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Abstract

Dynamical system models typically involve numerous input parameters whose “effects” and

orthogonality need to be quantified through sensitivity analysis, to identify inputs contributing

the greatest uncertainty. Whilst prior art has compared total-order estimators’ role in recov-

ering “true” effects, assessing their ability to recover robust parameter orthogonality for use

in identifiability metrics has not been investigated. In this paper, we perform: (i) an assess-

ment using a different class of numerical models representing the cardiovascular system,

(ii) a wider evaluation of sampling methodologies and their interactions with estimators, (iii)

an investigation of the consequences of permuting estimators and sampling methodologies

on input parameter orthogonality, (iv) a study of sample convergence through resampling,

and (v) an assessment of whether positive outcomes are sustained when model input

dimensionality increases. Our results indicate that Jansen or Janon estimators display effi-

cient convergence with minimum uncertainty when coupled with Sobol and the lattice rule

sampling methods, making them prime choices for calculating parameter orthogonality and

influence. This study reveals that global sensitivity analysis is convergence driven. Uncon-

verged indices are subject to error and therefore the true influence or orthogonality of the

input parameters are not recovered. This investigation importantly clarifies the interactions

of the estimator and the sampling methodology by reducing the associated ambiguities,

defining novel practices for modelling in the life sciences.

Author summary

In order to gain new insight into a biological system, one often uses mathematical models

to predict possible responses from the system. One vital step when using such models is to

gain knowledge of the uncertainty associated with the model responses, for any input

changes. Utilising two non-linear and stiff cardiovascular models as test cases, we investi-

gate the effects of different choices made when quantifying the uncertainty of
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mathematical models. Leveraging efficient solving of the mathematical model, we show

that in order to truly quantify the effects of inputs on a set of outputs, one must ensure

converged estimates of the inputs’ influence. Our detailed study provides a robust work-

flow of good modelling practice for biological systems, thus ensuring a true interpretation

of the uncertainty associated with model inputs.

1 Introduction

Parameter identifiability addresses the question of whether, and to what degree it is possible to

uniquely estimate input parameters (inputs) for a given dynamical system with a set of mea-

sured (or synthetic) outputs. This problem is typically decomposed into practical identifiabil-

ity, which incorporates practical estimation issues associated with real data (such as noise and

bias), and structural identifiability, which considers only model structure. The latter investiga-

tion is deemed ideal and effectively assumes that all data are known at every time point and are

free of bias and noise [1]. Practical identifiability accounts for the role of noise and sampling

frequency inter alia in hindering the ability uniquely to estimate inputs. These issues notwith-

standing, the study of unique parameter estimation is very important to the complex models

increasingly used in life sciences, which encompass pharmacology, epidemiology and cardio-

vascular applications [2–4].

Assuming one can identify inputs representative of the data, we arrive atmodel personalisa-
tion- a process of effectively calibrating a life science model using data available from an indi-

vidual subject or patient. Within a clinical setting, this might involve calibrating a

cardiovascular model to (patho)physiological metrics. Robust and reliable model personaisa-

tion is a key component for the development of digital twins for healthcare applications [5].

Unique model parameters are normally obtained by solving an inverse problem. One seeks

the extrema of a cost function, typically the L2 norm of some weighted difference between

measured, often very noisy and self-inconsistent target experimental data and a corresponding

model prediction. A model cost function interacts with a hyper-surface in the model’s input

parameter space and personalisation amounts to an attempt to locate the global minimum of

the cost function. It is appropriate to emphasise, here, that input parameter space is multi-

dimensional (with a dimension equalling the number of input parameters) and that the gradi-

ent of the cost function hyper-surface typically varies rapidly in some parameter directions

(axes), but very slowly in others. Hence, a sufficient consideration of a model’s input parameter

hyper-surface is central to understanding which parameters can be recovered uniquely.

Various methods exist to calculate model identifiability (see e.g [6]); our approach is based

on the method of Li et al. [7], which calculates the identifiability index of the ith model input Ii
as follows:

Ii ¼ Ei � di; ð1Þ

where di is the ith input’s orthogonality relative to a pre-selected, existing set of input parame-

ters (which one is seeking to expand) and Ei is an ith input’s effect. Here, the index Ii measures

the likelihood of a unique recovery of the ith model input. In our method, both effect and orth-

gonality of an input are calculated from the sensitivity matrix, generated with respect to model

outputs [7–10]. Clearly, the identifiability index depends on both the effect and the orthogo-

nality which can be disclosed by sensitivity analysis. This prompts an investigation to find the

most reliable and most robust method for calculation.
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Sensitivity analysis studies how a change in a model’s specific output can be attributed to

different sources of uncertainty in its (likely) many inputs [11]. Two types of sensitivity analy-

sis exist: (i) Local sensitivity analysis (LSA), which examines the sensitivity of the model inputs

at one specific model operating point in the input parameters’ space; (ii) Global sensitivity

analysis (GSA), which determines sensitivities at multiple points throughout input space,

before finding a statistic measure [12]. Variance-based indices are commonly recognised as

the pre-eminent statistic of GSA, due to their model-independent nature, and their ability to

account for interactions between model inputs and the ease of interpretation [13, 14]. For

studies on practical identifiability of inputs, the metrics on the total order sensitivity matrix

are calculated following Eq (1), which evaluates the overall contribution of an input and its

interaction with other inputs to a specific output whilst considering orthogonality. We defer

further detailed discussion to Section 2.3.

Calculations of inputs’ effects and orthogonality are an important area of research for

model personalisation. Here we ask three universal and interrelated questions:

1. What is the most reliable estimator for the underlying sensitivity indices to be computed

on?

2. What is the optimal sampling methodology, in relation to (i) above, for which one explores

the complex input parameter space?

3. How do the choices of estimator and sampling methodology impact the index

convergence?

