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A B S T R A C T

Economic uncertainty has been increasing, as evidenced by recent fluctuations in global markets and
unpredictable economic indicators such as volatile demand, stock market fluctuations, and unpredictable
interest rates. Economic profitability and working capital efficiency are pivotal indicators of a business’s
financial health, both of which are adversely impacted by economic uncertainty. However, these metrics may
diverge as distinct objectives drive them. There exists a gap in the literature regarding effective strategies
for managing the trade-off between these metrics under economic uncertainty. This study addresses this
gap by introducing a simulation-based optimization model that integrates system dynamics simulation and
genetic algorithms. The proposed model aims to balance economic profitability and working capital efficiency
within inventory management under partial trade credit. A recent real case study demonstrates the model’s
applicability and reveals its superiority over conventional system dynamics simulation modeling. With its
capacity to inform strategic and tactical decision-making, this model emerges as a valuable tool for supply
chain and financial managers seeking to ensure financial stability amidst economic volatility.
. Introduction

In recent years, businesses have intensified their efforts to enhance
heir capabilities in response to increased competition. A strategic
venue receiving notable attention is the effective management of
upply chain (SC) networks [1,2]. Supply chain management (SCM)
nvolves the seamless integration of suppliers, manufacturers, distrib-
tors, and customers, ensuring the smooth flow of both physical goods
nd financial resources throughout the network [3,4]. This integration
s pivotal as it enables organizations to optimize not only operational
erformance but also financial health [5].

However, the seamless integration of SC members is increasingly
hallenged by rising economic uncertainty. As illustrated in Fig. 1,
he level of economic uncertainty, indicated by The World Uncertainty
ndex, has been steadily increasing, with its most significant surge
ccurring at the onset of the Coronavirus pandemic. This surge in
conomic uncertainty brings about volatile demand patterns, posing
hallenges for SC members in accurately forecasting demand. Conse-
uently, this unpredictability often results in either excess inventory
r stockouts, both of which undermine working capital efficiency and
conomic profitability. Furthermore, uncertain economic conditions
end to tighten credit markets, making it harder for businesses to secure
inancing. This, in turn, limits investment opportunities, constrains
rowth, increases borrowing costs, and prolongs payment cycles from
ustomers. These combined factors underscore the critical importance

∗ Corresponding author.
E-mail address: e.badakhshan@shu.ac.uk (E. Badakhshan).

of mitigating the impact of economic uncertainty on both working capi-
tal efficiency and economic profitability, which serve as vital indicators
of a business’s financial health.

Although working capital efficiency and economic profitability are
both adversely impacted by economic uncertainty, they may diverge
as distinct objectives drive them. While economic profitability strives
to maximize returns, working capital efficiency focuses on minimizing
tied-up capital [6,7]. Therefore, striking a balance between these two
objectives is essential to optimize the financial health of a business in
the presence of economic uncertainty. This balance requires navigating
challenges such as volatility in demand and interest rates. To address
these challenges, SC members should proactively plan for possible
scenarios and identify the optimal inventory and financial decisions
for each scenario to navigate economic uncertainty while balancing
economic profitability and working capital efficiency.

Despite the recognized importance of economic profitability and
working capital efficiency [9–11], there exists a gap in the litera-
ture regarding effective strategies for managing the trade-off between
these metrics under economic uncertainty. This study addresses this
gap by developing a simulation-based optimization (SBO) model that
integrates system dynamics simulation with a genetic algorithm. The
system dynamics simulation assesses how changes in economic pa-
rameters affect the financial performance of the SC, while the genetic
algorithm identifies the optimal values for inventory and financial
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Fig. 1. World uncertainty index from 2000 to 2023. Data obtained from [8].

ecisions, offering a novel approach to address the complexities of
ecision-making within SCs in uncertain economic environments.

The subsequent sections of this paper are structured as follows:
ection 2 presents a comprehensive review of the literature, followed
y a discussion on model assumptions and the stock management
roblem in Section 3. The proposed SBO model is detailed in Section 4,
ith a case study illustrating its applicability in Section 5. Finally,

oncluding remarks and avenues for future research are outlined in
ection 6.

. Literature review

This study encompasses three major research domains: inventory
anagement under partial trade credit, SC modeling under economic
ncertainty, and working capital management in SCs. Therefore, the
iterature review is organized accordingly. These research strands are
ntegrated to address the trade-off between economic profitability and
orking capital efficiency in the presence of economic uncertainty and
artial trade credit among SC members.

.1. Inventory management under partial trade credit

Partial trade credit emerges as a prevalent financing solution within
Cs, wherein a supplier extends credit to a buyer, allowing the latter
o defer part of the payment for received goods or services to a later
cheduled time [12]. In the context of partial trade credit, managing ac-
ounts receivable and accounts payable becomes integral to inventory
anagement.

Table 1 provides a summary of inventory management under partial
rade credit literature. The gaps in the literature are now considered.
irstly, the share of cash payment and trade credit in the literature
re considered as given rather than being optimized. Kumar Ghosh
t al. [13], Sharma et al. [14], Mahata [15], and Teng [16] developed
conomic order quantity (EOQ) models to determine the optimal inven-
ory policies for retailers that offered partial trade credit to customers
iven the share of cash payment and trade credit. Sharma and Man-
al [17], Tiwari et al. [18], and Li et al. [19] developed EOQ models to
dentify the optimal inventory decisions for retailers who were offered
artial trade credit by their suppliers given the share of cash payment
nd trade credit.

Secondly, many models focus on a single objective, such as cost min-
mization or profit maximization, as the dominant objective function.
or instance, Huang and Hsu [20] and Wu and Chan [21] developed
OQ models aiming to minimize total costs for retailers offering partial
rade credit to customers. Similarly, Tsao et al. [22], Tiwari et al. [23],
nd Kreng and Tan [24] designed economic production quantity (EPQ)
odels to determine optimal replenishment policies for SC members

eceiving partial trade credit from their suppliers. Badakhshan and
all [25] integrated SBO and mixed integer linear programming to
2

maximize economic value added for a manufacturer receiving par-
tial trade credit from suppliers. Despite these efforts, much of the
current literature lacks studies that effectively manage the trade-off
between economic profitability and working capital efficiency through
the development of multi-objective models.

Thirdly, certain studies on inventory management under partial
trade credit have addressed uncertainty. For instance, Mahata et al. [26]
and Tiwari et al. [18] focused on demand uncertainty, while Badakhshan
et al. [27] considered both demand and lead time uncertainties. How-
ever, there is a notable gap in the literature regarding uncertainties in
macroeconomic parameters, such as long-term and short-term interest
rates.

Finally, much of the literature has relied on analytical modeling
approaches. However, there is an underrepresentation of SBO model-
ing, which is known to be more efficient in capturing nonlinearities,
delays, and feedback loops in the physical and financial flows of
SCs [28–30]. SBO provides a more accurate representation of real-
world conditions, making it particularly effective for decision-making
in inventory management under partial trade credit situations [25].

Existing inventory management models incorporating partial trade
credit suffer from four limitations: failure to optimize trade credit
and cash payment allocation, overlooking the economic profitability-
working capital efficiency trade-off, disregarding macroeconomic un-
certainty, and underutilizing SBO modeling. To address these gaps in
the literature, we develop an SBO model that aims to manage the
trade-off between economic profitability and working capital efficiency
while incorporating macroeconomic uncertainty. Moreover, the devel-
oped SBO model identifies the optimal shares of trade credit and cash
payment in the SC.

2.2. Supply chain modeling under economic uncertainty

Literature related to SC models under economic uncertainty is ex-
tensive as the economic uncertainty encompasses uncertainty in mi-
croeconomic parameters such as demand and also macroeconomic
parameters such as short-term interest rates.

Many studies have focused primarily on addressing microeconomic
uncertainties [35–43]. For instance, Chen et al. [41] and Jabbarzadeh
et al. [40] considered demand uncertainty in SC planning problems.
Mohebalizadehgashti et al. [42] considered the unit cost and price un-
certainties in a SC network design problem. Badakhshan and Ball [39]
and Arıkan [44] considered demand and lead time uncertainties in an
inventory management problem. Rekabi et al. [36] and Ouhimmou
et al. [43] considered demand uncertainty in the SC network design
problem. Goodarzi et al. [37] considered demand and cost uncertain-
ties for green supplier evaluation and optimal order allocation. Gupta
et al. [35] considered demand and price uncertainties when developing
an analytic hierarchy process framework for criteria classification in
food SCs.

Few studies have addressed uncertainties in both microeconomic
and macroeconomic parameters simultaneously [45,46]. Longinidis
and Georgiadis [45] and Badakhshan and Ball [25] explored uncertain-
ties in both macroeconomic and microeconomic parameters within the
SC network design problem. Marchi et al. [46] focused on demand un-
certainty and investment uncertainty, respectively, within the context
of inventory planning.

