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Summary

This paper explores the influence of linear hysteretic damping on the perfor-
mance of passive tuned-inerter devices. An inerter is a device that produces a
force proportional to the relative acceleration across its two terminals; devices
incorporating inerters have received widespread attention in the earthquake
engineering community, because they offer the ability to improve the seismic
response of structures. However, the majority of this research has assumed
that the damping components within the tuned-inerter device exhibit viscous,
rather than hysteretic, damping. This restriction imposes an essential question
on how the hysteretic damping model will change the performance of the device
compared with the viscous damping model. It is shown that the response of vis-
cous and hysteretic inerter systems have significant differences in displacement
amplitude due to the frequency dependency of the damping. Therefore, a new
formulation for obtaining the optimum loss factor of the hysteretic damping in
the inerter system is proposed. Next, the challenges associated with accurately
predicting the time-response of a hysteretically damped system are discussed.
A numerical time-integration method is extended to address these challenges,
using a new formulation that has the benefit of being broadly applicable to
multidegree-of-freedom hysteretic linear systems and nonstationary random
signals. The results show that the earthquake responses from the hysteretic
damping model can differ significantly from the ones obtained via the viscous
model.

KEYWORDS

linear hysteretic damping, optimum loss factor, passive tuned-inerter devices, seismic response,
time-response

1 INTRODUCTION
In 1997, Okumura Atsushi1 patented the so-called gyro-mass device, which operated in parallel with a spring and a
damper. This gyro-mass, consisting of two disks acting as inertia elements, rotated on a geared rod in such a way that the
force generated by the gyro-mass, F, is equivalent to the relative acceleration between its two terminals, xA and xB. This
relation can be expressed as

F = bd(ẍA − ẍB), (1)

where
bd = J∕rd

2. (2)
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Here, J is the moment inertia of the disks, and rd is the distance from the centre of the disks to the point where the
rod is attached (otherwise called the radius of gyration). The parameter bd is called the inertance, which is measured in
kilogram, and can in fact be achieved by several mechanisms, such as rotational motion of a flywheel2 or fluid flow.3
Following this initial concept, several other types of gyro-mass or inerter devices have been proposed. Smith4 developed
an inerter, consisting of flywheel, rack, pinions and gears. The force generated by these types of inerter can be expressed
in the same way as Equation (1). Recently, many studies on the realisation of this inerter concept have been conducted
based on three main mechanisms: mechanical geared, ball screw and fluid-based inerters.5-9

The application of the inerter for vibration suppression in civil engineering structures has been studied by proposing
several configurations of three basic elements: inerter, viscous damper and spring (or equivalent stiffness element). One
of the first inerter-damper configurations to be introduced was the tuned-viscous-mass-damper (TVMD), described in
detail in Ikago et al.2 The damper consists of a parallel-connected ball-screw inerter-viscous damper in series with a spring
element. Of particular note is that a device of this type has been put into service in a real structure.10 The generalisation
of this device layout is called a parallel-connected-viscous-inerter-damper (PVID). For example, Pan et al.11 derived the
optimum solution for the PVID in a damped single-degree-of-freedom (SDOF) structure with a numerical optimisation
technique, using allowable parametric bounds. More recently, the feasibility of using the PVID concept for vibration
suppression of civil structures using a fluid inerter has been studied.12,13

Lazar et al.14 proposed a tuned-inerter-damper (TID) for vibration suppression of civil engineering structures. The TID
consists of a parallel connected spring and viscous damper in series with an inerter. This arrangement is similar to that
of a tuned-mass-damper (TMD) with the mass element being replaced by an inerter. The TID has been proven to have
similar performance to the TMD for the targeted resonance, but it also offers additional benefits compared with the TMD.
As is well known, the TMD typically requires a large amount of mass to provide a large mass ratio and to achieve optimum
performance. For the same mass ratio, the actual mass of the TID is far less than that of the TMD because the inerter
element can produce inertance several times higher than its physical mass.4 Additionally, it has been also shown that the
TID achieves its best performance when placed at the base of the main structure, which is contrary to the TMD which
must be placed at the top of the structure, where the maximum displacements occur. To obtain its optimum damping
parameter, Lazar et al.14 proposed a tuning rule that is based on the fixed-point theory by Den Hartog15 for the TMD. In a
similar manner, Hu et al.16 studied five configurations employing an inerter including the TID layout and gave a tuning
example for each of them when attached to an undamped SDOF structure. More recently, the TID has been studied for
vibration suppression of cables17 and for enhancing the performance of base-isolated structures subjected to earthquake
base-excitation.18,19

Marian and Giaralis20 proposed an alternative device called a tuned-mass-damper-inerter (TMDI). The device consists
of a traditional TMD with an inerter attached to the mass element. The advantage of the device is its capability of reducing
the total mass of the TMD. The concept of changing the inertance by using a control system to provide larger mass ratio
has also been investigated.21 The frequency of the TMD can be easily tuned to fit the frequency of the excitations. Optimal
design of the TMDI for dynamic vibration suppression by assuming white noise process as base input was studied by
Pietrosanti et al.22 The TMDI has also been studied for application to base-isolated structures.23,24

Following the initial analytical studies on the application of inerter-based dampers for vibration suppression of civil
structures, a selection of experimental studies have been conducted in order to validate those well established concepts.
Brzeski et al.25 conducted an experimental study of the TMDI on an SDOF system. An experimental study of a PVID
concept using a mechanical geared inerter can be found in Hessabi and Mercan.26 More recently, Hessabi27 conducted
experimental work testing a mechanical geared inerter-based damper for vibration suppression of a civil structure using
the real-time hybrid simulation method.

Despite the successful studies of the inerter-based damper systems both analytically and experimentally, many research
questions remain. In particular, models such as Equation (1) are highly idealised, and as the development of these concepts
progress, it is important to have models that can capture more physically realistic cases. For example, some studies have
suggested the importance of considering the nonlinearities of both the damping and the inerter devices. Buelga et al.,28

amongst others,29-31 studied the effect of the ball-screw inerter nonlinearity on the performance of the structure to which
the inerter is attached.

This paper proposes the use of the hysteretic damping as a new alternative to viscous damping in the idealised
inerter-based damper model, and in particular, we will focus on the tuned-inerter-hysteretic-damper (TIhD) and the
tuned-mass-hysteretic-damper-inerter (TMhDI). Hysteretic damping has the benefit of smaller response amplitude ampli-
fication at higher vibration frequencies due to its energy dissipation being frequency independent. Systems of this
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type have been studied extensively.32-35 The hysteretic damping model also better describes the behaviour of certain
materials.36 Mathematically, one of the most frequently used ways of modelling hysteretic damping is as part of a complex
stiffness function, which has the problem of noncausality—an issue that shall be discussed in detail below.

Equivalent viscous damping discussed in Chopra37 has been widely used to model the loss factor or damping in the com-
plex stiffness case. However, it is well known that for both single-degree-of-freedom (SDOF) and multi-degree-of-freedom
(MDOF) systems, that is, civil structures, the use of equivalent viscous damping may only be valid for a particular
frequency range near the frequency of interest, which is usually the resonance frequency.38

In addition, concerning a nonharmonic excitation case, such as earthquake inputs, it is essential to evaluate the struc-
tural response in a time-domain basis rather than a frequency-domain basis. Therefore, in the present work, we investigate
the hysteretic damping by developing a new method in a time domain.