Previous work [15–17] mostly concentrates on efficient and accurate computation of the

total order matrix and the evaluation of different estimators’ abilities to reveal the “true” effects

of inputs, given their interactions. Recently, Puy et al. [18] reported their examination of sev-

eral total order estimators—essentially a sensitivity analysis of a sensitivity analysis [19]. These

authors varied the sampling method, between Monte Carlo and quasi-Monte Carlo, their ana-

lytic (note) test model, the dimensionality of input parameter hyperspace, the distribution of

input parameters, and the number of model runs. The work provides a comprehensive and

systematic assessment of the properties of different estimators.

We structure the paper as follows: Section 2 introduces the sampling methodologies and

the total order estimators used for our investigation, as well as the nonlinear systems they are

applied to; Section 3 presents our findings and section 4 declares and discusses best practice to

offset interactions between sampling methodologies, estimators and model dimensionality

when considering the orthogonality of inputs.

2 Methods

2.1 Backgound

Within the field of parameter identifiability, it is accepted [20] that there is interaction

between the methodology of sampling from the model’s input parameter hyperspace and the

estimators used to extract values of, e.g. Sobol indices [16]. It follows that other sensitivity

derived metrics, such as the parameter orthogonality [7], are also affected by this same inter-

action. In this work, therefore, we extend the consideration of both sensitivity and orthogo-

nality in tandem. We choose to undertake this assessment based upon a very important class

of cardio-vascular models, which are notoriously stiff and non-linear, in contradistinction to

the simple, traditional models usually used for such purposes [18, 19, 21], which possess ana-

lytic solutions. Because there is no analytical solution to the models considered in this work,

the reference (or true) values of the sensitivity and orthogonality indices must therefore be
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determined using high levels of (re)sampling, based upon accepted processes of resampling

and bootstrapping [21].

Our dynamical system has the form:

d
dt
Xðt; yÞ ¼ f X ðt; yÞ; yð Þ; Y ðt; yÞ ¼ hðX ðt; yÞÞ; ð2Þ

where Y ðt; yÞ represents the dynamic outputs described by the measurement functions, h ,

which depend on the state variables X ðt; yÞ. The state variables are parameterised by the

inputs y but (for our application, at least) h does not directly depend upon y . f represents a

set of square integrable functions which, together with inputs, y , determine X ðt; yÞ, the solu-

tion of equations (2). Accordingly, f ðX ðt; yÞ; yÞÞ, now viewed as a function of y , is a suitable

surrogate to determine the sensitivity of model inputs on outputs, through X ðt; yÞ. For inputs

which range over a bounded region, we consider a functional I½ f �ðtÞ, formed from the integral

of f over the unit hypercube In = [0, 1]n, where n represents the dimensionality of the input

parameter space:

I½ f �ðtÞ ¼
Z

In
f ðX ðt; yÞ; yÞdy : ð3Þ

The effect of sampling inputs can be assessed with reference to this integral, by viewing the

sampling process as an effective quadrature in which the sampled inputs define the abscissae.

The quality of the sampling can then be measured by the quality of the quadrature. The impor-

tant question of how its accuracy is determined in conjunction with the sampling of the hyper-

cubic region of input parameter space is central to a robust and reliable sensitivity analysis.

2.2 Sampling methodologies

In this section, we declare and briefly describe the input parameter space sampling methodolo-

gies that will be assessed in this work. We concern ourselves with two popular Monte Carlo

(MC) sampling methodologies: Uniform (U) and Latin Hypercube (LH), and three Quasi-

Monte Carlo (QMC) sampling methods: Golden Ratio (GR), Lattice Rule (LR) and Sobol

Sequence (SS).

2.2.1 Monte-Carlo sampling methods. Uniform sampling. The simplest sampling

approach from literature is uniform sampling [22]. Input parameters y are regarded as uni-

formly distributed random variables, within the hypercube In such that:

I½ f � ¼ E½ f ðX ðt; yÞ; yÞ� ’
1

N

XN

i¼1

f X t; y i
� �

; y
i� �
; i ¼ 1; . . . ;N; ð4Þ

where E is the expectation operator, y is a parameter vector of length n. This is deemed a

crude approximation with poor convergence rates [23].

Latin hypercube sampling. The efficiency of MC methods is determined by the properties

of the random samples. A priority for researchers is to develop strategies which ensure points

are placed more uniformly, within In. One response is to use LH [24], which is a very common

methodology in life sciences [25–28]. Its main objective is to reduce the variance associated

with evaluating Eq (3). One decomposes the space of inputs into N-dimensional squares, to

ensure the space is sampled as uniformly as possible. Let f�ijg, for j = 1, . . ., n, be independent

random permutations of samples i = 1, . . ., N, each uniformly distributed over all N! possible
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permutations. One then sets

y
i
j ¼

�ij þ U
i
j � 1

N
; j ¼ 1; . . . ; n; i ¼ 1; . . . ;N; ð5Þ

where Ui
j are independently randomly sampled points on the [0, 1] interval. It can be seen

intuitively how only one sample point of the input parameters falls between i� 1

N and 1

N for each

dimension j = 1, . . ., n. Here, we use the ‘standard’ version of LH, but see [29] for other

variations.

2.2.2 Quasi Monte-Carlo sampling methods. An improvement on the Monte-Carlo

sampling methodologies is the low discrepancy sampling (LDS) methods, coupled with the

QMC algorithm, as shown in [30, 31]. Discrepancy is a measure of the deviation of sampled

points from the uniform distribution [32]. Consider a number of points NR from a sequence

{θi}, for i = 1, ‥, N, in an n-dimensional rectangle R centred upon an origin 0, whose sides are

parallel to the coordinate axis, which is a subset of In : R� In, where R is attached with a mea-

sure. A sequence has low discrepancy if the proportion of points in the sequence falling into an

arbitrary set R is close to the measure of R. LDS satisfies the upper bound condition [33]:

DN � kðnÞ
½lnðNÞ�2

N
; ð6Þ

where DN is the sample discrepancy and k(n) is a particular constant depending on the

sequence and size of input paraeter space. LDS is designed to place sample points as uniformly

as possible mathematically, within a hypercube, instead of the statistical approach adopted in

LH. The QMC approximation of the integral in Eq (3) has identical form to Eq (4).

