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Abstract—Deepfake images are causing an increasing negative
impact on the day to day life and pose significant challenges
for the society. There are various categories of deepfake images
as the technology evolves and becomes more accessible. In
parallel, deepfake detection methods are also improving, from
basic features analysis to pairwise analysis and deep learning;
nevertheless, to date, there is no consistent method able to fully
detect such images. This study aims to provide an overview of
existing methods of deepfake detection in the literature and inves-
tigate the accuracy of models based on Vision Transformer (VIT)
when analysing and detecting deepfake images. We implement a
VIT model-based deepfake detection technique, which is trained
and tasted on a mixed real and deepfake images dataset from
Kaggle, containing 40000 images.

The results show that The VIT model scores relatively high,
89.9125%, which demonstrates its potential but also highlights
there is significant room for improvement. Preliminary tests also
highlight the importance of a large dataset for training and
the fast convergence of the model. When compared with other
deepfake machine learning and deep learning detection methods,
the performance of the ViT model is in line with prior research
and warrants further investigation in order to evaluate its full
potential.

Index Terms—deepfake images, deepfake detection, Vision
Transformer model

I. INTRODUCTION

The recent advancements in artificial neural network (ANN)
technologies have had a significant impact on multimedia
content manipulation. AI-based software tools, allowing users
to modify facial appearance, hairstyle, gender, age, and other
personal attributes, have facilitated the creation of realistic
fake images, videos, and audios. The widespread availability
of these tools and the manipulated content they produced were
coined in 2017 with the term ”Deepfake”, derived from “Deep
Learning (DL)” and “fake,” and it encompasses applying
deep learning methods to generate very realistic appearing
(fake) content. The advent of deepfakes was facilitated by the
increased complexity and capabilities of computer vision and
deep learning techniques. While it can be employed towards
legitimate, creative use, it has been typically misused by users
to create fake news or fake images. [1]

Its misuse was also followed by significant effort from the
research community both to establish more realistic images as
well as developing techniques to detect them. Deepfake images
can be catalogued based on the focus and degree of change into
entire face synthesis, identity swap, attribute manipulation, and
expression swap. From a technology perspective, deepfakes
use unsupervised ANNs named autoencoders, which are, in
fact, used for both image manipulation as well as facial
recognition, by being able to both synthesise the facial features
into a set of characteristics as well as modify images based on
their defining features. The encoding process can be further
improved through the use of a generative adversarial network
(GAN).

From a detection perspective, the early efforts were based on
image features analysis, such as pixel similarity and noise, to
identify artifacts of the modification process. Such approaches
were effective towards early instances but were surpassed
by Autoencoders and GANs to replicate the modification
process. In parallel, a number of classification models may also
be employed for deepfake detection purposes. One obvious
example of such a model are Visual Transformers (ViT), a
classification approach derived from natural language pro-
cessing which allows interpretation of images as an analysis
array. Although initially used for image classification, ViT
can also be applied for deepfake detection, particularly given
its algorithm-agnostic approach and ability to handle very
large inputs. This study expands the work so far in ViT by
applying the model for classifying an image dataset into real
and deepfake images. We evaluate the model against a small
image set and discuss its classification performance, as well as
identify a number of limitations and potential for future work.

II. DEEPFAKE GENERATION AND DETECTION

A. Deepfake generation techniques

Since its inception, the generation of deepfake content has
had a negative effect across all levels of society [2], from
its prevalence into everyday social media [3] to its ability to
disrupt international politics [4] [1].



Although there is a wide variety of approaches for gener-
ating deepfakes, they revolve around the concept of image
(typically face) features extraction and reconstruction. The
process, implemented through an autoencoder-decoder. uses
multiple images for training to extract and recompose these
features. As part of the process, the deepfake model is trained
to parse a set of images, extract their salient features, then
reconstruct each image as accurately as possible using the
extracted features. Once the model is trained for extraction
and reconstruction, it can be applied to cross-convert images.
For example, in order to replace the face of a subject, it can
extract the image features of subject X and then reconstruct
the image using features from a different subject Y.

While autoencoder-based models will produce very good
results, it is designed with efficiency in mind rather than
performance and will therefore allow for either pixelation
defects or blurriness, both detectable by users or automated
methods. Generative Adversarial Networks (GANs) [5] have
better intrinsic capabilities to identify and remove artifacts
and were therefore proven to significantly reduce noise and
improve the quality of the resulting deepfake images. [6].

