈 × Heff,𝜈] + 𝛼𝜈

‖
m𝜈 ⋅ Heff,𝜈

𝑚2𝜈
m𝜈 − 𝛼𝜈

⟂
[m𝜈 × [m𝜈 × Heff,𝜈]]

𝑚2𝜈
(2.17)

As with the LLG equation seen previously, the LLB equation contains a precessional

(term one) and damping term (term three) but it also contains a term that accounts

for the changes in the magnetisation length (term two). The subscript 𝜈 denotes the

sublattice. For ferromagnets, there is just one sublattice. For collinear antiferromag-

nets, there is two. For complex ferrimagnets and non-collinear antiferromagnets it can

take a range of values. Instead of the Gilbert damping, 𝜆, we now have two effective

damping parameters 𝛼⟂ and 𝛼‖ which define the transverse and longitudinal relaxation
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rates. The dimensionless transverse effective damping parameter is defined differently

above and below the critical temperature for ferromagnets. It is given by:

𝛼⟂ =
⎧{
⎨{⎩

𝜆(1 − 𝑇
3𝑇𝐶

), 𝑇 < 𝑇𝐶

𝜆 2𝑇
3𝑇𝐶

, 𝑇 > 𝑇𝐶

(2.18)

There exists no LLB equation capable of describing the above critical temperature in

ferrimagnets but the above holds for 𝑇 > 𝑇𝐶 for collinear AFMs. The longitudinal

damping parameter is defined for all temperatures as:

𝛼FM
‖ = 𝜆 2𝑇

3𝑇𝐶
. (2.19)

The effective field for the ferromagnetic LLB is given by:

Heff = B + H𝑎 + H𝑒𝑥 + H‖ (2.20)

Where B is any externally applied magnetic fields, H𝑎 is the anisotropy field, H𝑒𝑥 is

the exchange field between neighbouring macrospins. It is important to note that the

exchange term, H𝑒𝑥, term describes the exchange between ferromagnetically coupled

macrospins, not the exchange coupled sublattices. The final term, H‖, is the longitudi-

nal field. As with the transverse damping parameter, the longitudinal field is defined

differently above and below the critical temperature

H‖
eff =

⎧{{{
⎨{{{⎩

1
2�̃�‖ (1 − 𝑚2

𝑚2
e
) m, 𝑇 ≲ 𝑇𝐶

− 1
�̃�‖ (1 + 3

5
𝑇𝑁

𝑇 −𝑇𝑁
𝑚2) m, 𝑇 ≳ 𝑇𝐶

, (2.21)

where �̃� and 𝑚𝑒 are temperature-dependant quantities, namely the parallel susceptibil-

ity and equilibrium magnetisation respectively. As already mentioned the LLB model

has already been utilised using a multiscale approach for ferro and ferrimagnets. The

first multiscale description of an AFM using the LLB model will be presented in chapter

3.
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2.5 Spinwaves

Just as phonons are quantised excitations of the crystal lattice, magnons are quantised

excitations in spin dynamics. The propagation of the magnon leads to a periodic change

in the spin across the lattice, known as a spin-wave [115]. In atomistic spin dynamics, we

take the classical limit and the quantisation of spin is replaced by a continuous deviation

on the unit sphere. A classical spin-wave is therefore a spatially periodic variation in the

spin orientation [106]. A schematic can be found in Fig. 2.7. The spin-wave dispersion

relation, i.e. the spinwave frequencies as a function of the wavevector, 𝜔(𝑘), can be

calculated theoretically using both atomistic spin dynamics and linear spinwave theory

(LSWT). A brief mathematical description of dispersion relation calculations using

ASD and LSWT will be given over the next couple of sections. Experimentally, the

spinwave dispersion can be determined from neutron scattering experiments because

of the coupling of neutron spin to the electronic spin [116]. The first measurement of

the SW dispersion using neutron scattering was reported by Elliott and Lowde [117]

in the 1950s who measured a quadratic scaling with 𝜔 ∝ 𝑘2 for low values of 𝑘 in

FM Fe. The first measurement of the linear scaling of the dispersion for low values

of 𝑘 predicted for AFMs was first seen in hematite in 1960 by Goedkoop and Riste

[118]. Since then the interest in spinwaves has grown significantly culminating in the

formation of a research area known as magnonics, which explores the idea of using

spinwaves instead of electrical currents as carriers of digital information [119, 120, 60,

121]. The main advantage behind using spinwaves to transmit information is that it

promises lower energy dissipation than traditional electronics, where large amounts of

energy is lost as heat. In multiscale modelling of magnetic materials, the dispersion

relation is an important validation of the magnetic parameters calculated using ab-

initio methods, especially in the case of systems with antiferromagnetic, DMI or other

non-trivial magnetic ordering, where the atomistic system cannot be approximated by

simply using a nearest-neighbour model. Modelling methods can be used to predict

the microscopic properties such as the exchange constants and anisotropy, with neutron

scattering experiments providing independent experimental confirmation.
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Figure 2.7: Schematic of a spinwave propagation along a ferromagnetic 1D spin chain. The
apparent change in length in the top pane is due to the visualisation angle, not as a result of
physical changes in the spin length. Bottom pane shows a top-down view of the spin orientation.

2.5.1 Linear Spin Wave Theory

Linear Spin Wave Theory (LSWT) is an analytical approach that can be applied at

low temperatures to calculate the spinwave dispersion. It assumes small fluctuations in

the spin orientation and overall long-range order from mean-field theory. Its success in

describing results from neutron scattering experiments has resulted in the creation of

dedicated software packages for LSWT calculations [122, 123]. A simple derivation of

the dispersion relation for a system with a single atom in the unit cell can be found in

section 4.2 of Ref. [106], but will be included here as the equations will be frequently

referenced. Beginning with the LLG equation and neglecting the damping term and

constants in Eq. 2.6 and also assuming our Heisenberg Hamiltonian only contains

exchange interaction leaves

𝜕S𝑖
𝜕𝑡 = ∑

𝑗
𝐽𝑖𝑗 (S𝑖 × S𝑗) (2.22)

Assuming the spins are the mean value plus some small deviation from the ground

state, i.e

S𝑖 = ⟨S⟩ + 𝛿S𝑖 (2.23)

The equation of motion becomes:

𝜕
𝜕𝑡 (⟨S⟩ + 𝛿S𝑖) = (⟨S⟩ + 𝛿S𝑖) × ∑

𝑗
𝐽𝑖𝑗 (⟨S⟩ + 𝛿S𝑗)

𝜕
𝜕𝑡𝛿S𝑖 = ∑

𝑗
𝐽𝑖𝑗 ⟨S⟩ × 𝛿S𝑖 − ⟨S⟩ × ∑

𝑗
𝐽𝑖𝑗𝛿S𝑗

(2.24)
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given that ⟨S⟩ is a constant and taking a Fourier transform:

𝜕
𝜕𝑡𝛿S𝑘 = ∑

𝑗
𝐽𝑖𝑗 ⟨S⟩ × 𝛿Sk − ⟨S⟩ × 𝐽k𝛿Sk

𝜕
𝜕𝑡𝛿S𝑘 = (𝐽0 − 𝐽k) ⟨S⟩ × 𝛿Sk

(2.25)

where 𝐽0 is just the sum over the exchange interactions and the Fourier transform of

∑𝑗 𝐽𝑖𝑗𝛿S𝑗 is the same as the convolution taken between Eqs. (2.15) and (2.16). If we

assume the magnetisation is along the 𝑧-axis (⟨S⟩ = (0, 0, ⟨𝑆⟩)) and and assume wave

like solutions
𝛿𝑆𝑥

k(𝑡) = 𝛿𝑆k(0)e+i𝜔𝑡

𝛿𝑆𝑦
k(𝑡) = 𝛿𝑆k(0)e−i𝜔𝑡

𝛿𝑆𝑧
k(𝑡) = 0

(2.26)

the equation of motion becomes

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛿𝑆𝑥
k

𝛿𝑆𝑦
k

𝛿𝑆𝑧
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= −i (𝐽0 − 𝐽k) ⟨𝑆⟩

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−i𝜔k 0 0

0 i𝜔k 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛿𝑆𝑥
k

𝛿𝑆𝑦
k

𝛿𝑆𝑧
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.27)

Finally, we end with the dispersion relation

𝜔k = (𝐽0 − 𝐽k) ⟨𝑆⟩ (2.28)

LSWT is usually taken as good approximation for temperatures 𝑇 < 0.75𝑇𝐶 [106].

For FMs and collinear AFMs, the magnetisation in this range can be assumed to scale

linearly with temperature. Beyond this point, spinwave-spinwave interactions become

important leading to a breakdown in agreement between ASD and LSWT [106]. It

is possible to derive the well-known equation for the spinwave dispersion for FMs by

assuming nearest-neighbour coupling, 𝐽 , with two neighbours along the 𝑥 direction

with separation, 𝑎, at 𝑇 = 0K (⟨𝑆⟩ = 1). We can pull out the prefactor 𝛾/𝜇𝑆 which
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2.5 Spinwaves

we can assume was absorbed into the exchange constant in Eq. 2.22 to give

𝜔𝑘𝑥
= 𝐽0 − 𝐽k = 2𝐽𝛾

𝜇𝑆
− ∑

𝑛.𝑛

𝐽𝛾
𝜇𝑆

𝑒𝑖𝑘𝑥𝑟

= 2𝐽𝛾
𝜇𝑆

− 𝐽𝛾
𝜇𝑆

𝑒𝑖𝑘𝑥𝑎 − 𝐽𝛾
𝜇𝑆

𝑒−𝑖𝑘𝑥𝑎

= 2𝐽𝛾
𝜇𝑆

(1 − 𝑐𝑜𝑠(𝑘𝑥𝑎))

(2.29)

where 𝑛.𝑛 represents a sum over the nearest neighbours. For materials with more

than one atom per unit cell, such as ferrimagnets and antiferromagnets, the spinwave

frequencies are given by the eigenvalues of the matrix [124]

⎡
⎢⎢
⎣

∑𝑁
𝑛 𝐽 𝑙𝑛

0 − 𝐽 𝑙𝑙
k −𝐽 𝑙𝑛

k

−𝐽 𝑙𝑛 ∗
k ∑𝑁

𝑙 𝐽𝑛𝑙
0 − 𝐽𝑛𝑛

k

⎤
⎥⎥
⎦

(2.30)

where 𝑁 is the number of atoms per unit cell, 𝑙, 𝑛 are the atom indices, and ∗ denotes

the complex conjugate.

2.5.2 Calculation of the Spin Waves Dispersion Within Atomistic Spin

Dynamics

The dispersion relation can be calculated directly from atomistic spin dynamics via

calculations of the dynamic structure factor [101]:

𝒮(k, 𝜔) = 1
𝑁

√
2𝜋 ∑

r,r′
eik⋅(r−r′) ∫

+∞

−∞
ei𝜔𝑡𝐶 (r − r′, 𝑡) d𝑡 (2.31)

where 𝑁 is the number of terms in the summation and 𝐶 (r − r′, 𝑡) is the correlation

function, defined as

𝐶 (r − r′, 𝑡) = ⟨Sr(𝑡)Sr′(0)⟩ − ⟨Sr(𝑡)⟩ ⟨Sr′(0)⟩ (2.32)
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2.5 Spinwaves

Computationally, the above is easily calculated by taking a discrete fast Fourier trans-

form (FFT) in space and time of the spin lattice [106]

𝒮(k, 𝜔) = FT(𝑡) [𝒲 (FT(r) [S(r, 𝑡)])] (2.33)

where 𝒲 is usually the Hamming windowing function [125]

𝒲(𝑡) = 0.54 − 0.46 cos ( 2𝜋𝑡
𝜏 − 1) (2.34)

The calculations of dispersion relations in this thesis are on periodic lattices with peri-

odic boundary conditions - ideal for spatial Fourier transforms. However, the stochastic

dynamics in the time domain means the simulation may end with a truncation of the

periodicity in time. The windowing function reduces the weights of the time series data

points towards the edge of the simulation window, reducing spectral leakage. In cases

where the spin-lattice is not periodic, the system size is doubled in size with spin values

of 0 to prevent pollution from wrap-around data from the far ends.
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Chapter 3

Multiscale Modelling of Mn2Au:

From ab-initio to

Micromagnetics

“And now,” cried Max, “let the wild rumpus start!”

– MAURICE SENDAK, Where the Wild Things Are.
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3.1 Introduction

3.1 Introduction

As mentioned in the introduction to this thesis, the main problem with AFMs is the

ability to control, as well as read-out, the magnetisation dynamics because of the lack of

net magnetisation. Two materials, Mn2Au and CuMnAs [65, 126–130] have been pro-

posed for device applications because of the ability to control the magnetic state using

electric fields. The induced torque as a result of the application of electrical currents,

known as Néel spin-orbit torques (NSOT), is sufficient to induce Néel vector dynamics

as a result of the strong spin-orbit coupling in these materials. Both materials have

relatively high critical temperatures with experimental measurements placing the Néel

temperature of Mn2Au between 1300 and 1600 K [131] and around 480 K for CuMnAs

[132], making them ideal for room temperature applications. Experiments so far have

not taken advantage of the intrinsically fast dynamics of AFMs with current-driven

switching being attributed to domain wall processes [62, 65], rather than taking ad-

vantage of the THz frequency resonance mode. Of the two materials introduced here,

The larger anisotropy and higher critical temperature make Mn2Au a more promising

candidate for future applications.

In this chapter, we present a complete multiscale model of the AFM Mn2Au. The

multiscale model builds on from previously completed ab-initio calculations By S. Ruta

and J. Jackson. Here, we calculate the thermal equilibrium properties using ASD and

use the results as input into a macrospin AFM-LLB model. The transverse dynamics

are presented in the context of antiferromagnetic Resonance (AFMR) with comparisons

made to ASD and analytical approximations. We then introduce the longitudinal term

in the AFM-LLB model and compare the dynamics from ASD and LLB simulations

for step and transient temperature changes. Finally, as an example where both the

longitudinal and transverse components of the AFM-LLB are important, we present a

comparison for thermally induced domain wall motion induced by a temperature gra-

dient along a thin film. The process of starting with first-principles calculations and

ending with a description on micromagnetic length scales is known as multiscale mod-

elling. This is the first study of its kind where both the transverse and longitudinal
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3.2 Atomistic Parameterisation

processes of a collinear AFM has been accurately described within an LLB framework.

The main results of this chapter are published in:

• Hirst, J., Atxitia, U., Ruta, S., Jackson, J., Petit, L., & Ostler, T. (2022).

Temperature-dependent micromagnetic model of the antiferromagnet Mn2Au: A

multiscale approach. Phys. Rev. B, 106(9), 094402.

3.2 Atomistic Parameterisation

3.2.1 Exchange Constants and Magnetic Moment

The parameters for the atomistic model can be obtained via two methods. The first op-

tion is to reverse engineer the values from experimental observations. For ferromagnets,

the critical temperature can easily be related to the exchange constant 𝐽𝑖,𝑗 through a

mean-field approximation [133]

𝐽𝑖𝑗 = 3𝑘𝐵𝑇c
𝜖𝑧 (3.1)

where 𝑘𝐵 is the Boltzmann constant, 𝑧 is the number of nearest neighbours. The value

𝜖 is crystal structure dependent and is calculated using spin-wave theory. An extensive

list of 𝜖 values can be found in Ref. [133]. The magnetic moment can be easily related

to the saturation magnetisation, 𝑀𝑠 through the relation 𝜇𝑠 = 𝑀𝑠𝑎3/𝑛, where 𝑎3 is

the volume of the unit cell and 𝑛 is the number of atoms in the unit cell. As discussed

in section 2.1, another option for the parameterisation of the microscopic constants is

to use of ab-initio methods such as DFT. One method that goes beyond standard DFT

approaches is the quasiparticle self-consistent GW (QSGW) approximation [134] which

has been used previously to provide an accurate description of complex magnetic mate-

rials [135–137]. The ”G” and ”W” in the approximation represent the Green’s function

and screened Coulomb Interactions. A thorough description of the GW approxima-

tion can be found in Ref. [138]. The QSGW calculations of the magnetic moment,

anisotropy and exchange constants were not performed as part of this thesis, but by

collaborators under the scope of the overall project. The mathematical details of the

QSGW method are not presented here, but in summary, the QSGW method calculates

the electron density (as is the case with DFT) then creates a quasiparticle self-energy
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3.2 Atomistic Parameterisation

using many-body perturbation theory which is iterated until it is minimised. This self-

energy is calculated using the GW approximation. The main benefit to this method is

that it is able to capture how the behaviour of an electron in the system is influenced by

its own interactions with other electrons, which is usually underestimated in standard

DFT [139]. In general, QSGW is more computationally demanding but is considered a

more accurate and systematic method [134]. The ab-initio QSGW results for Mn2Au

presented in this section were performed by S. Ruta and J. Jackson. The validation of

the parameters, namely the calculation of the Néel temperature and spinwave disper-

sions were performed as part of this PhD. Simulation results for these quantities will

be presented later in this chapter.

The calculations were performed using a full-potential linear muffin-tin orbital (FP-

LMTO) method using the Questaal software package [140]. The structure used as the

input in the calculations was taken from Ref. [131] with lattice constants 𝑎 = 𝑏 = 3.30
Å and 𝑐 = 8.537 Å. The unit cell for Mn2Au can be found as an inset in Fig. 3.1 to

aid with visualisation. To reduce computational workload while still accurately cap-

turing accurate magnetisation dynamics and temperature-dependent properties. The

first four sets of neighbouring exchange interactions are used. These are shown by red

circles in Fig. 3.1. For the exchange constants 𝐽1, 𝐽2 & 𝐽3 there are four interactions

for each atomic site, for 𝐽4 there is just one. The magnetic moment was determined

to be 𝜇𝑠 = 3.87𝜇𝐵. Experiments by Barthem et al. obtain a value of ∼ 4𝜇𝐵 with

theoretical work by Shick et al. [141] as well as Selzer et al. [142] calculating values of

𝜇𝑠 = 3.20𝜇𝐵 and 𝜇𝑠 = 3.74𝜇𝐵, respectively.

3.2.2 Anisotropy

The ab-initio calculations yield a strong negative uniaxial anisotropy constant along the

𝑧-direction of 𝑑𝑧 = 0.903 meV, which, using the relation 𝐻𝑎 = 2𝑑𝑧
𝜇𝑠

equates to a field of

8 T. The Néel vector therefore sits in the 𝑥𝑦-plane with no preferential direction within

the 𝑥𝑦-plane. In this chapter, an additional uniaxial anisotropy constant is included

along the [100] direction with strength 𝑑𝑥 = 0.035 meV as calculated by Shick et al.
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3.3 Spinwave Dispersion

Constant Value Unit
Lattice constant, 𝑎 3.330 Å
Lattice constant, 𝑐 8.537 Å
Magnetic moment, 𝜇𝑠 3.8663 𝜇𝐵
Exchange constant, 𝐽1 -5.3422 meV
Exchange constant, 𝐽2 0.6484 meV
Exchange constant, 𝐽3 -0.6341 meV
Exchange constant, 𝐽4 -6.8986 meV
Sum of FM exchange, 𝐽0,𝑣𝑣 2.5934 meV
Sum of AFM exchange, 𝐽0,𝑣𝜅 -30.8040 meV
Uniaxial anisotropy in 𝑧 direction, 𝑑‖ -0.0663 meV
Uniaxial strain anisotropy in 𝑥 direction, 𝑑∗

‖ 0.0026 meV

Table 3.1: Parameters used in the atomistic model of Mn2Au. The damping is varied in some
sections and is therefore not included in the above table. The anisotropy constants used in this
chapter differ from those in chapters 4 & 5.

[141] thus giving the Néel vector a single favoured orientation. It will be seen in chapters

4 and chapter 5 (which looks at reversal in Mn2Au and Mn2Au/Py Bilayers) that a

different, more careful treatment of the anisotropy is used. The main objective of this

chapter is the verification of the AFM-LLB model, and a simple uniaxial anisotropy

such that the system has a single preferential orientation makes the validation easier,

especially when it comes to temperature-dependent domain wall dynamics. It is known

that there exists a fourth-order anisotropy constant that keeps the Néel vector along

one of 4 directions in the 𝑥𝑦 easy-plane [142, 143] that approximately scales with the

temperature as ∼ 𝑚10. This would make calculations of domain wall widths and

velocities incredibly computationally expensive within the atomistic model at elevated

temperatures due to the weakening of the anisotropy. We therefore opt to use a single

strain uniaxial constant, 𝑑∗
‖ within easy-plane to for the proof of concept of the AFM-

LLB model.

3.3 Spinwave Dispersion

The spinwave dispersion for bulk Mn2Au is shown in the top pane of Fig. 3.2. Atom-

istic Simulations were performed at four different temperatures of 0.1K (blue), 300K
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Figure 3.1: The exchange interaction strength as a function of distance with the Mn2Au
unit cell shown as an inset. The exchange interactions used in this work are labelled 𝐽1 to 𝐽4.
The exact values can be found in Table 3.1. The Au atoms are shown in black and the Mn
sublattices/planes are shown in blue and pink.

(red), 600K (orange) and 900K (green). The methods for calculating the dispersion

are outlined in Sec. 2.5.1 & 2.5.2. The bottom left panel in Fig. 3.2 shows the first

Brillouin zone, with the path for the dispersion curve shown as a red line. The axes

have been arbitrarily scaled to aid in visualisation of the path. the atomistic data, the

points represent the highest amplitude frequency for each k-point. The data for each

k-point is smoothed to prevent outliers from being identified as maximum values. The

damping was set to a low value of 𝜆 = 0.001 to increase the lifetime of the spinwave

modes. As expected, the agreement at close to 0 K is perfect. With increasing tem-

perature, the LSWT underestimates the frequencies, particularly at the edge of the

Brillouin zone due to spinwave-spinwave interactions. For the LSWT calculations, the

temperature dependence is found by scaling the spinwave spectrum at 0K to the equi-

librium magnetisation. This is equivalent to ⟨𝑆⟩ in Eq. (2.28). Ideally, the spinwave

spectrum would have been calculated for all the high symmetry points however compu-
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Figure 3.2: Above: Spinwave Dis-
persion for Mn2Au for tempera-
tures of 0.1K (blue), 300K (red),
600K (orange) and 900K (green).
Points are results from atomistic
simulations. and solid lines are
from LSWT. Left: The first Bril-
louin zone (black lines) and high
symmetry points (red points) for
Mn2Au. The solid red lines show
the path for the dispersion curve
above. The axes have been arbi-
trarily scaled to aid in visualisation.

tationally this can be rather problematic. The transition from symmetry points where

the incremental ratio in Δ𝑘𝑥 ∶ Δ𝑘𝑦 ∶ Δ𝑘𝑧 contains non-integer values means you cannot

move exactly along the desired path leading to inaccurate dispersion curves. This can

be alleviated to some degree by increasing the system size in the atomistic simulations

but for some paths, this was not a feasible option. Regardless, LSWT and ASD show

good agreement for the calculated paths. A comparison to experiment would have been

key for the validation of the 𝐽𝑖𝑗 values but at present, no data exists in the literature

for this material.