However, notably absent from existing research is a study that
addresses the trade-off between economic profitability and working
capital efficiency within inventory management under partial trade
credit problem, while considering both microeconomic and macroeco-
nomic uncertainties. This study aims to fill this gap in the literature.
The macroeconomic factors under scrutiny include the expected re-
turn of the market, risk-free rate of interest, short-term interest rate,
and long-term interest rate, alongside the microeconomic demand pa-
rameter. Through this comprehensive approach, the study seeks to
discern the impact of macroeconomic and microeconomic uncertain-
ties on economic profitability and working capital efficiency, thereby
aiding in managing the trade-off between these two crucial financial
performance indicators.
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Table 1
Inventory management under partial trade credit literature.

Author/s Modeling
approach

Model objectives Uncertain parameters Decision variables

Sharma and
Mandal [17]

Analytical Min Total cost – Replenishment cycle
time (T)
Inventory depletion
time

Tsao et al. [22] Analytical Min Total cost – T

Kumar Ghosh
et al. [13]

Analytical Max Total profit Time of advance
payment
Share of advance
payment

T
Order quantity (Q)

Tiwari et al.
[23]

Analytical Max Total profit Production cost
Setup cost
Holding cost

T
Selling price

Sharma et al.
[14]

Analytical Max Total profit Demand
Expiration date

T, Q

Khan et al. [31] Analytical Max Net profit – T
Percentage of cycle
length with positive
stock level

Tiwari et al.
[18]

Analytical Min Total cost Demand Q
Maximum backorder

Mahata et al.
[26]

Analytical Max Total profit Demand Credit period
T

Li et al. [19] Analytical Max Total profit Demand T
Selling price
Time period with no
shortages

Wu and Chan
[21]

Analytical Min Total cost Expiration date T, Q

Feng et al. [32] Analytical Min Total cost – T, Q

Taleizadeh et al.
[33]

Analytical Max Total profit – T, Q
Maximum shortage
level
Demand coverage from
stock

Mahata [15] Analytical Min Total cost – T, Q

Kreng and Tan
[24]

Analytical Max Total profit – T, Q

Teng [16] Analytical Min Total cost Default risk T, Q

Huang [34] Analytical Min Total cost – T, Q

Huang and Hsu
[20]

Analytical Min Total cost – T, Q

Badakhshan
et al. [27]

Simulation-based
optimization

Min cash flow
bullwhip
Min Bullwhip
effect
Min Total cost

Demand
Lead time

Inventory parameters
Selling price
Unit cost

This study Simulation-based
optimization

Max Economic
Profitability
Max Working
capital efficiency

Demand
Macroeconomic
parameters

Share of cash payment
Share of trade credit
Selling price
Unit cost
Inventory parameters
2.3. Working capital management in supply chains

Working capital management aims to enhance operational effi-
ciency by overseeing inventory, accounts receivable, and accounts
payable processes [47]. A key performance indicator commonly used
to assess the effectiveness of working capital management is the cash
conversion cycle (CCC), which measures the time it takes for a company
to convert invested capital into customer payments [48]. Table 2 offers
3

an overview of the literature on working capital management in SCs.
There are notable limitations in the existing literature.

Primarily, many studies adopt an empirical approach to CCC mea-
surement across diverse industries [49–55]. For instance, Kroes et al.
[50] examined gender diversity and compensation among SCM ex-
ecutives in publicly traded US firms, focusing on how CCC impacts
executive pay differentials. Pant et al. [49] suggest that over-reliance
on relational capital through the interconnected SC and social networks
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Table 2
Literature on working capital management in SCs.

Author/s Research
approach

Research objective(s) Working capital metric

Kroes et al. [50] Empirical Investigating the impact of
CCC on executive pay
differentials

Cash conversion cycle
(CCC)

Pant et al. [49] Empirical Studying the impact of
relational capital on CCC

CCC

Badakhshan and
Ball [56]

Simulation
Machine learning

Minimizing CCC for
upstream SC members

CCC

Tangsucheeva
and Prabhu [57]

Analytical
modeling

Measuring the cash flow
bullwhip

CCC

Lind et al. [53] Empirical Investigating the impact of
financial crisis 2007–2008
on working capital
efficiency in an automobile
SC

CCC

Banomyong [52] Empirical Measuring working capital
efficiency in a global
shrimp SC

CCC

Theodore Farris
and Hutchison
[58]

Descriptive Identifying the effective
strategies for improving
working capital efficiency
in SCs

CCC

Hofmann and
Kotzab [48]

Conceptual
model building

Introducing a metric for
measuring the efficiency of
the SC working capital
management

Collaborative CCC

Ruyken et al.
[54]

Empirical Choosing the right cash to
cash cycle for SC members

CCC

Talonpoika et al.
[55]

Empirical Measuring the working
capital efficiency for
industries that receive
advance payment

Modified CCC including
upfront collection

Badakhshan
et al. [59]

Simulation-based
optimization

Managing the trade-offs
between conflicting CCC
minimizations for SC
members

CCC

This study Simulation-based
optimization

Managing the trade-off
between economic
profitability and working
capital efficiency

Modified CCC including
upfront collection and
payment
can increase CCC for firms. Lind et al. [53] empirically assessed CCCs in
an automotive SC during 2006–2008, while Banomyong [52] analyzed
CCCs using balance sheets from a global shrimp SC. However, there is
a shortage of research leveraging SBO, a powerful tool for capturing
working capital dynamics and determining optimal policies.

Furthermore, existing studies lack a metric for quantifying CCC
among SC members when partial trade credit is involved. Although
Talonpoika et al. [55] proposed a novel metric to measure CCC for
SC members receiving partial trade credit from customers, there is no
research providing a metric for those who receive partial trade credit
from their customers and offer partial trade credit to their suppliers.

Previous studies on working capital management in SCs face two
main limitations: underutilization of SBO modeling and the absence
of a metric for quantifying CCC among SC members engaged in both
receiving and offering partial trade credit. To address these gaps,
we introduce an SBO model that formulates working capital dynam-
ics through system dynamics simulation and employs a genetic algo-
rithm to optimize policies. Additionally, we propose a new metric for
measuring CCC among such SC members.

2.4. Literature review summary

After reviewing three research strands related to this study–inventory
management under trade credit, SC modeling under economic uncer-
4

tainty, and working capital management in SCs–we identified five gaps:
(1) failure to optimize trade credit and cash payment allocation, (2)
overlooking the trade-off between economic profitability and working
capital efficiency, (3) disregarding macroeconomic uncertainty, (4)
underutilizing SBO modeling, and (5) absence of a metric for quan-
tifying the CCC for SC members who receive and offer partial trade
credit. To address these gaps, our study develops an SBO model. This
model aims to manage the trade-off between economic profitability
and working capital efficiency while incorporating macroeconomic
uncertainty. Additionally, it introduces a new metric to measure the
CCC for SC members who receive and offer partial trade credit and
identifies the optimal shares of trade credit and cash payment in the
SC.

3. Problem definition and assumptions

3.1. Stock management problem

The stock management problem refers to the issue of controlling
a system state or stock to meet certain system objectives [60]. This
stock management structure can be found in various application do-
mains, such as inventory management, capital investment, and human
resources. In this study, the stock management problem is utilized

to address an inventory management issue within a two-echelon SC,
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Fig. 2. Stock and flow model of materials inventory management.
omprising a manufacturer and a distribution center (DC). A supplier
ith unlimited capacity provides raw materials to the manufacturer.

Fig. 2 displays the stock and flow model of materials inventory
anagement. The objective of the model is to specify a sufficient
aterials order rate to replenish used materials from the inventory and
aintain adequate inventory levels to ensure a high service level for the
roduction line.

The stock and flow model incorporates dynamics in the physical
low from three perspectives: Firstly, it addresses delays in physical
low, including distribution lead time between raw material suppliers
nd manufacturers. Secondly, it includes the materials inventory con-
rol feedback loop, which adjusts the materials order quantity based
n the materials inventory level. A higher materials inventory results
n a lower materials order quantity. Thirdly, it formulates non-linear
elationships between controllable inventory decision parameters, such
s materials inventory adjustment time, and other model variables
y incorporating these parameters into the materials order quantity
odule.

Fig. 3 illustrates the stock and flow model of product inventory
anagement. The model has two objectives: (1) specifying an ade-

uate production start rate to ensure timely replenishment of products
hipped from the manufacturer to the DC and to maintain sufficient
anufacturer inventory to fulfill DC orders, and (2) specifying a suffi-

ient order rate for the DC to replace shipped products from DC to the
ustomer and to maintain adequate DC inventory for fulfilling customer
rders.

The model incorporates production lead time at the manufacturer
nd distribution lead time between the manufacturer and DC. It also
ncludes inventory control and DC inventory control feedback loops,
hich adjust the manufacturer and DC inventories, respectively. A
igher inventory results in lower production, and a higher DC inventory
eads to lower DC order quantity.