More recently, newer deepfake approaches applied existing
techniques for more efficient and realistic results. Variational
Autoencoders (VAEs), proposed in [7] and [8], allow the
inclusion of more complex models built from larger datasets.
VAEs include a reconstruction loss monitoring component,
which aims to minimise the loss value resulting from the
process, and a regulariser component, that ensures diversity in
the outcome. Similarly, an Adversarial Autoencoder (AAE) [9]
draws in the benefits of GANs but relies on the autoencoder
training to extract the distribution of the data rather than
impose it on the output layer. As shown in the study that
introduced the concept, AAE is net superior to VAE and
incrementally better than GAN in terms of the error rate
applied to standard evaluation images datasets.

B. Deepfake detection techniques

As pointed out in the previous subsection, deepfake gener-
ation has been through an evolutionary process; similarly, de-
tection techniques followed that trajectory. The early methods
were based on machine learning and aimed to detect artifacts
and defects in the generation process. A typical such example
is [10], where the authors aimed to identify the convolutional
lines produced by a deepfake autoencoder and achieved a high
accuracy of 93%. Similarly, [11] looked at artifacts introduced
in the process such as global consistency, illumination, and
geometry, focusing on the particular characteristics of face,
such as iris and teeth characteristics. The method performs
very well with an AUC-ROC of 0.83 when combining all
observed features. The main challenge in both studies is the
nature and availability of the images used, as the database
is sufficient to train the detection models and capture all the
artifact variances.

As content became more realistic and more effective at
eliminating image artifacts, the detection methods aimed to
replicate the generation ones and became deep learning-based

approach. A typical example is AutoGAN, the approach from
[12], which is essentially a GAN that replicates the deepfake
process. AutoGAN takes the image used as input and a GAN-
based generator to produce an image following the same
principles as deepfake; the image is then compared to the
original to detect spectral artifacts. The method relies on the
GAN requiring a variant of upsampling, either transposed
convolution or nearest neighbour interpolation, that do produce
spectral artifacts that can be l̈earned.̈ The method delivers a
tangible improvement to cycleGAN, reaching accuracy of over
95% for both transposed and nearest neighbour interpolation.

C. Conclusion

As highlighted by the results of the studies in the previous
subsection, detection techniques mimic the deepfake genera-
tion models in order to expose artifacts, defects, or other types
of data errors in the input images and successfully segregate
real and fake images. The results are very good, with methods
achieving accuracy of over 85-90% across the datasets tests.

One common point to the detection methods is their need
and awareness of the model used for generating the fake
images, as they are somewhat geared towards specific deepfake
models behaviour. This issue is made clearer by some of the
papers by highlighting that deepfake images generated through
other or unknown methods may perform worse when analysed
and, implicitly, the proposed methods may become obsolete
with future variants of deepfake models. It is therefore worth
exploring the wider field of image recognition techniques and
investigate their potential for usage as a deepfake method-
agnostic detection alternative.

III. VT-BASED DEEPFAKE DETECTION

A. Introduction

Vision Transformer (ViT) is an image analysis approach
proposed in [13], based on the concept of Transformer in-
troduced by [14]. Transformers consist of alternative self-
attention and multilayer perceptron blocks; they were initially
aimed at natural language processing and relatively small mod-
els, but subsequent research demonstrated that it can be scaled
to very large models of 1011 parameters [15]. An early attempt
by [16] saw self-Transformers applied to resized images on a
pixel-by-pixel basis. In their paper, Dosvitskiy et al. apply
a variant of the Image Transformer but, instead of smaller
images and pixel-by-pixel analysis, they split the image into
fixed-size patches which are fed to a Transformer. In an NLP
scenario, the information is provided as a 1D sequence; for
ViT the image is converted into a linear projection vector.
The Transformer itself follows the [14] design, with a slight
adjustment to allow for position embedding.

Both papers acknowledged the ability of the technology to
go beyond image recognition to identifying generated images
as a possible application, with [16] also providing some
preliminary results.