3.4 Equilibrium Magnetisation and Susceptibility

The need to calculate the temperature-dependent properties is two-fold; firstly, for com-

parison to experimentally measured 𝑇𝑁 . And secondly, to obtain profiles for the input
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Figure 3.3: The sublattice magnetisation of Mn2Au as a function of temperature. The solid
line is a fit to the expression 𝑀/𝑀𝑆 = 𝑚𝑒(𝑇 ) = (1 − 𝑇 /𝑇𝑁)𝑏. The circular points show the
longitudinal susceptibility, �̃�‖(𝑇 ), the fit function can be found in Eq. (3.4). The dotted line
shows the longitudinal susceptibility as calculated using a mean-field approximation.

functions in the LLB model, namely the susceptibility, magnetisation and exchange

stiffness. For the susceptibilities and magnetisation as a function of temperature (the

exchange stiffness is presented in a later section), simulations were conducted with

30 × 30 × 30 unit cells of Mn2Au with periodic boundary conditions. The damping

parameter, 𝜆, was set to 1.0 for both sublattices to allow for a faster equilibration. The

magnetisation is shown by the empty squares in Fig. 3.3. The solid blue line shows a

fit to the equation 𝑀/𝑀𝑆 = 𝑚𝑒(𝑇 ) = (1−𝑇 /𝑇𝑁)𝑏 with free fitting parameters 𝑇𝑁 and

𝑏. These provide an estimate for the critical temperature for an infinite bulk system.

From the fit values of 𝑇𝑁 = 1335 K and 𝑏 = 0.34 are obtained. For an infinite system,

the parameter 𝑏 approaches 1/3 in the Heisenberg model with frequency-independent

white noise. A discussion of the scaling of 𝑚(𝑇 ) using different approaches can be

found in Ref. [99].

The susceptibility is calculated in the atomistic model by measuring the fluctuations
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3.4 Equilibrium Magnetisation and Susceptibility

of the magnetisation along a specific Cartesian direction

�̃�𝛼(𝑇 ) = 𝜇𝑠𝑁
𝑘𝐵𝑇 (⟨𝑆2

𝛼⟩ − ⟨𝑆𝛼⟩2) (3.2)

where 𝛼 = 𝑥, 𝑦, 𝑧 is the Cartesian components of the magnetisation, ⟨…⟩ denotes an

average over all spins, and 𝑘𝐵𝑇 is the thermal energy. Due to the strong uniaxial

anisotropy constant 𝑑𝑧 the parallel anisotropy is taken as an average of the 𝑥 and 𝑦
components of the sublattice magnetisation. The parallel susceptibility is therefore

given by the equation

�̃�‖(𝑇 ) = 𝜇𝑠𝑁
2𝑘𝐵𝑇 (⟨𝑆2

𝑥⟩ + ⟨𝑆2
𝑦⟩ − ⟨𝑆𝑥⟩2 − ⟨𝑆𝑦⟩2) (3.3)

Because of the divergence at the critical temperature, alongside the magnetisation

curve, can be a good way to calculate critical temperature. The parallel susceptibility

is fitted to a high-order polynomial that is not derived from any kind of mean-field

approximation but has been selected such that it diverges at the 𝑇𝑁 and captures

the overall general trend well. Similar fitting processes have been used previously for

multiscale models of both ferrimagnetic GdFeCo [97] and ferromagnetic FePt [107].

Because of the divergence, the fit parallel susceptibility is split below and above 𝑇𝑁 .

The piece-wise fit function is given by the equation

�̃�‖(𝑇 ≲ 𝑇𝑁) = 𝑎0
1

𝑇𝑁 − 𝑇 +
8

∑
𝑖=1

𝑎𝑖(𝑇𝑁 − 𝑇 )𝑖 (3.4)

�̃�‖(𝑇 ≳ 𝑇𝑁) = 𝑏0
1

(1 − 𝑇 /𝑇𝑁) + 𝑏1
1

(1 − 𝑇 /𝑇𝑁)2 (3.5)

where 𝑎𝑖 and 𝑏𝑖 are the free fitting parameters. A table of the values to the atomistically

calculated susceptibility can be found in Tab. 3.2. The pink circles and solid pink line

in Fig. 3.3 show the longitudinal susceptibility calculated from ASD and the fit using

Eq. (3.4) and coefficients found in Tab. 3.2. Good agreement is observed between ASD

and the fit for all simulated temperatures.
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3.5 Transverse Relaxation

Coefficient Value
𝑎0 0.000301666637605849 × 100

𝑎1 −3.49274821434772 × 10−6

𝑎2 1.41094494279237 × 10−8

𝑎3 −3.37215645540686 × 10−11

𝑎4 5.16808134953559 × 10−14

𝑎5 −5.04770001631655 × 10−17

𝑎6 3.02451608272015 × 10−20

𝑎7 −1.01229606567523 × 10−23

𝑎8 1.44928804153567 × 10−27

𝑏0 −0.000612249925645841 × 100

𝑏1 6.10837120551714 × 10−07

Table 3.2: Table of coefficients from the fitting of Eq. (3.4) to the longitudinal susceptibility
calculated using atomistic spin dynamics.

3.5 Transverse Relaxation

To validate the transverse dynamics of the AFM-LLB, we use a form of the LLB

equation, which neglects any changes in the magnetisation length and purely describes

the transverse magnetisation dynamics:

𝑑m𝜈
𝑑𝑡 = −𝛾 [m𝜈 × Heff,𝜈] − 𝛾𝛼⟂

[m𝜈 × [m𝜈 × Heff,𝜈]]
𝑚2𝜈

(3.6)

where m𝜈 is the macrospin magnetisation for sublattice 𝜈. As we are dealing with

AFMs, the two sublattices will be denoted by subscripts 𝜈 and 𝜅. For now, we are

only considering a single macrospin with two sublattices. As with the LLG equation,

there is a precessional and a damping-like term. The key differences in the above lie in

the effective field, Heff,𝜈. The effective field in Eq. (3.6) for such a system with fixed

magnetisation length, i.e., constant temperature, is given by

Heff,𝜈 = B + H𝑎,𝜈 + 𝐽0,𝜈𝜅
𝜇 Π𝜅 (3.7)

where B is the applied magnetic field, H𝑎,𝜈 is the anisotropy field, 𝐽0,𝑣𝜅 is the sum of the

inter-lattice exchange (see Table 3.1), and Π𝜅 is given by, Π𝜅 = − [m𝜈 × [m𝜈 × m𝜅]] /𝑚2
𝜈
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3.5 Transverse Relaxation

where m𝜅 is the magnetisation vector of the second sublattice. The anisotropy field

in the macrospin model, H𝑎,𝜈, is defined as H𝑎,𝜈 = 2𝐾(𝑇 )
𝑀𝑆(𝑇 ) where the temperature de-

pendence of the anisotropy constant is governed by Callen-Callen scaling for uniaxial

second order anisotropy; 𝐾(𝑇 ) = 𝐾(0)𝑚3
𝑒(𝑇 ) [144].
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Figure 3.4: The 𝑚𝑧 motion following a rotation of both sublattices by 20 degrees out of the
easy plane at (a) 𝑇 = 300 K, (b) 𝑇 = 1000 K and (c) 𝑇 = 1200 K. Solid line are the AFM-LLB
model and points are ASD. The dotted line shows the relaxation of the transverse dynamics.
The relaxation time can be related to 𝛼⟂ through with Eq. (3.8).

Magnetic oscillations in AFMs have a resonance frequency in the THz range, orders

of magnitude faster than the GHz range observed in ferromagnets. As a result of the

complexity in current THz-signal generation methods [145–147], AFM oscillators have

been proposed for use in adjustable room-temperature THz-frequency signal devices

[56–58]. While attempts to experimentally measure the in-plane AFMR in Mn2Au

driven by Néel spin-orbit torques have previously failed [148], it piqued the magnetism

community’s interest, highlighting the importance of not only measuring, but simulat-

ing the resonant frequency in AFMs. Since the AFMR essentially sets the speed limit

of the AFM dynamics, calculating this quantity is highly relevant for the development

of ultrafast memory applications. To calculate the AFMR, the system is initially set to
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3.5 Transverse Relaxation

relax to its equilibrium magnetisation for a given input temperature. Once relaxed, all

spins are rotated by 20 degrees out of the easy 𝑥𝑦-plane inducing a torque and thereby

exciting the AFMR mode. The transverse relaxation time, 𝜏⟂, following the release of

the spins after the rotation can be related to the effective field and transverse damping

via

𝜏⟂ = 𝑚𝑒
𝛼⟂𝜔ex

(3.8)

where 𝜔ex = 𝛾𝐻𝐸 = 𝛾 𝐽0,𝜈𝜅
𝜇𝑠

𝑚𝑒. A comparison of the out-of-plane 𝑚𝑧 dynamics at

temperatures of 300K, 1000K and 1200K for ASD and AFM-LLB with a value of 𝜆 =
0.01 can be seen in Fig. 3.4. The value of 𝜏⟂ was found by fitting the atomistic sublattice

magnetisation dynamics to the equation 𝑚𝑧(𝑡)/𝑚𝑒 = cos(𝜔AFMR𝑡) exp(−𝑡/𝜏⟂). The

relaxation rate, exp(−𝑡/𝜏⟂), is shown as dotted lines in Fig. 3.4, the solid lines are the

AFM-LLB dynamics and the points are ASD. The AFMR frequency of the dynamics

was extracted via Fast Fourier Transform (FFT) of 𝑚𝑧. The results of this frequency

analysis can be found in Fig. 3.5 showing excellent agreement between the models and

the analytical expression. The analytic expression for the AFMR, shown by the solid

line in Fig. 3.5, is given by:

𝑓 = 𝛾
2𝜋√𝐻𝐴(𝐻𝐴 + 2𝐻𝐸) (3.9)

Additional simulations following a rotation out of the 𝑥𝑦-plane were conducted for

damping parameters of 𝜆 = 0.05 (blue squares) & 0.001 (orange triangles), as shown in

Fig. 3.6. The relaxation time for each damping value has been normalised to the value

of 𝜏⟂ at 𝑇 = 0 K. The solid lines show the relaxation time as predicted by Eq. (3.8),

the empty points show the results from ASD simulations and the solid blue circles show

the relaxation time of AFM-LLB simulations with a damping of 0.01. The scaling of

the relaxation time is identical for all damping values in the AFM-LLB model. In the

atomistic simulations, it was observed that for the lowest value of 𝜆, the relaxation

time of the transverse dynamics decreased approaching 𝑇𝑁 . With increased damping,

the sublattices spend a greater amount of time out of equilibrium with one another and

thus generate a larger exchange field. Further from equilibrium, a larger amount of
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Figure 3.5: AFMR frequency of Mn2Au. The solid line is the result from Eq. (3.9), square
points are from ASD, and circular points are the LLB simulations respectively.

angular momentum can be transferred between sublattices leading to a faster transverse

relaxation. The effect of increased angular momentum transfer is also the reason why

the longitudinal dynamics in AFMs relax faster than ferromagnets [149]. This effect is

naturally captured in the ASD model because of the exchange coupling at the atomic

level between antiferromagnetically coupled spins, but is not taken into account in the

AFM-LLB. The exact form of this damping dependence should be investigated as part

of future work.

3.6 Longitudinal Relaxation

As mentioned in the introductory chapter, much effort in recent years has gone into the

understanding of femtosecond laser-pulse induced ultrafast magnetisation dynamics in

FM and FiMs while the mechanism behind demagnetisation on this timescale still being

broadly under debate. The quenching of the magnetic order in AFMs is less known

because of the difficulties in accessing the magnetic information experimentally but is

likely to be studied more as interest continues to grow in this class of magnetic materials.

To describe the quenching in Mn2Au, we introduce a term in the LLB equation that
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Figure 3.6: The transverse relaxation time, 𝜏⟂ as function of temperature. Empty points
represent ASD simulations with values of 𝜆 = 0.05 (square), 0.01 (circle) and 0.001 (triangles).
Solid circles are the AFM-LLB model. The solid line is given by Eq. (3.8).

accounts for changes in the magnetisation length. Here we are only interested in the

longitudinal dynamics – parallel to the magnetisation direction – and can therefore

ignore the precessional and damping terms presented in the previous section

𝑑m𝜈
𝑑𝑡 = 𝛾𝛼AF

‖
(m𝜈 ⋅ Heff,𝜈)

𝑚2𝜈
m𝜈 (3.10)

The effective field for a purely longitudinal relaxation (where one can ignore any exter-

nal, anisotropy or inter-macrospin exchange fields) is given by

H‖
eff,𝜈 =

⎧{
⎨{⎩

1
2�̃�‖

(1 − 𝑚2
𝜈

𝑚2
e
) m𝜈, 𝑇 ≲ 𝑇𝑁

− 1
�̃�‖

(1 + 3
5

𝑇𝑁
𝑇 −𝑇𝑁

𝑚2
𝜈) m𝜈, 𝑇 ≳ 𝑇c

(3.11)

where �̃�‖ is the reduced longitudinal susceptibility. In this work we opt to use the

susceptibility taken from a MFA [150]. We find that the agreement in the longitudinal

relaxation between ASD and LLB when using �̃�‖ taken from ASD simulations gave

large discrepancies between the two models at lower temperatures while using �̃�‖ taken

from a MFA gave excellent agreement for all temperatures. This problem has been
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atomistic modelling. Symbols represent the atomistic spin dynamics results and the solid lines
correspond to the AFM-LLB. No stochastic noise was present in the AFM-LLB simulations.

noted elsewhere - Vogler et al. mention that calculations of �̃�‖ only work for hard

magnetic materials with strong uniaxial anisotropy [151] with similar problems having

been identified in ferrimagnets [152]. The exact reason for the difference is unclear

and should be the subject of future investigation. The method of calculating the MFA

longitudinal susceptibility follows directly from [110]. Using the same value for the

exchange constants in ASD and MFA approaches yields a higher critical temperature

compared to the atomistic results (𝑇 MFA
𝑁 > 𝑇 ASD

𝑁 ). Therefore, we rescale the exchange

constant to match the value for the Néel temperature extracted from Fig. 3.3. The

process of using a scaled MFA susceptibility has been seen previously in atomistic

modelling of GdFeCo [153]. Assuming that the macrospin magnetisation remains along

single axis, m𝜈 = [𝑚𝜈, 0, 0], Eq. (3.10) simplifies to

𝑑𝑚𝜈
𝑑𝑡 = 𝛾𝛼AF

‖ 𝐻‖
eff,𝜈. (3.12)
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Figure 3.8: The damping dependence of 𝛽. The MFA LLB equation [133] is fitted to the
longitudinal dynamics from atomistic simulations following a step change in temperature from
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Experimental works studying the ultrafast magnetic order dynamics in the FM and

AFM phases of dysprosium (Dy) have shown that the AFM phase exhibits faster lon-

gitudinal dynamics than the FM phase [149] with the speed up being attributed to the

exchange of angular momentum between sublattices. Dy is known to have FM order

at lower temperatures but undergoes a phase transition to a helical AFM phase in the

temperature range 85K to 178K [154] thus allowing for a direct comparison of FM and

AFM dynamics in the same material. One of the key figures from this work can be

found in Fig. 3.9. The symbols denote the normalised magnetic order parameter for

the FM (blue) and AFM (orange) configurations, with the lines showing exponential

fits to the data. It was found that following excitation from a 50 fs laser, the AFM

order decreased with an exponential time constant of 290 fs followed by a slower 14 ps

constant, compared to a single relaxation constant of 3.2 ps for the FM. They find the

maximum rate of angular momentum transfer is over 5 times higher for AFM than FM

order making quenching of AFM order more energy efficient.
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3.6 Longitudinal Relaxation

Figure 3.9: (a) Pump-probe delay scans in the FM (blue) and AFM (orange) phase for
an absorbed laser fluence of 1 mJ/cm2. The symbols denote the normalised magnetic order
parameter; the lines denote exponential fits to the data. (b) The first 9 ps of the delay traces
on an enlarged scale. Taken from Ref. [149].

For Mn2Au, the absence of a FM phase makes such a comparison impossible. However,

a recent theoretical work by Jakobs & Atxitia [155] has concluded that the speed up

of the AFM dynamics comes from the exchange-enhancement of the effective damping

parameter

𝛼AF
‖ = 𝛼FM

‖ (1 + 2
𝑧 |𝑚𝜈|𝛽

) (3.13)

where, 𝛼FM
‖ is the ferromagnetic longitudinal damping parameter (where the relaxation

is solely due to the dissipation of angular momentum to the heat bath) and is defined

by

𝛼FM
‖ = 𝜆 2𝑇

3𝑇𝑁
(3.14)

In Eq. (3.13), theory predicts that 𝑧 is the number of nearest neighbours antiferromag-

netically coupled to a given spin. While for a simple cubic with only nearest neighbours

this number is 6, for Mn2Au this would correspond to 5 (See inset in Fig. 3.1). Our

simulations show that 𝑧 ≈ 6.0. The exponent 𝛽 in Eq. (3.13) is a phenomenological

parameter, necessary for the description of high non-equilibrium situations where the

temperature goes well above the critical temperature. While for small deviations from

the equilibrium of the magnetic order parameter, 𝛽 = 1, for larger deviations, for ex-

ample when the temperature of the system changes from 𝑇 = 0 K to 𝑇 = 2𝑇𝑁 , the

exponent takes a value of ≈ 2. We also find that alongside the temperature dependence
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Figure 3.10: The longitudinal relaxation following a step change in temperature from 0 K
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of the 𝛽 exponent, it also exhibits a damping dependence, which can be found in Fig.

3.8. As small deviations from equilibrium give 𝛽 = 1, the damping dependence of 𝛽
is investigated by numerically fitting the mean-field form of the AFM-LLB equation

following a large step change in temperature from 𝑇 = 0 K to 𝑇 > 𝑇𝑁 to the corre-

sponding ASD simulations. For the fitting, we use a MFA form of the effective field

that is not dependent on any atomistically derived parameters. Instead of using Eq.

(3.11), the effective field is given by [111]

𝐻‖
eff,𝜈 = (𝑚𝜈 − 𝑚0,𝜈)

𝜇𝑠𝛽𝐿′ (𝜉𝜈) (3.15)

here 𝑚0,𝜈 is not the equilibrium magnetisation and is instead given by 𝑚0,𝜈 = 𝐿 (𝜉𝜈)
where 𝐿 (𝜉𝜈) = coth(𝜉𝜈) − 1/𝜉𝜈 is the Langevin function and 𝐿′(𝜉𝜈) = 𝑑𝐿/𝑑𝜉𝜈 with

𝜉𝜈 = 𝛽𝜇𝑠𝐻MFA
𝜈 and 𝛽 = 1/𝑘𝐵𝑇 . The MFA field is defined as 𝐻MFA

𝜈 = 3𝑘𝐵𝑇𝑁𝑚𝜅

[109]. Using the results of our determination of 𝛽 for a value of 𝜆 = 0.01 we have

furthermore carried out simulations of the longitudinal dynamics after a temperature

step (Fig. 3.7). In these temperature step simulations, we begin with a perfectly or-
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3.7 Two-Temperature Model Heating

dered AFM configuration of Mn2Au at 𝑇 = 0 K, we then apply a temperature step and

record the relaxation to the equilibrium magnetisation. Fig. 3.7 shows the longitudinal

relaxation for 5 different temperatures (with 𝜆 = 0.01 for all simulations), the points

are simulations using the stochastic LLG equation and the solid lines are from the LLB

model. The agreement at lower temperatures is excellent. At temperatures well above

𝑇𝑁 , finite size effects lead to a longer relaxation time in the atomistic model. It is also

worth stressing that instantaneous step changes in temperature from 0 Kelvin to near

𝑇𝑁 are radical, and some disagreement would be expected. The reasonable damping

value of 𝜆 = 0.01 has been chosen in accordance with previous atomistic modelling of

Mn2Au [71, 156].

To highlight the importance of the 𝛽 exponent in Eq. (3.13), we performed ASD

and LLB simulations with values for 𝜆 = 0.00005 for a step change to above the crit-

ical temperature, as shown in Fig. 3.10. We also include ASD results for an entirely

ferromagnetic exchange to show the difference in the relaxation rates between FM and

AFM. We find that relaxation dynamics in AFMs are defined by two distinct processes,

(i) an exponential decay due to the dissipation of angular momentum to the heat-bath

and (ii) a power-law decay due to the angular momentum exchange between the sublat-

tices. While for the FM configuration of Mn2Au, the relaxation dynamics are described

by an exponential decay, for AFMs, the exponential decay only dominates for values

of the order parameter 𝑛 > 1/3. As the magnetic order reduces to small values, the

rate of angular momentum dissipation remains constant, (𝜇at/𝛾)�̇� ≈ (2/3)𝜆𝑘𝐵𝑇 /𝑛𝛽−1,

leading to a power-law decay.