The noncausal nature of the complex stiffness function leads to the occurrence of unstable poles in the time domain
analysis of the system. As a result, implementing this type of model is not as straightforward as the viscous model. The idea
of a causal hysteretic element has been developed as an alternative,39 although this too has significant difficulties with
computation.40 To deal with the unstable poles issue, several methods have been proposed in the case of SDOF systems.

The use of analytic signals, along with the Hilbert transform and a time reversal technique, is one of the first methods
introduced to solve such systems in the time domain; see Inaudi and Makris.41 In this paper, the method of Inaudi and
Makris41 is modified in order to solve the time domain response of the structures with TIhD and TMhDI. This modification
takes advantage of some key simplifying assumptions that are justified for the types of system under consideration. As
a result, the proposed method makes it possible to solve the problem using standard numerical integration algorithms
such as the Runga–Kutta family of solvers that are available within MATLAB, rather than the more specialist methods
required previously. A discussion about the method is presented in Section 3.

A recent investigation in Málaga-Chuquitaype et al.42 presented material modelling of an inerter damping system by
means of finite elements. Both SDOF and MDOF systems were investigated, and responses of harmonic excitations and
earthquake cases were evaluated. However, for a preliminary design stage, numerical simulation via finite element analy-
sis could be computational costly. Hence, the present numerical method via Hilbert transform and time-reversal technique
is proposed and implemented to support analysis on TIhD and TMhDI designs. Both the TIhD and TMhDI use a hysteretic
damping element instead of a viscous damper. The motivation for using this damping model is to try and more accurately
represent the case when a material damping (e.g., rubberised component) is present in the inerter-based device. When
the mass of the inerter is also included in the model, then the TMhDI model becomes more appropriate. It should be also
noted that in this work, both TIhD/TMhDI and the host structure are assumed linear. This is an important assumption
of the models used in this paper.

The TMhDI has a small secondary mass between the inerter and the complex damping elements, analogous to the
TMDI concept. In this paper, the secondary mass is considered to be approximately 5% of the inertance, to represent
the mass of the inerter device only. The idea is that this TMhDI will capture both the effects of the inerter mass and the
hysteretic damping and therefore offer a potentially more physically realistic model than the idealised concepts of
the TID and the TMDI.

2 ANALYTICAL MODELLING AND OPTIMISATION

A generalised model of a n-DOF lumped mass system is shown in Figure 1. The structure is separated into three parts:
bottom storey, i = 1; middle storeys, ith, where i ∈ [2 ∶ n − 1]; and top storey, i = n. In this study, the performance
comparison of four different inertial damper systems when placed at the bottom story level was examined. As a well
established concept, the TID was used as a benchmark to the performance of the other devices. The TMDI was studied
to see the effect of the small additional mass element in the TID. Then the TIhD and TMhDI were studied to gain insight
into the effect of hysteretic damping.

The equations of motion of the n-DOF structure as shown in Figure 1 in absolute coordinates can be written as

⎧⎪⎪⎨⎪⎪⎩
(m1s2 + k0,1 + k1,2)X1 = k1,2X2 + k0,1R + F1,0
⋮
(mis2 + ki−1,i + ki,i+1)Xi = ki−1,iXi−1 + ki,i+1Xi+1
⋮
(mns2 + kn−1,n)Xn = kn−1,nXn−1

(3)



4 DEASTRA ET AL.

FIGURE 1 (A) n-DOF structure, (B)
TID, (C) TMDI, (D) TIhD, (E) TMhDI

TABLE 1 Force transferred to the structure by the inerter damper in
the Laplace domain

Device type: F1,0

TID bds2(cds+kd)
bds2+cds+kd

(R − X1)

TMDI bds2(cds+kd)
(md+bd)s2+cds+kd

(R − X1) −
bds2mds2

(md+bd)s2+cds+kd
X1

TIhD bds2(kd(1+𝑗𝜂))
bds2+kd(1+𝑗𝜂)

(R − X1)

TMhDI bds2(kd(1+𝑗𝜂))
(md+bd)s2+kd(1+𝑗𝜂)

(R − X1) −
bds2mds2

(md+bd)s2+kd(1+𝑗𝜂)
X1

where mi and ki−1,i, i ∈ [1 ∶ n] represent the mass and stiffness between storeys i − 1 and i; Xi represents the Laplace
transform of the ith storey displacement, when i = 0, then X0 = R, which represents the Laplace transform of the base
displacement; s represents the Laplace transform variable and F1,0 represents the force transferred to the structure by
the inerter damper in the Laplace domain given in Table 1. The inerter damper systems in Table 1 have the additional
parameters bd, md, kd, cd and 𝜂 which are the device inertance, mass, stiffness, viscous damping and hysteretic damping
loss factor, respectively, and 𝑗 =

√
−1.

2.1 Optimisation in SDOF structures
In this section, the tuning procedures to obtain the optimum parameters of the hysteretic inerter-based devices in an
SDOF structure will be derived based initially on the traditional concept using viscous damping, which is in this case being
replaced by complex stiffness term kd(1 + j𝜂) representing the material damping. Here, kd is the stiffness of the inerter
dampers and 𝜂 is the loss factor of the hysteretic damping element. It should be noted that this model is a noncausal model,
which means it is physically not realisable. However, this model has been widely accepted in analysis43 to accurately
represent a class of nonlinear damping,44 as well as the phenomena of energy dissipation in a variety of materials such as
rubber and viscoelastic polymers.45-48 As a result, there is a limitation that the model proposed in this work is currently
only applicable to linear structures.

Although the equivalent viscous damping is often directly used to obtain the approximate equal response between
viscous and hysteretic damping, in this study, we found that the result is different after the optimisation process. This
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limitation has also been reported in Wong49 for the hysteretic dynamic vibration absorber (HDVA). Therefore, it is
important to derive a formulation for obtaining the optimum parameters of an inerter device with hysteretic damping.

2.1.1 Optimisation of the TIhD
Consider now a TIhD attached to a 1-DOF structure as shown in Figure 1 for n = 1. The transfer function X∕R can be
derived analytically and written in the frequency domain as

||||(X
R

)|||| =
√

[(1 − 𝜇q2) − 𝜆𝜇q2]2 + [𝜂(1 − 𝜇q2)]2

[(1 − (1 + 𝜇)q2) − 𝜇𝜆q2(1 − q2)]2 + [𝜂(1 − (1 + 𝜇)q2)]2 , (4)

where 𝜂 is the loss factor of the hysteretic damping, 𝜇 = bd∕m1 is the inertance-to-mass ratio, q = 𝜔∕𝜔n is the frequency
ratio, 𝜆 = k0,1∕kd is the stiffness ratio, 𝜔 is the forcing frequency (assuming a sine wave input) and 𝜔n =

√
k0,1∕m1.