The model formulates non-linear relationships between controllable
nventory decision parameters, such as inventory adjustment time,
nd other model variables by incorporating these parameters into the

roduction and DC order quantity modules.

5

3.2. Economic uncertainty

The economic cycle concept is applied to model economic uncer-
tainty, which encompasses stagnation, boom, and recession as cate-
gories. In our model, five uncertain parameters illustrate the uncer-
tainty in the economic environment: (1) customer demand, (2) ex-
pected return of the market, (3) risk-free rate of interest, (4) short-term
interest rate, and (5) long-term interest rate [45,61].

During a boom period, economic prosperity leads to increased pur-
chasing power of customers, resulting in excessive demand for products
and services. The expected return of the market rises as optimistic
investors increase their investment in companies present in the stock
market. The risk-free rate of interest, typically the interest rate of a gov-
ernmental bond, falls as the risk of default diminishes. Consequently,
financial institutions charge lower short-term and long-term interest
rates. Conversely, during a recession period, these parameters move in
the opposite direction. In a stagnation period, it is assumed that the past
shapes the future due to minor deviations in the value of parameters
compared to the preceding period [45].

The scenario analysis approach is utilized to delineate economic
uncertainty, as illustrated in Fig. 4. Initially, during the current period,
there is no economic uncertainty, leading to a single scenario branch
for the first year. However, with the commencement of the second
period, three potential conditions–boom, stagnation, and recession–
emerge, generating three distinct scenarios. Each scenario is defined
by a specific set of constant parameter values.

3.3. Financial flow modeling

In this section, we expand upon the inventory management model
introduced in Section 3.1 by integrating the financial flow alongside the
physical flow. Fig. 5 displays the stock and flow model of the modified
cash conversion cycle. The model incorporates financial flow dynamics
including payment lead time and controllable financial decision param-
eters such as collection policy to measure the modified cash conversion

cycle.
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Fig. 3. Stock and flow model of product inventory management.
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Fig. 6 illustrates the stock and flow model of economic value added.
t integrates controllable financial decision parameters such as the
ew stock parameter into the weighted average cost of capital and
et operating profit after tax modules to measure the economic value
dded.

Since the DC is owned by the manufacturer, financial transactions
n this SC involve payments from the customer to the manufacturer
nd payments from the manufacturer to the supplier. The collection
olicy (m) (1) specifies the portion of the order value that must be
ollected upfront from the customer, while the payment policy (n) (1)
epresents the share of the raw materials order cost that needs to be
aid in advance by the manufacturer to the supplier. The remaining
aw materials order cost, payable by the manufacturer to the supplier,
s recorded as payable accounts (4). Inventory value (5) determines the
orth of inventory held by both the manufacturer and the DC.

Given that the manufacturer makes advance payments to the sup-
lier and receives advance payments from the customer, the cash
onversion cycle (CCC) may not fully capture working capital effi-
iency. To address this limitation, we introduce two additional metrics:
ustomer Advance Financing Interval (CAFI) (6) and Supplier Advance
inancing Interval (SAFI) (7). CAFI represents the average number of
ays a company can finance its operations using advance payments
rom customers before delivering the product or service, while SAFI
epresents the average number of days a company finances its suppliers’
perations by making advance payments before goods or services are
eceived.

These metrics are integrated with the original components of the
CC, including days inventory outstanding (DIO), days sales outstand-

ng (DSO), and days payable outstanding (DPO), to formulate a mod-
fied cash conversion cycle (mCCC) (8). This modification provides a
ore comprehensive measure of working capital efficiency.

≤ 𝑚, 𝑛 ≤ 1 (1)
 p

6

𝑎𝑠ℎ = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝐶𝑎𝑠ℎ 𝐼𝑛𝑓𝑙𝑜𝑤 − 𝐶𝑎𝑠ℎ 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) (2)
𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝐼𝑛𝑓𝑙𝑜𝑤

− 𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) (3)
𝑎𝑦𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝑃𝑎𝑦𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝐼𝑛𝑓𝑙𝑜𝑤

− 𝑃𝑎𝑦𝑎𝑏𝑙𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) (4)
𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑉 𝑎𝑙𝑢𝑒 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝐼𝑛𝑓𝑙𝑜𝑤

− 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑉 𝑎𝑙𝑢𝑒 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) (5)

𝐴𝐹𝐼 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑑𝑣𝑎𝑛𝑐𝑒 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

𝑅𝑒𝑣𝑒𝑛𝑢𝑒
365

(6)

𝑆𝐴𝐹𝐼 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑑𝑣𝑎𝑛𝑐𝑒 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠 𝑡𝑜 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟

𝐶𝑂𝐺𝑆
365

(7)

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐶𝑎𝑠ℎ 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐶𝑦𝑐𝑙𝑒

= 𝐷𝐼𝑂 +𝐷𝑆𝑂 + 𝑆𝐴𝐹𝐼 −𝐷𝑃𝑂 − 𝐶𝐴𝐹𝐼 (8)

The income statement is a financial document that outlines a com-
any’s revenues and expenses over a specified period, typically a fiscal
ear. Eqs. (9) to (14) detail the components of the income statement.
et sales (9) are determined by multiplying the shipment rates to
ustomers by the sales price. Earnings before interest and taxes (EBIT)
10) are computed by subtracting the cost of goods sold (COGS) (11),
epreciation, and administrative expenses from net sales.

To calculate depreciation (12), the sum-of-years’-digits method, a
orm of accelerated depreciation, is utilized [62]. It is assumed that
ixed assets are depreciated over two years (104 weeks), which aligns
ith the simulation time frame. Administrative costs (13) are deter-
ined by multiplying the administrative constant, set at 0.01, by net

ales. These costs include expenses such as rent and utilities that pertain
o the entire business rather than specific business units.

Net operating profit after taxes (NOPAT) (14) is computed by multi-
lying EBIT by the term (1 - Tax Rate). NOPAT is then allocated among
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𝐸

𝐶

𝐷

𝐴

𝑁

𝐷

Fig. 4. Scenario tree for economic uncertainty.
0
dividends, working capital, and retained earnings. Dividends (15) are
calculated as the product of NOPAT and the profit distribution policy
(16), which is determined by senior management. The working capital
policy (17) specifies the portion of NOPAT allocated to working capital.
Finally, any remaining NOPAT is added to retained earnings (18).

𝑁𝑒𝑡 𝑆𝑎𝑙𝑒𝑠 = 𝑆𝑎𝑙𝑒𝑠 𝑃 𝑟𝑖𝑐𝑒 ×𝐷𝐶 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 (9)
𝐵𝐼𝑇 = 𝑁𝑒𝑡 𝑆𝑎𝑙𝑒𝑠 − 𝐶𝑂𝐺𝑆 −𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 − 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑠𝑡𝑠

(10)

𝑂𝐺𝑆 = 𝑈𝑛𝑖𝑡 𝐶𝑜𝑠𝑡 × 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 (11)

𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 = 104 − 𝑇 𝑖𝑚𝑒 + 1
(1 + 2 +⋯ + 104)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

5460

× (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉 𝑎𝑙𝑢𝑒 𝑜𝑓 𝐹 𝑖𝑥𝑒𝑑 𝐴𝑠𝑠𝑒𝑡𝑠 − 𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉 𝑎𝑙𝑢𝑒) (12)

𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑠𝑡𝑠 = 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×𝑁𝑒𝑡 𝑆𝑎𝑙𝑒𝑠 (13)

𝑂𝑃𝐴𝑇 = 𝐸𝐵𝐼𝑇 ∗ (1 − 𝑇 𝑎𝑥 𝑅𝑎𝑡𝑒) (14)

𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 = 𝑁𝑂𝑃𝐴𝑇 × 𝑃𝑟𝑜𝑓𝑖𝑡 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃 𝑜𝑙𝑖𝑐𝑦 (15)
7

≤ 𝑃𝑟𝑜𝑓𝑖𝑡 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃 𝑜𝑙𝑖𝑐𝑦 ≤ 1 (16)

0 ≤ 𝑊 𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑃 𝑜𝑙𝑖𝑐𝑦 ≤ 1 (17)

𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝐼𝑛𝑓𝑙𝑜𝑤) (18)

The level of equity (19) increases through stock value inflow (20),
determined by the new stock rate and unit stock value. Short-term lia-
bilities (21) and long-term liabilities (22) decrease due to the payment
of short-term interest expenses and long-term interest expenses, re-
spectively. Invested capital (23) accumulates financing from short-term
liabilities, long-term liabilities, and equity.

The weighted average cost of capital (WACC) (24) reflects the
required return on invested capital. It is computed by multiplying the
cost of debt (25) and the cost of equity (26) by their proportional
weights and summing the results. Unlike the cost of debt, determining
the cost of equity can be challenging, as there is no explicit value for
the return required by equity investors [45]. Therefore, the capital asset
pricing model (CAPM) is utilized as a substitute.