3.7 Two-Temperature Model Heating

Although simulations of a sudden step-like increase in temperature is easy to achieve,

experimentally, this is not the case. A common approach to strong and rapid heating

of the system is possible by applying, for example, a femtosecond laser pulse. In

these scenarios the temperature of the system is difficult to determine, however, given

semi-classical considerations [157] one can define the temperature of an electron and
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3.7 Two-Temperature Model Heating

Figure 3.11: (Top) The electronic temperature, 𝑇𝑒, dynamics using a TTM for heating to
below and above the critical temperature, 𝑇𝑁 . Horizontal black dotted line shows the criti-
cal temperature. (Bottom) magnetisation dynamics from atomistic (Points) and LLB (Solid
lines) following application of the laser. The spin temperature is coupled with the electron
temperature. Blue and red markers/line correspond to heating to just below and just above
𝑇𝑁 respectively.

a phonon bath. A laser pulse will couple more strongly to the electron system giving

large and rapid temperature increases, in hundreds of femtoseconds, to a temperature

above 𝑇𝑁 , however, the electron system also quickly cools downs on the ps timescale by

transferring energy to the phonon system via electron-phonon coupling. The electronic

temperature is calculated using a two-temperature model (TTM) [158]. The equations

to describe the dynamics of the electron and phonon temperatures, 𝑇𝑒 and 𝑇𝑝 are given

by the equations:

𝐶𝑒
𝜕𝑇𝑒(𝑧, 𝑡)

𝜕𝑡 = 𝐺𝑒𝑝 (𝑇𝑝(𝑧, 𝑡) − 𝑇𝑒(𝑧, 𝑡)) + 𝑃(𝑧, 𝑡) + 𝜕
𝜕𝑧 𝜅𝜕𝑇𝑒

𝜕𝑧
𝐶𝑝

𝜕𝑇𝑝(𝑧, 𝑡)
𝜕𝑡 = 𝐺𝑒𝑝 (𝑇𝑒(𝑧, 𝑡) − 𝑇𝑝(𝑧, 𝑡))

(3.16)

Where in the above, 𝐶𝑒 and 𝐶𝑝 are the electron and phonon heat capacities, 𝐺𝑒𝑝 is

the electron-phonon coupling, 𝑃(𝑧, 𝑡) is the absorbed laser power and 𝜅 is the lateral

heat transport. For the nm lengthscale systems under consideration in this section,

64



3.8 Exchange Stiffness & Domain Walls

we assume uniform heating from the laser throughout the system such that 𝑃(𝑧, 𝑡)
becomes 𝑃 (𝑡) and 𝜅 = 0. Fig. 3.11 shows the longitudinal magnetisation dynamics for

a transient change in temperature following heating from a laser pulse. We begin at

𝑇 = 300 K then heat to just below and above 𝑇𝑁 , shown in profiles TTM 1 and TTM

2 in Fig. 3.11. As well as capturing the demagnetisation, the AFM-LLB captures the

remagnetisation process remarkably well in both heating cases.

3.8 Exchange Stiffness & Domain Walls

To be able to describe domain walls (DWs) within an LLB framework, we introduce a

term into the LLB Hamiltonian that describes the exchange coupling between neigh-

bouring macrospins, given by:

H𝑣,𝑖
ex = 2𝐴(𝑇 )

𝑑2𝑀𝑆𝑚2𝑒
∑

𝑗
(m𝑣,𝑗 − m𝑣,𝑖) (3.17)

Where 𝐴(𝑇 ) is the exchange stiffness, 𝑑2 is the surface area connecting neighbouring

macrospins, and 𝑀𝑆 is the saturation magnetisation. We should emphasise here that

we use a different equation for the exchange coupling to Chen et al. [159]. They use an

exchange term that sums over the opposite sublattice in the neighbouring macrospins.

This term would be non-zero when sublattices in neighbouring macrospins are parallel,

leading to a disagreement between LLB and ASD simulations of the AFMR.

Compared to the other input parameters in the LLB equation, the exchange stiffness,

𝐴(𝑇 ), is notably the most difficult to calculate. The simplest, but least rigorous, is to

simply calculate the exchange stiffness at 0K using the 𝐽𝑖𝑗’s and assume scaling within

a mean field approximation. The zero temperature exchange stiffness 𝐴(0) is given by

[160]

𝐴(0) = 1
𝑉0

∑
𝑖,𝑣

∣𝐽𝑖,𝑣∣ 𝑎2
𝑖,𝑣 (3.18)

where 𝑉0 is the unit cell volume, 𝑣 represents all the neighbours for site 𝑖 where 𝑥 or 𝑦
are non-zero as the domain wall forms in the 𝑥𝑦-plane, and 𝑎𝑣 is the absolute distance
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3.8 Exchange Stiffness & Domain Walls

between site 𝑖 and site 𝑣. As we are interested in the domain walls along the ferromag-

netic planes, we can exclude any 𝐽4 interactions (See Fig. 3.1). In total, there are 12

interactions that contribute to 𝐴(0). Using the values for 𝐽1 to 𝐽3 in Table 3.1 yields

𝐴(𝑇 = 0 K) = 2.34 × 10−11 J/m, which agrees well with calculations of the exchange

stiffness through atomistic simulations of the DW width, as shown in Fig. 3.13. The

exchange stiffness, 𝐴(𝑇 ) scales with 𝑚2
𝑒 within a MFA. Fig. 3.13 shows the exchange

stiffness as a function of temperature with points representing atomistic simulation re-

sults, and the dotted line showing the scaling law 𝑚2
𝑒.

For the atomistic simulations of the domain wall width, we ensure the length of the

system in the 𝑥-direction is much wider than the zero Kelvin domain wall width. The

Mn sites at the left hand boundary of the slab remain fixed in an anti-parallel alignment

to the spins at the right-hand boundary. The remainder of the spins are allowed to

relax to form a domain wall profile. The system size dimensions in the ASD calcula-

tions is 1000 × 10 × 10 unit cells, which gives a chain length of approximately 330 nm.

For the LLB simulations, we use cell sizes of 3 × 10 × 10 nm to ensure that we have

a good resolution along the 𝑥-direction for an accurate calculation of the domain wall

width while ensuring numerical stability with a large value of 𝑑2 in the denomenator

of Eq. (3.17) to ensure numerical stability of the inter-macrospin exchange field. The

magnetisation is averaged over the 𝑦 and 𝑧 components for each 𝑥 value to The give

a reduced magnetisation along the spin chain direction, 𝑚(𝑥). This is then fitted to a

hyperbolic tangent function to find the domain wall width parameter:

𝑚(𝑥) = 𝑚𝑒 tanh (𝑥 − 𝑏
𝛿0

) (3.19)

where 𝑏 is the central position of the DW, and 𝛿0 is the wall-width parameter. A

comparison of the DW profile at 𝑇 =0 K can be found in Fig. 3.12. The width can

be related to the wall width parameter through 𝛿 = 𝜋𝛿0. We calculate 𝛿(0) = 31.2 nm

from atomistic simulations and see good agreement between ASD and LLB in Fig. 3.12

for intermediate and high temperatures. The relation that links the DW width to the
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Figure 3.12: The domain wall width at 0 K, 600 K and 1200 K. Solid lines are from LLB
simulations and points are from ASD. The Néel domain-wall width is given by 𝛿(𝑇 ) = 𝜋𝛿0(𝑇 ).
The dotted lines show the width of the domain wall at 0 K.

exchange stiffness is given by

𝛿0(𝑇 ) = √ 𝐴(𝑇 )
𝐾(𝑇 ) (3.20)

where 𝐾(𝑇 ) is the anisotropy energy where again we use Callen-Callen scaling [144],

𝐾(𝑇 ) = 𝐾𝑚3
𝑒(𝑇 ).

3.9 Thermally Induced Domain Wall Motion

The manipulation of domain walls (DW) has been proposed for use in the next genera-

tion of logic and memory devices [161, 162]. The motion of the DWs can be modulated

using spinwaves [163, 164], spin currents [165–167] or external magnetic fields [168, 169],

for example. Another possibility is to drive DW motion by thermal gradients [170, 171].

Under thermal gradient, the motion of the domain wall is induced towards the hotter

end of the nanowire due to a reduction in the free energy, Δ𝐹(𝑇 ). For large thermal

gradients in ferromagnets, there is a precession of the internal magnetisation, which

leads to a reduction in the domain wall velocity, known as the Walker breakdown [168].
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Figure 3.13: Exchange stiffness as a function of temperature. Points are from atomistic
simulations of the domain wall width. Dotted line shows the proportionality to the equilibrium
magnetisation with 𝐴(0) taken from Eq. (3.18).

In previous ASD simulations of AFMs, it has been shown that there is no breakdown in

the DW velocity due to the symmetry of the torques acting on the DW [172], meaning

DWs in AFMs are able to reach higher speeds, and are only limited by the maximum

magnon group velocity, 𝑣𝑔, 𝛿DW = 𝛿0√1 − (𝑣DW/𝑣g)2 where 𝛿0 is the DW width at rest.

Conventional micromagnetic methods have limitations in the modelling of thermally

driven DWs, as they cannot account for the dynamic changes in the magnetisation

length. It has been shown experimentally that ultrashort laser pulses can drive DW

motion [171]. In these scenarios, heating and cooling will play a role, and the effects of

this cannot be captured using an LLG-based micromagnetic model. This could be sim-

ulated using an atomistic approach, but the calculations are expensive and require large

ensembles to reduce statistical noise. The LLB model overcomes these issues, making

it an important tool for temperature-dependant calculations of topological structures

such as domain-wall, spin-spirals and skyrmions. As an example of simulations that

require both accurate descriptions of the longitudinal and transverse dynamics, we

present a comparison of the DW motion under a thermal gradient using both atomistic
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and AFM-LLB models and compare to previously derived analytical expressions for

the DW velocity.

For the atomistic calculations of the DW velocity, we begin with a DW initialised

at 0 Kelvin along the 𝑥−direction, we then apply a linear thermal gradient in the

direction of the DW. It has been shown that the DW velocity induced by a thermal

gradient in an AFM can be approximated by [173]

𝑣LLB
DW = 2𝛾

𝑀𝑠𝛼⟂

𝜕𝑇
𝜕𝑧

𝜕𝐴
𝜕𝑇 (3.21)

As seen in previous analyses of domain walls [173, 172], the weak temperature depen-

dence of 𝛼⟂ is neglected and the exchange stiffness is linearised to 𝑑𝐴/𝑑𝑇 ≈ 𝐴(0)/𝑇𝐶.

Fig. 3.14 shows the domain wall velocity for Mn2Au in atomistic and LLB simulations

due to a thermal gradient, showing good agreement with Eq. (3.21). The velocity is

calculated by, once again, fitting the DW profile to Eq. (3.19) to find the centre of the

domain wall, then tracking the movement of this central position in time. While the

relation appears linear in Fig. 3.14, in reality, the velocity will reach a saturation point

governed by the magnon group velocity [174]. In the atomistic modelling of thermally

induced DW motion, Selzer et al [172] state that there is no acceleration phase, and the

DW moves with constant velocity, which is what we observe in Mn2Au in both LLG

and LLB simulations.

3.10 Summary

Using a multiscale approach, it has been demonstrated that antiferromagnets such

as Mn2Au can be modelled micromagnetically on micrometre length scales using an

AFM-LLB model. We started with parameters from previous work for the exchange,

anisotropy and magnetic moment which were fed into an atomistic model of Mn2Au.

Then, we calculated the temperature-dependent parameters 𝑚𝑒(𝑇 ), 𝐴(𝑇 ), �̃�‖(𝑇 ) using

atomistic spin dynamics before using these as input into the AFM-LLB.
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Figure 3.14: Domain Wall velocity as a function of the temperature gradient. 𝜆 was set to
0.01 for the simulations. The solid line is given by Eq. (3.21). The inset shows an example of
the domain wall at three different timesteps. The wall is moving from left to right in the figure.

To verify the dynamics described by the proposed LLB model for Mn2Au, first, we

presented consistent results between ASD, LLB and the Kittel relation for the antifer-

romagnetic resonance frequency. As well as serving as a validation of the transverse dy-

namics, we have revealed the first estimate of the in-plane AFMR frequency in Mn2Au.

The fact the resonant frequency sits within the THz range opens the possibility sub-

ps switching and generation of THz electromagnetic signals at ambient temperatures.

Second, we compared ASD simulations results to the AFM-LLB model for the longitu-

dinal dynamics following step changes in temperature and laser pulse heating - both of

which give excellent agreement between the models. Finally, we provided a comparison

of the domain wall motion due to a thermal gradient as an example of how the LLB

model for an AFM can be utilised on 𝜇m length and 𝜇s timescales - opening the door

to micromagnetic simulations of AFM materials for use in realistic spintronic devices.

While questions such as the damping dependence of the transverse relaxation time,

and the poor agreement for the longitudinal relaxation between ASD and LLB with �̃�
from ASD remain unanswered, the AFM-LLB opens the possibility for the description

of laser-induced local thermal gradients on length-scales and the benchmark of other

thermodynamic effects in collinear AFMs on micrometre length-scales.
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3.10 Summary

Mn2Au has been chosen as an exemplar material for this study due to the recent interest

it has drawn for spintronic applications. Its ability to generate staggered torques from

electric field pulses, simple collinear structure, and high critical temperature makes it

ideal for possible AFM switching. The multiscale process for AFMs could easily be ap-

plied to other For other collinear AFM, such as CuMnAs, where the calculation of the

temperature-dependant functions 𝑚𝑒(𝑇 ), 𝐴(𝑇 ), �̃�‖(𝑇 ) would be a straightforward pro-

cess and the present theory would be sufficient for a complete parameterisation using

the AFM-LLB model. However, for materials with more intricate anisotropies, where

the temperature dependence may need to be calculated using Monte-Carlo methods

[175, 176], or AFM systems featuring more than two sublattices or non-collinear con-

figurations, a thorough examination of AFM properties becomes necessary, along with

an extension of the current theoretical framework.
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Chapter 4

Simulations of Magnetisation

Reversal in Mn2Au

This place I am hoping to get to is so marvellous that if I described it to you now

you would go crazy with excitement. And then, if we failed to get there (which is very

possible), you would die of disappointment. I don’t want to raise your hopes too much,

my darlings.

– ROALD DAHL, Fantastic Mr. Fox.
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4.1 Introduction

4.1 Introduction

Computationally, it has already been shown that square staggered fields arising from

current-driven NSOTs can lead to a reversal in Mn2Au with pulse durations of the or-

der of a few picoseconds [142, 177, 72]. Experimentally, reports of switching in Mn2Au

began in 2018 with Bodnar et al. [66] reporting reversal of the Néel vector following

the application of an electric field with an efficient readout via large anisotropic mag-

netoresistance (AMR) of between 5% and 6%. In the same year, Meinhart et al. [65]

also reported switching in epitaxial films of Mn2Au and, using a macroscopic model,

explained the importance of Joule heating in the reorientation process. However, it

was then suggested that these magnetoresistance measurements alone might not be

sufficient to imply SOT switching. Chiang et al. [178] showed that when using cur-

rent densities similar to those seen in the aforementioned experiments, similar resistive

readings were generated with and, importantly, without the presence of AFM in the

multiterminal devices, casting doubt on the previous results. Then conclusively in 2023,

direct observations of SOT switching were observed in Mn2Au using X-ray magnetic

linear dichroism - photoelectron emission microscopy (XMLD-PEEM) techniques by

Reimers et al. [64] with only a small amount of heating (approximately 20 K) arising

from the current pulse. The observed switching was not itself on picosecond timescales,

and was the result of 𝜇s and ms current pulses, as shown in Fig. 4.1. Because of the

timescales involved, the switching was attributed to domain wall motion rather than a

coherent reorientation of the Néel vector.

More recently, Behovits et al. [179] have shown experimentally that ps timescale re-

versal is almost within reach. In their work, they use intense single-cycle THz pulses

to excite magnetic dynamics in Mn2Au thin films and detect the response using time-

resolved magneto-optic probing. The THz pumping is performed on as-grown and

prealigned samples. In the prealigned case, the samples is subject to a huge magnetic

field of approximately 60 T for 150 ms to ensure the Néel vector is aligned along the easy

axis. In the prealigned sample, deflections of up to 30° were achieved at the maximum

peak field of 600 kV/cm in free space, which reduced to 40 kV/cm (roughly 6% of the
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4.1 Introduction

Figure 4.1: XMLD-PEEM images of the Néel vector reorientation for current pulses along
different directions (yellow arrows). Dark and light regions show horizontal and vertical align-
ment of the Néel vector, respectively. Panels (a) and (b) show reversal after 100 pulses of 1ms
length each with a current density of 2.6 × 1011 A m−2. Panels (c) and (d) show reversal after
1 bipolar pulse of 10�s length with a current density of 3.0 × 1011 A m−2. Image taken from
Ref. [64].

free space value) inside the sample. By fitting the experimentally observed dynamics

to a macrospin model, they predicted THz pulses with a peak field strength of around

120 kV/cm would be sufficient to generate 90° reversal. A direct comparison to the

work in Ref. [179] will be presented later in this chapter.

In this study, we explore the possibility of achieving coherent reversal of Mn2Au utilis-

ing THz frequency pulses, while also examining the impact of transient heating during

the switching process. So far, computational studies have only used square field pulses,

while this is a good first approximation, experimental realisation of such a profile is

challenging. Advances in the experimental generation of ultrashort THz pulses [180–

183] and greater understanding of the mechanisms behind the control of magnetisation

reversal of THz frequencies [184, 185] has opened the possibility for excitation and re-

versal of the Néel vector using sub-picosecond single and multi-cycle fields. Here, the

effects of resonantly pumping Mn2Au using SOT fields are explored for varying pulse

durations and static temperatures using ASD. The main results on THz switching in

Mn2Au can be found in:

• Hirst, J., Ruta, S., Jackson, J. et al. Simulations of magnetization reversal in

FM/AFM bilayers with THz frequency pulses. Scientific Reports 13, 12270

(2023).
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4.2 The Heisenberg Hamiltonian

Recent studies have also shown that static temperature plays an important role in

the reduction of the critical field [172] in AFMs, but little is also understood about

the effect of transient heating. Using the AFM-LLB model introduced in the previous

chapter, the effect of transiently heating the AFM using a TTM model while varying

the relative application time of a staggered field is explored. To confirm the accuracy

of the LLB model, comparisons to ASD are made.

4.2 The Heisenberg Hamiltonian

In the previous chapter, we employed a realistic value for the 𝑑𝑧 constant (which aligns

favourably with other values reported in the literature [141, 142]) and an additional

anisotropy constant, 𝑑∗
‖ , derived from the calculations of Shick et al. [141] that can

arise due to an induced strain. In experiments, it has been well documented that

Mn2Au has two equivalent ⟨110⟩ easy axes in the (001)-plane [131, 186, 66, 64]. The

reason for the exclusion of any cubic anisotropy constants that give rise to the ⟨110⟩
preferential orientations in the last chapter is that it has a very weak temperature

scaling. The cubic anisotropy temperature dependence follows the Callen-Callen scaling

with a 𝐾𝑐(𝑇 ) ∼ 𝑚𝑒(𝑇 )10 dependence compared to 𝐾𝑢(𝑇 ) ∼ 𝑚𝑒(𝑇 )2 for uniaxial terms.

This would have meant the validation of the AFM-LLB, especially for the calculation

of domain wall width/motion at elevated temperatures, a challenge. For the atomistic

simulations, it would have required system sizes an order of magnitude larger to balance

the increase in wall width and stochastic motion of the Néel vector. For accurate

simulations of coherent magnetic switching (where the anisotropy constants define the

energy barriers needed to be overcome to flip states), a more realistic treatment is

needed. We opt to take anisotropies quoted in the work of Selzer et al. [142]. The

Heisenberg Hamiltonian now reads:

ℋMn = ∑
𝑖≠𝑗

𝐽Mn
𝑖𝑗 S𝑖 ⋅ S𝑗 − ∑

𝑖
𝑑𝑧𝑆2

𝑖,𝑧 − ∑
𝑖

𝑑𝑧𝑧𝑆4
𝑖,𝑧 − ∑

𝑖
𝑑𝑥𝑦𝑆2

𝑖,𝑥𝑆2
𝑖,𝑦 (4.1)

with anisotropy constants 𝑑𝑧 = −1.19 meV, 𝑑𝑧𝑧 = −0.015 meV and 𝑑𝑥𝑦 = 0.04 meV

[142]. The exchange constants and magnetic moment used are the same as in the
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4.3 The Macrospin Equation of Motion

Figure 4.2: A schematic of the system. (Left) A top-down view of the two sublattices denoted
by m1 and m2 coupled together by the exchange field 𝐻ex with anisotropy field 𝐻an keeping
the macrospin aligned somewhat closely to the [110] and [ ̄1 ̄10] directions for each respective
sublattice. (Right) The Néel vector, n, in the 𝑥𝑦-plane rotated by angle 𝜑 away from the easy
[110] direction.

previous chapter. The damping is treated as a fixed with 𝜆 = 0.01 in accordance with

previous atomistic modelling of Mn2Au [142, 177].

4.3 The Macrospin Equation of Motion

For the next couple of sections, we are interested in a coherent reorientation of the Néel

vector for static temperatures. Under such scenarios, the Néel vector can be accurately

described by a single macroscopic equation of motion [187, 188, 177]. This can then be

compared to ASD simulations to ensure consistency between analytics and simulation.