The approximate optimum parameters of the TIhD can be analytically obtained based on fixed-point theory via an
algebraic solution. This technique has been derived by Hu et al.16 for the TID optimisation. Following the same procedure,
and by replacing the viscous damping ratio 𝜁 with the loss factor 𝜂, one obtains the 𝜂 optimum for the TIhD as

𝜂opt =

√
𝜂2

P + 𝜂2
Q

2
. (5)

𝜂P and 𝜂Q are given by

𝜂2
P.Q = A − BCD

E
, (6)

where

A = (2𝜇(1 − (1 + 𝜇)q2
P.Q)

2(𝜇q2
P.Q(𝜆opt + 1) − 1)(𝜆opt + 1))

B = (2(1 − 𝜇q2
P.Q)

2

C = ((1 − (1 + 𝜇)q2
P.Q − 𝜆opt𝜇q2

P.Q(1 − q2
P.Q))

D = (𝜆opt𝜇q2
P.Q − 𝜆opt𝜇(1 − q2

P.Q) − 𝜇 − 1)

E = (2𝜇(1 − (1 + 𝜇)q2
P.Q)

2(1 − 𝜇q2
P.Q)) − (2(1 − 𝜇q2

P.Q)
2(1 + 𝜇)(1 − (1 + 𝜇)q2

P.Q))

The frequency ratio at the first two fixed-points P and Q are the solution of the following equation:

q4 −
(

2
𝜆opt𝜇

(1 + 𝜆opt + 𝜇 + 𝜆opt𝜇) − q2
R

)
q2 + 2

𝜇2𝜆optq2
R
= 0. (7)

The optimum stiffness ratio (𝜆opt) can be obtained by using either

𝜆opt =
2(1 + 𝜇q4

R(1 + 𝜇) − q2
R(1 + 2𝜇))

𝜇q4
R(𝜇q4

R − 2q2
R(1 + 𝜇) + 2)

(8)

or

𝜆opt =
2(q2

R(3𝜇 + 2𝜇2 + 1) − 2(1 + 𝜇))
q2

R(𝜇q2
R(1 + 2𝜇) − 2(1 + 2𝜇 + 2𝜇2))

(9)

where qR is the frequency ratio at the third fixed-point R given by

q2
R = 3

2
+ 1

𝜇
+

√(
3
2
+ 1

𝜇

)2

− 2
𝜇
. (10)

Figure 2A,B shows the difference between the optimised TID and TIhD using fixed-point theory. It can be seen that
for viscous damping, Figure 2A, the underlying peaks of 𝜁P and 𝜁Q are quite low in amplitude, and therefore, the peaks
of the combined optimal curve are very close to the fixed points P and Q. However, in the hysteretic damping case, the
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FIGURE 2 Transmissibility of a 1-DOF structure with (A) TID, (B) TIhD [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Optimum damping ratio and loss factor of the inerter dampers 𝝁 𝜻opt of the TID 𝜼opt of the TIhD
0.3 0.0713 0.71
0.5 0.1264 0.92
0.9 0.2221 1.26

underlying peaks of 𝜂P and 𝜂Q are now quite high in amplitude, and therefore, the peaks of the combined optimal curve
are much further away from the fixed points P and Q. It is therefore suggested that the optimised TIhD will require a
further fine tuning process to make both peaks closer to equal amplitude. The effect of increasing 𝜇 is also obvious. It can
be seen when 𝜇 is increased from 0.3 to 0.9, the TIhD shows a potential benefit in the higher frequency region where it
has smaller amplification effect.

Table 2 presents the obtained optimum values of 𝜁 and 𝜂 after the optimisation process. As previously mentioned,
equivalent viscous damping is often used to obtain an approximation for the response of a hysteretically damped system.
However, this kind of approximation will not persist after the optimisation process. In this case, the equivalent viscous
damping relationship 𝜂 = 2𝜁 given in Chopra37 cannot be used for the TIhD. The approximate relationship can instead
be expressed as 𝜂 = 2𝜆𝜁 . It should be noted that this expression does not give the exact optimum solution—a point that
was also noted by Wong49 for the HDVA system. Therefore, it is important to derive the optimum 𝜂 of the TIhD separately
from the derivation of 𝜁 of the TID.

2.1.2 Optimisation of the TMhDI
TMhDI is basically a TIhD with a small secondary mass element md between the inerter bd and the complex-stiffness
element as illustrated in Figure 1C. The TMhDI model can potentially be used to represent an even more realistic device
than the TIhD device. In this analysis, the inertance is designed to be dominant, where md is assumed to be just 5% of the
inertance to represent the mass of the inertial device. Therefore, the tuning of the TMhDI follows the TIhD tuning rule
based on fixed point analysis presented in the previous subsection.

Figure 3 shows the performance comparison in the frequency domain between the four considered inertial damper
systems in an SDOF structure subjected to harmonic base displacement. Although the response at low frequencies is close
for all four devices, it is clear from Figure 3A that the devices with hysteretic damping give significantly lower amplitude
responses at higher frequencies. In this higher frequency range, the hysteretic damping also changes the phase angle as
can be seen in Figure 3B.

2.2 Optimisation in MDOF structures
First, we comment on the optimal location of the TMDI in MDOF structures. It is well known that the optimal location
for a TMD is at the top of a MDOF structure and that the TID is optimum at the base of the structure.14 The passive control

http://wileyonlinelibrary.com


DEASTRA ET AL. 7

FIGURE 3 (A) Frequency response of a 1-DOF structure with optimised inertial damper systems. (B) Phase angle, 𝜇 = 0.9 and md = 5%bd.
High 𝜇 was chosen to clearly see the difference between the structural response with hysteretic and viscous damping above the resonance
frequency [Colour figure can be viewed at wileyonlinelibrary.com]

forces in the Laplace domain can be written as follows when a TMDI is mounted at the ith storey level.

Fi,i+1 = bds2(Xi+1 − Y ), (11a)

Fi+1,i = (cds + kd)(Y − Xi), (11b)

where Xi represents the Laplace transform of the displacement of mass mi and bd is the inertance. The equation of motion
for the y-DOF TMDI system can be written as

Y = bds2Xi+1 + (cds + kd)Xi

(md + bd)s2 + cds + kd
. (12)

Substituting Equation (12) into Equation (11a) gives

Fi,i+1 = (bds2mds2)Xi+1 + bds2(cds + kd)(Xi+1 − Xi)
(md + bd)s2 + cds + kd

, (13a)

Fi+1,i = Fi,i+1 = TmXi+1 + Td(Xi+1 − Xi), (13b)

where

Td = bds2(cds + kd)
(md + bd)s2 + cds + kd

and (14a)

Tm = bds2mds2

(md + bd)s2 + cds + kd
. (14b)

We now discuss the optimum placement of the TMDI in a n-DOF structure as shown in Figure 1. In matrix form, the
equation of motion of the system can be written as

Ms2 + KZ = −M

⎡⎢⎢⎢⎢⎣
1
1
⋮
1
1

⎤⎥⎥⎥⎥⎦
s2R +

⎡⎢⎢⎢⎢⎣
F1,0 − F1,2
F2,1 − F2,3

⋮
Fn−1,n−2 − Fn−1,n

Fn,n−1

⎤⎥⎥⎥⎥⎦
, (15)

http://wileyonlinelibrary.com
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FIGURE 4 (A) The effect of increasing md to the TMDI optimum location. (B) Frequency response function (first mode) when md = 5%bd,
𝜇 = 0.62 [Colour figure can be viewed at wileyonlinelibrary.com]

where M and K are the mass and stiffness matrices and Z = Xi − R represents the vector of relative storey displacement.
The above equation can also be written in form of modal matrices

s2 +Z = −ΦTM

⎡⎢⎢⎢⎢⎣
1
1
⋮
1
1

⎤⎥⎥⎥⎥⎦
s2R + ΦT

⎡⎢⎢⎢⎢⎣
F1,0 − F1,2
F2,1 − F2,3

⋮
Fn−1,n−2 − Fn−1,n

Fn,n−1

⎤⎥⎥⎥⎥⎦
, (16)

where 𝛷 is the eigenvector matrix and  = ΦTMΦ and  = ΦTKΦ are the modal mass and stiffness matrices,
respectively.