This aim of this research is to determine the efficiency of
ViT-based algorithms when classifying real vs fake images. In



order to observe their performance, we used the image classi-
fication work described in [13] and evaluated its performance
on the [17] image dataset from Kaggle.

B. Text and image classification

The ViT model is inspired by the the standard Transformer
from [14]. The Transformer model has self-attention at its
core, a multilayered stack of feed forward and multi-head
attention blocks. Both the encoder and the decoder use a stack
of 6 identical layers, each composed of a multi-head self-
attention mechanism and connected to a feed-forward network.
Amongst the two types of attention, the model uses Scaled
Dot-Product Attention due to its more efficient computation.
The authors exploited its ability to be scaled in a Multi-Head
attention architecture, whereby the queries and results are
parallelised and producing vectored values. As tested by the
authors, Transformer models work very well with text, being
able to outperform previous models in English-to-German
translation.

While effective at processing text-based input, Transformers
were not intrinsically able to handle 2D content; [16] extended
the model with position embedding information and named
the architecture Image Transformer. The authors proposed a
pixel-by-pixel approach, whereby the representation q’ of a
channel for a pixel q is derived based on self-attention to the
memory of the previously generated pixels. Unlike text-based
input, scaling for Image Transformers was unattainable for a
larger image, hence the authors biased the model with a level
of locality, whereby pixel values were derived mostly from
their vicinity rather than the entire picture, property termed
Local Self-Attention.

In their paper, Dosovitskiy et al. revisited the concept of
image transformer by dividing the image into patches. [13].
The overall image x of resolution (H,W ) and C channels
can be reshaped from x ∈ RH×W×C to an array xp of N =

HW/P 2 patches, with xp ∈ RN×(P 2·C).
It is interesting to note that ViT does not heavily rely on

locality. Instead, the two components are adjusted to exploit
their characteristics as follows: the multilayer peceptron layers
are local and the self-attention layers are global. As a result,
locality is shared between the two types of layers.

C. ViT implementation and dataset

We implemented the ViT model in python, following the
ViT specification from [13]. The implementation takes a
dataset as input, including a mix of real and fake images, then
it applies patching to each image and encodes the positioning
of each patch. The model includes the multi-head attention,
normalisation, and MLP layers that take in the inputs.

The ViT model requires a set of parameters for training,
testing, and speed optimisation, as listed in table I above. The
size and number of inputs are dictated by image size and
patch size, which set the size of the input images and patch
images, both measured in pixels.

At the core of the model performance are the
learning rate, for which smaller values typically lead to

TABLE I
VIT MODEL PARAMETERS

Parameter Value
learning rate 0.001
weight decay 0.0001

batch size 256
number of epochs 800

image size 72
patch size 6

projection dimension 64
transformer layers 5

Fig. 1. Processed and resized image: full (left) and split into patches (right).

slower but more accurate convergence, and the weight decay,
which is the penalty for the loss function; the two parameters
also influence the number of epochs for training the model.
The speed of the model is also influenced by the batchsize
which dictates the level of parallelism for the processing of
the model.

IV. MODEL PERFORMANCE

The model was trained and tested on subsets of images,
including a mix of fake and real samples, from a Kaggle image
dataset containing 190,345 images. [17]

All input samples are the same size, 256x256 pixels. The
preprocessing takes each sample, converts it to 72x72 pixels,
then splits it using the patch size, as per the specified ViT
model parameter, into 144 patcehs, 6x6 pixels each. An
example of the converted full image and set of patches is
show in 1. Each patch is fed to the model with its positional
information.

The model was trained and tested on a Google Colab L4
cloud instance, equipped with 64GB of RAM, 24GB of GPU
RAM, and a powerful GPU, designed specifically for deep
learning applications [18]. Each processed dataset was split
80/20 for training and testing.

A. Preliminary test

The training process is a rather computationally demand-
ing one. The preliminary evaluation aimed to determine the
learning speed of the model, to avoid excessive training and
optimise the use of computational resources. For this, we used
a subset that included 5850 images (2531 deepfakes and 3319
real). The reason for the subset is pragmatic - we aimed to
evaluate the model on a manageable subset from an accuracy
and training perspective.