For Mn2Au assuming two collinear sublattices, m1 and m2, with easy anisotropy axes

⟨110⟩ subject to a field that is staggered for each sublattice, B1 at m1 and B2 at m2

with B = B1 = −B2 (see Fig. 4.2 for a schematic diagram) the implicit Landau-Lifshitz

equation can be written as:

ṁ1 = − 𝛾 (m1 × H1) + 𝛾𝜆 (m1 × ṁ1)

= − 𝛾𝐻ex (m1 × m2) − 𝛾𝐻𝑥𝑦𝑚1,𝑥𝑚2
1,𝑦 (m1 × û𝑥𝑦) − 𝛾𝐻𝑥𝑦𝑚2

1,𝑥𝑚1,𝑦 (m1 × û𝑥𝑦)

− 𝛾𝐻𝑧𝑚1,𝑧 (m1 × ẑ) + 𝛾 (m1 × B) + 𝜆 (m1 × ṁ1)
(4.2)
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4.3 The Macrospin Equation of Motion

and for the second sublattice:

ṁ2 = − 𝛾 (m2 × H2) + 𝜆 (m2 × ṁ2)

=𝛾𝐻ex (m1 × m2) − 𝛾𝐻𝑥𝑦𝑚2,𝑥𝑚2
2,𝑦 (m2 × û𝑥𝑦) − 𝛾𝐻𝑥𝑦𝑚2

𝑥,2𝑚2,𝑦 (m2 × û𝑥𝑦)

− 𝛾𝐻𝑧𝑚2,𝑧 (m2 × ẑ) − 𝛾 (m2 × B) + 𝜆 (m2 × ṁ2)
(4.3)

where ṁ denotes the time derivative of the magnetisation. The field arising from the 𝑑𝑧𝑧

anisotropy constant in Eq. (4.1) has been neglected as |𝑑𝑧𝑧| << |𝑑𝑧|. The Néel vector

can be defined as n = (m1 − m2)/2 and the magnetisation as m = (m1 + m2)/2. The

dynamics can be written purely in terms of n and m. Combining Eq. (4.2) and (4.3)

gives:

ṁ = 1
2 (ṁ1 + ṁ2) =𝛾𝐻𝑥𝑦û𝑥𝑦 × (𝑚𝑥𝑚2

𝑦m + 𝑛𝑥𝑛2
𝑦n) + 𝛾𝐻𝑧ẑ × (𝑚𝑧m + 𝑛𝑧n)

+𝛾𝐻𝑥𝑦û𝑥𝑦 × (𝑚2
𝑥𝑚𝑦m + 𝑛2

𝑥𝑛𝑦n) + 𝛾 (n × B) + 𝜆 (n × ṅ)
(4.4)

and in terms of the Néel vector:

ṅ = 1
2 (ṁ1 − ṁ2) =𝛾𝐻𝑥𝑦û𝑥𝑦 × (𝑚𝑥𝑚2

𝑦n + 𝑛𝑥𝑛2
𝑦m) + 𝛾𝐻𝑧ẑ × (𝑚𝑧m + 𝑛𝑧n)

+𝛾𝐻𝑥𝑦û𝑥𝑦 × (𝑚2
𝑥𝑚𝑦n + 𝑛2

𝑥𝑛𝑦m) + 𝛾 (m × B) + 2𝛾𝐻ex (n × m)
(4.5)

Any terms containing 𝜆m × ṁ, 𝜆m × n and 𝜆n × ṁ have been neglected since |𝑚| <<
|𝑛|. The torque from the staggered field generates a small out-of-plane component

that is equal for both sublattices, meaning that the system can be characterised by

m = (0, 0, 𝑚𝑧) and n = (𝑛𝑥, 𝑛𝑦, 0). Removing any 𝑚𝑥,𝑚𝑦 or 𝑙𝑧 from the above and

noting that 𝑛2
𝑥 + 𝑛2

𝑦 = 1 leaves us with

ṁ =𝛾𝐻𝑥𝑦𝑛𝑥𝑛𝑦 (𝑛𝑥 + 𝑛𝑦) (û𝑥𝑦 × n) + 𝛾 (n × B) + 𝜆 (n × ṅ)

ṅ =𝛾𝐻𝑥𝑦𝑛𝑥𝑛𝑦 (𝑛𝑥 + 𝑛𝑦) (û𝑥𝑦 × m) + 2𝛾𝐻ex (n × m)
(4.6)

any terms associated with the out-of-plane anisotropy field have been dropped because

the fluctuations in 𝑧 are much smaller than those in the 𝑥𝑦-plane because of the size,

𝐻𝑧 ∼ 10 T. We can also safely assume the exchange field is much larger than both
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4.3 The Macrospin Equation of Motion

the anisotropy and applied fields. We can therefore ignore the first term in the second

equation above. If we then take the cross product of n we have

m = 1
2𝛾𝐻ex

(n × ṅ) (4.7)

Taking the derivative of the above and substituting the above into the first equation in

Eq. (4.6) gives

1
2𝛾𝐻ex

(ṅ × n̈) = 𝛾𝐻𝑥𝑦𝑛𝑥𝑛𝑦 (𝑛𝑥 + 𝑛𝑦) (û𝑥𝑦 × n) + 𝜆 (n × ṅ) + 𝛾 (n × B) (4.8)

which simplifies to

0 = n × (n̈ − 2𝛾2𝐻ex𝐻𝑥𝑦𝑛𝑥𝑛𝑦 (𝑛𝑥 + 𝑛𝑦) û𝑥𝑦 + 2𝐻ex𝜆ṅ + 𝛾B) (4.9)

it is possible to write the Néel vector in terms of the angle, 𝜑, away from the [110]

(û𝑥𝑦) direction by substituting:

𝑛𝑥 = cos(𝜑) + sin(𝜑)

𝑛𝑦 = cos(𝜑) − sin(𝜑)
(4.10)

substituting the above into Eq. (4.9), after some simplification (see Appendix B) the

equation of motion becomes

0 = �̈� + 2𝜆�̇� + 𝛾2𝐻an𝐻ex sin (4𝜑) + 𝛾𝐻ex𝐵 cos (𝜑) (4.11)

In the above, it is assumed the applied field is acting perpendicular to the starting

orientation to maximise the torque. The dynamics can be described by a micromagnetic

model in terms of a single angle, 𝜑. To be able to directly compare the simulations to

experimental results, the above equation can be modified to include the conductivity,

𝜎𝑐 (which can be taken from literature), and a coupling parameter, 𝛼NSOT. By fitting

the atomistic simulation data to this equation, a value of the coupling parameter can

be extracted and compared directly to experimentally obtained results. The final form
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4.4 Switching From a Staggered Gaussian Field

of the equation of motion is:

0 = �̈� + 2𝜆�̇� + 𝛾2𝐻an𝐻ex sin (4𝜑) + 𝛾𝐻ex𝜎𝑐𝛼NSOT𝐵 cos (𝜑) (4.12)

where 𝜑L is the angle of rotation in the easy plane, 𝐵 is the staggered field given in

equation (4.14), 𝜆 is the Gilbert damping constant, 𝐻an and 𝐻ex are the anisotropy and

exchange fields respectively, 𝜎𝑐 is the conductivity and 𝛼NSOT is the torquance from

the staggered field.

4.4 Switching From a Staggered Gaussian Field

In this section, sub-picosecond timescale Gaussian staggered fields are used to induce

switching in Mn2Au in the absence of any thermal noise. In the simulations, both the

strength and width of the Gaussian pulse are varied. The staggered field is modelled

using the following equation:

𝐵(𝑡) = 𝐻 exp (−(𝑡 − 𝑡0)2

2𝜎2 ) (4.13)

The field is staggered for each sublattice meaning sublattice one, 𝑚1, experiences field

𝐵(𝑡) while sublattice two, 𝑚2, experiences field −𝐵(𝑡). The field is applied in perpen-

dicular directions in the 𝑥𝑦-plane to that of the starting configuration. The switching

phase diagram is calculated at 𝑇 = 0 K and is shown in Fig. 4.3. The colours show

different reorientation angles. The inset shows the critical field for pulse widths below

0.2 ps. The inset data has been smoothed to aid in the visualisation of the main trend.

This figure shows that switching using sub-ps pulses with staggered field strengths of

approximately 200 mT.

Similar shaped critical field curves can be found for switching diagrams presented in

Ref. [72] where square fields were used instead of the Gaussian pulse used here. The

strength of the critical field where it plateaus is smaller by an order of magnitude in

Ref. [172], with switching at 0 K occurring for critical field strengths of 40 mT for
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Figure 4.3: Switching phase diagram for pure Mn2Au following the application of a staggered
Gaussian field. Turquoise and yellow regions show regions of 90° and 180° switching respectively.
The inset shows a closer inspection of the critical field for field widths below 0.2 ps. The data
in the inset has been smoothed.

similar pulse durations. The reason for this is a weaker Gilbert damping of 𝜆 = 0.001
being used in their study. There is no experimental evidence to suggest the damp-

ing for this material is that low. At present, the only experimental calculation of the

damping can be found in Ref. [179] where a value of 𝜆 = 0.008 suggesting the critical

fields calculated here are likely to coincide better if experimental observation of pre-

cessional switching are made. The reason for not selecting 𝜆 = 0.008 is simply that

the experimental results of Behovits et al. [179] were presented to the community after

the completion of the simulations in this thesis. Despite this, the values are close, and

there is no reason to believe that the calculations presented in this chapter will differ

greatly from the experimental measurements.

4.5 THz Pumping at In-plane Resonant Frequency

In this section, the effect of exciting Mn2Au close to the resonant frequency associated

with the anisotropy field, 𝐻𝑥𝑦, is explored (note this resonant frequency is not linked to

the AFMR calculations in the previous chapter that were associated with the anisotropy
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4.5 THz Pumping at In-plane Resonant Frequency

Figure 4.4: A schematic of the differences between the field profiles used in this and the
previous section. When using a THz frequency, the maximum amplitude varies as a function
of both 𝐻 and 𝜎.

field from constant 𝑑𝑧). Here, we model the staggered field with the equation:

𝐵(𝑡) = 𝐻 exp (−(𝑡 − 𝑡0)2

2𝜎2 ) sin (2𝜋𝑓 (𝑡 − 𝑡0)) (4.14)

where 𝜎 is the standard deviation, 𝑓 is the frequency, 𝐻 is a scaling prefactor, and

𝑡0 is the location of the central maximum of the pulse. In the atomistic simulations,

the staggered field quantities subject to variation will be 𝜎 and 𝐻. The relationship

between 𝐻 and 𝜎 means that for short pulse widths, the difference between 𝐻 and the

maximum amplitude of the field, 𝐵max, can differ greatly. For example, a 𝜎 = 0.1 ps

pulse with 𝐻 = 10 T yields a 𝐵max = 0.127 T compared to an identical value of 𝐻
with 𝜎 = 0.6 ps yields 𝐵max = 8.45 T. Because of this, references to the field for the

remainder of this chapter will be in terms of 𝐵max, rather than the varied quantity

𝐻. A schematic highlighting the differences between the constant 𝐻 and 𝐵max can be

found in Fig. 4.4

We conducted atomistic simulations with a THz staggered field at temperatures of

0 and 300 K. For the 0 K case, the magnetisation dynamics are precessional and there

is no thermal noise, meaning a single unit cell is sufficient. At room temperature, a

system size of 70 × 70 × 70 unit cells of Mn2Au is used, each consisting of 4 atoms

yielding a total system size of 1,372,000 Mn atoms. Periodic boundary conditions are
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Figure 4.5: Magnetization reversal in Mn2Au for varying maximum field amplitudes, 𝐵max,
from approximately 50 to 450 mT at (a) 𝑇 = 0 and (b) 𝑇 = 300 K for a constant pulse width
and frequency of 𝜎 = 0.3 ps and 𝑓 = 0.67 THz. Inset in (a) shows the field profile between 0
and 1 ps or a 𝜎 = 0.3 ps. The dotted lines in (b) represent sublattice dynamics from individual
simulations, the shaded area corresponds to the upper and lower bound for each field strength.

used at every surface. At 300 K, we simulated 9 values of 𝐻 in Eq. (4.14) varying

from 80 to 720 mT in steps of 80 mT. A value of 𝐻 = 720 mT for 𝜎 = 0.3 ps yields

a maximum field amplitude of 𝐵max ≈ 442 mT. The standard deviation and frequency

remain fixed in this instance at 𝜎 = 0.3 ps and 𝑓 = 0.67 THz respectively. These

values were selected following a visit to the Freie Universität Berlin in 2022 and dis-

cussions with experimentalists in the group of Tobias Kampfrath, particularly fellow

PhD student Yannic Behovits. At this time, they were in the early stages of performing

experimental measurements on THz electric field pumping of Mn2Au. The parameters

used for the field profile were chosen to be similar to those used in the experiments as

it would allow for a good and simple future comparison. A figure comparing the field

profile used in the atomistic simulations and that used in the experiments of Behovits

et al. [179] can be found in Fig. 4.6. At the time of writing, only the preprint version

is available.

Fig. 4.5 shows the Néel vector reorientation in the easy-plane following the THz pulse

at 0 K (left pane) and 300 K (right pane). It is worth noting that the out-of-plane angle
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Figure 4.6: Comparison between the field profile used in the atomistic simulations and the
experiments of Behovits et al. [179]. The experimental data has been extracted from Fig. 3d of
their paper. The atomistic profile uses a frequency of 𝑓 = 0.67 THz and a pulse with of 𝜎 = 0.3
ps.

remains close to zero through the entire process due to the large uniaxial easy-plane

anisotropy constant 𝑑𝑧 in Eq. (4.1). The onset of 90° switching occurs 𝐵max = 294 mT

with 180° being observed at 𝐵max = 442 mT for 𝑇 = 0 K. For 300 K, the simulations

were repeated 8 times for all field values to account for the stochastic thermal effects.

The dotted lines show the results from individual simulations, and shaded area rep-

resents the upper and lower bound for each field value. Upon comparing both panes

in Fig. 4.5, the first instance of reversal has reduced from 𝐵max = 294 mT for 0 K,

to 𝐵max = 245 mT for 300 K due to the reduction in anisotropy field. In the room

temperature simulations, the switching was deterministic; however, the path and final

reorientation angle were not - as seen for a field amplitude of 𝐵max = 392 mT, where

both 90° and 180° switching occurred.

Experimentally, the only estimation of the size of the staggered torques comes from

the work of Behovits et al. [179] where they state that they achieve a staggered field

of 8 ± 3 mT per 107 A cm−2 driving current density. In the ab-initio works of Zelezny

et al. [189], they calculate a staggered field of 1.98 mT 107 A cm−2. In Ref. [142],

Electric fields of 107 kV/cm yield staggered fields of about 76 mT, in their work they
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4.6 THz Switching Using the AFM-LLB

do not provide an exact value for the conductivity but state a field of 100 kV/cm inside

the sample would correspond to a current density of the order 106 to 107 A cm−2. For

the critical field values of 294 and 245 mT at 0 and 300K respectively (see Fig. 4.5)

a current density within the sample of ∼ 108 A cm−2 would be required (assuming a

linear scaling with the staggered field). Electric fields of this order can be achieved in

experimental facilities [190–192].

For 0 K, it is possible to sample a large phase space of 𝐵max and 𝜎 with little com-

putational cost using a single unit cell in the absence of any stochastic effects. In

Fig. 4.7 we present a switching phase diagram at 𝑇 = 0K for a range of applied field

amplitudes and pulse durations for a fixed frequency of 0.67 THz. The colour shows

whether the system undergoes 90 or 180 degree switching (relative to the initial state)

following a THz staggered pulse. The field and pulse duration required for Néel vector

reversal increases for a multi-cycle signal because of the changing sign of the external

field. For 𝜎 ≳ 0.4 ps, the switching window appears less structured, which is likely

due to the transition from a single-cycle to a multi-cycle field with increasing 𝜎. What

is surprising is that pulses as short as 0.2 ps with sub-Tesla staggered fields can drive

antiferromagnetic switching. The phase diagram is more complex than that seen pre-

viously for antiferromagnetic NiO [70] due to the use of an un-staggered square field

profile with a single uniaxial anisotropy constant in that study.

4.6 THz Switching Using the AFM-LLB

Calculation of the phase diagram presented in Fig. 4.7 but instead using an AFM-LLB

model yielded almost identical results. Of the 24,000 data points, only 131 (0.005%)

ended with final orientations that differed from the atomistic approach. Phase dia-

grams for static temperatures of 0, 300, 600 and 900 K are shown in Fig. 4.9. What

is most evident is the increase in the area where the final state shows no reorientation

of the Néel vector. This is not to say that the system is responding weakly to the THz

field with increasing temperature, but instead is the result of an increase in the number

of cases where the Néel vector performs at least one full rotation in the easy plane.

84



4.7 Square Pulse Combined With Transient Two-Temperature Model
Heating

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6

-1

0

1

0 1 2 3 4

B
m

a
x

(T
)

σ (ps)

0 °
90 °

180 °

B
(a

rb
.)

Time (ps)

σ = 0.6 ps

Figure 4.7: Switching phase diagram for pure Mn2Au following a THz pulse. Turquoise and
yellow regions show regions of 90° and 180° switching respectively. Inset shows the field profile
for the maximum pulse width of 𝜎 = 0.6 ps.

The time-dependent dynamics of the AFM-LLB are also compared against the finite

temperature 𝑇 = 300 K ASD simulations for a fixed with of 𝜎 = 0.3 ps presented in

Fig 4.5. This comparison is shown in Fig 4.8. The dynamics agree remarkably well

with all the AFM-LLB dynamics lying within the range of the ASD simulations.

These results highlight the suitability of using the AFM-LLB in simulations of mag-

netisation reversal. The combined total simulation time of the ASD dynamics shown

in Fig. 4.8 was in excess of 30 hours using state-of-the-art Nvidia A100 Graphics cards,

(costing somewhere in the region of £5,000). On the other hand, the AFM-LLB simu-

lations took approximately 5 minutes using a single computing core of an i7-8700 CPU

processor (≈ £300), thus highlighting the huge reduction in computational workload

when using an AFM-LLB model for precessional switching analysis.

4.7 Square Pulse Combined With Transient Two-Temperature

Model Heating

It is well understood that increased temperature leads to reductions in the field re-

quired for switching. Recent work by Rama-Eiroa et al. [72] investigated the impact
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Figure 4.8: A comparison of the Néel vector dynamics at 𝑇 = 300 K between ASD and AFM-
LLB approaches. The shaded area shows the reorientation range across the 8 repeated ASD
simulations. The solid lines are the AFM-LLB results. The colour bar shows varying maximum
field amplitude, 𝐵max.

temperatures and durations of a square-pulse generated by a current-induced SOT had

on reorientation of the Néel vector in Mn2Au. In their model, they derive analyti-

cal expressions for the critical field required for switching and compare to atomistic

simulations. The analytical expressions derived in their work are based on the same

temperature dependence of the effective damping, anisotropy and exchange presented

in chapter 3. The analytical expressions are derived for static temperature, and there-

fore their model cannot be used to derive strategies for reductions of the critical field as

a result of laser heating. In this section, we explore the effects of transiently heating up

Mn2Au using a two-temperature model in combination with a 0.5 ps staggered square

pulse to induce reversal. Because of the temperature scaling of the cubic anisotropy

(𝐾𝑥𝑦(𝑇 ) ∝ 𝑀10(𝑇 )) combined with an already relatively low constant of 𝑑𝑥𝑦 = 0.04
meV means that atomistic simulations of reversal at temperatures close to the Néel tem-

perature require exceptionally large system sizes. Therefore most of the simulations in

this section will be completed using the LLB equation with ASD acting as a benchmark.

For the laser heating, a TTM approach is used as seen in previous chapters (see Eq.

(3.16)). The parameters can be found in Tab. 4.1. Uniform heating is presumed
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Figure 4.9: Magnetization reversal phase diagrams for Mn2Au using the AFM-LLB model.
Panels are temperatures of (a) 0 K, (b) 300 K, (c) 600 K, and (d) 900 K.

throughout the system. The parameters should not be considered realistic values for

this material as no comparison to literature can be found. They are however within

a sensible range for other magnetic systems, with the focus here being on the the

trends the magnetisation follows for dynamics changes in temperature, not necessarily

to make exact quantitative predictions. The laser power is modelled with a Gaussian

profile with respect to time with uniform heating presumed throughout the system.

Fig. 4.10 shows the phonon, 𝑇𝑝 (dotted lines), and electron, 𝑇𝑃 (solid lines) for varying

laser fluences. The shaded area shows the power profile and has been scaled arbitrarily

to highlight the delay between the laser application and temperature increase. To

ensure correct longitudinal dynamics in the LLB model, ASD simulations were con-

ducted for the 𝑃0 values presented in 4.10. The comparison between the AFM-LLB

and ASD can be found in 4.11. Points and Solid lines are ASD and AFM-LLB models

respectively. A larger disagreement is observed for the lower selected power values. The

reason for this is that the maximum temperature for these fluences is extremely close
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Figure 4.10: Eletron (solid lines) and phonon (dotted lines) temperature for varying laser
fluence (colour). The shaded area shows the profile of the laser power and the delay between
application of the laser and the resultant heating.

to that of the critical temperature, where the susceptibility diverges (see Fig. 3.3 for

the susceptibility curve). Because the turning point is close to the critical temperature,

the system spends a longer amount of time at close to the critical temperature than

the simulations with higher fluence. The LLB model represents an infinite system in

contrast to the ASD where finite size effects lead to shorter relaxation times close to the

critical temperature. Occurrences of this effect can be found in multiscale modelling of

ferromagnets, with notable examples found in Refs [193, 107].

Physical Constant Symbol Value Used Units
Electron specific heat coefficient (𝛾𝑒) 𝐶𝑒 = 𝛾𝑒𝑇𝑒 1 × 103 J m−3 K−2

Phonon specific heat 𝐶𝑝 5 × 106 J m−3 K−1

Electron-phonon coupling 𝐺𝑒𝑝 1 × 1017 J m−3 K−1s−1

Laser pump temporal width 𝜏 0.5 ps
Table 4.1: Table of parameters for the TTM heating.
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Figure 4.11: The longitudinal relaxation of the Néel vector for varying maximum laser fluence.
Points are ASD and lines are LLB.

For the simulations combining a square pulse with TTM heating, the start time of

the square pulse is varied while the laser timings remain fixed. The critical field is cal-

culated as a function of delay for the previously shown laser fluences as shown in Fig.

4.12. The lines represent the critical field for switching. The areas below and above

the critical field line represent regions of 0° and 90° reorientation in the 𝑥𝑦-plane. The

delay is defined as the difference between the start of the staggered field pulse and the

point at which the laser is at maximum fluence. Between -2.0 and -1.5 ps delay, the

staggered field has been applied too early for the heating to play any kind of role. This

is followed by a reduction in the critical field for a delay of between -1.0 and -0.5 ps.