Now, we consider the cases where the TMDI is mounted at either the bottom or top storey level. Assuming that only
the first vibration mode is significant, the following transfer functions can be obtained:

TMDI at bottom storey level

Q1

R
=

−
n∑

i=1
(m1Φi,1)s2 + Φ1,1Tm

mm1 s2 + km1 + TdΦ2
1,1

. (17)

TMDI at top storey level

Q1

R
=

−
n∑

i=1
(m1Φi,1)s2 + (Φn,1 − Φn−1,1)Tm

mm1 s2 + km1 + Td(Φn−1,1 − Φn,1)2 − TmΦn−1,1(Φn,1 − Φn−1,1)
. (18)

It is obvious that when the mass element of the TMDI is small or close to zero, the above equations will be identical to
the TID transfer functions given in Lazar et al.14

Figure 4A shows how the optimum location of the TMDI changes between top and bottom story level by increasing md
and decreasing bd at the same time using Equations (17) and (18). It can be seen that increasing md will make the TMDI at
the bottom story less effective. Conversely, decreasing md makes its performance better when placed on the bottom story.
This aligns with our assumption of making the md only 5% of the device inertance, to represent the mass of the inerter
device.

Furthermore, the optimum parameters of the TID in a MDOF structure were obtained by using a method proposed
by Lazar et al.14 Figures 2A,B and 4A have already demonstrated that the tuning procedure of the TID can be used for
estimating the optimum parameters of the TIhD, TMDI and TMhDI. However, as previously noted, additional fine tuning
is required to get the actual optimum values for these three systems, and this is also the case for MDOF systems.

http://wileyonlinelibrary.com
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2.3 Concluding Remarks
From the discussion above, it can be concluded that when the damping in the tuned-inerter devices (TID and TMDI)
exhibits linear hysteretic (TIhD and TMhDI) rather than viscous, the behaviour of the devices will be different, especially
at the higher frequency of excitations. This is obvious from the frequency response analysis of the systems. However,
obtaining the structural response in the time domain will be challenging due to the inherent occurrence of unstable poles.
Hence, a robust time domain technique is required to capture the hysteretic behaviour rather than using an equivalent
viscous damping method.

The following section will describe this new method for obtaining the time domain response of structures with linear
hysteretic damping. Furthermore, some validations of the method are presented.

3 TIME DOMAIN MODELLING

In this section, for the first time in the time domain analysis, the hysteretic-based inerter systems are evaluated by means
of analytic signals and time reversal technique. The method used here is based on that proposed by Inaudi and Makris41 in
an extended and modified format that allows for the evaluation of the TIhD and TMhDI systems. The hysteretic damping
is modelled in the form of a complex stiffness element of the inerter device. Hilbert functions are used to represent the
analytic signals of the structural responses.

It should be noted that this time domain method does not change the noncausality of the linear hysteretic damping.
It has been a long standing problem that complex stiffness model is a noncausal model and therefore very difficult to
deal with. However, this model has been widely used43 and has been proven to be very accurate and practical for mod-
elling several engineering applications, for example, linearisation of nonlinear damping.41 Reference to the causal linear
hysteretic damping model can be found in Makris.39 Furthermore, the causality of the inerter-based damper devices has
been extensively discussed in Makris50 and Makris (2018).51 Specifically, in Makris,50 the concept of inertoviscoelasticity
is introduced. This is a form of model built from combinations of springs, inerters and viscous damping elements. These
type of mechanical networks were discussed in detail in that paper and have been proven to be causal. In Makris,51 the
time-response function of three-element (spring, dashpot, inerter) networks with different arrangements were considered.
The method was adopted from Makris50 to ensure the causality of the mechanical systems in the time domain.

In this paper, the focus is not to resolve the noncausality of the linear hysteretic damping (complex stiffness) model, but
to give a better representation of that model in the time domain in addition to the frequency domain. The time reversal
technique is adopted and extended from Inaudi and Makris41 to resolve the unstable poles from the differential equations.
A new efficient numerical method is proposed, which is also applicable for MDOF systems and nonstationary input
signals.

However, there are some important nuances to consider. Specifically, Bae et al.52 showed that the Hilbert transform
of the external impulse signal using the discrete Fourier transform (FT) and inverse Fourier transform (IFT) produces
a totally different result compared with the one obtained from its exact formula. Not only this, Bae et al.53 also showed
that the Hilbert transform of a signal may produce a nonzero value at the beginning of the signal although its original
real signal has zero value at time zero. To solve these problems, Bae et al.52,53 introduced a technique called discrete
convolution Hilbert transform (DCHT) and extended-time-duration using a Newton–Raphson iteration method. In the
DCHT technique, the external amplitude of the force signal is divided into a finite number of rectangular signals. The
Hilbert transform of the force signal can then be obtained from the Hilbert transform of each of the rectangular signals.
The application of this method to a free and transient response of a hysteretic damping system was presented in Bae
et al.54,55 A system with hysteretic damping was studied in the case of triangular external force. A more complex system
consisting of a mixed viscous-hysteretic damping was studied in Bae et al.56 using this method.

However, unlike these previous methods that require some special integration techniques based on zero or first order
hold methods, the modified method proposed in this paper makes it possible to solve the system in state space form using
standard numerical integration algorithms, such as the Runga–Kutta family of solvers that are readily available within
MATLAB. A detailed discussion about the method, in particular the time reversal technique, is presented next.

3.1 Time reversal technique
In general, a continuous structural system can be observed by applying a discretisation process. Thus, the system can be
simplified into a set of elements with a certain number of degrees of freedom (DOFs). The dynamic equation of motion
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for an MDOF system can be expressed in matrix form as

Mẍ + C .x + Kx = F. (19)

The sizes of the matrices in Equation (19) are defined by the number of DOFs, n. The first and second derivatives with
respect to the time are denoted by the dot,

.
[ ], and the double dots, ̈[ ]. Here, x (n × 1) and F (n × 1), respectively, are the

displacement and force vectors, whereas M (n × n), C (n × n) and K (n × n) represent the mass, damping and stiffness
matrices.

The mass, stiffness and damping matrices are associated with the properties of the structure, that is, material weight,
elasticity and damping coefficient. In particular, there are various ways to define the damping of the system, that is, viscous
damping and hysteretic damping. The viscous damping force is represented in Equation (19) as the term C .x. However, in
a linear hysteretic damping case, the damping force is a displacement-dependent term. It is usually modelled proportional
to the complex value of the stiffness. Hence, Equation (19) becomes

Mẍ + K(1 + 𝑗G)x = F , (20)

where G is the matrix of damping coefficient that represents the loss factor of each element of the system.
It is a common practice to avoid using complex coefficients for transient response or time-domain analysis, because in

this case the damping model does not have a direct physical realisation. For this reason, the linear hysteretic damping is
often represented by an equivalent viscous damping. Assuming constant amplitude oscillatory motion with a frequency
𝜔, the two damping forces are identical if

G K = C 𝜔. (21)
Hence, an equivalent viscous damping can be selected for a particular frequency of interest as

Ceq = 1
𝜔

G K. (22)

The selection of𝜔 is typically the dominant frequency at which the damping is active, that is, the first natural frequency.
However, in reality, the individual element damping occurs at different frequencies. Thus, accurate solutions can only be
obtained if the excitation frequency is at or near the selected 𝜔.