I½ f � ¼

PN
i f ðX ; y

i;q
Þ

N
; ð7Þ

except in this framework, y
i;q

is a quasi sampled parameter vector which has been generated

from an LDS and the points are distributed uniformly in the unit hypercube In. As a conse-

quence, the sample points generated on In have a deterministic nature.

Golden ratio sampling. Golden ratio sampling is an LDS sampler in which sample points

are based on the fractional part of successive integer multiples of the golden ratio. First intro-

duced by Schretter and Kobbelt [34], using a simple incremental permutation of a generated

golden ratio sequence, they demonstrated equal coverage of a two-dimensional space. Since

this point experimental investigations have begun to explore the effectiveness of this sampling

method [35]. Let y ¼ ðy1; y2; . . . ; ynÞ be a n-dimensional parameter vector, where each param-

eter θi has a lower bound y
min
i and an upper bound y

max
i . We want to generate N samples of y .

First, we define a set of n distinct points fxig
n
i¼1

in Rn
as follows:

x i ¼
cos 2pi

n

� �
� y

min
i

y
max
i � y

min
i

;
sin 2pi

n

� �
� y

min
i

y
max
i � y

min
i

; . . .

 !

; for i ¼ 1; . . . ; n: ð8Þ

Where xi is an alternating sequence of cosines and sines.

Then, we define a set of n weights fwig
n
i¼1

using the golden ratio ϕ:

wi ¼
�
i

ð�
n
� ð� �Þ

� n
Þ
: ð9Þ
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To generate N samples fy j
∗
g
N
j¼1

, we use the following procedure:

y
∗
j ¼

Xn

i¼1

wix i � ðy
max
� y

min
Þ þ y

min for j ¼ 1; . . . ;N ð10Þ

where� denotes the element-wise product, y
min

and y
max

are the vectors of lower and upper

bounds, respectively. Samples are then perturbed as in section 2.2.1 to generate N independent

samples. It is the structure obtained from utilising the golden ratio that provides the effective

structure. In this work and specifically in Section 3, we will test GR sampling for systems with

input parameter dimensions much higher than two.

Rank-1 lattice rule sampling. Another LDS is the rank-1 lattice rule, where an n-dimen-

sional rank-1 lattice P is a set of points that contains no limit points and satisfies [36]:

y
0
2 P) y þ y

0
2 P and y � y0 2 P; 8y : ð11Þ

A general lattice is constructed by a generating matrix G 2 Rn�n:

P ¼ fGVjV 2 Zng; ð12Þ

where V is any integer unimodular vector. A generator matrix is not unique to a lattice P, i.e.,

P can be obtained from different generator matrices. A rank-1 lattice is a special case of the

general lattice, which has a simple operation for point set construction, instead of directly

using Eq (12). A rank-1 lattice point set can be constructed as

y i ≔
iz
N

� �

; i ¼ 0; . . . ;N � 1; ð13Þ

where z 2 Zn is the generating vector and the inner product denotes the operation of taking

the fractional part of the input number element-wise. One can then scale y i as above to obtain

parameter samples between the specified bounds. Compared with the general lattice rule, the

construction form of the rank-1 lattice already ensures the constructed points are inside the

unit cube, without the need for any further checks.

Sobol sequence sampling Our final sampling methodology is the well-known Sobol LDS

[37]. The Sobol sequence is widely considered as the optimal sequence for exploration of an

input parameter space [27, 38–40]. The Sobol low-discrepancy sequence is a quasi-random

sequence based on the following equation:

yi ¼
XN

j¼1

ai;j
2j
v j; for i ¼ 1; ‥; n ð14Þ

ai,j is the j-th digit in the binary representation of i, and v j is the j-th direction vector in n
dimensions.

To ensure that the samples y i lie within specified bounds for each dimension, we can mod-

ify the equation as follows:

yi ¼ y
mini þ

XN

j¼1

ai;j
2j
v j � ðy

maxi � y
miniÞ

 !

ð15Þ

The direction vectors vj are pre-computed and can be obtained from various sources. One

common choice is to use the direction vectors provided by Sobol [37]. Put simply, the Sobol

LDS aims to achieve three requirements: (1) best uniformity as n!1 as often sampling
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methodologies struggle to provide adequate coverage in high dimensional spaces [41–43]; (2)

good distribution even with small parameter sizes; (3) a very fast computational algorithm.

2.3 Sensitivity analysis and orthogonality

Given a model of the form in Eq (2) with Y (a continuous or discrete output), a variance based

first order or total order effect can be calculated for a generic input factor θi. y
c
i denotes the

complementary set, i.e., all other model inputs excluding θi. The first order sensitivity index

can be written as:

Si ¼ VaryiðEyci ðYjyiÞÞ; ð16Þ

where E is the expectation operator. The inner expectation operator functions such that the

mean of Y is taken over all possible values of y
c
i while keeping θi fixed. The outer variance is

taken over all possible values of θi. Then utilising the known identity [44]:

VaryiðEyci ðYjyiÞÞ þ EyiðVaryci ðYjyiÞÞ ¼ VarðYÞ; ð17Þ

where VaryiðEyci ðYjyiÞÞmeasures the first order (additive) effects of θi on the model outputs.

Another popular variance measure (and the concentration of this work) is total order estima-

tors, first introduced by Homma [45]:

ST;i ¼ Eyci ðVaryiðYjy
c
iÞÞ ¼ VarðYÞ � Varyci ðEyiðYjy

c
iÞÞ: ð18Þ

Here ST,i measures the total effect, i.e., first and higher order effects (multiplicative interac-

tions) of input parameter θi. One can consider this by recognising that Varyci ðEyiðYjy
c
iÞÞ is the

first order effect of y
c
i , so VarðYÞ � Varyci ðEyiðYjy

c
iÞÞmust give the contribution of all terms in

the variance decomposition which do include the input θi.
The equations can be derived through a Hoeffding-Sobol decomposition, and utilising the

fact that each term is assumed to be square integrable. The detailed derivation can be found in

[46, 47].