For all simulated fluences, the reduction remains fairly constant, with a reduction from

approximately 130 mT to 100 mT in this region, a drop of roughly 25%. Onwards from

this point, there is an increase in the critical field with maximum divergence occurring

when the staggered field is applied roughly 0.5 ps after the max fluence of the laser. For

the larger fluences, drastic increases in the critical field are observed using the AFM-

LLB, well over 70% for values of 𝑃0 = 24×1020 J m−3 s−1 and 𝑃0 = 24×1020 J m−3 s−1.
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Figure 4.12: Critical field calculated from LLB simulations for varying maximum laser fluence.
Below the lines, there is no switching. Above, there is 90 °reversal.

The reason for such a large increase in the critical field for larger fluences in the range

between 0.5 and 1.0 ps rests with the fact that the switching field is being applied at

the point in time when the spin system is at maximum demagnetisation following laser

heating. For larger laser fluences, the greater the resulting demagnetisation. During

this time, the spins are weakly correlated because of the thermal energy and the applied

field to coherently reorientate the Néel vector must therefore be stronger to overcome

increased thermal effects.

To confirm this result, ASD simulations are performed with a laser fluence of 𝑃0 =
2.4×1021 J m−3 s−1 with a field amplitude of 150 mT for varying delays. ASD Simula-

tions once again conducted with a system size of 70 × 70 × 70 unit cells of Mn2Au with

periodic boundary conditions at each surface. Simulations are repeated 12 times for

each delay value to account for the thermal noise. The atomistic results overlayed on

top of the LLB phase diagram can be found in the bottom pane of Fig. 4.13. The colour

indicates the switching probability. The top pane shows the probability to further aid
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Figure 4.13: (Bottom) Phase diagram for a power of 𝑃0 = 25 × 1020 J m−3 s−1. The line at
150 mT is from ASD rather than LLB. The simulations are repeated 12 times to account for
the noise processes. Colour is the switching probability. As there is no noise in the LLB model,
the switching is deterministic. (Top) Switching probability from the ASD simulations.

in visualisation. While the switching is not deterministic, there is a clear reduction in

the probability that coincides with a region of no switching in the LLB phase diagram.

4.8 Summary

ASD and AFM-LLB simulations have been used in this chapter to simulate reversal fol-

lowing a sub-ps staggered Gaussian and THz field pulses. Experimentally, these fields

would arise from a current pulses, and it has been shown that by pumping Mn2Au

close to the in-plane resonant frequency, switching is achievable with fields of the order

of 100s mT. Switching using square and Gaussian field profiles was shown to require

much weaker fields compared to cyclic THz fields where the sign alternates. Ideally,

square pulses would be used but experimental realisation of such profiles with sub-ps

durations remains a challenge [179, 59]. It has been shown that THz pumping at room
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temperature yields small reductions in the critical field, which agrees with previous

finite temperature computational modelling of Mn2Au [72] following the application of

square staggered fields. The AFM-LLB showed remarkable agreement at 0 K, with a

fractional amount of simulations producing differing final reorientation states between

ASD and AFM-LLB. Simulations using the AFM-LLB also show robust switching for

a wide range of temperatures.

Although static temperatures serve as reliable indicators for overall trends in criti-

cal field reductions, for recording media applications it would likely require transient

heating and cooling facilitated by a laser or near-field transducer to decrease the crit-

ical field and then restore its stability. It has been shown using the AFM-LLB that

transient heating from a laser pulse can lead to reductions of up to 25% in the critical

field. It is worth mentioning that only the impact of the field delay and laser power has

been investigated. Further exploration using varied laser and applied field durations,

staggered field profiles (THz, Gaussian) and damping could perhaps yield further re-

ductions. The delay between heating and the application of a staggered field impacts

the critical field heavily, with large increases in the critical field observed when the stag-

gered field is applied at the point of maximum demagnetisation with drastic increases

in the required critical field for 90° switching in Mn2Au. ASD simulations agreed well

with the AFM-LLB approach, however, the competition between the anisotropy and

weak cubic anisotropy meant the switching was not deterministic when using an atom-

istic model. Larger system sizes would help eradicate this issue, but with this comes

increased computational costs.
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Chapter 5

Atomistic Simulations of Mn2Au

and Permalloy Bilayers

Mark: Well, me and Dobby make a great team… Opposites attract!

Jez: No they don’t. Not really. That’s just something scientists and people in horrible

relationships say.

– MARK & JEZ, Peep Show. Created by Jesse Armstrong and Sam Bain.
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5.1 Introduction

The idea of coupling magnetic layers to alter the properties has been around for sev-

eral decades now [194, 195], and has already found its way into HDD technology via

the use of exchange spring media for perpendicular magnetic recording [196]. For high

coercivity (often referred to as hard) magnets such as FePt, the fields generated by the

write head cannot produce a strong enough field to induce switching of the grains [197].

By exchange coupling a strongly anisotropic layer to an additional weaker FM layer,

the switching field can be reduced while still maintaining sufficient thermal stability.

Mn2Au has a cubic anisotropy constant that is two orders of magnitude smaller than

the uniaxial constant in FePt [87] thus nullifying the issue of having to use a large field

to overcome the large anisotropy barrier. The main issue for AFMs is the readout of

the Néel vector because of the alternating magnetic moments at the atomic level result

in no net magnetisation, making detection of the magnetic order impossible using con-

ventional GMR and TMR methods. Recently, it has been suggested that by coupling

an FM layer to an AFM the FM spin dynamic frequencies can be enhanced, opening

the possibility for faster switching in weakly anisotropic FM materials. The effect of

an exchange coupling to reduce critical fields has been studied in interesting structures

such as FePt/FeRh [198, 199], where FeRh undergoes a phase transition from AFM

to FM with increasing temperature opening the possibility of using the FM phase to

during the switching process, and the AFM phase to enhance thermal stability. Little

is understood however about the ability to control switching dynamics when using an

AFM configuration.

Recent work by Bommanaboyena et al. [200] investigated the effect of coupling Mn2Au

to epitaxial thin films of Permalloy (Py) - a soft FM nickel-iron (Ni80Fe20) alloy with an

intrinsically low anisotropy [201, 202]. In the atomistic modelling of Py vortices a cubic

anisotropy constant of 3.355 × 10−26 J is used, two orders of magnitudes smaller than

the cubic anisotropy for Mn2Au. What they found in the bilayer is the onset of a large

exchange coupling between the FM and AFM layers with exact one-to-one imprinting

of the AFM domain pattern on the FM Py. Fig. 5.1 shows the XMLD-PEEM and
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Figure 5.1: XMLD-PEEM images of as-grown Mn2Au(40 nm)/Py(4 nm)/SiNx(2 nm). (a)
Image of the Mn2Au AFM domains. (b) Image of the Py FM domains. Dark and light regions
show the horizontal and vertical orientation of the magnetisation respectively. (c) scanning
electron microscopy with polarisation analysis (SEMPA) image showing the x-component of
the FM contrast. (d) SEMPA image of 𝑦-component of the FM contrast. Panel (e) is generated
from panels (c) and (d) and shows the magnetisation of the Py domains is parallel to one of
the 4 easy ⟨110⟩ directions. The field of view in each panel is 10 𝜇m2. Image taken from Ref.
[200].

scanning electron microscopy with polarisation analysis (SEMPA) [203] images from

their experiment. Panels (a) and (b) show the results of their XMLD-PEEM measure-

ments on their as-grown sample of Mn2Au(40 nm)/Py(4 nm)/SiN2(2 nm). Panel (a)

and (b) show the domain patterns of Mn2Au and Py, respectively. Upon comparing

the two panels, it can be seen that the AFM domain pattern is perfectly imprinted on

the FM layer with dark and light regions indicating horizontal and vertical orientation

of the magnetisation respectively. Using SEMPA, they are able to indirectly obtain

the exact orientation of the AFM domain structure. Panels (c) and (d) show the 𝑥 and

𝑦 components of the FM contrast. By combining these two plots into panel (e), they

are able to reveal the exact direction of each FM domain and thus infer the orientation

of each AFM domain. It is worth noting that they observe no exchange bias - the

apparent shift of a hysteresis loop of an FM due to the interface coupling with an AFM
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- and render it unattainable in this particular system. They attribute this to the high

critical temperature of Mn2Au in relation to the comparatively low 𝑇𝐶 of Permalloy,

700 ∼ 800 K [204–206] preventing the creation of an exchange bias by field cooling

methods [207, 208]. The strong FM coupling of the layers opens the possibility for

the use of standard readout techniques to access the magnetic order, such as GMR or

TMR. For an FM/AFM Bilayer to be a viable candidate for faster and more efficient

memory applications, the extent to which the GHz dynamics slows down the switching

speed needs to be properly understood.

In this chapter, we introduce an atomistic model of the Mn2Au/Py bilayer and fo-

cus on two variable quantities in our simulations: (i) the thickness of the FM Py layer,

and (ii) the strength of the exchange at the interface. Through Fourier analysis we ex-

plore how these variables affect the resonant frequency of the system and determine the

temperature-dependent magnetisation and resonant frequencies. We analyse switching

using a THz frequency pulse and present switching phase diagrams for a range of THz

field strengths and widths. Simulations are conducted at static temperatures ranging

from 0 to 600K to understand whether thermal effects play an important role in the

switching process.

5.2 Atomistic System

For the bilayer system, we use lattice constants for Mn2Au with 𝑎Mn2Au = 3.33 Å and

𝑐Mn2Au = 8.537 Å. These are identical to those used in the atomistic model of Mn2Au

in chapters 3 & 4. For the atomistic modelling, we assume the Py matches 𝑎Mn2Au given

a comparable experimental value of 𝑎Py = 3.55 Å for bulk Permalloy [209]. The Py is

stacked vertically on top of the Mn2Au in the (001) direction. This means only one of

the AFM sublattices couples to the FM at the interface, preventing any frustration. We

assume open boundary conditions at the top and bottom end of the chain and periodic

boundaries on all others. A schematic of the chain close to the interface can be found

in Fig. 5.2.

96



5.2 Atomistic System

Figure 5.2: A snapshot of the system close to the interface. The Py atoms are shown in
green, the Au in black, and the Mn sublattices in blue and red respectively. The Py and Mn is
coupled ferromagnetically at the interface. Each axis has been scaled differently to aid in the
visualisation.

The thickness of Mn2Au is fixed at 25 units cells along the vertical length of the system,

which equates to roughly 21 nm. We chose to vary the thickness of Py using 6, 8, 10

and 20 unit cells. This corresponds to thin film thicknesses of approximately 2.13 nm,

2.84 nm, 3.55 nm and 7.1 nm respectively - similar thicknesses of Py were used in the

Mn2Au/Py bilayer experiments of Bommanaboyena et al. [200] where they vary the

thickness of the FM layer between 2 and 10 nm.

At the interface, the exchange is treated as nearest-neighbour between Py and Mn

atoms and is denoted by 𝐽 Inter
𝑖𝑗 . In the simulations, the exchange coupling at the in-

terface is varied from 0.5 × 10−21 J (≈ 15% of the n.n 𝐽𝑖𝑗 used for Py) to 5.0 × 10−21

J. The interface coupling is chosen as a variable quantity in our simulations as it is

possible to manipulate this experimentally by the insertion of a non-magnetic spacer

between the FM and AFM [210] or doping at the FM/AFM interface. The second rea-

son is that in the work of Bommanaboyena et al. [200] they do not provide an estimate

for the exchange coupling, and therefore a range of values have been covered in the

hope there is some crossover between experiments and simulation. For the bulk Py
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5.3 Frequency Scaling With Interface Exchange and Permalloy Thickness

atoms (those not at the bilayer interface), For simplicity, we use an average-moment

model with nearest-neighbour exchange, totalling 12 interactions per Py site. Similar

average moment models of The first term in the above can be found in Eq. (5.1). For

the Permalloy, we use an average moment of 0.95𝜇𝐵 assuming a magnetic moment of

𝜇Ni = 0.62𝜇𝐵 and 𝜇Fe = 2.27 with concentrations of 80% and 20% for Ni and Fe, re-

spectively. We use nearest-neighbour exchange and exclude any anisotropy. The cubic

anisotropy constant in bulk permalloy is four orders of magnitude smaller than 𝑑𝑧, and

two orders smaller than 𝑑𝑥𝑦 in Mn2Au and can therefore be safely ignored. For the 12

neighbouring interactions in Py, we use a value of 𝐽Py
𝑖𝑗 = 3.01 × 10−21 J which yields a

Curie temperature ≈ 720 K for a bulk system. For Mn2Au, the exchange interactions,

anisotropy and magnetic moment for Mn2Au are identical to those used in chapter 4.

The atomistic Heisenberg Hamiltonian for the bilayer system reads

ℋMn = ∑
Mn

𝐽Mn
𝑖𝑗 S𝑖 ⋅ S𝑗 − ∑

Mn
𝑑𝑧𝑆2

𝑖,𝑧 − ∑
Mn

𝑑𝑥𝑦𝑆2
𝑖,𝑥𝑆2

𝑖,𝑦 + ∑
Py

𝐽Py
𝑖𝑗 S𝑖 ⋅ S𝑗 + ∑

Inter
𝐽 Inter

𝑖𝑗 S𝑖 ⋅ S𝑗

(5.1)

5.3 Frequency Scaling With Interface Exchange and Permal-

loy Thickness

The idea behind coupling the AFM to an FM is that you easily get access to the mag-

netic information while avoiding a significant slowdown in the magnetisation dynamics.

Here we calculate the resonant frequency scaling at 𝑇 = 0 K for varied interface ex-

change and Py thickness. As the simulations are performed at 0 K, an external stimulus

is required to excite the dynamics. This is done by rotating the spins by 20° in the

𝑥𝑦-plane away from the initial equilibrium position. The spins are then unpinned and

the magnetisation dynamics are recorded for 50 ns with the damping value set to an

unrealistically low value of 0.001 for both Mn2Au and Py to allow for a longer preces-

sional motion. The resonant frequency is extracted via an FFT of the dynamics after

an initial equilibration of 100 ps.
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Figure 5.3: (Left) Frequency scaling with increasing Py thickness for varying interface ex-
change. (Right) Scaling with increasing interface exchange for varying Py thickness.

The frequency scaling with respect to increasing FM thickness is shown in the left

pane of Fig. 5.3. As expected, a decrease in the resonant frequency is observed with

increasing thickness of the FM layer as the GHz FM dynamics begin to dominate over

the faster THz frequency AFM dynamics. An order of magnitude increase in the FM

thickness from 2 to 20 unit cells leads to an approximately 8-fold decrease in the res-

onant frequency. On the right pane of Fig. 5.3 is the frequency scaling for increasing

interface coupling for static FM thickness. Unlike with the Increasing FM thickness,

the change in frequency is less drastic. A 7-fold increase in the interface exchange from

𝐽 Inter
𝑖𝑗 = 1 × 10−21 J to 𝐽 Inter

𝑖𝑗 = 7 × 10−21 J only yields an increase in the resonant

frequency of between 1.1 and 1.4 depending on the Py thickness. For switching ap-

plications, it’s therefore expected that a thinner FM would enable reversal for shorter

field pulses with lower amplitudes while the interface exchange plays a less important

role.
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5.4 Temperature Dependence of the Magnetisation

5.4 Temperature Dependence of the Magnetisation

Calculations of the magnetisation as a function of temperature are performed for two

values of interface coupling, 0.5 × 10−21 J and 5.0 × 10−21 J with FM thicknesses of 6

and 20 unit cells. Simulations are performed for systems with 60 unit cell repetitions of

the spin chain along the 𝑥 and 𝑦 directions. For the system with 6 unit cells of Py, there

are 406,800 atomistic spins in total. For 20 Py unit cells, there is a total of 507,600.

The number of Mn atoms remains fixed between both cases at 363,600 with 43,200 and

144,00 Py atoms for 6 and 20 unit cells, respectively. The damping is set to 𝜆 = 1.0
for both materials to achieve a faster relaxation in the longitudinal dynamics. The

magnetisation is recorded for a total of 50 ps for each temperature value with the mag-

netisation averaged over the range from 10ps to 50ps. The magnetisation is recorded at

increments of 50 K except in the regions 600K to 800K and 1300K to 1400K. In these

regions, the temperature increment is dropped to 10K and 20K to more accurately

capture the sudden drop in magnetisation close to the critical temperatures of Py and

Mn2Au. The critical temperature values for each thickness/interface exchange instance

are determined by fitting the magnetisation curve to 𝑚(𝑇 ) = (1 − 𝑇 /𝑇𝐶)𝛽, with 𝑇𝐶

and 𝛽 as free fitting parameters. This eliminates the need for visual determination of

the critical temperature amidst the messy transition to a paramagnetic caused by the

thin ferromagnetic layers and resulting finite size effects.

Fig. 5.4 shows the magnetisation curves for Py (top) and Mn2Au (bottom) for all

four cases of interfacial exchange and Py length. The results show that for Mn2Au,

there is almost no distinguishing between cases with the introduction of Py to the

system having no effect on the magnetisation curve. An identical 𝑇𝑁 is observed for

the bilayer to that seen for bulk Mn2Au as shown already in Fig. 3.3 of Chapter 3.

For the Py sublattice, there is a more clear distinction between cases, with the lowest

𝑇𝐶 being observed for bilayer containing 6 Py unit cells with an interface exchange of

0.5 × 10−21 J and the highest 𝑇𝐶 for 20 Py unit cells with an interface exchange of

5.0 × 10−21 J. The difference in critical temperatures between these two bilayer config-

urations is around 50 K. For 6 Unit cells, there is also a more noticeable tailing away of
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Figure 5.4: Temperature scaling of the magnetisation for Py (Top) and Mn2Au (Bottom) for
interface coupling strengths of 0.5 × 10−21 J and 5.0 × 10−21 J with FM thicknesses of 6 and 20
unit cells.

the magnetisation close to 𝑇𝐶 due to the reduced number of Py atoms being summed

to give the equilibrium magnetisation. This is a common occurrence in atomistic mod-

elling with small system sizes, a good example of this effect can be found in Fig. 8 of

Ref. [85]. These results show that the inclusion of Py with thicknesses as short as 5

unit cells means the system is still strongly magnetised at temperatures above 600K,

making the Mn2Au/Py system a good candidate for technological applications at room

temperature.

5.5 Temperature Scaling of the Resonant Frequency

The temperature dependence of the resonant frequency has been calculated for the same

combinations of interface exchange and Py thickness as seen in the previous section.

In contrast to the 𝑇 = 0K resonance calculations, where a spin canting was needed to

excite the 𝑛 = 0 resonance mode, it was found in the magnetisation dynamics calcu-

lations of the magnetisation that the resonance mode is sufficiently excited as a result

of the transfer of angular momentum between the sublattices arising from the random

101



5.5 Temperature Scaling of the Resonant Frequency

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.0

50.0

100.0

150.0

200.0

0 100 200 300 400 500 600 700

F
re

q
u
en

cy
of

n
z

(T
h
z) 6 Py unit cells, Jij = 0.5× 20−21

6 Py unit cells, Jij = 5.0× 20−21

20 Py unit cells, Jij = 0.5× 20−21

20 Py unit cells, Jij = 5.0× 20−21

γ
2π

√

HA (HA + 2HE)

F
re

q
u
en

cy
of

n
x

(G
H

z)

Temperature (K)

Figure 5.5: Temperature scaling of the in-plane (top) and out-of-plane (bottom) resonant
frequencies for interface coupling strengths of 0.5×10−21 J and 5.0×10−21 J with FM thicknesses
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dynamics.

thermally induced spin fluctuations. Because of this, no spin canting or field need be ap-

plied to induce any kind of precessional motion in this section. The simulations are run

for 500 ps to allow for a sufficient amount of cycles at resonance for each temperature

step. The resonant frequency is then found via an FFT of the Mn2Au magnetisation

dynamics over the range 100 ps to 500 ps. The initial equilibration window of 100 ps

is once again used account allow for the longitudinal relaxation in the magnetisation

for a given temperature. The resonant frequency of both the in-plane and out-of-plane

dynamics can be found in Fig. 5.5. The top and bottom panes show the scaling of

the in-plane and out-of-plane dynamics respectively. The resonant frequencies of the

in-plane precession for the FM Py layer is in perfect agreement with Mn2Au after the

initial equilibration period. For the out-of-plane dynamics, the common GHz frequency

mode is observed in both FM and AFM layer while the AFM has an additional higher

THz frequency mode arising from the large anisotropy constant 𝑑𝑧. The temperature

dependence of the latter was calculated for bulk Mn2Au in chapter 3 (see Fig. 3.5).

The solid black line in the bottom pane of Fig. 5.5 is the analytical approximation of
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Figure 5.6: The ambient dynamics of the Bilayer system at temperatures of 50 K, 300 K and
600 K. (Top) 𝑚𝑥 dynamics for Py. (Bottom) 𝑛𝑥 dynamics for Mn2Au. No external field has
been applied to induce the precession.

the antiferromagnetic resonance given by Eq. (3.9). The inclusion of the Py layer has

little impact on this resonant mode as shown by the overlap of all data points on the

solid black line. Similar trends were observed for all cases of interface couplings and

FM thicknesses with close agreement being observed with the analytical approximation.

An example of the 𝑥-components of the magnetisation dynamics for both Py and Mn2Au

at the largest coupling strength of 5.0×10−21 J with 6 units cells of Py for temperatures

of 50, 300 and 600 K is shown in Fig. 5.6. The top and bottom panes show Py and

Mn2Au dynamics, respectively. The common lower frequency mode is identifiable in

both the FM and AFM dynamics, with it being more noticeable in the FM dynamics

and less so in the AFM because of the much higher intrinsic THz frequency oscilla-

tions. Note the differing y-axis scale in Fig. 5.6, this has been used to account for the

difference in magnetisation of the two materials for the respective temperatures.
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5.6 Bilayer Switching

In this section, we present simulations of switching in the bilayer at 0K. Like with the

switching in pure Mn2Au seen in chapter 4, we use a THz frequency field modelled

using Eq. (4.14). The applied field is once again staggered for each Mn sublattice.