The CAPM calculates the expected return for assets, particularly
stocks, by considering the time value of money and risk. The risk-
free rate of interest, typically the yield on government bonds like
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Fig. 5. Stock and flow model of modified cash conversion cycle (mCCC).
Fig. 6. Stock and flow model of economic value added (EVA).
E
o

.S. Treasuries, accounts for the time value of money, while the risk
remium represents compensation for assuming additional risk. The
isk measure (𝛽) indicates the level of systematic risk in an asset.
 𝐸

8

conomic value added (EVA) (27) is determined by subtracting the cost
f invested capital from NOPAT.

𝑞𝑢𝑖𝑡𝑦 = 𝐼𝑁𝑇𝐸𝐺𝑅𝐴𝐿(𝑆𝑡𝑜𝑐𝑘 𝑉 𝑎𝑙𝑢𝑒 𝐼𝑛𝑓𝑙𝑜𝑤) (19)
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𝑆𝑡𝑜𝑐𝑘 𝑉 𝑎𝑙𝑢𝑒 𝐼𝑛𝑓𝑙𝑜𝑤 = 𝑁𝑒𝑤 𝑆𝑡𝑜𝑐𝑘 𝑅𝑎𝑡𝑒 × 𝑈𝑛𝑖𝑡 𝑆𝑡𝑜𝑐𝑘 𝑉 𝑎𝑙𝑢𝑒 (20)

ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(−𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠) (21)

𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(−𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠) (22)
𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

+ 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐸𝑞𝑢𝑖𝑡𝑦) (23)

𝐴𝐶𝐶 =
𝐸𝑞𝑢𝑖𝑡𝑦

𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙
× 𝐶𝑜𝑠𝑡𝑜𝑓𝐸𝑞𝑢𝑖𝑡𝑦+

𝑆ℎ𝑜𝑟𝑡 − 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

× 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑏𝑡 × (1 − 𝑇 𝑎𝑥 𝑅𝑎𝑡𝑒) (24)

𝑜𝑠𝑡 𝑜𝑓 𝐷𝑒𝑏𝑡 = 𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

×

ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 +
𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
×

𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 (25)
𝑜𝑠𝑡 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦 = 𝑅𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

+ (𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑎𝑟𝑘𝑒𝑡−

𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡) × 𝛽 (26)

𝑉 𝐴 = 𝑁𝑂𝑃𝐴𝑇 −𝑊𝐴𝐶𝐶 × 𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 (27)

Although system dynamics simulation models are generally consid-
red more robust than other types of simulation models, they still re-
uire validation through various tests. Three validation tests, including
he model structure test, boundary adequacy test, and extreme condi-
ion test, were employed to validate the developed system dynamics
imulation model.

The model structure test evaluates whether the structure of the
odel accurately reflects the structure of the system being mod-

led [63]. In our model, each element corresponds to a real-world
ounterpart in the physical and financial flows of the studied SC.

The boundary adequacy test assesses whether the model’s bound-
ries align with the intended purpose of the model [63]. Given that
he objective of our model is to manage the trade-off between eco-
omic profitability and working capital efficiency for the studied SC,
ll factors affecting economic value added (EVA) and modified cash
onversion cycle (mCCC) have been incorporated into the model.

The extreme condition test, one of the validation tests for system
ynamics models [60], examines whether the model behaves appro-
riately given extreme input values. For instance, it verifies if the
odel responds correctly when faced with significant deviations in

nput parameters. In our developed model, mCCC and EVA exhibit
ignificant growth when the sales price per unit of the product, a key
nput, experiences a substantial increase.

. Inventory management under partial trade credit model opti-
ization

.1. Multi-objective modeling of the inventory management under partial
rade credit model

Economic profitability and working capital efficiency are vital in-
icators of a business’s financial health. Economic profitability aims
o maximize the overall profitability of the SC while working cap-
tal efficiency focuses on minimizing tied-up capital within the SC.
n this study, the financial performance of the developed inventory
anagement under the partial trade credit model is optimized by
inimizing the working capital efficiency metric (mCCC) and max-

mizing the economic profitability metric (EVA). These metrics may
ove in different directions because actions that improve EVA, such as

ncreasing inventory levels to meet higher demand, may increase mCCC
y tying up more capital in inventory. Conversely, actions that decrease
CCC, such as tightening credit terms to reduce accounts receivable
ays, may negatively impact EVA by diminishing sales volume or
9

ustomer satisfaction. Therefore, while both metrics are crucial for
ssessing financial performance, they represent different aspects of the
usiness and require trade-offs to optimize overall financial health. The
bjective functions are denoted as follows:

𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

{

𝑀𝑎𝑥 𝐸𝑉 𝐴 = 𝑀𝑎𝑥 𝜇𝐸𝑉 𝐴

𝑀𝑖𝑛 𝑚𝐶𝐶𝐶 = 𝑀𝑖𝑛 𝜇𝑚𝑐𝑐𝑐

here 𝜇𝐸𝑉 𝐴 =
∑𝑇

𝑡=0 𝐸𝑉 𝐴
𝑇 , 𝜇𝑚𝐶𝐶𝐶 =

∑𝑇
𝑡=0 𝑚𝐶𝐶𝐶

𝑇

𝐼𝑛𝑝𝑢𝑡 (𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = 𝑊 𝐼𝑃𝐴𝑇 ,𝑀𝐶𝑇 , 𝐼𝐴𝑇 ,𝑀𝑂𝑃𝑇 , 𝑆𝑆𝐶,

𝑇𝐴𝑂𝑅,𝑚,𝑀𝐼𝐴𝑇 ,𝑀𝑆𝑆𝐶,𝑀𝑀𝐼𝐶,𝑁𝑆𝑃 , 𝑛, 𝑃𝐷𝑃 , 𝑆𝑃 ,𝑈𝐶,

𝑊 𝐼𝑃𝐴𝑇 ,𝑊 𝐶𝑃

And 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝜇𝐸𝑉 𝐴, 𝜇𝑚𝐶𝐶𝐶
Subject to:

0.25 ≤ 𝑊 𝐼𝑃𝐴𝑇 ≤ 10, 5 ≤ 𝑀𝐶𝑇 ≤ 15, 5 ≤ 𝐼𝐴𝑇 ≤ 15, 0.25 ≤ 𝑀𝑂𝑃𝑇

≤ 10, 0.25 ≤ 𝑆𝑆𝐶 ≤ 10, 5 ≤ 𝑇𝐴𝑂𝑅 ≤ 15, 0 ≤ 𝑚 ≤ 1, 5 ≤ 𝑀𝐼𝐴𝑇

≤ 15, 0.25 ≤ 𝑀𝑆𝑆𝐶 ≤ 10, 0.25 ≤ 𝑀𝑀𝐼𝐶 ≤ 10, 0 ≤ 𝑁𝑆𝑃 ≤ 1, 0 ≤ 𝑛

≤ 1, 0 ≤ 𝑃𝐷𝑃 ≤ 0.50, 7 ≤ 𝑆𝑃 ≤ 12, 3 ≤ 𝑈𝐶 ≤ 6, 0 ≤ 𝑊𝐶𝑃 ≤ 0.50, 0

≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1, 0 ≤ 𝐷𝐷𝐼 ≤ 30000, 0 ≤ 𝐷𝐷𝑆𝐿 ≤ 35000 (28)

𝛼 = 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡: denote the ag-
gressiveness of the distributor in bridging the gap between the desired
and current inventory.

𝛽 = 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑙𝑖𝑛𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡: denote the
level of consideration of the distributor to the inventory on-orders at
the time of order placement.

𝑚 = 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the portion of sales that must be
collected upfront from the customer.

𝑛 = 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the share of the raw materials purchase
that is required to be paid in advance to the supplier.

𝐷𝐷𝐼 : denote the desired inventory by the distributor.
𝐷𝐷𝑆𝐿: represent the desired inventory on order by the distributor.
𝐼𝐴𝑇 = 𝑇ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒: represents the time period

over which the manufacturer seeks to bridge the gap between the
desired and current inventory of finished products.

𝑀𝐼𝐴𝑇 = 𝑇ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒: represents the
time period over which the manufacturer seeks to bridge the gap
between desired and current inventory of the raw materials.

𝑀𝑆𝑆𝐶 = 𝑇ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represents the time
period over which the manufacturer maintains materials safety stock
coverage to hedge against volatility in desired production.

𝑆𝑆𝐶 = 𝑇ℎ𝑒 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represents the time period over
which the manufacturer would like to maintain a safety stock coverage
in order to meet any variations in distributor’s demands.

𝑀𝑀𝐼𝐶 = 𝑇ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒: represent the
minimum materials inventory required by the manufacturer.

𝑀𝑂𝑃𝑇 = 𝑇ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑟𝑑𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒: denotes the minimum
time required by the manufacturer to process and ship a distributor
order.