Sobol indices converge slowly in general and estimators are used to accelerate the process

[11, 13]. Here, we benchmark five sampling methodologies against four commonly chosen

total order estimators: Homma and Saltelli [45], Sobol [48], Jansen [49] and Janon et al. [50].

While this list is far from exhaustive, it represents a selection of total order estimators which

have been practically used within the field and are not costly to execute computationally.

For the Homma & Saltelli, Sobol and Janson estimators, their mean and variance take the

following form:

f0 ¼
PN

l¼1
f ðAÞ
N

; VarðYÞ ¼
PN

l¼1
½ f ðAÞ � f0�

2

N � 1
; ð19Þ

and for the Janon estimator:

f0 ¼
PN

l¼1
½ f ðAÞ þ f ðAiBÞ�

2N
; VarðYÞ ¼

PN
l¼1
½ f ðAÞ2 � f ðAiBÞ

2
�

2N
� f 2

0
: ð20Þ

In order to utilise the above formulae, we propose two independent sampling matrices are

generated—A and B, with elements aij and bij, for i = 1, . . .,N, j = 1, . . ., n (where N is the num-

ber of samples and n is the total number of input parameters). We can now introduce a matrix

AiB or BiA where all the rows are from A or B, except the i-th row which is extracted from B or

A. These matrices are then used to compute the sensitivity indices which will be discussed
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below. While one can use either combination of the A and Bmatrices, within this work we use

the couple A;AiB due to its proven efficiency in calculating sensitivity indices [16]. When utilis-

ing the estimators in Table 1, f represents the differential algebraic equations (DAE) system

which we solve numerically. f is then executed by supplying a parameter vector (columns from

our sample matrices A and B). We then obtain a total order sensitivity matrix ST, of dimension

(m × n) wherem and n are the measurement and parameter dimensions, respectively.

As will be defined in the next section, we will calculate total order indices for both continu-

ous and discrete measurements. For continuous measurements, calculating the total order

index produces waveform data which demonstrate the sensitivity of each input parameter over

the cardiac cycle. In order to quantify the effects continuous measurements have on the calcu-

lation of total order, we must average this sensitivity waveform. Rather than averaging across a

time range (which process regions of low variance equally to those of high variance), we seek

to expose differential sensitivities by examining variance-weighted averages:

TAST;i ¼
P

kST;iðY
cðtkÞÞVarðY

cðtkÞÞP
kVarðY

cðtkÞÞ
; ð21Þ

where TAST,i is the time averaged total order effect of an input parameter i and YcðtkÞ repre-

sents the approximated continuous measurement at time step k. The division is performed

component-wise such that TAST,i is of size (m × 1) and this vector represents the time averaged

sensitivity indices for an input parameter i against all outputsm.

We use the measure dij to measure orthogonality between input parameters θi and θj:

dij ¼ sin

"

cos� 1

 
STT;j � ST;i
jjST;jjjjjST;ijj

!#

; i; j ¼ 1; ‥; n; dij 2 0; 1½ �; ð22Þ

where STT;j represents the transposed total order sensitivity vector of input parameter j. The

standard dot is used to compute STT;j � ST;i and the Euclidean norm is utilised on each sensitivity

vector ||ST,i||. Calculating Eq (22) returns a n × nmatrix where each element dij 2 [0, 1]. dij = 0

represents total dependence between input parameters and dij = 1 represents complete inde-

pendence. We then are able to rank input parameters by calculating the mean of input parame-

ters’ orthogonality and ranking them such that the input parameter with the highest

orthogonality is in position 1 and the input parameter with the lowest orthogonality is in posi-

tion n, where n is the input space dimension.

2.4 Models and data

We examine two models, which are representative of the heart and systemic circulation, of

varying dimensionality in order to assess their potential effects on total order estimators. The

Table 1. Formulae to compute ST, where f0 and Var represent the mean and variance of the outputs respectively,

as defined in Eqs (19) and (20). l runs from 1 to N for the number of model samples.

Authors Estimator ST
Homma & Saltelli [45]

VarðYÞ �
PN

l¼1
f ðAÞf ðAiBÞ

N þ f 2
0

Sobol [48]
PN

l¼1
f ðAÞ½f ðAÞ� f ðAiBÞ�

N

Jansen [49]
PN

l¼1
½f ðAÞ� f ðAiBÞ�

2

2N

Janon et al. [50]
VarðYÞ �

PN

l¼1
f ðAÞf ðAiBÞ

N � f 2
0

https://doi.org/10.1371/journal.pcbi.1011946.t001
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first model is a three-compartment system-level, differential algebraic equations (DAE) based,

electrical analogue cardiovascular (CV) model after Bjordalsbakke et. al. [51] which we will

refer to as the 1-chamber model (see Fig 1A). Our second model is a five-compartment

model, introduced by Shi et al. [52], which we shall denote the 2-chamber model (see Fig 1B).

All model simulation code is avilable at https://github.com/H-Sax/Orthgonality-SA. The latter

model is of the same form as Bjordalsbakke’s, however, the input parameter space dimension-

ality has increased from nine to twenty, due to the addition of an atrium and other

compartments.

Each compartment state is specified by its dynamic pressure P(t) (mmHg), an inlet flow Q
(t) (mL/s) and a volume V(t) (mL):

X iðtÞ ¼ ðViðtÞ; PiðtÞ;QiðtÞÞ
T
; ð23Þ

where i 2 {lv, sa, sv} for the 1-chamber model and lv, sa, sv represent the left ventricle, systemic

artery and systemic veins respectively; i 2 {lv, la, sas, sat, sar, scp, svn} for the 2-chamber model

and lv, la, sas, sat, sar, scp, svn denote the left ventricle, left atrium, systemic aortic sinus, sys-

temic artery, systemic arterioles, systemic capillary and systemic vein. Formally, t is the contin-

uous variable time. The input parameters for the 1 and 2 chamber models are displayed in

Tables 2 and 3.