An identical field to the sublattice containing the Mn atom at the interface is applied

to the Py sublattice. Firstly, we consider the case of 6 unit cells of Py, and vary

the strength of the coupling across the interface. Fig. 5.7 shows four different cou-

pling strengths, namely 0.5, 1.0, 2.0 and 5.0 × 10−21 J. For low 𝜎, the phase diagram

varies minimally in structure across an order of magnitude increase in the interface

exchange. While this region remains similar, there is a significant change in the phase

diagram for 𝜎 ≳ 0.2 which transitions from small and scattered switching windows
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Figure 5.8: Magnetisation reversal using a THz pulse for an interface exchange of 5.0 × 10−21
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regions of 90° and 180° switching respectively.

to larger and more continuous regions of reversal. Simulations are also conducted for

constant exchange coupling with varied Py thickness, we chose the largest value of

𝐽 Inter
𝑖𝑗 = 5.0 × 10−21 J and varied the thickness from 6 to 20 unit cells. As was seen in

Fig. 5.7, the phase diagram remains similar in shape for 𝜎 ≲ 0.2, but there is a notable

increase in the fields required for reversal in this region with almost no 180° reversal

observed for the case of 20 Py unit cells. For 𝜎 ≳ 0.2, the change in the phase diagram

as we transition from 6 to 20 unit cells is more disordered. In contrast to switching in

pure Mn2Au, there exist large bands in Figs 5.7 and Fig. 5.8 where no magnetisation

reversal is observed, which suggests the FM is hindering the onset of switching.

To further reiterate this point, simulations were conducted where only the Mn sub-

lattices were subject to an applied staggered field. Fig. 5.9 shows the change in the
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Figure 5.9: Changes in phase diagram from an excitation of both Mn and Py sublattices
compared to an excitation of the Mn sublattices alone for coupling strengths of (a) 0.5 × 10−21

J and (b) 5.0 × 10−21 J. The lighter coloured areas show no change in switching between the
two cases. Darker regions show regions where the final reorientation angle has changed.

phase diagram as a result of an excitation of the entire system compared to the case of

excitation only in the AFM. For 𝜎 ≲ 0.2 ps, changes are only observed at the boundary

between two reorientation angles by, in most cases, a single shift in the field strength

or pulse width increment. The AFM is therefore almost entirely responsible for the

switching in this region. For larger pulse widths, the FM has an extended period of

time to exhibit a response to the longer fields as highlighted by the significant changes

in reorientation angle for 𝜎 ≳ 0.3.

5.7 Standing Spinwave Formation

Simulations at the lowest interface coupling of 𝐽 Inter
𝑖𝑗 = 0.5 × 10−21 J with the thinnest

FM film of 6 Py unit cells also revealed the formation of standing spinwaves in the

FM layer. Fig. 5.10 shows the dynamics of every atomic layer at 𝑇 = 0 K following

the application of a THz field for coupling strengths of 𝐽 Inter
𝑖𝑗 = 0.5 × 10−21 J and

𝐽 Inter
𝑖𝑗 = 5.0 × 10−21 J. No switching occurs for either of these particular event. The

THz pulse causes large deviations in the AFM for both exchange values, as shown by

106



5.7 Standing Spinwave Formation

the sharp contrast between blue and green regions around the 10 ps mark. In the case

of the weaker coupling, the FM shows little response in the period between 10-11 ps,

however, the exchange field at the interface is sufficient enough to create a standing

spinwave at the 𝑛 = 1 resonance mode in the FM layer. This is highlighted as an

inset in the top pane (note the change in colour-axis scale to enhance the contrast

between the standing spinwave maxima and minima). For the largest coupling value of

𝐽 Inter
𝑖𝑗 = 5.0×10−21 (shown in the bottom pane of 5.10) the presence of any higher order

standing waves is less evident with the AFM effectively pulling the FM on a similar

trajectory. The 𝑛 = 0 resonant mode can be seen clearly between 15 and 25 ps in both

panes. There is no observed phase difference between the oscillations, with the FM and

AFM layers oscillating in sync. The brighter contrast between maxima and minima in

the FM Layer between 15 and 25 ps for both exchange values shows the FM oscillating

at a greater amplitude than the AFM.
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Figure 5.10: The dynamics for each atomic layer for an interface coupling of 𝐽 Inter
𝑖𝑗 = 0.5 ×

10−21 J and 𝐽 Inter
𝑖𝑗 = 5.0 × 10−21 J for 6 unit cells of Py following the application of a THz field.

The colour indicates the 𝑛𝑥 dynamics. Inset show the FM dynamics in the region shortly after
the pulse. Note the change in colour bar axis in the insets to enhance the contrast.

5.8 Switching Simulations at Elevated Temperatures

It is well understood that elevated temperatures lead to a reduction in anisotropy fields

[144, 211, 87]. Such heating is the key principle behind Heat Assisted Magnetic Record-

ing (HAMR) [20–23]. Here, we conduct finite temperature simulations for the bilayer

containing 6 unit cells of Py along the chain with an interface exchange of 0.5 × 10−21

J, which shows the most favourable switching characteristics. Due to the increased

computational cost of finite temperature ASD simulations a much smaller phase space

is sampled. We conduct switching simulations in the ranges 0.1 ≤ 𝜎 ≤ 0.2 ps and

0 ≤ 𝐻 ≤ 6 T (recall 𝐻 does not correspond to the maximum amplitude, 𝐵max). This

region captures the lower switching band that has been observed for all values of ex-

change and FM length. We use pulse width increments of Δ𝜎 = 0.01 ps and field
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Figure 5.11: magnetisation reversal using a multicycle pulse for a Py thickness of 6 unit cells
with a coupling strength of 0.5 × 10−21 J. The area inside the red rectangle show results from
finite temperature atomistic simulations. With (a) 𝑇 = 300 K and (b) 𝑇 = 600 K on the left
and right respectively. The switching probability is averaged over 8 repeated simulations. The
area outside the box is at 0 K. It is not possible to differentiate between 90° and 180° reversal
in this figure.

increments of Δ𝐻 = 0.1 T. Simulations are repeated 8 times at every value of 𝐻 and

𝜎. Fig. 5.11 shows the switching probability for the temperatures of 300K (Left) and

600K (Right). The area inside the red box shows the finite temperature switching

probability. The area outside the red box shows switching at 0 Kelvin. The switching

is always deterministic, but has been included to highlight any changes in the switching

band between 0K and the finite temperature results. It is not possible to differentiate

between between 90° and 180° reversal in Fig. 5.11. What is shown is the probability

of any switching event occurring. For elevated temperatures, a lowering and broad-

ening of the switching band can be seen as we transition from 0K to 600 K. At 300

K, the equilibrium magnetisation is roughly 0.84 𝑀/𝑀𝑆 and 0.92 𝑀/𝑀𝑆 for the Py

and Mn2Au sublattices respectively. At 600 K, it is approximately 0.42 𝑀/𝑀𝑆 and

0.81 𝑀/𝑀𝑆.

The reversal path for Mn2Au was found to be almost perfectly circular in the 𝑥𝑦-

plane for all temperatures because of the large negative uniaxial anisotropy constant

𝑑𝑧. The Py reversal path is also circular with no significant reduction in the magneti-
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sation following the application of the field. Interestingly, the lack of any anisotropy in

the FM layer allows for the precession of the Py sublattice out of the 𝑥𝑦-plane which is

not observed for the Mn sublattices. In other materials, it has been observed that there

is a reduction in the magnetisation length during the reversal process which is known

as linear reversal. FePt is one such material that transitions from a circular path to a

linear path for static temperatures close to 𝑇𝐶 [212–214]. Linear reversal paths have

been observed in atomistic simulations of the AFM NiO [215].

Fig. 5.12 shows the two most common reversal paths for an interface exchange of

0.5 × 10−21 J with a Py thickness of 6 unit cells - the bilayer setup that shows the

most favourable switching. Because of the highly circular precession in the 𝑥𝑦-plane

resulting from the strong uniaxial anisotropy 𝑑𝑧, the reversal pathways are derived from

the dynamics of the Mn sublattices, making it simple to characterise the path in terms

of a rotation about the 𝑧 axis. Panel (a) shows the dynamics corresponding to a 270°

clockwise rotation of the Mn sublattices while panel (b) shows a reorientation after a

clockwise rotation of 180°. In total, these two paths account for 51% of all the switch-

ing events at 300 K with panel (a) and panel (b) accounting for 29% and 22% of the

switching events, respectively. There exist 8 other paths with occurrences of between

1% and 9% that account for the remaining 49% of switching events. If we characterise

the reversal time as the time taken for the Mn sublattices to reach the final state, the

average reversal time is ∼ 5 ps and ∼ 9 ps for panel (a) and (b) of Fig. 5.12, respectively.

While the switching events occur in only a few picoseconds, the system continues to

oscillate at the resonant frequency for an extended period of time. The size of the

oscillations after the removal of the applied field differs greatly in these two cases, with

the 270° reorientation of Mn2Au case seeing much larger amplitudes. For the 270°

scenario, the Mn2Au sublattice that is coupled ferromagnetically to the Py performs a

270° clockwise rotation, while the Py sublattice performs a 90° rotation anti-clockwise

in the opposite direction. The AFM rotates incredibly quickly, with a full 270° rota-

tion occurring on a sub-ps timescale. The slower dynamics of the FM mean it has little

110



5.9 Summary

Figure 5.12: magnetisation dynamics at 300 K for the two most common reversal paths.
(a) an anti-clockwise rotation of 270° in the 𝑥𝑦-plane for the Mn sublattices and a clockwise
rotation of 90° for the Py. (b) an anti-clockwise reorientation of 180° in the 𝑥𝑦 plane for Mn
sublattices and a rotation of 180°out of the 𝑥𝑦 plane such that the Py sublattice is parallel to
the 𝑧 axis roughly halfway through the switching process. These two paths account for 52% of
all switching processes at 300 K.

time to react and by the time the AFM has reached the final angle, it is energetically

favourable for the FM to rotate 90° in the opposite direction. In the 180° case, both

Mn2Au and Py perform a clockwise 180° reorientation. The AFM quickly performs a

90 ° rotation, shown by the sudden change in the positive to negative at the 10 ps mark

in the 𝑛𝑥 component in panel (d). The AFM then remains close to the 90 °reorientation

angle for ≈ 2 ps around while the FM begins its response. This can be seen in the

region between ≈ 12 and 14 ps in panel (b) of Fig. 5.12. The FM layer catches up

and overshoots the 90° state. It is at this point the AFM and FM then rotate almost

synchronously to the final reorientation angle of 180 °. This slower in-phase rotation

of the AFM and the FM can be seen in the region from roughly 14 to 20 ps in panel

(b) of Fig. 5.12.

5.9 Summary

The experimental observation of one-to-one imprinting of AFM domain structure onto

an FM by Bommanaboyena et al. has opened the potential for AFM switching speeds
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while still allowing access to the magnetic order parameter via the FM layer. Here

we have replicated their system in an atomistic model with the Py stacked vertically

on top of the Mn2Au with the lattice constants matched in the (001) direction. The

exchange coupling at the interface is treated simply as a nearest-neighbour interaction

between Mn and Py atoms, the strength of which is varied as a parameter in simula-

tions. Additionally, the thickness of the Py layer is adjusted between 2 and 20 unit

cells to explore its role in the magnetisation dynamics. The resonant frequencies of

the coupled system were calculated for varying Py thicknesses and interfacial exchange

strengths, with a reduction of around 90% from approximately 200 GHz to 20 GHz

with an increase in thickness from 2 to 20 unit cells of Py. For an order of magni-

tude increase in the interfacial exchange, the increase in resonant frequency was only

between 10% and 40% depending on the Py thickness. This result implies thinner

FM films with stronger exchange coupling will allow faster switching for a given ap-

plied field. The temperature dependence of the magnetisation shows little variation

with varying thickness and exchange parameters with a critical temperature decrease

of 50 K observed between a system of 20 Py unit cells with an interface exchange of

𝐽𝑖𝑗 = 5.0 × 10−21 J compared against a system containing 6 Py unit cells with coupling

𝐽𝑖𝑗 = 0.5 × 10−21 J. Overall, the bilayer remains strongly magnetised well above room

temperature. The temperature scaling of the resonant frequency revealed an expected

decrease with rising temperatures. The common, lower GHz mode appears in both

Py and Mn2Au dynamics, while the large anisotropy constant 𝑑𝑧 in Mn2Au generates

an additional THz frequency mode observable only in the 𝑧-component of the AFM

dynamics.

The phase diagrams presented in this chapter map out switching for different field

amplitudes, pulse lengths, Py thicknesses and interfacial couplings. For weak coupling,

the phase diagrams look quite similar for shorter pulse durations, even as the exchange

interaction increases by an order of magnitude. Above a threshold of around 0.3 ps,

much larger continuous areas of switching appear. Varying the Py thickness with a

fixed, strong interfacial coupling still produces the most significant changes for short
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pulse lengths. Comparisons made between exciting both the FM and the AFM versus

just the AFM demonstrates that the antiferromagnet alone is responsible for reversal

when pulse lengths are small. Interestingly, for weak coupling and thin Py films, the

formation of standing spin waves can be seen in the FM layer for several ps following

the THz pulse - opening the possibility for bilayer systems such as this to be used as

generators in magnonic devices.

Finite temperature switching simulations at 300K and 600K show a slight lowering

and broadening of the switching bands in the phase diagrams. The reversal is found to

occur in just a few picoseconds, although oscillations at the natural resonant frequen-

cies persist much longer. Different switching paths and timescales are observed for the

two materials, with the AFM for example able to rotate 270° in under a picosecond

while the ferromagnet lags behind and reaches its final state in a comparatively longer

10 ps timescale. The results presented here demonstrate the potential for staggered

THz fields to reverse Mn2Au/Py bilayers on ultrafast timescales with field amplitudes

on the order of a few Tesla. Even with the addition of the ferromagnet, switching can

primarily rely on excitations of the AFM as long as FM films are kept thin, typically a

few unit cells, with sub-ps staggered fields.
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Chapter 6

Spinwave Dynamics in AFM

Thin Films and Multilayers With

Combined FM and AFM Order

OK, lovely people, let’s go truffling in the forest of knowledge!

– STUART PIERCE, The Thick of it. Created by Armando Iannucci.
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6.1 Introduction

The emergence of thin magnetic materials in the range of several tens of nm present ex-

citing possibilities for the future of information technologies. When patterned into dis-

crete bits at these reduced dimensional scales, such materials may enable high-density

magnetic data storage or novel approaches to information processing using spinwave

based logic devices. Of particular interest are multilayered configurations, which exhibit

quantised spinwave modes with frequencies in the THz range that depend on a range of

parameters such as the layer thickness, interface coupling and magnetic moment. Un-

like continuous spinwave spectra that emerge in bulk materials, these ultrathin layered

structures support standing spinwave (SSW) modes at well-defined resonant frequen-

cies. Being able to generate a wide range of signals in the THz range means it could

become possible to selectively drive specific spinwave resonances within a multilayer

of thin-film sample. As layer thicknesses continue to decrease, the separation between

resonant mode frequencies increases, improving the precision with which distinct spin

dynamics can be activated using tailored terahertz pulses. This is well highlighted in

the well-known equation for spinwave resonance in ferromagnets

𝑓(𝑘) = 𝛾
2𝜋(𝐻𝐴 + 𝐷𝑘2) (6.1)

with wavevector 𝑘 = 𝜋𝑛/𝑑 with 𝑑 being the thickness of the thin film. 𝐷 in the above is

the spinwave stiffness, which can be related to the exchange constants with the equation

[216–218]

𝐷 = ∑
𝑗

2𝜇𝐵
3𝜇𝑗

𝐽0𝑗𝑅2
0𝑗 (6.2)

where 𝜇𝑗 is the magnetic moment of atom 𝑗 and 𝑅0𝑗 is the corresponding inter-atomic

distance. For 𝑘 = 0 in Eq. (6.1), we are left with the standard ferromagnetic resonance

mode. As the layer thickness decreases, the frequency spacing between adjacent res-

onance modes widens making thinner films more suitable for selective THz pumping.

In the work of Razdolski et al. [219] in 2017, ultrashort spin-current pulses were used

to drive non-uniform spin dynamics in 14 nm thin films of Fe. In their experiments,
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they detect excitation of the first 5 standing spin-wave (SSW) modes, with the largest

response amplitude observed for the 𝑛 = 𝑘𝑛𝑑
𝜋 = 1 resonance mode, where 𝑘 is the wave

vector and 𝑑 is the thickness of the film. Fig. 6.1 shows some of the key results from

their work. The top panel shows the magnetisation dynamics as measured by MOKE

with the resonance of the 𝑛 = 1 mode being most easily observable oscillation. The

𝑛 = 0 mode can just be made out in the transverse component (green points/lines)

of the MOKE Rotation curve. The Bottom pane shows the Fourier spectrum (blue

line) of the MOKE measured dynamics with the peak frequencies (red circles) with the

largest amplitude for the 𝑛 = 1 mode, in agreement with the top pane. They observe

peaks in the frequency amplitude up to the 𝑛 = 4 mode. The solid red lines shows the

spinwave dispersion curve as calculated using Eq. (6.1). This was the first study that

looked at using spin current pulses to excite high-frequency spin waves above the 𝑛 = 0
mode and marked an important step towards using higher modes for THz magnonics

and switching on ultrafast timescales in FM thin films.

The Spinwave dynamics in AFMs, without factoring in thin film structures, is less

documented in the literature due to challenges associated with accessing the magnetic

information. The first demonstration of spinwave control came in 2011 by Kampfrath

et al. [59] who uses single-cycle THz pulses to coherently excite the 𝑓0 resonance mode

in samples of NiO, as shown in Fig. 6.2. To detect the response in the magnetisation,

they used an 8 fs optical probe pulse to measure the time-dependent dynamics via the

Faraday effect, which causes a rotation of the probe polarisation. This study was the

first demonstration of coherent control of the spinwaves, promising new methods for

investigations of spin dynamics in AFMs. It was later shown by Hortensius et al. [121]

that it is possible to measure spinwave propagation in AFMs using optical pumping for

a broadband wavepacket of short-wavelength coherent spinwaves, not just the 𝑘 = 0
mode that was seen in the experiments of Ref. [59]. They achieve this through the

optical excitation of intense charge-transfer (CT) electronic transitions in DyFeO3, un-

like Ref. [59], which instead of electronic transitions, relied on the Faraday effect to

induce the spinwave dynamics. The excitation resulting from the optical pulse leads to
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Figure 6.1: Above: Transient MOKE signals
following STT-induced magnetisation dynam-
ics in both rotation (top curve) and elliptic-
ity (bottom curve). Left: Fourier spectrum
of the experimental data shown above (blue
line). The red solid line is the calculated spin
waves dispersion curve from Eq. (6.1) with the
indicated magnon stiffness 𝐷Fe. The frequen-
cies of the standing spin waves in the 14 nm-
thick Fe film are shown in the right panel with
red symbols. Image taken from Ref. [219].

a non-uniform spin perturbation that is distributed among spinwave modes at differ-

ent 𝑘 values. They find the amplitude, 𝐴𝑘, of the excitation can be approximated by

the expression 𝐴𝑘 ≈ 𝐼0/(1 + (𝑘𝛿)2), where 𝐼0 is the intensity, and 𝛿 is the penetration

depth. By adjusting the energy of the pump pulse, and consequently altering the depth

of penetration, they have the ability to control the excitation strength corresponding

to various values of 𝑘. The approach outlined in this study introduced a new means of

controlling the THz spinwave dynamics in AFMs. While both these studies involved

system sizes on the order of ∼ 100s nm, they were the first to detect and excite spin-

waves at the 𝑛 = 0 mode and above, paving the way for ultrafast methods of controlling

spinwave propagation and dynamics in AFM materials.

The ability to control and excite resonant frequencies above the fundamental mode

by altering the thicknesses of thin film and multilayer structures opens new routes for
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Figure 6.2: (a) The applied field pulse as a function of time, 𝐵(𝑡). (b) The observed Faraday
rotation as detected by a 8 fs optical probe pulse. Inset shows the amplitude spectrum of the
THz field in (a) and the magnetisation dynamics shown in (b). Image taken from Ref. [59].

switching. Here, we asses the potential to utilise resonant THz excitation of spinwaves

in multilayered and AFM thin films to achieve magnetic switching. The chapter is

broken down in the following way: firstly, we look at the creation of SSWs in multi-

layers of combined FM and AFM order and the effects different magnetic properties

have on the frequencies of the standing and travelling modes using LSWT. We then

look at the impact of applying a circularly polarised field at close to resonance and the

effect this has on the amplitude of the modes. We then show atomistic simulations of

switching in the multilayer for different variations of the applied magnetic field sublat-

tice staggering, i.e. varying whether the field if positive or negative for each sublattice,

to determine the most efficient switching route. Finally, we finish the chapter with

an investigation of switching in a single thin AFM film. The frequencies of the SSW

modes are determined via thermal excitations of the system. We then pump the sys-

tem using a THz circularly polarised fields and apply a sub-ps staggered square pulse

to understand whether excitations at higher order resonant modes can lead to a more

energy-efficient reversal mechanism. This chapter is very much an exploratory piece of
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work with ASD and LSWT calculations being performed on simplified multilayer mod-

els of multilayers and AFM thin films, where the physical parameters including the

magnetic moment and exchange constants have been systematically varied. It is not as

conclusive in its findings as in previous chapters, but it is hoped it lays the groundwork

for further theoretical and experimental work on THz excitations in multilayer and thin

film heterostructures.