In the present work, it is essential to evaluate hysteretic damping in its original complex form to obtain an optimum
design of TIhD and TMhDI. Moreover, the investigation of earthquake excitation force is one of the interests in the current
work. Therefore, to address this issue, the time reversal technique of Inaudi and Makris41 is adopted and modified.

Inaudi and Makris suggested that the displacements and the forces can be evaluated in analytic forms, that is, complex
signals constructed by real and imaginary components. Hence,

xa(t) = x(t) + 𝑗 H[x(t)], (23)

Fa(t) = F(t) + 𝑗 H[F(t)], (24)

where H[] denotes the Hilbert transform of the original displacement and force functions. These analytic signals satisfy
the boundary conditions of xa(−∞) = xa(∞) = 0 and Fa(−∞) = Fa(∞) = 0.

Therefore, in a state-space form, Equation (20) can be rewritten as

.xa(t) = A xa(t) + B ra(t), (25)

where

xa(t) =
[

xa(t).xa(t)

]
, A =

[
0 I

−M− 1 K(1 + 𝑗G) 0

]
, B =

[
0

M− 1LF

]
, Fa(t) = LF ra(t). (26)

It is important to note that the vectors and matrices denoted by xa (2n × 1), A (2n × 2n), B (2n × 1) and LF (n × 1)
are all in complex form. The force vector in analytic form, Fa, is defined as the product of the complex time function, ra,
with a coefficient vector of elements' load factor, LF, whereas 0 (n × 1) and I (n × 1) are the zeros and identity matrices,
respectively.
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Despite seeming that Equation (25) can be solved directly involving a standard integration procedure, that is, convo-
lution integral, the eigenvalues of A are pairs of stable and unstable roots.41 Therefore, a special treatment is required
to obtain the stable solutions of Equation (25). Inaudi and Makris41 introduced a backward integration technique that
reverses the independent variable (time) in the modal coordinate of the unstable parts. The analytic vector xa can be
rewritten by defining analytic modal coordinates, qka and qla , for the stable and unstable parts, respectively.

xa(t) = Φ
[

qka (t)
qla (t)

]
, (27)

where qka = qk + 𝑗 H[qk] and qla = ql + 𝑗 H[ql], whereas 𝜱 (2n × 2n) is the eigenvector matrix of A.
By introducing a reversed time, z = −t, and a function q̃l(z) = ql(t), hence,

.ql(t) = −q̃′
l(z), (28)

where [′] defines the derivative in the reversed time. Therefore, Equation (25) can be rewritten as

[ .qka
(t)

−q̃′
la
(z)

]
= A∗

[
qka (t)
q̃la (z)

]
+ B∗

[
ra(t)
r̃a(z)

]
, (29)

where A∗ = 𝜱−1A𝜱 and B∗ = 𝜱−1B. To be noted here, A∗ is a diagonal matrix; thus, Equation (29) becomes uncoupled.
Hence, components of qka and qla can be evaluated separately by means of forward time integration and backward time
integration, respectively.

Inaudi and Makris41 numerically solved both a SDOF problem and a 2-DOF problem by applying discrete-time sampling
to the analytical integral solutions of Equation (29). However, this approach may be difficult to implement in a more
complex and higher DOFs system as it requires the analytical integral solution for each different system. Therefore, in
the present work, a more robust computational approach is proposed. Herein, a variable separation procedure is applied
to separate the real and imaginary components in Equation (29); hence,

⎡⎢⎢⎢⎢⎣

.qk(t)
H[ .qk(t)]
−q̃′

la
(z)

−H[q̃′
la
(z)]

⎤⎥⎥⎥⎥⎦
=
[

A∗∗ 0
0 Ã∗∗

] ⎡⎢⎢⎢⎢⎣
qka (t)

H[qka (t)]
q̃la (z)

H[q̃la (z)]

⎤⎥⎥⎥⎥⎦
+
[

B∗∗

B̃∗∗

] [
ra(t)
r̃a(z)

]
, (30)

which can be evaluated separately for forward integration

[ .qk(t)
H[ .qk(t)]

]
= A∗∗

[
qka (t)

H[qka (t)]

]
+ B∗∗ra(t) (31)

and backward integration [
−q̃′

la
(z)

−H[q̃′
la
(z)]

]
= Ã∗∗

[
q̃la (z)

H[q̃la (z)]

]
+ B̃∗∗r̃a(z). (32)

In Equations (31) and (32), the matrices A∗∗ (2n × 2n), Ã∗∗ (2n × 2n), B∗∗ (2n × 1) and B̃∗∗ (2n × 1) consisted of
components that provide coupling between the real and imaginary parts of each modal coordinate.

The key aspect in the present work is that Equations (31) and (32) are sets of ordinary differential equations (ODEs);
thus, they can be straightforwardly solved via a standard numerical procedure, that is, by using the Runge–Kutta method.
Therefore, it provides a more robust approach to evaluate any structural system as long as the mass, stiffness, damping
matrices and the force vector are known. Further discussion on the computational algorithm of the present approach is
given in Appendix B1.
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FIGURE 5 Time history responses of SDOF structure (A) 𝜔 = 𝜔n, (B) 𝜔 = 30𝜔n subjected to sine-wave ground displacement with
amplitude R = 1 unit length [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Optimum parameters of the inertial damper systems

SDOF structure, 𝝁 = 0.1 3-DOF structure, 𝝁 = 0.18
Parameters TID TMDI TIhD TMhDI TID TMDI TIhD TMhDI
Inertance, bd(kNs2∕m) 0.1 0.1 0.1 0.1 0.48 0.48 0.48 0.48
Stiffness, kd(kN∕m) 0.0085 0.0091 0.0085 0.0091 138.6 146 138.6 146
Viscous damping, cd(kNs∕m) 0.0107 0.0107 − − 2.5 2.5 − −
Loss factor, 𝜂 − − 0.3848 0.3848 − − 0.3060 0.2905
Secondary mass, md(kNs2∕m) − 0.005 − 0.005 − 0.024 − 0.024

3.2 Validation
In this subsection, validations of the new computational approach are presented. An example of a SDOF system excited
by a harmonic sine-wave input is now considered. The results of the present computational approach are compared with
those obtained via the zero-order hold method of Inaudi and Makris.41

Figure 5A,B shows the time domain response of a simple SDOF system with one mass and one coupled spring-damping
element represented by a complex stiffness subjected to sinewave ground displacement. It is obvious that the solution
using the present method are in a good agreement with the zero-order hold method by Inaudi and Makris41 around the
resonance (𝜔 = 𝜔n) and away from resonance (𝜔 = 30𝜔n). Here, 𝜔 is the frequency of excitation and 𝜔n is the natural
frequency of the system. In addition, a comparison with a common method using equivalent viscous damping is also
presented when the equivalency is made at the resonance. As can be seen in Figure 5B, the equivalent viscous damping
method becomes inaccurate at frequencies away from the natural frequency.