In generic form, the equations relating to the passive compartmental state variables all take

the form:

dVs;i

dt
¼ Qi � Qiþ1;

dPi
dt
¼

1

Ci
ðQi � Qiþ1Þ; Qi ¼

Pi� 1 � Pi
Ri

;
dQi

dt
¼

1

Li
ðPi � Piþ1Þ; ð24Þ

where the subscripts (i − 1), i, (i + 1) represent the proximal, present and distal system com-

partments, respectively. Vs,i(mL) denotes the circulating (stressed) volume [53]. Ci (mL/

mmHg), Ri (mmHgs/mL) and Li (mmHg s2/mL) denote compartmental compliance, the

Ohmic resistance and compartmental inertia between compartments i and (i + 1). See Fig 1

and Tables 2 and 3.

Fig 1. The two electrical analougue models utilised in this work. (A) is a nine parameter representation of the systemic circulation originally

presented by Bjordalsbakke et al. [51]. (B) is a twenty parameter representation of the systemic circulation originally presented by Shi et al. [52].

https://doi.org/10.1371/journal.pcbi.1011946.g001
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Fig 1 is a schematic representation for both the simple and advanced model. Note: (i) in

Fig 1A, we use a C-R-C Windkessel [54] to represent the 2-chamber where as in Fig 1B, we use

a C-R-L Windkessel to represent the aortic sinus and the systemic artery; (ii) no inertance

appears in Fig 1A and there is no representation of the left atrium; (iii) all compartments in

Table 2. Input parameters for the 1 chamber model. Each input parameter’s unit is stated alongside a chosen initial

value for the 9 parameter, 1-chamber model. τ is the cardiac cycle length and is fixed such that τ = 1s. The ventricular

shift parameter Eshift = 0 s as no atrium is present in this model.

Parameter y (units) Description Initial Value

Emax
mmHg
ml

� �
Maximal ventricular contractility 1.5

Emin
mmHg
ml

� �
Minimal ventricular contractility 0.03

τes (s) End systolic time 0.3τ
τep (s) End pulse time 0.45τ

Zao
mmHg s

ml

� �
Aortic valve resistance 0.033

Rmv
mmHg s

ml

� �
Mitral valve resistance 0.006

Rs
mmHg s

ml

� �
Systemic resistance 1.11

Csa ml
mmHg

h i
Systemic compliance 1.13

Csv ml
mmHg

h i
Venous compliance 11.0

https://doi.org/10.1371/journal.pcbi.1011946.t002

Table 3. Input parameters for the 2 chambers model. Each input parameter’s unit is stated alongside a chosen initial

value for the 20 parameter, 2-chamber model. τ is the cardiac cycle length and is fixed such that τ = 1s. The ventricular

shift parameter Eshift = 0.92 s as an atrium is present in this advanced 20 parameters model.

Parameter y (Units) Description Initial Value

Eminlv
mmHg
ml

� �
Minimal Ventricular Contractility 0.1

Emaxlv
mmHg
ml

� �
Maximal Ventricular Contractility 2.5

teslv ðsÞ Ventricular Contraction 0.3

teplv ðsÞ Ventricular Relaxation 0.45

Eminla
mmHg
ml

� �
Minimal Atrium Contractility 0.15

Emaxla
mmHg
ml

� �
Maximal Atrium Contractility 0.25

tesla ðsÞ Atrium Contraction 0.045τ

tepla ðsÞ Atrium Relaxation 0.09τ

Zao
mmHg s

ml

� �
Aortic Valve Resistance 0.033

Rmv
mmHg s

ml

� �
Mitral Valve Resistance 0.06

Csas ml
mmHg

h i
Sinus Compliance 0.08

Rsas
mmHg s

ml

� �
Sinus Resistance 0.06

Lsas
mmHg s

ml

� �
Sinus Inertia 6.2 � 10−5

Csat ml
mmHg

h i
Arterial Compliance 1.6

Rsat
mmHg s

ml

� �
Arterial Resistance 0.05

Lsat
mmHg s2

ml

h i
Arterial Inertia 0.0017

Rsar
mmHg s

ml

� �
Arteriole Resistance 0.5

Rscp
mmHg s

ml

� �
Capillary Resistance 0.52

Rsvn
mmHg s

ml

� �
Venous Resistance 0.075

Csvn ml
mmHg

h i
Venous Compliance 20.5

https://doi.org/10.1371/journal.pcbi.1011946.t003
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both models are passive, having fixed compliances; (iv) flow in and out of the active left atrium

in Fig 1B is controlled by the systemic veins and the mitral valve. For both models, in

Fig 1A and 1B, flow in and out of the active left ventricle is controlled by the mitral and aortic

valves respectively. The valves are modelled as diodes, with Ohmic resistance under forward

bias and infinite resistance under reverse bias:

Qi ¼

Pi� 1 � Pi
Rval

; Pi� 1 > Pi;

0 Pi� 1 � Pi;

8
><

>:
ð25Þ

where Rval represents the resistance across the respective valve.

Let us consider the active model compartment. The dynamics of the left ventricle or left

atrium are described by a time-varying compliance C(t), or reciprocal elastance, E(t) (mmHg/

mL) which determines the change in pressure for a given change in the volume [53]:

EðtÞ ¼
PðtÞ

VðtÞ � V0

¼
PðtÞ
VsðtÞ

; ð26Þ

where V0 & Vs(t) represent the unstressed and stressed volumes, respectively, in the left ventri-

cle or left atrium. E(t) may be described in analytical form as follows [52]:

EðtÞ ¼ ðEmax � EminÞ � eðtÞ þ Emin;

eðtÞ ¼

1

2
1 � cos pt

tes

� �� �
; 0 � t < tes;

1

2
1þ cos pðt� tesÞ

tep� tes

� �� �
; tes � t < tep;

0; tep � t < t;

8
>>>><

>>>>:

ð27Þ

where e(t; τes, τep) is the activation function for both the ventricle and the atrium and is para-

meterised by the end systolic and end pulse timing parameters τes and τep respectively.

The elastance function is defined over one cardiac cycle, i.e., time �t 2 ½0; t� with τ (the

length of the cardiac cycle) fixed in this work to τ = 1 s. The contractility, Emax, and the compli-

ance, Emin, both control the elastance extrema of the left ventricular and the left atrium. There

is a discontinuity in E(t) at t = τ when the next cycle starts.