𝑃𝐷𝑃 = 𝑇ℎ𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑖𝑐𝑦: denotes the dividends that is
required to be paid to the shareholders.

𝑆𝑃 = 𝑇ℎ𝑒 𝑠𝑎𝑙𝑒𝑠 𝑝𝑟𝑖𝑐𝑒: The price per tonne of product which is paid
to the distribution center by the customer.

𝑇𝐴𝑂𝑅 = 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑟𝑑𝑒𝑟 𝑟𝑎𝑡𝑒: denotes the time period over
which the distributor demand forecast is adjusted to actual customer’s
orders.

𝑈𝐶 = 𝑇ℎ𝑒 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡: denotes the production cost and distribution
cost per tonne of product.

𝑊 𝐼𝑃𝐴𝑇 = 𝑇ℎ𝑒 𝑊 𝐼𝑃 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒: represents the time required
for the manufacturer to adjust its WIP inventory to its desired level.

𝑀𝐶𝑇 = 𝑇ℎ𝑒 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒: represents the average
delay time of the production process for the products from start until
completion of the product.
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𝑁𝑆𝑃 = 𝑁𝑒𝑤 𝑠𝑡𝑜𝑐𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟∶ represents the growth rate in the
stock units.

𝑊𝐶𝑃 = 𝑊 𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑝𝑜𝑙𝑖𝑐𝑦∶ represents the share of NOPAT
dedicated to the working capital.

The first objective is to maximize EVA, while the second objective
aims to minimize mCCC. These objectives are formulated as the means
of performance indicators over the simulation period. The decision pa-
rameters include controllable inventory and financial decisions, which
are highlighted in Figs. 2 and 4.

4.2. Multi-objective simulation-based optimization

Multi-objective optimization is a method applied to solve problems
containing conflicting objectives that may not be formulated to a
common scale of cost or benefit [64]. To solve problems with multiple
objectives, a non-dominated set of optimal solutions is obtained. Then,
the decision maker chooses the optimal solution based on their prefer-
ences [65]. Non-dominated solutions form a set of different points in a
frontier called Pareto optimal. These solutions do not have superiority
over one another but dominate all other solutions. Specifically, a solu-
tion 𝑆1 dominates another solution 𝑆2 if 𝑆1 is significantly better than
𝑆2 in at least one optimization objective, and where 𝑆1 is no worse than
𝑆2 regarding all optimization objectives [65].

In this study, the weighted sum method, one of the most widely used
methods for multi-objective optimization [66], is utilized to construct
the Pareto optimal frontier for maximizing EVA and minimizing mCCC.
In this method, multi-objectives are transformed into a single objective
by multiplying each objective function by a weighting factor and
aggregating all weighted objective functions [67]. The weight of an
objective is chosen in proportion to its relative importance [68]. In
a multi-objective optimization problem with m objectives, denoted by
𝑤𝑖(𝑖 = 1,… , 𝑚), if ∑𝑚

𝑖=1 𝑤𝑖 = 1 and 0 ≤ 𝑤𝑖 ≤ 1, the weighted sum
represents a convex combination of objectives [69]. Thus, each solution
obtained by single objective optimization corresponds to a point on
the Pareto optimal frontier. By adjusting the weighting factors (𝑤𝑖),
different optimal solutions can be determined through single objective
optimization. These optimal solutions collectively form the set of non-
dominated solutions represented on the Pareto optimal frontier. Using
the weighted sum method, the multi-objective model presented in Eq.
(28) is transformed into a single-objective model as follows:

𝑁𝑒𝑤 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑤1 ×Max 𝜇𝐸𝑉 𝐴 + 𝑤2 ×Min 𝜇𝑚𝐶𝐶𝐶𝑤1 +𝑤2 = 1 (29)

To solve the transformed single-objective optimization model, we
employ a simulation-based optimization (SBO) approach. SBO inte-
grates an optimization algorithm directly into a simulation model,
aiming to enhance its performance by determining optimal values for
its decision parameters [70]. This approach iteratively explores the
decision space, taking into account system dynamics and constraints,
to find solutions that optimize the specified objective function.

The SBO framework, illustrated in Fig. 7, operates as an iterative
process. It typically begins with an optimization algorithm generating
initial values for the decision parameters of the simulation model.
Subsequently, the simulation model is executed using these values to
assess system performance. The resulting performance measures are
then fed back into the optimization algorithm for analysis. Based on this
feedback, a new set of decision parameters is generated and fed back
into the simulation model for further evaluation [71]. This iterative
cycle continues until a user-defined stopping criterion is met, such as
reaching a specified number of evaluations [72]. The iterative nature of
this process allows for refinement of the decision parameters, leading
to improved optimization results.

Genetic algorithms (GAs) are computational algorithms inspired by
Darwinian evolutionary theory, often summarized as ‘‘survival of the
fittest’’ [73]. In a genetic algorithm, a population of candidate solutions
to an optimization problem evolves toward a better solution through
selection, crossover, and mutation operators [74]. Genetic algorithms
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employ a fitness function to assess the quality of each solution relative
to the optimization objective [75]. Unlike analytical optimization, ge-
netic algorithms do not rely on derivative information, making them
well-suited for numerically generated data. They exhibit the capability
to escape local minima and can optimize both continuous and discrete
parameters, particularly the former [76].

In this study, GAs are chosen as the optimization method due to
their suitability for handling continuous decision parameters and their
ability to optimize objective functions that rely on measurements from
simulation models rather than explicit mathematical formulations. The
decision parameters in our model are continuous, making GAs well-
suited for exploring the solution space efficiently. Furthermore, the
objective function presented in Eq. (29) is not explicitly available but
is derived from measurements obtained during simulation runs.

The fitness function of the GA defined by Eq. (30) evaluates the
quality of each candidate solution. It incorporates measurements of the
simulation model’s performance indicators, i.e., economic profitability
(EVA) and working capital efficiency (mCCC). By iteratively evaluating
candidate solutions using the fitness function, the GA guides the search
towards optimal or near-optimal solutions that balance the trade-off
between EVA maximization and mCCC minimization.

𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑤1 × 𝜇𝐸𝑉 𝐴 −𝑤2 × 𝜇𝑚𝐶𝐶𝐶𝑤1 +𝑤2 = 1 (30)

In this study, we develop an SBO framework that integrates a
genetic algorithm and system dynamics simulation. The framework
begins by generating initial values for inventory and financial decision
parameters, as presented in Eq. (28), using the genetic algorithm. These
values are then utilized to run the system dynamics simulation model,
evaluating system performance based on the fitness function outlined in
Eq. (30). Subsequently, the performance feedback is incorporated back
into the genetic algorithm, which generates a new set of inventory and
financial decision parameters. These parameters are then inputted into
the system dynamics simulation model for evaluation. This iterative
process continues until the stopping criterion, set to 300 generations,
is reached.

5. A case study

This section conducts numerical experiments to illustrate the prac-
ticality of the proposed model. The dataset used in this case study was
initially introduced in [5,45]. The Initial data required for running the
simulation model are detailed in Tables 3 and 4. Table 3 delineates
five parameters that predominantly signify economic uncertainty, all
of which are incorporated into the scenario tree structure depicted in
Fig. 4. Scenario 1 indicates a booming economy with higher demand,
lower interest rates, and higher returns on investments. Scenario 2
represents a stagnant economy with no changes in demand, interest
rates, and returns on investments. Scenario 3 displays an economy in
recession with declining demand, higher borrowing costs, and lower
returns on investments.

Table 4 presents the balance sheet at the beginning of the simulation
period. It includes essential information such as the original and salvage
values of fixed assets, denoted in relative money units. Additionally,
key financial parameters such as the administrative constant (0.01), tax
rate (30% per year), beta coefficient (unity), and stock value (7 money
units per unit stock) are outlined.

5.1. Scenario 1

Scenario 1 portrays a boom occurring in the second year of the
simulation, characterized by increased customer demand and an upturn
in the expected return of the market. Additionally, there is a decrease
in the risk-free rate of interest, short-term interest rate, and long-term
interest rate.

To evaluate the impact of these changes on model performance,
the system dynamics (SD) simulation model must be initialized to a
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Fig. 7. SBO process.
Table 3
Customer demand and financial parameters related to economic scenarios.

Scenario Parameter

𝐶𝐷[𝑠]
𝑡=0 𝐶𝐷[𝑠]

𝑡=53 𝑆𝑇𝑅[𝑠]
𝑡=0 𝑆𝑇𝑅[𝑠]

𝑡=53 𝐿𝑇𝑅[𝑠]
𝑡=0 𝐿𝑇𝑅[𝑠]

𝑡=53 𝑟[𝑠]𝑓𝑡=0
𝑟[𝑠]𝑓𝑡=53

𝑟[𝑠]𝑚𝑡=0
𝑟[𝑠]𝑚𝑡=53

𝑆1 10 000 15 000 7.00 5.60 4.00 3.00 2.50 2.00 5.00 6.00
𝑆2 10 000 10 000 7.00 7.00 4.00 4.00 2.50 2.50 5.00 5.00
𝑆3 10 000 5000 7.00 8.40 4.00 5.00 2.50 3.00 5.00 4.00
balanced equilibrium. This ensures an accurate assessment of the effects
of both microeconomic and macroeconomic parameters on the model’s
behavior [60].