6.2 Observation of Standing Spinwaves in Multilayer Struc-

tures with Combined FM and AFM Order

We begin this chapter with an introduction to the multilayer system used as part of this

work. It consists of two materials which, initially, will be those of Fe and Co. Because

the values will be varied in later sections, we shall simply refer to them as materials

A and B and avoid attributing the parameters to any specific material. A table of

the values used in this section can be found in Tab. 6.1. For this investigation, two

configurations of material B will be considered: (i) a standard nearest-neighbour FM

and (ii) a planar AFM with AFM coupling along the 𝑥-direction of the spin chain and

FM coupling along 𝑦 and 𝑧. In all cases, the number of atoms in material A, 𝑁𝐴 and

material B, 𝑁𝐵, are kept equal. Additionally, the number in each material is always

fixed at an odd number. For the planar AFM configuration of B, an odd number of

atoms ensures that there is a ferromagnetic interaction at either interface with material

A. This prevents frustration and the formation of any helical structures. A schematic

of the system can be found in Fig. 6.3. The quantities that have been systematically

varied in this multilayer structure are the ground state configuration of material B, the

length of the system with the constraint of 𝑁𝐴 = 𝑁𝐵, and the magnitude of the mag-

netic moment and exchange coupling for material B. There are other parameters, such

as the unit cell sizes with 𝑁𝐴 ≠ 𝑁𝐵, AFM interfacial coupling, the relative anisotropy

strengths, and AFM ground states of both materials that could be explored as part of

future work.
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parameter/material A B units
𝜇𝑠 2.22 1.72 𝜇𝑏

𝐽𝐴𝐴,𝐵𝐵 7.05 × 10−21 −6.064 × 10−21 J
𝐽𝐴𝐵 6.557 × 10−21 6.557 × 10−21 J
𝑑𝑧 5.65 × 10−25 6.69 × 10−25 J

Table 6.1: Parameters for multi-layer calculation. The system is simple cubic. Material B will
be simulated as planar-AFM(XY) and FM. For the FM case, the absolute value, |𝐽𝐵𝐵|, will be
used.

It is well understood that SSWs form in thin magnetic films but little is known about

the presence of standing modes in layered structures with combined order. In this

section, we calculate the dispersion curve using ASD and LSWT for varying numbers

of atoms in the unit cell for different ground state configurations of material 𝐵. We

chose three cases with 𝑁𝐴 = 𝑁𝐵 = 3, 5, 9 which corresponds to a unit cell containing 6,

10 and 18 atoms, respectively. In the atomistic simulations, the temperature is set to

𝑇 = 1 K to sufficiently excite the spinwave modes. The damping is set to 𝜆 = 0.0001
to enhance the lifetime of the modes before they dissipate. The simulations are run for

a total of 1 ns. Most of this is the equilibration of the system because of exceptionally

low damping. The dispersion is calculated using the spin configurations for the final 50

ps of the simulation. For a short equilibration time or large damping value, there is an

increased number of artefacts in the final data and a broadening of the modes, making

distinguishing between individual modes difficult. The spin moments are initialised

along the 𝑧-direction (−𝑧 for the AFM sublattice of material B) in alignment with the

field arising from the relatively small anisotropy constants for each material. In the

atomistic modelling, the spinwave dispersion is calculated using Eq. (2.33) with the

transverse component, 𝑆⟂ = 𝑆2
𝑥 + 𝑆2

𝑦 , being used as input into the spatial FFT. The

corresponding LSWT calculations were completed in collaboration with S. Ruta.

A comparison between the spinwave dispersions of FM and AFM configurations of

material B for unit cells with 𝑁𝐴 = 𝑁𝐵 = 3, 5, 9 can be found in Fig. 6.4. The left

and right columns show the dispersion relation for the FM and AFM configurations
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Figure 6.3: A schematic of the atomistic multilayer system. Two materials A and B with
different magnetic moments and exchange constants. A full table of parameters is given in Tab.
6.1. They are coupled with exchange energy 𝐽𝐴,𝐵. There is always an equal and odd number
of atoms in materials A and B so that there is no frustration at one of the interfaces. Periodic
and ferromagnetic coupling is always assumed in the 𝑦 and 𝑧 directions.

respectively. The dispersion relation is calculated up the centre of the 6th, 10th and

18th Brillouin zone for the system. Upon inspection of Fig. 6.4, it is clear that the

combination of AFM and FM order introduces flat standing modes into the system. For

the case of 𝑁𝐴 = 𝑁𝐵 = 3, a standing mode can be seen at around 15 THz for an AFM

configuration in material B, while in the FM case, no standing modes are observed.

For 𝑁𝐴 = 𝑁𝐵 = 5 two distinct standing modes can be seen at 10 and close to 20 THz.

For the final case of 𝑁𝐴 = 𝑁𝐵 = 9, there exists a total of 9 standing modes between 0

and 40 THz. While no standing modes are present for the smallest unit cell size, what

can be observed is a flattening of the highest order modes for increasing unit cell size,

with the two highest frequency modes being completely stationary for the system with

𝑁𝐴 = 𝑁𝐵 = 9.

The calculations show that combining FM and AFM configurations into a layered

structure can lead to the formation of standing modes at frequencies more easily acces-

sible for experiments compared to standing modes for FM/FM coupled layers, where

the formation of low amplitude standing modes occurs at the high frequencies. The

ability of the AFM to pin and stabilise standing waves, owing to its intrinsic exchange

field, opens an additional route for switching in addition to conventional switching that

makes use of the 𝑓0 mode.
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Figure 6.4: Spinwave spectrum comparison for FM (column 1) and AFM (column 2) config-
urations of material B for 𝑁𝐴 = 𝑁𝐵 = 3 (row 1), 𝑁𝐴 = 𝑁𝐵 = 5 (row 2) and 𝑁𝐴 = 𝑁𝐵 = 9
(row 3).
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6.3 Variation of the Magnetic Moment and Interface Cou-

pling

We also investigate the effect of varying the magnetic moment and interface cou-

pling on the spinwave modes using LSWT. Firstly we consider the case of varying

the magnetic moment of material 𝐵, while maintaining a constant interface coupling

at 𝐽𝐴𝐵 = 6.557×10−21 J. For the system featuring 𝑁𝐴 = 𝑁𝐵 = 5 with periodic bound-

ary conditions along the spin chain direction, we systematically adjusted the magnetic

moment from 1.0𝜇𝐵 to 4.0𝜇𝐵 in 0.1𝜇𝐵 increments. The frequencies of each mode are

monitored at the centre of the first Brillouin zone, Γ, as the magnetic moment of ma-

terial 𝐵 is increased. The results are shown in Fig. 6.5, with the two standing modes

visible in Figure 6.4(c) shown as dotted lines in Fig. 6.5.

During this magnetic moment range from 1 to 5 𝜇𝐵, we observe a general trend of

a reduction in frequency for all modes, however a more pronounced reduction in fre-

quency is observed for standing modes compared to the travelling modes. Looking at

the standing modes more specifically, the higher of the two standing modes (green dot-

ted line) sees a 80% frequency reduction, while the lower standing mode (blue dotted

line) decreases by 82%. In contrast to the most significant frequency reduction of 68%

for a travelling mode across the same magnetic moment range. The modes also appear

to tend towards an equilibrium value, with the two highest modes approaching steady

state values of 35.5 THz and 29.3 THz, respectively.

While not depicted in this figure, the three highest frequency spinwave modes initially

behaved as travelling modes for lower magnetic moment values. However, as the mag-

netic moment increased, these modes exhibited a flattening trend. The transition from

travelling to standing modes can be attributed to the fact that with increasing magnetic

moment of material 𝐵, the less susceptible the system is to high frequency magnetic

fluctuations as depicted in the schematic diagram in Fig. 6.6. The figure shows the

dispersion relation for an FM (blue) and the corresponding AFM dispersion (darkest
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Figure 6.5: Frequency at the centre of the Brillouin zone, Γ, for the multilayer system with
𝑁𝐴 = 𝑁𝐵 = 5 as a function of the magnetic moment of material 𝐵. Coloured dotted lines show
the SSW modes. The vertical dotted line shows the moment strength used in the spinwave
dispersions shown in panel (c) of Fig. 6.4.

shade of red) for identical magnetic moments and exchange constant magnitude. As

the magnetic moment increases in the AFM (shown by increasing transparency in red),

the dispersion relation reduces in amplitude, meaning the spinwaves that propagate

into the AFM from the FM at frequencies greater than the maximum amplitude are

not supported by the system and the AFM begins to as a fixed boundary - thus en-

abling the formation of standing modes. It is reasonable to assume that this flattening

of higher frequency modes would also occur for lower modes with further increases in

the magnetic moment of material 𝐵.

LSWT calculations were also performed for varied interfacial exchange. The value

of 𝐽𝐴𝐵 is varied as a percentage of the mean of the intra-sublattice exchange constants,

(𝐽𝐴𝐴 + 𝐽𝐵𝐵)/2, from 0% to 200% in increments of 2%. Fig. 6.7 shows the results

of the LSWT calculations. The general trend for all modes is an increased frequency

for larger coupling, however the rates differ greatly, with the largest increases seen for

the two higher frequency modes at 0% coupling. There exists sharp discontinuities at

interface couplings of roughly 5% and 55% (𝐽𝐴𝐴 + 𝐽𝐵𝐵)/2 where two modes intersect.
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Figure 6.6: Spinwave dispersion for an FM (blue) and AFM (darkest shade of red) for identical
magnetic moments and exchange constant magnitude. Increasing the magnetic moment reduces
the amplitude of the spinwave dispersion (shown by the increasing transparency of AFM curve).
High frequency modes that are present in the FM cannot be sustained by the AFM in the
multilayer system.

In this region, the rate of increase in frequency is passed between spinwave modes, with

the lower mode that was originally increasing at a faster rate suddenly slowing, while

the higher increases in frequency sharply after the point of intersection.

6.3.1 Excitation of the Spinwave Modes

In this section, we look at the excitation of SSW modes using a linearly polarised si-

nusoidal field. The aim here is not to achieve switching, but to understand how the

amplitude of the modes scales with varied applied field strength. The ASD simulations

are performed for the system with 𝑁𝐴 = 𝑁𝐵 = 9 with periodic boundary conditions

with a single unit cell at 𝑇 = 0K. A staggered field is applied along a perpendicular

direction to the initial magnetisation orientation. The applied field takes the form

𝐵 = (±𝐵0 sin(2𝜋𝑓𝑡), 0, 0) with the sign of the prefactor 𝐵0 depending on whether the

sublattice is spin-up or spin-down. The ASD simulations are run with an applied field

for a considerable duration by atomistic modelling standards, with a total simulation

time of 5 ns. The spinwave amplitudes at 𝑘 = 0 are determined over the final 0.1 ns

of the simulation. A figure of the amplitude scaling for applied field strength in the

range 10 mT to 100 mT can be found in Fig. 6.8. The two curves are for different
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Figure 6.7: Frequency at the centre of the Brillouin zone, Γ, for the multilayer system with
𝑁𝐴 = 𝑁𝐵 = 5 as a function of coupling strength. The coupling strength is given as a percentage
of the mean value (𝐽𝐴𝐴 + 𝐽𝐵𝐵)/2. Coloured dotted lines show the SSW modes. The vertical
dotted line shows the coupling strength used in the spinwave dispersions shown in panel (c) of
Fig. 6.4.

pumping frequencies of 6.2 THz, which is closer to the lowest standing mode visible for

this system in Fig. 6.4, and 8.0 THz, which is approximately the frequency of the next

highest travelling mode. The data points show the amplitudes at Γ as calculated using

ASD, with the amplitudes being normalised to the lower of the two curves. The solid

lines show the scaling with the amplitude ∝ 𝐵2
0/𝜆2 normalised to the amplitude at the

lowest field strength of 𝐵0 = 10 mT for each frequency.

While not for layered structures, similar amplitude scaling with the applied field squared

has been noted in the literature for FM materials. In the work by Ostler et al. [112],

they derive an analytical expression, using the LLB formalism, for the absorbed power

in temperature-dependent simulations of FM resonance, which can be used to deter-

mine physical properties such as damping and anisotropy. The derived equation is

verified against numerical LLB simulations for single and multi-macrospin systems of

FePt with good agreement being observed between stochastic finite temperature LLB

simulations and theory.
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6.3 Variation of the Magnetic Moment and Interface Coupling
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Figure 6.8: Amplitude scaling for varied applied field strengths, 𝐵0, for pumping at spinwave
modes with frequencies of 6.2THz and 8.0THz at the centre of the Brillouin zone. Amplitudes
have been normalised to the value for frequency of 8.0THz at the lowest value of 𝐵0. Points
show amplitudes calculated from ASD, solid lines show the scaling being proportional to 𝐵2

0/𝜆2.

6.3.2 Switching Using a Square Pulse

As with the previous section, the focus here is on the multilayer system with 18 atoms

in the unit cell and 𝑁𝐴 = 𝑁𝐵 = 9 with an AFM configuration of material B. Gen-

erally, we are interested in the easiest switching possible (i.e lower field strength for

the shortest field duration). Throughout this thesis, we have emphasised the effective-

ness of applying an oppositely signed staggered to each sublattice in AFM systems,

as this generates a maximal torque. Conversely, for ferromagnetic (FM) systems, a

uniformly applied field is the optimal choice. In this section, we explore the feasibility

of switching in the multilayer system using standard square pulses while varying the

sublattice staggering. As we are considering AFM order, which reacts weakly to uni-

form external fields due to the intrinsic inter-sublattice exchange, a uniform field may

yield an insignificant response in the magnetisation dynamics. Here we explore how

field staggering affects the ease of switching in multilayers with combined FM/AFM

order. The sign of the field on each sublattice will be denoted by either -1, 0, or 1,

corresponding to a negative field, no field, or a positive field, respectively. For instance,

a field ordering of 0, 1, -1 implies the absence of a field on sublattice 1 (material A)

and a staggered field on sublattices 2 and 3 (representing the spin-up and spin-down
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6.3 Variation of the Magnetic Moment and Interface Coupling

sublattices of material B). A list of the field orderings used in this section is provided

below:

• 1,1,1: Uniformly applied field on every sublattice

• 1,0,0: Only material A is subject to an applied field.

• 0,1,1: Only material B is subject to an applied field. The field is identical for

both sublattices.

• 0,1,-1: Only material B is subject to an applied field. The field is staggered on

each sublattice.

• 1,1,-1: Material A and B both receive an applied field. The field is staggered on

material B.

In experimental settings, the most straightforward approach would be to uniformly

apply a field across the entire system, while selectively exciting specific layers would

present a greater challenge. For example in previous chapters, the use of electric fields

to generate staggered NSOTs in AFMs has drawn much interest for switching in AFMs

alone. Whether this can be extended to systems with ultrathin repeated layers remains

an open question. Despite the current experimental constraints in generating such

fields, it is important to understand which ordering results in easier switching, and it

is hoped the results presented in this section serve as a preliminary insight to future

experiments and theoretical work in multilayer switching.
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6.3 Variation of the Magnetic Moment and Interface Coupling
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Figure 6.9: Switching diagrams for the
FM/AFM multilayer with 18 atoms in the unit
cell and 𝑁𝐴 = 𝑁𝐵 = 9 for square pulse dura-
tions ranging from 1 to 5 ps in 1 ps increments.
The x-axis corresponds to different configura-
tions of the applied field. The colour shows
the relative orientation of the magnetisation
vector with blue and yellow regions represent-
ing switching and non-switching regions, re-
spectively. Field configuration can be found
in the bullet points in section 6.3.2
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6.4 Spinwave Mediated Switching in AFM Thin Films

For the switching simulations, we use field durations ranging from 1 to 5 ps in 1 ps

increments. Simulations are performed at 0 K and run for 1 ns with a timestep of 0.1

fs. The magnetisation state at the end of the simulation is then used to determine if

the system has switched or not. Fig. 6.9 shows the results for the five different field

durations. The colour shows whether the system has switched (blue) or not (yellow) for

different field ordering as a function of increasing field strength. The lowest strength

switching for all field durations is seen for a staggered field on the AFM with the FM

material receiving the same field as the positively coupled AFM sublattice (1,1,-1).

This is then followed by a staggered field on just the AFM (0,1,-1) then a uniform field

applied to all sublattices (1,1,1) before a field on the FM alone, and finally a uniform

field on just the AFM (0,1,1). The smooth colour gradient that is most notable for the

shortest field duration of 1 ps is due to the magnetisation having not relaxed fully to

its final state. Ideally, the simulations would have been run for several ns to allow for

a full relaxation. Had this been the case, the gradient would have been replaced by

sharp sudden contrasts between yellow and blue regions.

6.4 Spinwave Mediated Switching in AFM Thin Films

This section explores the possibility of switching AFMs at higher resonance modes

using a combination of staggered THz and square fields. Here we use a toy model with

material constants that are not based on any physical system. We use a simple cubic

planar antiferromagnet, where the spins are coupled antiferromagnetically along the

𝑎 axis, and ferromagnetically along the 𝑏 and 𝑐 axis. We use a magnetic moment of

𝜇𝑠 = 4.0𝜇𝐵, a positive uniaxial anisotropy constant of 𝑑𝑧 = 6.69 × 10−23 and a nearest-

neighbour exchange constant of 𝐽𝑖𝑗 = 6.064 × 10−21. The spin-chain consists of 20

atomic spins, with open boundary conditions along the 𝑎 axis and periodic boundary

conditions in all other directions. To be able to pump the material at the SSW modes,

the standing modes are found by performing atomistic simulations at finite temperature

and taking a Fourier transform of the spins at the open boundary of the spin chain.

The ASD simulations are performed at a temperature of 𝑇 = 10−5 K with a damping

of 𝜆 = 0.001. Magnetisation dynamics are recorded for a period of 800 ps with a

130
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Figure 6.10: Observed SSW modes in the AFM thin film when subject to a thermal excitation
at 𝑇 = 10−5 K. (Left) normalised amplitude of the resonant modes. (Right). Circles are
extracted peaks from left panel. The solid line show the fitted dispersion curve.

timestep of Δ𝑡 = 0.01 fs. A figure of the Fourier transform the 𝑥-component of the

magnetisation dynamics for the spins at the open boundary of the spin chain can be

found in Fig. 6.10. In the left pane, the spinwave amplitudes have been normalised

to the largest value. On the right, the peaks have been extracted from the data in

the left-hand pane and plotted as a function of the resonant mode number 𝑛. This is

shown in the solid circles. The solid line shows a plot of the well-known equation for

the spinwave dispersion relation in AFMs [6]

𝑓 = 𝐽𝑖𝑗𝛾
𝜋𝜇𝑠

sin(𝑘𝑛) (6.3)

where 𝐽𝑖𝑗 and 𝑚𝑢𝑠 are values used in the atomistic simulations with 𝑘 = 20/𝜋. The

reason for the disagreement at eigenmode values 𝑛 = 1, 2 is because the non-zero

anisotropy gives rise to a resonance mode at 𝑛 = 0 (𝜔0 ≈ √𝐻𝐴𝐻𝐸). While difficult

to see in Fig. 6.10 due to the small system size, the dispersion relation at low values

of 𝑘 takes a quadratic form which arises as a result of the anisotropy in the material,

this effect has been seen in experimental observations of spinwave dispersions in AFMs

[121]. It is also well documented in the literature for FM materials [6, 220–222].
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6.4 Spinwave Mediated Switching in AFM Thin Films
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Figure 6.11: The 𝑥-components of the DC (top), AC (middle) and overall (bottom) field
experienced by one of the sublattices. The DC field is centralised to a maximum in the AC
field. The field amplitudes are arbitrary and have been enhanced to help with the visualisation.

Having calculated the SSW modes for the system, the attention now turns to un-

derstanding whether easier switching can be achieved via an excitation at different

resonant modes. To excite the mode, a circularly polarised sinusoidal field is applied

continually throughout the simulation. The field is staggered for each sublattice but

is equal in magnitude for every atomic spin. After an initial equilibration window, a

second square staggered field is applied to induce switching. These will be referred to

as the AC and DC field components going forward. The width of the DC field remains

fixed at 0.5 ps and is centralised to a maximum in the 𝑥-component of the AC field,

after an initial equilibration period. An example of the fields and their relative timings

can be found in Fig. 6.11. The top, middle and bottom panes show snapshots of the

𝑥-component of the AC field, DC field, and the sum of the two. The reason for the

centralisation of the DC field peak around an AC field maxima is that in simulations

where the DC field was applied at a fixed timepoint, irrespective of the AC field fre-

quency, large shifts in the critical field were observed as a function of DC field position
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6.4 Spinwave Mediated Switching in AFM Thin Films

when pumping close to a resonant mode. Therefore it was decided to fix the midpoint

of the DC pulse to a maximum in the AC field.

In the switching simulations, we calculate critical fields for three different damping

values and AC field strengths. The switching simulations are once again conducted

at 𝑇 = 10−5 K. Initial simulations at 𝑇 = 0 K resulted in all spins aligning along

a single direction when exposed to AC fields with frequencies far above the system’s

resonant frequency. To prevent this spin pinning, a small amount of thermal energy

is introduced so that random thermal motions disrupt any alignment. Critical field

curves are calculated for three different damping values of 𝜆 = 0.005, 0.01, 0.05 and 0.1.

This range is consistent with many physical systems. We also vary the amplitude of

the staggered AC field, 𝐻AC. The values simulated are 𝐻AC = 10, 100, 200 and 500

mT. The simulations are run for a total of 2 ns with an initial period of 1 ns where

the system is only subject to the AC field to allow for the formation of the standing

modes. The DC field is then applied around the next maxima in the AC field after 1

ns has elapsed.
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Figure 6.12: The critical field for four damping values of 0.005 (top left),0.01 (top right),0.05
(bottom left) and 0.1 (bottom right). Coloured lines show different AC field magnitudes.

The DC critical field lines for the AFM thin film subject to a constant AC and 0.5

ps staggered square pulse can be found in Fig. 6.12. The lines represent the contour

from which the system goes from non-switching (left of the line) to switching (right

of the line). What is most evident is a clear reduction in the DC field magnitude at

roughly 1 THz for all damping values. This frequency corresponds to the 𝑛 = 0 mode,

as already seen in Fig. 6.10. The reduction in the critical field as a percentage of the

baseline value is greatest for the lower damping values. Interestingly, the excitation

close to the 𝑛 = 1 mode at roughly 2 THz leads to a visible reduction in the critical

field for damping values of 0.005 and 0.01 although much smaller than seen for 𝑛 = 0.
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6.5 Summary

No reduction in the critical field was seen for the 𝑛 = 2 mode at approximately 3

THz. The omission of the highest AC strength of 500 mT for both these values is

that the field was sufficiently strong enough in relation to the weak damping that it

kept the magnetisation fixed in the 𝑥𝑦-plane following the application of the DC pulse.

Nonetheless, the ability to use coherent excitations to excite spinwave dynamics has

been shown to reduce critical fields required for switching.