Fig. 2. Evolution of accuracy (left) and residual loss (right) during training
of the preliminary dataset

The model was trained and tested subsets of 5850 images,
including a mix of fake and real samples, from a Kaggle image
dataset containing 190,345 images. The subset included 2531
deepfake images and 3319 real images. All input samples are
the same size, 256x256 pixels. The reason for the subset is
pragmatic - we aimed to evaluate the model on a manageable
subset from an accuracy and training perspective.

The preprocessing takes each sample, converts it to 72x72
pixels, then splits it using the patch size, as per the ViT model,
into 6x6 pixels patches. An example of the converted full
image and set of patches is show in 1. Each patch is fed to
the model with its positional information.

The training was set to 800 epochs and took just under 1
hour, with just over 4s per epoch.

The evolution of both accuracy and residual loss through
the testing process is shown in Fig. 2. As it can be seen, the
model performs very well, with accuracy close to 1, for the
training dataset but, for the validation dataset, the accuracy
remained rather low, 0.75. Looking at the loss values, the
training and validation sets behave similarly for the first 100
epochs, then their evolution changes. The fit of the model to
the training set is monotonously improving, reaching residual
loss close to 0, while for the validation set the residual loss is
increasing; as a result, while the loss stabilises for training, it
becomes increasingly oscillating for validation. Coming back
to the accuracy diagram, there is no tangible improvement in
the accuracy for the validation dataset beyond 100 epochs,
despite the better results for the training dataset.

The results confirm the behaviour of ViT models if we take
into consideration the size of the dataset. ViT models require
large datasets for training, followed by fine-tuning on smaller
datasets. Compared to ILSVRC-2012 ImageNet, the smallest
dataset [19] used by [13] which included 1.3 million samples
and over 1000 classes, despite the decrease in the number
of classes from 1000 to just two (real and deepfake), the ViT
model still requires a larger training dataset for better accuracy.

B. Model evaluation

A larger subset of 40000 images, 20000 deepfakes and
20000 real, was used to fully train the implemented ViT model
on an L4 Google Colab instance. We were not able to use
the full Kaggle dataset due to two reasons - length of time
for training and, more importantly, the L4 instance failing to

Fig. 3. Evolution of accuracy (left) and residual loss (right) during training
of the complete dataset

TABLE II
VIT FULL TESTING RESULTS

precision recall f1-score support

class
real 0.87 0.93 0.90 4015
fake 0.93 0.87 0.90 3985

accuracy
macro avg 0.90 0.90 0.90 8000
weighted avg 0.90 0.90 0.90 8000

Accuracy: 89.9125

process larger datasets. Given the results from the preliminary
tests, we set the training to 200 epochs, which required 95
minutes of processing.

Accuracy and residual loss had a similar evolution to the
preliminary test, as shown in Fig. 3. The overall full results
are shown in Table II.

The model performs very well with an overall accuracy
of 89.9125%. There are some minimal variations between
the real and fake classes detection, but nothing significant.
Overall, the model is slightly biased towards deepfakes, with
a higher percentage of both accurate detection of deepfakes
as well as identifying real images as deepfakes. Looking at
the other studies in the area, we can compare our model
with the summary provided by [20] which looked at the
results from 62 studies aiming to detect deepfake images.
According to the overall figures, deep learning models deliver
an average accuracy of 89.73% and machine learning provide
an average accuracy of 86.86%. Our accuracy therefore does
match closely the deep learning category, but it is worth noting
the dataset size limitations we encountered during training and
therefore the likely possibility to reach better results with a
larger dataset.

V. CONCLUSION AND FUTURE WORK

Transformer models are a combination of self-attention and
multilayer perceptron blocks, notable for their ability to handle
Natural Language Processing tasks. Vision Transformer mod-
els are an expansion of Transformer models, whereby the input
is a serialised patches carrying locality information. This paper
provides a practical evaluation of a Vision Transformer model



applied to the task of detecting deepfake images. We used an
implementation that followed strictly the design of the ViT and
was tested on a small dataset consisting of a combination of
deepfake amd real images. The model delivered a 89.9125%
accuracy, with slightly better results for the deepfake images.

The results showed that the accuracy of the model is
significantly affected by the size of the dataset used and, due
to implementation limitations, we were able to test only a
subset of potential images. For future work, we aim to use
larger datasets for evaluating the model, which are likely to
deliver significantly better results, as well as further investigate
the performance of the model when using different training
parameters.
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