During initialization, all model stocks, including inventories and
supply lines, are set to their desired values. Additionally, the expected
order rate is aligned with the customer order rate, facilitating a stable
starting point for the simulation.
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In Scenario 1, depicted in Fig. 8(a)–(d), the dynamics of inventory,
modified cash conversion cycle (mCCC), and Economic Value Added
(EVA) for the SC members obtained from System Dynamics (SD) simu-
lation model were analyzed over two years spanning 104 weeks. During
this scenario, a surge in customer demand occurred in the second year,
prompting the distributor to increase orders to the manufacturer. As
a result, the inventory level peaked at 15,000 units of product by
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Fig. 8. SD and SBO models performances in scenario 1.
Table 4
Balance sheet at the beginning of simulation time (t=0).

Account Relative money units

A.1. Assets 170,000
A.1.1. Tangible assets 170,000
A.1.2. Intangible assets 0
A.2. Current assets 70,000
A.2.1. Cash 29,968
A.2.2. Receivable accounts 28,000
A.2.3. Inventory 10,032
A.2.4. Prepaid expenses(Advance payments to supplier) 2,000
A. Total assets 240,000
B.1. Equity 130,000
B.1.1. Common stock 80,000
B.1.2. Retained earnings 50,000
B..2. Debt 110,000
B..1. Short-term liabilities 45,000
B.2.1.1. Advance payments from customers 3,000
B.2.2.2. Other short-term liabilities 42,000
B.2.2. Long-term liabilities 65,000
B. Total debt and equity 240,000

week 55, reflecting the distributor’s efforts to meet the heightened
demand. Subsequently, the distributor’s inventory stabilized at a new
equilibrium of 12,742 units by week 70.

Meanwhile, the manufacturer experienced a decrease in inventory
following the demand surge. However, by week 58, the manufacturer’s
inventory began to rise again, reaching a new equilibrium of 41,635
units by week 80.

The dynamics of the modified cash conversion cycle (mCCC) mir-
rored those of the manufacturer’s inventory, given its substantial in-
ventory levels within the SC. At the start of the second year, mCCC
experienced a sharp decline due to reduced inventory accumulation,
ultimately stabilizing at 87 days by week 80. In terms of Economic
Value Added (EVA), there was a notable increase at the beginning of
12
Table 5
Impact of population size on fitness function.

Population size Fitness value

Worst (Min) Best (Max) Mean Standard
deviation

150 59 615.64 59 723.68 59 642.37 38.28
200 59 596.38 59 684.24 59 625.40 25.36
250 59 487.80 59 537.51 59 514.29 14.62
300 59 422.11 59 453.62 59 433.72 6.42
350 59 422.11 59 448.23 59 431.51 6.21

the second year, primarily driven by the reduction in manufacturer in-
ventory levels and subsequent sales growth. EVA leveled off at £51,716
by week 100, signifying the impact of inventory management strategies
on financial performance.

To implement the SBO methodology, the parameters for the Genetic
Algorithm (GA) are configured as follows: a population size of 300,
crossover and mutation rates set at 0.8 and 0.1, respectively. The values
for 𝑤1 and w2 in the fitness function of the GA, as presented in Eq. (30),
are both set to 0.5, signifying equal importance for mCCC minimization
and EVA maximization. To determine the optimal population size,
various population sizes were tested, with the algorithm executed 15
times for each size. The outcomes, detailed in Table 5, indicate that
increasing the population size enhances both the mean and the standard
deviation of the fitness function until the optimal solution, achieved at
a population size of 300, is reached.

For each scenario, the SBO process is executed 15 times with the
predefined GA parameters, and the optimal fitness value is deter-
mined. Subsequently, the simulation system is run using the decision
parameters derived from the SBO model that yielded the best fitness
value.

Fig. 8(a)–(d) depict the outcomes of the SBO model. Following the

implementation of the SBO methodology, notable changes are observed
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Fig. 9. SD and SBO models performances in scenario 2.
in the inventory levels of both the distributor and the manufacturer.
The distributor’s inventory exhibits a consistent decrease, stabilizing at
11,864 units of products from week 75 onwards, contrasting with the
SD model where it levels off at 12,743 units during the same period.

Similarly, the manufacturer’s inventory experiences a significant re-
duction post-SBO. While the manufacturer’s inventory peaks at 20,000
units of products after employing SBO, it reaches 41,635 units in the
SD model. Furthermore, the manufacturer’s inventory level at week 80
is 18,487 units post-SBO and continues to decline, whereas in the SD
model, it remains constant at 41,635 units from week 80 onwards.

This reduction in the manufacturer’s inventory levels leads to a con-
siderable decline in the cash-to-cash cycle. Post-SBO implementation,
the cash conversion cycle oscillates between 6 and 38 days, decreasing
from 33 days at week 80 onwards. In contrast, the SD model shows
fluctuations in the range of 36 to 114 days and maintains stability at
87 days from week 80 onwards.

Regarding EVA, post-SBO results closely follow the pattern observed
in the SD model. Furthermore, the EVA reaches an equilibrium level of
£75,789 after SBO, whereas in the SD model, it reaches £49,832 by the
end of the simulation period.

5.2. Scenario 2

Scenario 2 depicts a period of stagnation in the second year of the
simulation, resulting in stability in customer demand, expected return
of the market, risk-free rate of interest, short-term interest rate, and
long-term interest rate. Fig. 9(a)–(d) illustrate the inventory, cash-to-
cash cycle, and EVA dynamics for the SC members under scenario
2, obtained from running the SD simulation model over two years
(104 weeks). With customer demand remaining stable throughout the
simulation, the system maintains its equilibrium state over time. The
manufacturer’s inventory and the cash conversion cycle exhibit a goal-
seeking pattern, reaching equilibrium by week 10. Meanwhile, the
13
EVA experiences a linear decrease as invested capital increases pro-
portionally, reflecting the stable demand and resulting in a consistent
trajectory.

The application of the SBO methodology to scenario 2, using the
GA parameters and fitness function defined in scenario 1, yielded
significant changes in inventory levels, as depicted in Fig. 9(a)–(d).
Following the implementation of SBO, the distributor’s inventory level
experienced a notable reduction, stabilizing at 7613 units from week
10 until the simulation’s conclusion. In contrast, the inventory level
remained at 10,000 units throughout the simulation in the SD model.
Similarly, the manufacturer’s inventory level saw a substantial decrease
post-SBO. While the SD model maintained a stable inventory of 36,600
units at week 10, the inventory oscillated between 8567 and 18,246
units from week 10 onwards after employing SBO.

The substantial reduction in the manufacturer’s inventory level,
resulting from the application of SBO, had a notable effect on the
cash-to-cash cycle. Post-SBO implementation, the cash conversion cycle
fluctuated between 22 and 43 days from week 10 until the simula-
tion’s conclusion. In contrast, the SD model maintained a stable cash
conversion cycle of 117 days during the same period. Additionally,
the EVA exhibited oscillations ranging from £39,948 to £46,347 after
the implementation of SBO from week 10 onwards, attributed to the
reduction in the manufacturer’s inventory. Conversely, in the SD model,
the EVA started at £43,892 and decreased to £38,621 by week 104.

5.3. Scenario 3

In Fig. 10(a)–(d), the dynamics of inventory, mCCC, and EVA for the
SC members in scenario 3 are depicted, derived from the SD simulation
model spanning two years (equivalent to 104 weeks). Initially, the
distributor’s inventory remains constant at 10,000 units until the end of
the first year. However, at the onset of the second year, the distributor’s
inventory experiences a surge, peaking at 15,000 units, and maintains
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Fig. 10. SD and SBO models performances in scenario 3.
tability until the simulation concludes due to a decline in customer
emand.

The manufacturer’s inventory demonstrates a goal-seeking pattern
efore the commencement of the second year, achieving its target
f 36,700 units by week 10. Subsequently, it undergoes significant
rowth, reaching 50,448 units by week 60. However, between weeks
0 and 80, there is a decline in inventory levels before stabilizing at a
ew equilibrium of 26,569 units by week 80.

The mCCC mirrors the pattern observed in the manufacturer’s in-
entory, peaking at 364 days by week 60 and converging to a new
quilibrium level of 175 days by week 80. The EVA experiences a
lunge at the beginning of the second year due to reduced customer
emand, reaching £13,569 by the simulation’s end.