6.5 Summary

There are almost limitless ways of combining different magnetic materials with differ-

ent spacer layers, and thicknesses grown on different seed layers to promote different

structures. How the layers are structured will ultimately determine the frequencies of

the resulting SSW modes. The main aim of this chapter was to better understand

the effect of varying layer thickness, coupling, and magnetic moment, and how these

parameters affect the spinwave resonance frequencies; and the possibility of exciting

non-linear modes or inducing switching. SSW modes in FM/AFM layered materials

arise in the < 10 THz range due to the alternating magnetic order of the multilayer.

The number of modes, as well as the frequency spacing between said modes, increases

for thinner layers. The thicknesses can therefore be used as a tool to tune the resonant

modes of the system to a desired frequency that can be probed experimentally using

THz fields.

Using LSWT, it was found that increasing the magnetic moment of the AFM layer

leads to a flattening of the higher frequency spin wave branches, transitioning them to

SSW modes. Stronger interfacial exchange coupling between the FM and AFM was

found to increase the SSW frequencies overall, with more significant increases observed

for the higher order modes. Driving the multilayer at particular SSW resonant frequen-

cies using a circularly polarised AC magnetic field was shown to increase the amplitude

at 𝑘 = 0, scaling with the square of the driving field. For the atomistic simulations

of switching in the multilayer using a square pulse of varied width, it was found that

the staggering of the field on each sublattice heavily impacts the ease of switching. It
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6.5 Summary

was found that switching also occurs for lower fields for all simulated pulse durations

when the AFM receives a staggered field, while the FM layer receives the same field

polarisation as the ferromagnetically aligned AFM sublattice. Whether it is possible

to generate fields similar to this experimentally remains an open question.

In an AFM film, it was shown that a lowering of the switching field occurred when

using an AC field pumping at the resonance frequency of the 𝑛 = 0 in combination

with a staggered DC pulse for all simulated damping values. For pumping at the 𝑛 = 1
mode, a reduction in switching field was only observed for the lower simulated values

of 0.01 and 0.005. No reduction in switching field was observed for the 𝑛 = 2 mode or

above. Regardless, the results highlights the potential for resonant spin wave excita-

tion to reduce switching fields in AFM nanostructures. The ability to selectively excite

resonant spin wave modes using tailored THz frequency magnetic fields and harnessing

the increased amplitude resonant excitations could potentially reduce the switching

fields in AFM thin films, which holds promise for future AFM spintronic applications.

While this chapter is very much an initial theoretical exploration, it paves the way for

further investigations into ultrafast switching in AFM nanostructures using THz spin

wave engineering at higher frequency spinwave modes.
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Chapter 7

Conclusion

Don’t adventures ever have an end? I suppose not. Someone else always has to carry

on the story.

– J.R.R TOLKIEN, The Fellowship of the Ring.
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The continuous global move towards cloud-based storage and computing requires

new solutions to fulfil rising data storage requirements. Traditional magnetic storage

systems use FMs in HDDs, where the constraints of GHz-range resonance modes impose

limitations on data reversal speed to ns timescales. This thesis looked at the potential

of using the AFM Mn2Au for future data storage applications. The main results of this

thesis focused on the development of new multiscale computational models of Mn2Au

and the simulation of magnetisation reversal in both a bulk system, as well as systems

with combined FM and AFM order. It has been demonstrated that ps timescale rever-

sal is achievable in Mn2Au through the generation of Neel spin-orbit torques (NSOT)

from the application of electric fields. It was shown that sub-tesla internal magnetic

field strengths are required for reversal. Coupling of Mn2Au to a soft FM has shown the

potential for reversal times in the tens of ps, while offering straightforward magnetic

order readout. The ability to achieve ps speed data reversal with field magnitudes equal

to current HDD technology opens the door to massive efficiency gains, possibly exceed-

ing existing storage technology by several orders of magnitude. In this final chapter,

the main conclusions are emphasised with respect to each chapter before ending with

a section on possible paths to follow on from the work presented in this thesis.

Multiscale Modelling of Mn2Au

The work presented in this chapter demonstrates a powerful multiscale modelling ap-

proach for antiferromagnetic materials like Mn2Au. By combining first-principles cal-

culations, atomistic spin dynamics simulations, and an adapted Landau-Lifshitz-Bloch

formulation, the model was shown to accurately describe both transverse and longitu-

dinal magnetisation dynamics from atomic to micromagnetic length scales. Notably,

the approach captures ultrafast laser-induced demagnetisation processes and dynamics

of thermally driven topological spin structures such as domain walls - overcoming key

limitations of conventional micromagnetic techniques. While an extension of the the-

ory would be required for more complex non-collinear antiferromagnets, the framework

provided in this chapter is an important foundation for realistic simulations of antifer-
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romagnetic spintronic devices and exploration of novel physical phenomena arising from

the unique THz dynamics of these materials. Overall, this multiscale antiferromagnetic

LLB approach enables new microscopic insights and exploration of cutting-edge appli-

cations in antiferromagnetic spintronics.

Simulations of Magnetisation Reversal in Mn2Au

The work presented in this chapter of the thesis explores strategies for magnetisation re-

versal in the antiferromagnet Mn2Au using atomistic spin dynamics and the AFM-LLB.

By applying staggered THz frequency pulses, 90° and 180° switching is demonstrated

with fields under 500 mT. Resonant pumping close to the in-plane anisotropy field

frequency reduces the required field further. Transient laser heating is also shown to

reduce the critical switching field, with the relative timing between the heating from the

laser pulse and the staggered field pulse playing a crucial role in the critical field size.

Delaying the field until peak demagnetisation leads to large increases in the required

reversal field. The adapted LLB approach shows excellent agreement with computation-

ally demanding atomistic simulations for the precessional dynamics, enabling efficient

modelling of temperature effects. Overall, the work provides important insights into

ultrafast reversal processes in Mn2Au using experimentally feasible THz fields. It also

demonstrates the power of extending micromagnetic techniques to antiferromagnetic

systems, enabling device-relevant simulations of these technologically promising mate-

rials.

Atomistic Simulations of Mn2Au and Permalloy Bilayers

This chapter employs atomistic spin dynamics to explore magnetisation reversal in

Mn2Au/Permalloy bilayers using THz frequency staggered magnetic field pulses. An

initial investigation is carried out investigating the effects of varying the ferromagnetic

Permalloy thickness and interfacial exchange coupling strength on the temperature-

dependent magnetisation and resonant dynamics. It is shown that thinner Permalloy
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films enable faster and easier THz switching, while an order of magnitude increase in

the interface exchange has little impact on switching with pulse durations ≲ 0.2 ps. It

was also shown that pumping the FM as well as the AFM makes very little difference

to the switching phase diagram with these pulse durations. The switching was found

to be consistent at 300K and 600K with elevated temperatures facilitating a small de-

crease (∼ 100s mT) in the required reversal fields, with complex precessional dynamics

arising from the competing FM and AFM layers. Overall, the results demonstrate

the potential for ultrafast reversal mediated by the AFM, despite the coupling to an

FM. With careful parameter tuning, switching on few-picosecond timescales is shown

to be feasible. The atomistic approach provides insights into the rich microscopic dy-

namics at play in these exchange-coupled bilayers, highlighting the role of the AFM

in driving rapid precessional switching relevant for possible future memory applications.

Spinwave Dynamics in AFM Thin Films and Multliayers With Combined FM and

AFM Order

This chapter explores the potential for ultrafast switching in AFM thin films and mul-

tilayers by harnessing resonant spinwave excitations. Using a combination of ASD

simulations and LSWT calculations, it was verified that SSW modes emerge in bulk

multilayers with alternating FM and AFM layers. Varying the layer thicknesses and

magnetic properties tunes the resonant frequencies that can then be selectively driven

using tailored THz fields. Exciting spinwave dynamics at specific resonant frequencies

is shown to increase excitation amplitudes and reduce the critical switching fields com-

pared to off-resonant pumping. While exploratory, this work highlights new routes for

energy-efficient antiferromagnetic switching by engineering the spinwave spectrum of

magnetic heterostructures and coupling spin dynamics to tailored THz fields.
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7.1 Future Work

7.1 Future Work

The multiscale modelling of Mn2Au was the first of its kind that linked together compu-

tational work from ab-initio to micromagnetic length and timescales however an open

question remains regarding the temperature-dependent forms of the transverse damp-

ing. It was found that there was a damping dependence on the transverse relaxation

time in the atomistic model that is not captured in the LLB formalism. For Mn2Au,

experimental measurements indicate a damping factor of 𝜆 = 0.008 [179], which is

close to the value of 𝜆 = 0.01 predominantly used throughout this thesis. Fortunately,

the 𝜆 = 0.01 value showed the closest alignment with the analytical expression of the

relaxation time but to provide a precise depiction for systems with considerably lower

damping, a comprehensive examination of the dependence of relaxation time on damp-

ing is imperative.

The study of AFMs in the ab-initio and atomistic regime is already an extensive

area of research whereas an LLB model for AFMs opens a wide range of possibilities

for future work. One such possibility is the extension to the multilayer systems that

were studied in later chapters. The FM LLB has already been extended to account for

positively exchange-coupled magnetic grains like those found in HDD media [151]. It

remains an open question whether exchange coupled systems, such as the Mn2Au/Py

bilayer presented in chapter 5, can be computationally modelled using the AFM-LLB.

A development such as this would allow for much faster simulations with calculations of

the phase diagrams shown in chapter 5 using a fractional amount of resources compared

to an atomistic model. This would be especially prevalent for the finite temperature

simulations, which required large system sizes and many repetitions to account for the

thermal noise.

Regarding the bilayer switching simulations, there exists several parameters that were

not explored as part of this work. An exploration of the switching dynamics for var-

ied damping and AFM thickness may be a useful course of action for finding further
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7.1 Future Work

reductions in the field strengths and durations required for reversal. In our atomistic

model, Py was modelled using an average moment. It would perhaps prove beneficial

to model Py more accurately using a disordered alloy. Increasing the number of sub-

lattices may alter the switching behaviour, and a systematic investigation into varying

concentrations and distribution of both Ni and Fe in the system could yield interesting

results. To add to this, a full parameterisation of the interfacial exchange based using

DFT methods

The multilayer dynamics of the toy systems presented in chapter 6 were very much an

exploratory investigation and had no basis on any physical system. An obvious exten-

sion is a full parameterisation of a repeated multilayer structure containing FM and

AFM materials using ab initio techniques. While a system of Py and Mn2Au was only

explored as a bilayer system in chapter 6, it could be extended as a repeated multilayer

structure due to close matching of the lattice constants. Another FM that could work

well for the same reason is Fe, a magnetic material that has been explored extensively.

Electrical currents are known to generate SOTs in metallic AFMs, but experimentally

being able to excite FM and AFM sublattices in a multilayered structure remains an

unanswered question.

The standing spinwave-mediated switching in the thin AFM film that was shown in

this chapter is an interesting result, it is the first simulated work of how excitations

at resonant modes above the fundamental 𝑛 = 0 mode can lead to reductions in the

critical field. While most of this thesis has investigated dynamics in AFM materials, it

is unknown whether this result can be replicated in FM thin films. In principle, exci-

tations of standing spinwaves in thin FM films would, experimentally, be much easier

as it does not require any kind of staggered field.
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Appendix A

The Connection Between the

Landau-Lifshitz and

Landau-Lifshitz-Gilbert

Equations

For isotropic damping, it can be shown that the LL and LLG equations take identical

forms. Starting by taking the cross product of the LLG equation (Eq. (2.5)) with the

magnetisation

M × 𝜕M
𝜕𝑡 = −𝛾M × (M × H) + 𝜆

𝑀 M × (M × 𝜕M
𝜕𝑡 ) (A.1)

Using the vector calculus identity A × (B × C) = B(A ⋅ C) − C(A ⋅ B). The above

becomes

M × 𝜕M
𝜕𝑡 = −𝛾M × (M × H) + 𝜆

𝑀 (M (M ⋅ 𝜕M
𝜕𝑡 ) − 𝜕M

𝜕𝑡 (M ⋅ M)) (A.2)

143



Since 𝑀 has fixed length, any changes in the direction of 𝑀 are orthogonal (perpen-

dicular) to 𝑀 itself, i.e., M ⋅ 𝜕M
𝜕𝑡 = 0, the equation of motion simplifies to

M × 𝜕M
𝜕𝑡 = −𝛾M × (M × H) − 𝜆

𝑀 (𝜕M
𝜕𝑡 (M ⋅ M))

= −𝛾M × (M × H) − 𝜆𝑀 𝜕M
𝜕𝑡

(A.3)

If we now substitute the above back into the original LLG equation (Eq. (2.5)) we get

𝜕M
𝜕𝑡 = −𝛾 (M × H) − 𝜆

𝑀 (𝛾M × (M × H) + 𝜆𝑀 𝜕M
𝜕𝑡 )

= −𝛾 (M × H) − 𝜆𝛾
𝑀 M × (M × H) − 𝜆2 𝜕M

𝜕𝑡

(A.4)

Taking all the 𝜕M
𝜕𝑡 onto the LHS and collecting the like terms

𝜕M
𝜕𝑡 + 𝜆2 𝜕M

𝜕𝑡 = −𝛾 (M × H) − 𝜆𝛾
𝑀 M × (M × H) (A.5)

(1 + 𝜆2) 𝜕M
𝜕𝑡 = −𝛾 (M × H) − 𝜆𝛾

𝑀 M × (M × H) (A.6)

𝜕M
𝜕𝑡 = − 𝛾

(1 + 𝜆2) (M × H) − 𝜆𝛾
(1 + 𝜆2) 𝑀 M × (M × H) (A.7)

Setting 𝛾′ = 𝜆/ (1 + 𝜆2), and 𝛼 = 𝜆/ (1 + 𝜆2) the above reduces down to

𝜕M
𝜕𝑡 = −𝛾′ (M × H) − 𝛼𝛾

𝑀 M × (M × H) (A.8)

which is in an identical form to the LL equation except with a modified damping

parameter and gyromagnetic ratio. In general, the Gilbert form is preferred in atomistic

and micromagnetic because of the shortcomings it addresses with the standard LL

equation [84, 223].
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Appendix B

Simplification of the AFM

Macrospin Equation

The equation of motion for the neel vector for the in-plane dynamics in Eq. (4.9) is

given by

0 = n × (n̈ − 2𝐻ex𝐻𝑥𝑦𝑛𝑥𝑛𝑦 (𝑛𝑥 + 𝑛𝑦) û𝑥𝑦 + 2𝐻ex𝜆ṅ + 𝛾B) (B.1)

where û𝑥𝑦 = x̂ + ŷ. To be able to describe the dynamics in terms of a single angle, 𝜑,

away from the [110] orientation, the following substitution is made

𝑛𝑥 = cos(𝜑) + sin(𝜑)

𝑛𝑦 = cos(𝜑) − sin(𝜑)
(B.2)

Using the chain rule, the first derivative of the above with respect to time is

�̇�𝑥 = − sin(𝜑)�̇� + cos(𝜑)�̇�

�̇�𝑦 = − sin(𝜑)�̇� − cos(𝜑)�̇�
(B.3)

and the second derivative

𝑛𝑥 = − cos(𝜑)�̇�2 − sin(𝜑)�̈� − sin(𝜑)�̇�2 + cos(𝜑) ⋅ �̈� (B.4)

𝑛𝑦 = − cos(𝜑)�̇�2 − sin(𝜑)�̈� + sin(𝜑)�̇�2 − cos(𝜑) ⋅ �̈� (B.5)
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Looking initially at the first term in Eq. (B.1), we have:

n× n̈ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜑) + sin(𝜑)

cos(𝜑) − sin(𝜑)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− cos(𝜑)�̇�2 − sin(𝜑)�̈� − sin(𝜑)�̇�2 + cos(𝜑) ⋅ �̈�

− cos(𝜑)�̇�2 − sin(𝜑)�̈� + sin(𝜑)�̇�2 − cos(𝜑) ⋅ �̈�

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.6)

Expanding out the cross product:

n × n̈ = (cos(𝜑) + sin(𝜑)) (− cos(𝜑)�̇�2 − sin(𝜑)�̈� + sin(𝜑)�̇�2 − cos(𝜑) ⋅ �̈�)

− (cos(𝜑) − sin(𝜑)) (− cos(𝜑)�̇�2 − sin(𝜑)�̈� − sin(𝜑)�̇�2 + cos(𝜑) ⋅ �̈�)
(B.7)

after expanding out the brackets and cancelling some terms:

n × n̈ = −�����cos2(𝜑)�̇�2 −((((((((cos(𝜑) sin(𝜑)�̈� +((((((((sin(𝜑) cos(𝜑)�̇�2 − cos2(𝜑)�̈�

−((((((((sin(𝜑) cos(𝜑)�̇�2 − sin2(𝜑)�̈� +�����sin2(𝜑)�̇�2 −((((((((sin(𝜑) cos(𝜑)�̈�

+�����cos2(𝜑)�̇�2 +((((((((cos(𝜑) sin(𝜑)�̈� +((((((((cos(𝜑) sin(𝜑)�̇�2 − cos2(𝜑)�̈�

−((((((((sin(𝜑) cos(𝜑)�̇�2 − sin2(𝜑)�̈� −�����sin(𝜑)�̇�2 +((((((((sin(𝜑) cos(𝜑)�̈�

(B.8)

which leaves us with
n × n̈ = −2 sin2(𝜑)�̈� − 2 cos2(𝜑)�̈�

= −2�̈�(sin2(𝜑)�̈� + cos2(𝜑))

= −2�̈�

(B.9)

As required. Now returning to Eq. (B.1) and repeating the process with the second

term:

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑛𝑥

𝑛𝑦

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2𝐻ex𝐻𝑥𝑦𝑛𝑥𝑛𝑦 (𝑛𝑥 + 𝑛𝑦)

2𝐻ex𝐻𝑥𝑦𝑛𝑥𝑛𝑦 (𝑛𝑥 + 𝑛𝑦)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.10)
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substituting in 𝑛𝑥 and 𝑛𝑦 in terms of the angle 𝜑:

= 2𝐻ex𝐻𝑥𝑦

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜑) + sin(𝜑)

cos(𝜑) − sin(𝜑)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 cos(𝜑) (cos(𝜑) + sin(𝜑)) (cos(𝜑) − sin(𝜑))

2 cos(𝜑) (cos(𝜑) + sin(𝜑)) (cos(𝜑) − sin(𝜑))

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.11)

expanding out the brackets on the right-hand vector and simplifying:

= 2𝐻ex𝐻𝑥𝑦

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜑) + sin(𝜑)

cos(𝜑) − sin(𝜑)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 cos(𝜑) (cos2(𝜑) − sin2(𝜑))

2 cos(𝜑) (cos2(𝜑) − sin2(𝜑))

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.12)

= 2𝐻ex𝐻𝑥𝑦

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜑) + sin(𝜑)

cos(𝜑) − sin(𝜑)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 cos(𝜑) cos(2𝜑)

2 cos(𝜑) cos(2𝜑)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.13)

= 4𝐻ex𝐻𝑥𝑦 cos(𝜑) cos(2𝜑) (cos(𝜑) + sin(𝜑) − cos(𝜑) + sin(𝜑)) (B.14)

= 4𝐻ex𝐻𝑥𝑦 cos(𝜑) cos(2𝜑) sin(𝜑) (B.15)

= 2𝐻ex𝐻𝑥𝑦 cos(2𝜑) sin(2𝜑) (B.16)

= 2𝐻ex𝐻𝑥𝑦 sin(4𝜑) (B.17)

As required. For the third term in Eq. (B.1), we have:

n × 2𝐻ex𝜆ṅ = 2𝐻ex𝜆

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜑) + sin(𝜑)

cos(𝜑) − sin(𝜑)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− sin(𝜑)�̇� + cos(𝜑)�̇�

− sin(𝜑)�̇� − cos(𝜑)�̇�

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.18)
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expanding out the cross product, cancelling and simplifying terms:

=2𝐻ex𝜆( (cos(𝜑) + sin(𝜑)) (− sin(𝜑)�̇� − cos(𝜑)�̇�)

− (cos(𝜑) − sin(𝜑)) (− sin(𝜑)�̇� + cos(𝜑)�̇�) )
(B.19)

=2𝐻ex𝜆( −((((((((2 cos(𝜑) sin(𝜑)�̇� − sin2(𝜑)�̇�

− cos2(𝜑)�̇� − cos2(𝜑)�̇� +((((((((2 cos(𝜑) sin(𝜑)�̇� − sin2(𝜑))
(B.20)

= 2𝐻ex𝜆( − sin2(𝜑)�̇� − cos2(𝜑)�̇� − cos2(𝜑)�̇� − sin2(𝜑)) (B.21)

= −4𝐻ex𝜆�̇�( cos2(𝜑) + sin2(𝜑)) (B.22)

= −4𝐻ex𝜆�̇� (B.23)

Finally, we arrive at the final term:

n × 𝛾B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜑) + sin(𝜑)

cos(𝜑) − sin(𝜑)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐵𝑥

𝐵𝑦

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.24)

= ( cos(𝜑) + sin(𝜑))𝐵𝑦 − ( cos(𝜑) − sin(𝜑))𝐵𝑥 (B.25)

If we assume that the field acts perpendicular to the neel vector, [ ̄1 ̄10], with equal

magnitude for each cartesian component (i.e −𝐵𝑥 = +𝐵𝑦 = 𝐵) to maximise the torque

the above simplifies to:

= −( cos(𝜑) + sin(𝜑))𝐵 − ( cos(𝜑) − sin(𝜑))𝐵 (B.26)

= −2𝐵 cos(𝜑) (B.27)
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Therefore the full equation of motion in its simplified form can be written as a combi-

nation of Eqs. (B.9), (B.17), (B.23) and (B.27):

0 = − 2�̈� − 2𝛾2𝐻ex𝐻𝑥𝑦 sin(4𝜑) − 4𝐻ex𝜆�̇� − 2𝐵 cos(𝜑)

0 =�̈� + 𝛾2𝐻ex𝐻𝑥𝑦 sin(4𝜑) + 2𝐻ex𝜆�̇� + 𝐵 cos(𝜑) (B.28)
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