Model A is implemented directly as a system of ODEs, Model B is implemented using an

acausal modelling framework which will simplify the implementation of model variations. The

acausal modelling library is published as a Julia package, CirculatorySystemModels.jl [55]. For

further information on the mathematical construction of these systems, see [56].

As we focus on the computation of total order indices, along with varying model

dimensionality, we will also vary the type of data provided to the model between continuous

and discrete. For the simple nine parameter model defined in Fig 1A, we utilise:

Y cðtÞ ¼ ðPlv; Psa;VlvÞ
T
; Y d ¼ ðMeanðPlvÞ;MaxðPsaÞ;MaxðVlvÞÞ

T
; ð28Þ

where Yc and Yd represent the continuous and discrete measurement vector. For the twenty

dimensional model in Fig 1B we utilise similar measurements:

Y cðtÞ ¼ ðPlv; Psat;VlvÞ
T
; Y d ¼ ðMeanðPlvÞ;MaxðPsatÞ;MaxðVlvÞÞ

T
: ð29Þ

The discrete measurements above are scalar quantities extracted from a continuous waveform

solution. The mean measurement averages across the whole waveform which then gives the

scalar measurement.
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We follow the advice of Saltelli et al. [16] that the first and total order indices require k com-

putations:

k ¼ Nðnþ 2Þ; ð30Þ

where n is the dimensionality of the input parameter space, N is the number of samples taken

from the input parameter space and k is the total number of model evaluations needed in

order to compute the indices. It is well accepted within the literature, that utilising the low dis-

crepancy Sobol sequence combined with the Jansen Estimator is considered best practice for

calculation of total order indices [16, 18].

Given the high non-linearity and stiffness associated with these lumped parameter models,

we first perform an assessment of convergence and uncertainty in the calculation of the total

order indices. We consider the indices converged once there is no more change in the rank of

the input parameters and the error associated with the indices is less than 5%. Once the indices

have converged with the Jansen estimator and Sobol sampling methodology, we fix this sample

size, N, for all other estimators and sampling methodologies. For the 9-parameter, 1-chamber

model shown in Fig 1A, we investigate the convergence by varying N 2 [2000, 40000]. For the

20-parameter, 2-chamber model shown in Fig 1B, we vary N 2 [10000, 30000]. The uncer-

tainty associated with the indices is calculated using re-sampling with replacement, where we

set the number of bootstraps to B = 1000, as found in the literature [21, 57]. Once convergence

has been achieved for the discrete measurements, we use this sample size N for the continuous

outputs to ensure the time averaged indices derived are not subject to excessive uncertainty.

All computations are performed using Julia [58] and reproducible code is available at

https://github.com/H-Sax/Orthgonality-SA. Fig 2 details the workflow needed to generate the

sensitivity indices in Julia. Step 1 involves defining the ODEs of the system of interest. Model

A is defined employing the package DifferentialEquations.jl [59] and Model B is implemented

using our acausal modelling library CirculatorySystemModels.jl [55]. Step 2 generates the sam-

ple points needed to perform GSA. QuasiMonteCarlo.jl is a Julia package which provides the

needed sampling algorithms. Step 3 uses GlobalSensitivity.jl [60] which is a Julia implementa-

tion of the Sobol indices with varying estimators and bootstrapping methodology. Then to

analyse the sensitivity indices, we utilise self written functions.

Specifically, simulations were solved using Vern7 algorithm [61], with relative and absolute

tolerances set to 10−8. We saved the model solution at 200 points between cycles 15 and 16, a

steady solution being reached after 5 cycles and used Makie.jl to visualise results [62].

3 Results

In this section, we present: (i) the convergence of total order indices with respect to both dis-

crete and continuous output measurements; (ii) our investigation outcomes of varying the

four estimators with the five sampling methodologies defined in Section 2.2. First, the con-

vergence results will be illustrated in Section 3.1. Then in the next two subsections, total

order Sobol indices and orthogonality of input parameters for the 1-chamber, 9-parameter

model (Fig 1A) and the 2-chamber, 20-parameter model (Fig 1B) are shown. Between each

subsection, we examine what effect the different choices of estimator and sampling method-

ology has on the orthogonality of input parameters. Within each of the subsections, we make

the distinction between the effects of continuous and discrete measurements. We present

results for input parameters which are deemed to have high clinical significance (i.e., bio-

markers), for example, low arterial compliance Csa may indicate a stiffening of the vessel.

Each subsection displays convergence of a single parameter for brevity. All other data are
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available at https://github.com/H-Sax/Orthgonality-SA. Physiologically realistic time series

solutions generated from the model is shown in Fig 3.

3.1 Convergence and uncertainty

Fig 4 shows the convergence and the uncertainty of the minimal ventricular elastance Emin for

the 1-chamber and 2-chamber models. We calculate the Sobol indices using the Jansen estima-

tor and Sobol sampling, which are considered to be best practice [18, 49]. Henceforth, they are

regarded as our benchmark and the sample size returned from this initial investigation is used

for evaluations on all other estimators and sampling methods. Increasing the sample size and

re-sampling with replacement allow us to evaluate the sample size at which the Sobol indices

have converged with minimum uncertainty. This is displayed as a band around the index of

interest and represents a 95% confidence interval of the index estimate.

For the 1-chamber model, 10, 000 samples (110, 000 model evaluations) ensured conver-

gence when computed against the discrete measurements defined in Eq (28). Fig 4A shows

that evaluating the Sobol indices at a higher sample size would provide minimal improvement

Fig 2. Workflow to compute sensitivity indices within Julia. Full code utilising these steps can be found at https://github.com/H-Sax/Orthgonality-

SA.

https://doi.org/10.1371/journal.pcbi.1011946.g002
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and at 10, 000 samples the indices are subject to negligible error. Fig 4B shows that the contin-

uous indices have minimal error during the cardiac cycle so when we compute the time aver-

aged indices no excessive error will be present. Using the 10, 000 sample size, we computed the

continuous Sobol indices against the measurements defined in Eq (28). For the 2-chamber

model, 20, 000 samples (660, 000 model evaluations) were adequate as seen in Fig 4C. The con-

tinuous measurements of the 2-chamber model, seen in Fig 4D, show that the indices were not

subject to error for 20, 000 samples. Fig 4C appears to indicate that fewer samples may be ade-

quate for the 2-chamber model. However, the adopted sample size ensured all input parame-

ters displayed a consistent rank with less than 5% error.