The SBO methodology for scenario 3 is applied using the GA pa-
ameters and fitness function established in scenario 1, with results
epicted in Fig. 10(a)–(d). Notably, the SBO methodology yields sig-
ificant reductions in distributor inventory. Post-implementation, the
istributor’s maximum inventory reaches 11,227 units by week 53,
ontrasting with the steady 15,000 units maintained in the SD model
uring the second year.

Furthermore, the SBO implementation results in a notable decrease
n manufacturer inventory. After employing the SBO, manufacturer
nventory peaks at 2524 units by week 60, compared to the peak
f 50,448 units in the SD model during the same period. Between
eeks 80 and 100, manufacturer inventory fluctuates between 2705
nd 3819 units in the SBO model, contrasting with the stable 26,569
nits observed in the SD model.

Moreover, the SBO significantly reduces the cash-to-cash cycle,
iven its dependency on SC member inventories. Post-implementation,
he cash conversion cycle ranges from 15 to 125 days, compared to the
D model’s fluctuation between 48 and 364 days.

Regarding EVA, the SBO model reflects a substantial reduction at
he start of the second year, attributed to declining customer demand.
14
However, EVA values in the SBO model during the second year exceed
those of the SD model. Specifically, in the second year, EVA stabilizes
at around £20,000, contrasting with £14,500 in the SD model.

5.4. Pareto optimal frontiers

To provide decision-makers with a portfolio of alternative optimal
inventory and financial decisions to manage the trade-off between
minimizing mCCC and maximizing EVA, we employ the weighted sum
method to generate the Pareto efficient frontiers. Figs. 11–13 illustrate
the Pareto optimal frontier for EVA versus mCCC in scenarios 1–3.
These results are determined by specifying the weighting factors for
objective functions, which could be selected based on the decision-
maker’s preferences. To achieve non-dominated solutions, each single
objective optimization problem is formulated using Eq. (30) by select-
ing weighting factors w1 and w2 within the interval [0, 1], summing up
to 1. Each point in this frontier corresponds to a different combination
of inventory and financial decision parameters.

Table 8. Optimal decision parameters of two non-dominated solutions in
Scenario 3

To gain a deeper understanding of the model’s decision-making pro-
cess, we examined two solutions within each scenario. These solutions
offer contrasting approaches: Solution 1 prioritizes minimizing mCCC,
while Solution 101 focuses on maximizing economic value added.

Tables 6–8 show the optimal inventory and financial decisions
corresponding to these solutions. In Solution 1 across all scenarios, a
notable strategy involves collecting a significant portion of the cus-
tomer order value upfront, evident from the high value of parameter
m, such as 𝑚 = 0.96 in scenario 1. Conversely, a considerable portion of
materials purchases is made on credit, as indicated by the low value of
parameter 𝑛, for example, 𝑛 = 0.08 in scenario 1. This approach aims to
reduce accounts receivable while increasing accounts payable, thereby
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Table 6
Optimal decision parameters of two non-dominated solutions in Scenario 1.

Parameter
Solution

𝑊𝐶𝐶𝐶 𝑊𝐸𝑉 𝐴 𝑚 𝐼𝐴𝑇 𝐷𝐷𝐼 𝛽 𝑀𝐼𝐴𝑇 𝑀𝑆𝑆𝐶 𝑀𝑀𝐼𝐶 𝑀𝑂𝑃𝑇 𝑁𝑆𝑃 𝑛

Solution 1 1 0 0.96 13.37 25,341 0.27 6.10 4.16 3.94 0.28 0 0.08
Solution 101 0 1 0.52 13.39 27,028 0.35 8.35 5.25 9.44 9.74 0 0.23

Parameter
Solution

𝑃𝐷𝑃 𝑆𝑆𝐶 𝑆𝑃 𝑇𝐴𝑂𝑅 𝛼 𝐷𝐷𝑆𝐿 𝑀𝐶𝑇 𝑈𝐶 𝑊 𝐼𝑃𝐴𝑇 𝑊 𝐶𝑃 𝜇𝑚𝐶𝐶𝐶 𝜇𝐸𝑉 𝐴

Solution 1 0.50 0.32 9.29 14.42 0.47 14,158 5 4.08 3.15 0.50 1 33,471
Solution 101 0.50 3.77 11.96 10.42 0.81 7,179 5 3.06 4.42 0.50 362 74,243
Table 7
Optimal decision parameters of two non-dominated solutions in Scenario 2.

Parameter
Solution

𝑊𝐶𝐶𝐶 𝑊𝐸𝑉 𝐴 𝑚 𝐼𝐴𝑇 𝐷𝐷𝐼 𝛽 𝑀𝐼𝐴𝑇 𝑀𝑆𝑆𝐶 𝑀𝑀𝐼𝐶 𝑀𝑂𝑃𝑇 𝑁𝑆𝑃 𝑛

Solution 1 1 0 0.91 8.66 2,362 0.31 5.23 5.52 6.97 0.25 0 0.09
Solution 101 0 1 0.37 12.86 21,722 0.14 13.43 6.90 8.92 9.48 0 0.42

Parameter
Solution

𝑃𝐷𝑃 𝑆𝑆𝐶 𝑆𝑃 𝑇𝐴𝑂𝑅 𝛼 𝐷𝐷𝑆𝐿 𝑀𝐶𝑇 𝑈𝐶 𝑊 𝐼𝑃𝐴𝑇 𝑊 𝐶𝑃 𝜇𝑚𝐶𝐶𝐶 𝜇𝐸𝑉 𝐴

Solution 1 0.50 0.25 11.31 14.11 0.45 1,999 5 5.93 6.92 0.50 0 21,218
Solution 101 0.50 8.28 11.28 12.91 0.54 22,342 5 3.01 4.98 0.50 467 41,665
Table 8
Optimal decision parameters of two non-dominated solutions in Scenario 3.

Parameter
Solution

𝑊𝐶𝐶𝐶 𝑊𝐸𝑉 𝐴 𝑚 𝐼𝐴𝑇 𝐷𝐷𝐼 𝛽 𝑀𝐼𝐴𝑇 𝑀𝑆𝑆𝐶 𝑀𝑀𝐼𝐶 𝑀𝑂𝑃𝑇 𝑁𝑆𝑃 𝑛

Solution 1 1 0 0.91 10.06 1,381 0.48 5.94 5.75 5.24 0.28 0.0005 0.12
Solution 101 0 1 0.37 12.67 11,031 0.08 8.97 6.40 7.75 7.94 0 0.58

Parameter
Solution

𝑃𝐷𝑃 𝑆𝑆𝐶 𝑆𝑃 𝑇𝐴𝑂𝑅 𝛼 𝐷𝐷𝑆𝐿 𝑀𝐶𝑇 𝑈𝐶 𝑊 𝐼𝑃𝐴𝑇 𝑊 𝐶𝑃 𝜇𝑚𝐶𝐶𝐶 𝜇𝐸𝑉 𝐴

Solution 1 0.44 0.33 10.27 13.94 0.42 3,514 5 5.87 2.48 0.50 2 −4, 675
Solution 101 0.50 4.29 11.52 9.99 0.27 5,085 5 3.54 3.23 0.50 291 14,215
Fig. 11. Pareto optimal frontier illustrating the trade-off between EVA and mCCC in
scenario 1.

lowering the mCCC. These findings align with the conclusions drawn
by Nobanee and Al Hajjar [77] and Kolias et al. [78].

To minimize the cash-to-cash cycle, reducing inventory levels, in-
cluding materials and finished and unfinished goods, is a common
strategy [79]. Therefore, in Solution 1, inventory decision parameters
15
Fig. 12. Pareto optimal frontier illustrating the trade-off between EVA and mCCC in
scenario 2.

such as safety stock coverage (SSC), materials safety stock coverage
(MSSC), minimum order processing time (MOPT), minimum mate-
rials inventory coverage (MMIC), inventory adjustment time (IAT),
materials inventory adjustment time (MIAT), WIP adjustment time
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Fig. 13. Pareto optimal frontier illustrating the trade-off between EVA and mCCC in
scenario 3.

(WIPAT), and time to average order rate (TAOR) are set lower than
those recommended in Solution 101.

In contrast, Solution 101 across all scenarios prioritizes a substantial
profit margin. For instance, in scenario 1, the sales price (SP) is set
at 2.91 times greater than the unit cost (UC), aiming to maximize
operating profit. Moreover, to optimize Economic Value Added (EVA),
Solution 101 advocates allocating 100 percent of the Net Operating
Profit After Tax (NOPAT) to working capital and dividends, with pa-
rameters set to WCP = 0.5 & PDP = 0.5. Conversely, in the face of
economic recession, Solution 1 proposes reducing the share of divi-
dends from 50% to 44% of NOPAT and allocating the remaining 6% to
retained earnings. This aligns with the findings of Lee et al. [80], sug-
gesting that firms with greater retained earnings demonstrate increased
resilience to economic downturns.