The following section will discuss further case studies where the time reversal method is applied for analysis of
structures with TIhD and TMhDI.

4 CASE STUDIES

4.1 Harmonic base excitation
An SDOF structure as shown in Figure 1A for n = 1, mass m and stiffness k0,1 set to 1kNs2∕m and 0.0987kN∕m, respec-
tively was used in this example. Figure 6A shows the performance comparison between the four inerter-based damper
systems applied to an SDOF structure. Their optimised parameters are given in Table 3. It can be seen from this figure that
the performance of the TID and the TMDI is similar. This can be understood because the effect of md, which is only 5% of
the inertance, is small across the frequencies. However, the TMDI has slightly higher response around the resonant fre-
quency after the optimisation. Its time domain response is given in Figure 7A,B obtained by using the method presented
in the previous section. A similar result also can be seen for the TIhD compared with the TMhDI, which indicates that
the effect of md is very small.

Although the response amplitude around the resonant frequency is slightly higher with the hysteretic damping, it has a
potential benefit in the higher frequency region as previously discussed. The attenuation difference between TID/TMDI
and TIhD/TMhDI in the high frequency region is 20 dB/dec. In civil engineering applications, especially for low frequency

http://wileyonlinelibrary.com
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FIGURE 6 Transmissibility of (A) SDOF structure, 𝜇 = 0.1, (B) 3-DOF structure, 𝜇 = 0.18 [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Time history responses at steady state of SDOF structure, 𝜇 = 0.1, 𝜔 = 0.05 Hz (A) and 𝜔 = 30𝜔n (B) and 3-DOF structure,
𝜇 = 0.18, 𝜔 = 7.8 Hz (C), and 𝜔= 11.1 Hz (D) subjected to sine wave ground displacement with amplitude R = 1 cm [Colour figure can be
viewed at wileyonlinelibrary.com]

structures such as base-isolated structures, this is a valuable benefit because the response around the resonance frequency
needs to be reduced to deal with long-period earthquakes, while at the same time maintaining lower response at the
higher frequency region.

To explore MDOF structures, a 3-DOF structure as shown in Figure 1A for n = 3 was selected for a case study. The
parameters of the structure were designed to be the same with the 3-DOF structure presented in Lazar et al.,14 where
m1 = m2 = m3 = 1kNs2∕m and k0,1 = k1,2 = k2,3 = 1500kN∕m. All of the inerter-damper devices shown in Figure 1B – D
were located at the bottom storey as this is their optimum location.

Figure 6B shows the transfer function X3∕R of a 3-DOF structure in the frequency domain. Its time domain response
is given in Figure 7C,D. The optimised parameters of the inerter-damper devices are given in Table 3 derived based on
a fixed value of 𝜇 = 0.18. The structural response amplitude around the first resonance frequency is similar for all
cases. As mentioned previously for SDOF structures, the hysteretic damping gives a slightly higher response after the

http://wileyonlinelibrary.com
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optimisation. However, around the second and third resonance frequencies, the response of the structure with TIhD and
TMhDI is significantly higher when compared with the TID and TMDI with no hysteretic damping. This is because the
force transferred to the structure by the TIhD and the TMhDI is larger than that of TID and TMDI. This also indicates
that modelling a system that has hysteretic damping with a viscous damping model may significantly overestimate the
level of damping that can be achieved in higher modes of vibration. As a result, using the model proposed in this paper
may have considerable benefits for modelling physical systems of this type.

4.2 Earthquake base excitation
A further benefit of the proposed time domain method for linear hysteretic damping is its ability to be used for nonsinu-
soidal and nonperiodic forcing functions such as earthquakes. The fixed-point theory (FPT) approach discussed in the
previous section assumes a harmonic input signal, which is not directly applicable to seismic applications where the exci-
tations are not harmonic in nature. Therefore, in this study, a numerical optimisation approach using the Self-Adaptive
Differential Evolution algorithm (SADE)57 is adopted and MATLAB is employed to apply the algorithm. The SADE
algorithm is an improved differential evolution (DE) algorithm58 that is capable of adaptively choosing the learning strat-
egy to obtain a global optimum solution of the defined objective function. In this algorithm, a parameter candidate pool is
generated for each generation. The number of generations was defined based on at which the result was converged. The
detailed procedure of the SADE algorithm can be found in Qin and Suganthan.57

The four tuned-inerter devices were optimised for an SDOF structure as shown in Figure 1A for n = 1. Mass m and
stiffness k0,1 were assumed to be 1kNs2∕m and 1kN∕m, respectively. The objective chosen was to find the optimum values
of bd, kd and cd or 𝜂 that gives minimum average root-mean-square (RMS) value of the top displacement response for all
considered earthquakes. This condition can be expressed as

min

||||||||||||

Ne∑
𝓁=1

RMS(x𝓁(t))

Ne

||||||||||||
, (33)

where Ne is the number of earthquake input signals considered. Note that the upper and lower limits of the parameter
values for inertance, stiffness and damping must be set to realistic values. In this study, the limits are selected to be
0.1 ≤ bd ≤ 0.9; 0.1 ≤ kd ≤ 1; 0.1 ≤ 𝜂 ≤ 2; and 0.1 ≤ cd ≤ 3.

Three design response spectrum were selected: (1) Arrete 2010–2011, representing high-frequency earthquakes;
(2) NTC2004 - a, representing low-frequency earthquakes; and (3) NTC2004 - b, representing mid-frequency earthquakes.
The following assumptions were made: (1) for Arrete 2010–2011: seismic zone 1; ground type A; and building class 3,
(2) for NTC2004 - a: ground type IIIc, for (3) NTC2004 - b: ground type II. Ten artificial earthquakes were generated using
the SeismoArtif software for each of the corresponding design spectra as shown in Figure 8. Earthquakes 1–10 correspond
to Arrete 2010–2011, Earthquakes 11–20 correspond to NTC2004 - a, and Earthquakes 21–30 correspond to NTC2004 -
b. This enabled the effect of the hysteretic damping and the small mass element md, which was assumed to be 5% of
the inertance bd to be observed. In order to try and make meaningful comparisons, the results are presented in terms of
normalised RMS of the seismic displacement response histories of the structural system.

The optimum parameters obtained for the devices using the SADE algorithm and FPT are given in Table 4. As can be
seen from this table, there is no obvious correlation between the optimum 𝜂 of the TIhD and TMhDI with the optimum
cd of the TID and TMDI. This implies that equivalent viscous damping cannot be used, because each of the devices needs
to be individually optimised.

Figure 9 shows the performance comparison between the SADE and FPT optimisations. Each bar in the figure rep-
resents the difference between FPT and SADE for each device for that specific earthquake with FPT taken as 0% for
the sake of comparison. If no bar is shown, then there is a negligible difference between FPT and SADE. As would be
expected, almost all of the bars for SADE are below the FPT line. The average is −3.64% for Case (1) Arrete 2010–2011
(high-frequency) Earthquakes 1–10, −44.38% for Case (2) NTC2004 - a (low-frequency) Earthquakes 11–20, and −10.42%
for Case (3) NTC2004 - b (mid-frequency) Earthquakes 21–30. It should be noted that the natural frequency of the
considered SDOF structure is 0.16 Hz, which is in this case in the range of the low-frequency earthquakes.
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FIGURE 8 Design response spectrums and 30 generated artificial
earthquakes [Colour figure can be viewed at wileyonlinelibrary.com]

Fixed-point theory SADE algorithm
Parameters TID TMDI TIhD TMhDI TID TMDI TIhD TMhDI
Inertance, bd(kNs2∕m) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Stiffness, kd(kN∕m) 0.38 0.43 0.35 0.36 0.85 0.88 0.91 0.89
Viscous damping, cd(kNs∕m) 0.44 0.44 − − 1.64 1.74 − −
Loss factor, 𝜂 − − 1.26 1.26 − − 1.73 1.83
Secondary mass, md(kNs2∕m) − 0.045 − 0.045 − 0.045 − 0.045

Note. The optimum parameters obtained by the SADE algorithm for each of the device in the table are based on the
objective function given in Equation (33).