3.2 1-chamber model

The uncertainty associated with the computation of Sobol total order indices on the 1-chamber

model, with N = 10, 000 samples, is presented in Fig 5. Only the results for arterial compliance

Csa are displayed in this figure. The 95% confidence intervals for the Homma and Sobol esti-

mators are considerably wider than that of the Jansen and Janon estimators. The Homma esti-

mator consistently produced estimates of the sensitivity indices which are different to that of

the other available estimators. The Jansen and Janon estimators are identical in their computa-

tions of the sensitivity indices and confidence intervals, invariant of the sampling methodology

used. When the Homma and Sobol estimators are used, the latin hypercube and uniform sam-

pling methods produce larger confidence intervals compared to the quasi-monte carlo sam-

pling methods.

When calculating total order indices on the 1-chamber model with continuous measure-

ments (the histograms for the orthogonality distributions of input parameters are presented in

Fig 6), we notice that the orthogonality spreads for the Jansen and Janon estimators are identi-

cal for the golden ratio and Latin hypercube sampling methodologies. The Jansen estimator

Fig 3. Time series solutions for the 1 and 2 chamber cardiovascular models investigated in this work. The

solutions shown are the ones which are utilised in the investigation.

https://doi.org/10.1371/journal.pcbi.1011946.g003
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coupled with lattice rule sampling also shares this orthogonality distribution. The Janon esti-

mator, with Lattice Rule and Sobol sampling, and the Jansen estimator with Sobol sampling,

exhibit minor variations from the previous orthogonality distributions generated by Janon and

Jansen estimators, however, are identical between themselves. The orthogonality distributions

returned from the Homma and Sobol estimators exhibit large variations for each sampling

methodology, although the Sobol estimator with the Sobol sampling returns an orthogonality

distribution similar to that seen by the Jansen and Janon estimators. These results are mirrored

in Table 4 where the input parameters are ranked based on their orthogonality scores in the

parameter space. We see the orthogonality results obtained for the Jansen and Janon estima-

tors are invariant to sampling methodologies. In contrast, the rankings for Sobol and Homma

estimators vary amongst different sampling methodologies. The Sobol estimator when coupled

with Sobol sampling, returns a parameter ranking almost identical to that of the Jansen and

Janon estimators, a result consistent with the one observed in Fig 6.

In Table 5, stratification by estimator type and examination of the range of an input param-

eter across all sampling methodologies reveal, as inferred from Table 4, that the Jansen and

Janon estimators exhibit no variation for the whole input parameter set, given any sampling

methodology. This indicates that the Jansen and Janon estimators are the optimal choices for

this model. The Homma and Sobol estimators exhibit variations of 1.33 and 1.67 upon the

input parameter set, respectively. These variations mean that using Homma and Sobol estima-

tors will return differing orthogonality rankings when different sampling methodologies are

Fig 4. Convergence and uncertainty of indices associated with the minimum ventricular elastance Emin. Fig A

displays the convergence and uncertainty of the Sobol indices ST calculated on discrete measurements for the

1-chamber model against increasing sample size. Here, the vertical line signifies the chosen sample size for the

1-chamber model at N = 10, 000. Fig B presents the continuous Sobol indices with uncertainty bounds, calculated at a

sample sizeN = 10, 000, on continuous measurements over a single cardiac cycle, for the 1-chamber model. Fig C

displays the convergence and uncertainty of ST calculated on discrete measurements for the 2-chamber model against

increasing sample size. Again, the vertical line signifies the chosen sample size for this model, at N = 20, 000. Fig D

shows the continuous Sobol indices with uncertainty bounds forN = 20, 000, on continuous measurements over a

single cardiac cycle, for the 2-chamber model. The measurements shown in blue, yellow and green denote the left

ventricular pressure, the systemic arterial pressure and the left ventricular volume, respectively. In the discrete settings

(i.e., A and C), the measurements are the mean left ventricular pressure, the maximum systemic arterial pressure and

the maximum left ventricular volume.

https://doi.org/10.1371/journal.pcbi.1011946.g004
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used. When stratifying by sampling types, Table 6 reveals that Sobol and Lattice Rule sam-

plings exhibit the smallest mean variations of the input set across all estimator types. It is

important to note that these variations are a consequence of the Sobol and Homma estimators

which both exhibited different orthogonality rankings for input parameters. These results indi-

cate that given a less than optimal estimator, the Sobol or Lattice rule sampling methodology

may produce a ranking which can be considered closer to the ground “truth”. Interestingly, we

notice that the commonly used Latin Hypercube sampling methodology in life sciences exhib-

its the largest variation of an input set of parameters.

Fig 7 displays the convergence and uncertainty associated with the computation of the total

order indices of the mitral value resistance Rmv for the 1-chamber model against the discrete

Fig 5. Total order Sobol indices ST of the arterial compliance Csa for the 1-chamber model with continuous measurements. Panels A—T show ST
of Csa, for 3 continuous measurements—left ventricular pressure, systemic arterial pressure and the left ventricular volume (represented in blue, yellow

and green curves, respectively), over a single cardiac cycle with differing estimators and sampling methodologies. Measurements are evaluated with

N = 10, 000 samples, using B = 1000 bootstrapped samples to evaluate the uncertainty of the estimate. The bands represent 95% confidence intervals

associated with specific indices displayed as solid curves.

https://doi.org/10.1371/journal.pcbi.1011946.g005
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measurements. In all cases, as the sample sizes are increased, the accuracy of the estimations

and uncertainty associated with the indices improve. The Jansen and Janon estimators provide

the most efficient convergences and smallest errors when calculating the indices. A sample size

of N = 10, 000 is taken for the discrete measurements, because the columns for the Jansen and

Janon estimators (Panels K—T) illustrate that any additional samples would return minimal

improvements in terms of accurate calculation of the indices. The Homma and Sobol estima-

tors (Panels A—J) display considerably larger errors than that of the Jansen and Janon estima-

tors. When the upper limit sample size of k = 40, 000 is reached, the Homma and Sobol

estimators appear to have converged with reduced errors when combined with the Sobol, Lat-

tice Rule and Golden sampling methods, although the errors are still much larger than those

exhibited by the Jansen and Janon estimators. The uniform and Latin hypercube sampling

methods present the largest errors when combined with the Sobol estimator.