In terms of inventory decisions for the distribution center, Solution
1 across all scenarios proposes reducing the desired inventory (DDI)
to mitigate overall inventory levels. For scenarios 2 and 3, Solution
1 recommends a lower desired supply line level (DDSL), considering
high levels unnecessary given demand stability and shrinkage. How-
ever, in scenario 1, Solution 1 suggests a higher level for finished
products within the supply line to meet increased customer demand.
Additionally, the forecasting parameters for inventory adjustment (𝛼)
nd supply line adjustment (𝛽) reflect the distribution center’s policy
n bridging the gap between desired and current inventory and supply
evels, respectively. A high 𝛼 indicates an aggressive inventory adjust-
ent policy, while a high 𝛽 suggests accounting for all orders in the

supply line when deciding on upstream orders [71].
In terms of inventory decisions for the distribution center, Solution

1 across all scenarios proposes reducing the desired inventory (DDI)
to mitigate overall inventory levels. For scenarios 2 and 3, Solution
1 recommends a lower desired supply line level (DDSL), considering
high levels unnecessary given demand stability and shrinkage. How-
ever, in scenario 1, Solution 1 suggests a higher level for finished
products within the supply line to meet increased customer demand.
Additionally, the forecasting parameters for inventory adjustment (𝛼)
and supply line adjustment (𝛽) reflect the distribution center’s policy
on bridging the gap between desired and current inventory and supply
levels, respectively. A high 𝛼 indicates an aggressive inventory adjust-
ment policy, while a high 𝛽 suggests accounting for all orders in the
supply line when deciding on upstream orders [71].

The inventory adjustment parameter (𝛼) and end customer demand
demonstrate a positive correlation, indicating that they move in the
same direction. As end customer demand increases or decreases, the
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inventory adjustment parameter (𝛼) similarly adjusts, reflecting the
responsiveness of inventory levels to changes in demand. This rela-
tionship underscores the dynamic nature of inventory management, as
adjustments are made in response to market demand fluctuations [81].

When prioritizing mCCC minimization, a negative correlation
emerges between end customer demand and supply line adjustment
forecasting parameters (𝛽). This suggests that a greater emphasis is
placed on orders within the supply line when demand decreases. This
observation aligns with a well-established principle in SCM, wherein
decreasing demand tends to increase the risk of excess inventory, as
discussed in previous studies (e.g., [82,83]).

As anticipated, scenario 3 exhibits the lowest EVA values, attributed
to recessionary economic conditions during the second year. Further-
more, EVA values in scenario 2 are lower than those in scenario 1,
aligning with the stagnation experienced in the second year, resulting
in stable end customer demand.

6. Concluding discussion

Economic profitability and working capital efficiency are crucial
indicators reflecting a business’s financial health. Despite their signif-
icance, these indicators often pursue divergent objectives. Economic
profitability aims to maximize a business’s profit while working capital
efficiency seeks to minimize the capital tied up in a firm. Addition-
ally, economic uncertainty can significantly impact both economic
profitability and working capital efficiency.

To effectively manage the trade-off between economic profitability
and working capital efficiency amidst economic uncertainty, this study
develops a simulation-based optimization (SBO) model that integrates
system dynamics simulation and genetic algorithms. The developed
model utilizes economic value added (EVA) to gauge economic prof-
itability and the modified cash conversion cycle (mCCC) to assess
working capital efficiency.

6.1. Theoretical contribution

This paper contributes to three distinct research domains: inventory
management under partial trade credit, supply chain (SC) modeling
under economic uncertainty, and working capital management in SCs.
Previous studies in these domains have overlooked several critical
aspects, leading to five main gaps: (1) failure to optimize trade credit
and cash payment allocation, (2) neglecting the trade-off between
economic profitability and working capital efficiency, (3) disregarding
macroeconomic uncertainty, (4) underutilizing SBO modeling, and (5)
lacking a metric for quantifying the CCC for SC members receiving and
offering partial trade credit. To address these gaps, this study develops
an SBO model to manage the trade-off between economic profitability
and working capital efficiency while incorporating macroeconomic
uncertainty. The model introduces a new metric to quantify the CCC for
SC members involved in partial trade credit transactions and identifies
optimal trade credit and cash payment shares in the SC.

Utilizing real case study data from [5,45], this study initially assigns
equal importance to conflicting objectives: minimizing mCCC and max-
imizing EVA. Subsequently, we compare the performance of the SBO
approach against that of system dynamics (SD) simulation across three
economic scenarios.

The first scenario simulates a boom in the second year, charac-
terized by increased customer demand and market expected return,
coupled with decreased risk-free, short-term, and long-term interest
rates. Implementing the SBO approach leads to notable reductions
in inventory levels held by SC members, namely the distributor and
manufacturer, as well as a decrease in the modified cash conversion
cycle. Additionally, the EVA of the SC experiences a significant 52%
increase, rising from £49,832 to £75,789.

In the second scenario, which assumes stagnation in the second
year of the simulation, resulting in stability in customer demand,
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expected market return, and interest rates, the implementation of the
SBO approach leads to a substantial reduction in inventory levels
across the SC. Additionally, there is a notable decrease in the modified
cash conversion cycle. The economic value added (EVA) of the SC
experiences a 20% increase, rising from £38,621 to £46,347.

In the third scenario, which assumes a recession in the second year
of the simulation, characterized by a decrease in customer demand
and market return, alongside an increase in risk-free, short-term, and
long-term interest rates, the implementation of the SBO resulted in
a notable reduction in inventory levels across the SC. Additionally,
there was a significant decrease in the modified cash conversion cycle.
Furthermore, the economic value added (EVA) of the SC experienced a
substantial 36% increase, rising from £14,768 to £20,057.

To facilitate decision-making and offer a range of optimal inven-
tory and financial strategies, addressing the trade-off between con-
flicting objectives such as minimizing mCCC and maximizing EVA,
the weighted sum method is utilized to generate Pareto efficient fron-
tiers. From these frontiers, two solutions are selected in each scenario
for further analysis of their optimal decision parameters. This de-
tailed analysis provides insight into the decision-making process of
the model. Finally, decision makers choose the optimal inventory and
financial strategies based on the relative importance assigned to mCCC
minimization and EVA maximization.

6.2. Managerial implications

SCs aim to meet customer demand efficiently while minimizing the
costs associated with holding inventory. However, finding the right
balance between inventory levels and shipment rates is paramount. To
aid SC managers in navigating this delicate balance, we present an SBO
model.

Our model is designed to achieve two primary objectives simul-
taneously: minimizing inventory levels by minimizing the modified
cash conversion cycle (mCCC) and maximizing the shipment rate to
customers by maximizing the economic value added (EVA) of the SC.
By effectively managing these objectives, our model aims to enhance
SC’s working capital efficiency and economic profitability.

Additionally, minimizing the cash conversion cycle aids in reducing
the cost of capital and accelerating cash flow within the SC. This
optimization extends to improving receivables, payables, and inventory
levels, ultimately contributing to a more agile and financially robust SC.

Furthermore, effective SC planning requires a holistic approach
that considers both physical and financial flows. Integrating financial
decision parameters, such as collection and payment policies, into SC
planning models provides a comprehensive understanding of financial
dynamics. Collaboration between SC and financial managers is essen-
tial for estimating uncertain economic parameters, such as short-term
interest rates, and allocating necessary financial resources to implement
recommended solutions.

In summary, our SBO model offers a comprehensive solution for
balancing inventory levels and shipment rates while optimizing over-
all SC performance. Active collaboration between SC and financial
managers ensures the effective allocation of resources and enhances
decision-making capabilities in the face of economic uncertainty.

6.3. Limitations and future work

This study is subject to several limitations. Firstly, while our SBO
model effectively manages the trade-off between economic profitability
and working capital efficiency under economic uncertainty, it overlooks
other critical trade-offs, such as the balance between working capital
efficiency and credit solvency. Future research should explore these
additional dimensions of trade-offs. Secondly, while we account for
uncertainty in certain financial parameters like interest rates, future

studies could broaden this scope to include other influential factors
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such as tax rates in SC inventory and working capital management
problems.

Thirdly, extending our model to treat fixed assets as endogenous
variables rather than constants, or integrating leaseback arrangements
for fixed assets into the calculation of invested capital, could provide a
more comprehensive understanding of capital management within SCs.
Fourthly, future investigations could delve into the implications of a
two-part trade credit policy, where some SC members receive full trade
credit from suppliers while offering partial trade credit to their cus-
tomers. Lastly, exploring alternative optimization algorithms beyond
the genetic algorithm employed in this study could offer insights into
managing the trade-off between economic profitability and working
capital efficiency. Comparing the performance of different algorithms
against the GA presented here would be a valuable area for further
research.
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