TABLE 4 Optimum
parameters of the inertial
damper systems for an SDOF
structure

FIGURE 9 Performance comparison
between the SADE and FPT
optimisations. Any bars that are very
close to the FPT values are not shown
and can be assumed to be approximately
the same as the FPT value. Earthquakes
1 to 10 correspond to Case (1): Arrete
2010–2011, earthquakes 11 to 20
correspond to Case (2): NTC2004 - a,
and earthquakes 21 to 30 correspond to
Case (3) NTC2004 - b [Colour figure can
be viewed at wileyonlinelibrary.com]

From Figure 9, it can be observed that overall the optimisation by SADE algorithm works better than the FPT, par-
ticularly for low-frequency earthquakes (Earthquakes 11–20). For Earthquakes 9, 29 and 30, the FPT is actually better
than SADE. It is not clear what the reason for this is, but one possible explanation is that the objective function given in
Equation (33) is designed to seek for the minimum overall average, not the minimum for each of the earthquakes. Over-
all, the average is −24.66% for the bars below FPT and 5.18% for the bars above the FPT. This means that the optimisation
using the SADE algorithm gives a much better response compared with the FPT across all 30 earthquake cases. In terms
of applications, computations of this type can be used during the design stage, in order to give estimates of the level of
displacement responses in a structure where the damping in the inerter device is hysteretic.

Figure 10 shows a comparison of the performance of the four devices for each earthquake, for the three different cases
considered. Each of the device was optimised by using the SADE algorithm. The comparison was made relative to the
TID performance, which was the best overall. So in this figure, each bar represents the difference between each device
and TID (which is taken as 0%) for each earthquake.

An example of the time domain response is given in Figure 11 for both SADE and FPT optimisations. The trends
observed in both Figures 9 and 10 can also be observed in these time domain plots. Specifically, the overall amplitudes

http://wileyonlinelibrary.com
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FIGURE 10 Performance comparison
between the four devices. Any bars that
are very close to the TID values are not
shown and can be assumed to be
approximately the same as the TID
value. Earthquakes 1 to 10 correspond to
Case (1): Arrete 2010–2011, earthquakes
11 to 20 correspond to Case (2): NTC2004
- a, and earthquakes 21 to 30 correspond
to Case (3) NTC2004 - b [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 11 Time history responses of the structure subjected to Earthquake 15 base motion optimised by (A) FPT, (B) SADE [Colour
figure can be viewed at wileyonlinelibrary.com]

in Figure 11B for SADE are significantly less that the amplitudes in Figure 11A for FPT. It is also possible to see that the
hysteretic damping devices have higher amplitude responses than the TID or TMDI in both plots.

From Figures 10, we can infer that the effect of the secondary mass md is small due to the fact that the TMDI performance
is only up to 6% different to the TID performance. The effect of the hysteretic damping was much larger, because the
TIhD and TMhDI were up to 33% different to the TID results. This implies that when the physical damping behaviour in
an inerter-based device is hysteretic, then the viscous damping approximation could lead to results that overestimate the
effectiveness of the device.

The methodology presented in this paper offers an alternative modelling approach that can capture the effect of the
hysteretic damping in the inerter-based device for arbitrary input signals such as earthquakes. As a result, it should be
possible to obtain more accurate estimates of the device performance during a design procedure.

5 CONCLUSIONS

This paper has introduced two novel passive inerter-based dampers, namely, the TIhD and TMhDI. Both devices were
based on the well-established idealised concepts of the TID and TMDI with the viscous damping element being replaced
by hysteretic damping element. The primary motivation was in order to create models that were able to capture the
physical behaviour of structural systems in a more realistic way.

Among all the devices considered, the TMhDI is believed to be potentially the most realistic because it has both hys-
teretic damping and a small secondary mass, which captures the effect of the mass of the inerter device itself. It has been
shown how the optimum parameters of both devices can be obtained via fixed-point theory although one limitation is that
additional fine tuning is required for the devices with hysteretic damping. In addition, it was shown that there are regions
of the frequency domain where the hysteretic damping leads to different transmissibility values compared to viscous
damping. This was observed for both the SDOF and MDOF examples considered. For example, for the SDOF structure
with harmonic excitation, both TIhD and TMhDI have the potential benefit of reducing displacement response in the
higher frequency region, and the attenuation difference is of the order of 20 dB/dec. However, in the MDOF example,
both hysteretic devices exhibit significantly higher amplitudes of displacement response for the higher modes of vibration

http://wileyonlinelibrary.com
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compared with the viscous damping model. This is something to be aware of in systems where the physical behaviour is
closer to hysteretic than viscous.

For the earthquake signals considered here, the SADE algorithm was used to optimise the devices' parameters, and it
was shown that the effect of additional small md, in this case is 5%, is not significant for the example considered. The TIhD
and the TMhDI performance were shown to have a larger response than the TID and TMDI in the earthquake example.
Moreover, the obtained optimum stiffness and damping parameters of the TIhD and TMhDI for the example considered
do not satisfy the standard equivalent viscous damping relationship that would enable a conversion from the TIhD to
TID or from TMhDI to TMDI. This implies that the TIhD and the TMhDI are better treated without using and equivalent
viscous damping assumption when performing seismic design analysis.

This study has been made possible by first developing a time domain method via time reversal technique for the analysis
of structural systems with linear hysteretic damping. The TIhD and TMhDI models subsequently developed offer an
approach that can capture the systems' performance in a more realistic way when the physical behaviour of the system is
closer to hysteretic than viscous. The method has also been validated by comparing the results with the zero-order hold
method of Inaudi and Makris and with equivalent viscous damping. Future work will include verification of the method
using experimental test results.

ACKNOWLEDGEMENT

The first and fourth authors would like to acknowledge the support from Indonesia Endowment Fund for Education
(LPDP).

ORCID

Predaricka Deastra https://orcid.org/0000-0002-1709-4686

REFERENCES
1. Okumura A. Japan Patent Koukai. H09-177875; 1997.
2. Ikago K, Saito K, Inoue N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthq Eng Struct Dyn.

2012;41(3):453-474.
3. Swift S, Smith M, Glover A, Papageorgiou C, Gartner B, Houghton N. Design and modelling of a fluid inerter. Int J Contr.

2013;86(11):2035-2051.
4. Smith M. Synthesis of mechanical networks: the inerter. IEEE Trans Autom Control. 2002;47(10):1648-1662.
5. Papageorgiou C, Smith MC. Laboratory experimental testing of inerters. In: 44th IEEE Conference on Decision and Control and, European

Control Conference, Vol. 2005; 2005:3351-3356.
6. Wang F, Hong M, Designing L. Designing and testing a hydraulic inerter. Proc IME C J Mech Eng Sci. 2011;225(1):66-72.
7. Saitoh M. On the performance of gyro-mass devices for displacement mitigation in base isolation systems. Struct Control Health Monit.

2012;19(2):246-259.
8. Ikago K, Sugimura Y, Saito K, Inoue N. Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned

viscous mass dampers. J Asian Arch Build Eng. 2012;11(2):375-382.
9. Liu X, Jiang J, Titurus B, Harrison A. Model identification methodology for fluid-based inerters. Mech Syst Signal Process. 2018;106:479-494.

10. Sugimura Y, Goto W, Tanizawa H, Saito K, Nimomiya T. Response Control Effect of Steel Building Structure Using Tuned Viscous Mass
Damper, Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal; 2012;24-28.

11. Pan C, Zhang R, Luo H, Li C, Shen H. Demand-based optimal design of oscillator with parallel-layout viscous inerter damper. Mech Syst
Signal Process. 2017;25(1):e2051.

12. Deastra P, Wagg D, Sims N. The realisation of an inerter-based system using fluid inerter. Dynamics of Civil Structures; 2019:127-134.
13. Tipuric M, Deastra P, Wagg D, Sims ND. Semi-active inerters using magnetorheological fluid: a feasibility study. Active and Passive Smart

Structures and Integrated Systems XII. International Society for Optics and Photonics; 2018.
14. Lazar I, Neild S, Wagg D. Using an inerter-based device for structural vibration suppression. Earthq Eng Struct Dyn. 2014;43(8):1129-1147.
15. Den Hartog J. Mechanical Vibrations. York, PA USA: McGraw Hill; 1940.
16. Hu Y, Chen M, Shu Z, Huang L. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. J Sound

Vib. 2015;346:17-36.
17. Lazar I, Neild S, Wagg D. Vibration suppression of cables using tuned inerter dampers. Eng Struct. 2016;122:62-71.
18. De Domenico D, Impollonia N, Ricciardi G. Soil-dependent optimum design of a new passive vibration control system combining seismic

base isolation with tuned inerter damper. Soil Dyn Earthq Eng. 2018;105:37-53.
19. Deastra P, Wagg D, Sims N. The effect of a tuned-inerter-damper on the seismic response of base-isolated structures. In: Proceedings of

the 16th European Conference On Earthquake Engineering Thessaloniki; 2018; Greece:18-21.

https://orcid.org/0000-0002-1709-4686
https://orcid.org/0000-0002-1709-4686


18 DEASTRA ET AL.

20. Marian L, Giaralis A. Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochasti-
cally support-excited structural systems. Probab Eng Mech. 2014;38:156-164.

21. Brzeski P, Kapitaniak T, Perlikowski P. Novel type of tuned mass damper with inerter which enables changes of inertance. J Sound Vib.
2015;349:56-66.

22. Pietrosanti D, De Angelis M, Basili M. Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI).
Earthq Eng Struct Dyn. 2017;46(8):1367-1388.

23. Hashimoto T, Fujita K, Tsuji M, Takewaki I. Innovative base-isolated building with large mass-ratio TMD at basement for greater
earthquake resilience. Future Cities Env. 2015;1(1):9.

24. De Domenico D, Ricciardi G. An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI). Earthq Eng
Struct Dyn. 2018;47(5):1169-1192.

25. Brzeski P, Lazarek M, Perlikowski P. Experimental study of the novel tuned mass damper with inerter which enables changes of inertance.
J Sound Vib. 2017;404:47-57.

26. Hessabi R, Mercan O. Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration
control of building structures. Eng Struct. 2016;126:174-186.

27. Hessabi RM. Application of Real-time Hybrid Simulation Method in Experimental Identification of Gyromass Dampers. Toronto, Canada:
Department of Civil Engineering, University of Toronto; 2017.

28. Gonzalez-Buelga A, Lazar I, Jiang J, Neild S, Inman D. Assessing the effect of nonlinearities on the performance of a tuned inerter damper.
Struct Control Health Monit. 2017;24(3):e1879.

29. Wang F, Su W. Impact of inerter nonlinearities on vehicle suspension control. Veh Syst Dyn. 2008;46(7):575-595.
30. Shen Y, Chen L, Liu Y, Zhang X. Modeling and optimization of vehicle suspension employing a nonlinear fluid inerter Shock and

Vibration; 2016.
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APPENDIX A: COMPUTATIONAL ALGORITHM

As previously discussed, the main feature here is to obtain the solutions of the real and imaginary parts of both the
modal responses in forward and reversed times from Equations (31) and (32). Herein, therefore, the process of Hilbert
transformation is extremely important to obtain the accurate solutions.

Furthermore, as stated earlier, these state space equations need to satisfy the boundary conditions at t = −∞ and t = ∞
in which both the displacement responses and forces are zeros. Therefore, for a finite time duration, nt, spans from an
initial time, t0, to an ending time, te, a numerical approximation is required to satisfy the boundary conditions. In the
present work, it is defined that the force boundary conditions are

Fa(−∞) ≈ Fa(t0 − nt) = 0 (A1)

FIGURE A1 Computational algorithm
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and
Fa(∞) ≈ Fa(te + nt) = 0, (A2)

where nt = te − t0. This definition also similarly applies to the displacement boundary conditions. Hence, prior to the
Hilbert transformation of the original force vector, F, “dummy” initial and ending conditions are added to the original
force function. As an example, if t0 = 0s and te = 100 s, then the extended force function, Fext, should span from t = −100 s
to t = 200 s. This can be expressed as

Fext[(t0 − nt) → (te + nt)] = Finitial[(t0 − nt) → t0] + F[t0 → te] + Fending[te → (te + nt)], (A3)

where the time parameters inside the square brackets define the time span of each force vector.
The “dummy” Finitial and Fending will depend to the shape of the original force function, F. In the present case, if it is an

impulse or random excitation force function, then Finitial and Fending are assumed to be zeros. However, if the original is a
periodic function, that is, harmonic force function, Finitial and Fending need to be constructed as decaying functions such
that their values at the time boundaries are zeros.

The next step is then to obtain the Hilbert transformation of the extended force function, Fext. Thus, the earlier analytical
force function as expressed in Equation (24) becomes

Fa(t) = Fext(t) + 𝑗 H[Fext(t)] (A4)

and then flipped to obtain the reversed-time force function, that is, if Fa(t) spans from −100 to 200 s, then F̃a(z) spans
from 200 to −100s.

After the force function is constructed, the following steps are to construct the state space forms as given in
Equations (31) and (32). The detailed algorithm of the present computational approach is depicted in Figure A1.

In the present work, a built-in Runge–Kutta module in MATLAB, so-called ODE45 module, is used to obtain the solu-
tions of the sets of ordinary differential equations given in Equations (31) and (32). It is important to note that once the
solutions of Equation (32) is obtained, it is still in the reversed time, z. Hence, the solutions needs to be reversed back to
the original time, t, as depicted in Figure A1.

Once the modal responses vectors, qka (t) and qla (t), are computed, then the displacement-velocity vector, xa(t), can be
calculated via Equation (23). The solutions are then isolated for the finite duration time, nt. The real parts of the solutions
are the actual responses, x(t), .x(t), of the system due to the force F(t).
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