When calculating total order indices on the 1-chamber model with discrete measurements,

the histograms presented in Fig 8 show that the orthogonality spreads for the Jansen and

Janon estimators for all sampling methodologies, except the Janon estimator and the Latin

Hypercube sampling pairing, are identical. We notice, the orthogonality distributions returned

from the Homma estimator exhibit large variations for each sampling methodology, as seen

with continuous measurements shown in Fig 6. The Sobol estimator column (Panels F—J) in

Fig 6. Orthogonality distributions of input parameters for the 1-chamber model with continuous measurements—Histograms A-T show the

distribution of orthogonality returned from examinations of the sensitivity vectors, calculated from continuous measurements. Here, an

orthogonality score of 1 represents total independence of input parameters, whereas 0 represents total dependence. Each individual diagram denotes a

specific combination of sampling methodology and estimator type. The frequency of each histogram is normalised such that it is comparable between

plots, i.e., the larger the frequency of a bin, the larger the number of orthogonality scores calculated from the original sensitivity vectors.

https://doi.org/10.1371/journal.pcbi.1011946.g006
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Fig 8 displays orthogonality spreads which are somewhat similar to that of Jansen and Janon,

however are still quite variant amongst sampling methodologies. These results are reflected in

Table 7 where the Jansen and Janon estimators are shown to invariant to sampling methodolo-

gies, whilst the rankings of parameter orthogonality for the Sobol and Homma estimators vary

amongst different sampling methodologies.

Table 4. Input parameter ranking for the 1-chamber model with continuous measurements—Here, input parameters are ranked based on the averaged orthogonal-

ity score returned from the calculated total order sensitivity matrix. In addition, the ranking is stratified by both sampling and estimator types.

τes τep Rmv Zao Rs Csa Csv Emax Emin

Homma SS 5 4 9 3 2 8 7 6 1

LR 5 4 9 3 2 8 6 7 1

GR 5 4 9 3 1 8 5 6 2

U 7 4 9 3 1 8 5 6 2

LH 6 4 8 1 3 9 5 7 2

Sobol SS 4 3 8 5 1 7 9 6 2

LR 4 3 9 6 1 8 7 5 2

GR 4 3 8 7 1 6 9 5 2

U 5 3 8 4 1 9 7 6 2

LH 5 4 6 3 1 8 9 7 2

Jansen SS 4 3 7 5 1 8 9 6 2

LR 4 3 7 5 1 8 9 6 2

GR 4 3 7 5 1 8 9 6 2

U 4 3 7 5 1 8 9 6 2

LH 4 3 7 5 1 8 9 6 2

Janon SS 4 3 7 5 1 8 9 6 2

LR 4 3 7 5 1 8 9 6 2

GR 4 3 7 5 1 8 9 6 2

U 4 3 7 5 1 8 9 6 2

LH 4 3 7 5 1 8 9 6 2

https://doi.org/10.1371/journal.pcbi.1011946.t004

Table 5. The ranges of input parameters across 5 sampling types for a specific estimator for the 1-chamber model with continuous measurements.

τes τep Rmv Zao Rs Csa Csv Emax Emin Mean variation of input set

Range Homma 2 0 1 2 2 1 2 1 1 1.33

Range Sobol 1 1 3 4 0 2 2 2 0 1.67

Range Jansen 0 0 0 0 0 0 0 0 0 0

Range Janon 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pcbi.1011946.t005

Table 6. The ranges of input parameters across 4 estimator types for a specific sampling method for the 1-chamber model with continuous measurements.

τes τep Rmv Zao Rs Csa Csv Emin Emax Mean variation of input set

Range SS 1 1 2 2 1 1 2 0 1 1.22

Range LR 1 1 2 2 1 1 2 0 1 1.22

Range GR 1 1 2 4 0 2 3 2 0 1.67

Range U 3 1 1 2 0 2 4 0 0 1.44

Range LH 2 1 2 4 2 2 4 1 0 2.00

https://doi.org/10.1371/journal.pcbi.1011946.t006
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In Table 8, stratifying by estimator type and examining the range an input parameter exhib-

its across all sampling methodologies reveals that the Jansen and Janon estimators exhibit no

variation for any input parameter set, given any sampling methodology, once again implying

they are the optimum choice. The Homma and Sobol estimators exhibit variations of 5.11 to

2.22, respectively, upon the input parameter set. The variations for the discrete measurements

are much greater than the variations seen with continuous measurements. When stratifying by

sampling type, Table 9 shows the Sobol sampling method exhibits the smallest mean variation

of an input set across all estimator types. As above, due to only the Sobol and Homma estima-

tor exhibiting largely varying parameter rankings, stratifying by sampling methodology places

Fig 7. Total order Sobol indices ST of the mitral valve resistance Rmv for the 1-chamber model with discrete measurements. Panels A—T show ST
of Rmv, for 3 discrete measurements: mean left ventricular pressure, maximum systemic arterial pressure and maximum left ventricular volume

(represented in blue, yellow and green, respectively), evaluated at increasing sample sizes (N 2 [2000, 40000] using B = 1000 bootstrapped samples),

with differing estimators and sampling methodologies. The bands represent 95% confidence intervals associated with specific indices displayed as solid

curves. The red solid vertical lines represent the point (N = 10, 000) at which the sample size is taken.

https://doi.org/10.1371/journal.pcbi.1011946.g007
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more emphasis on the apparent less robust estimators. From this result, it does appear the

Sobol sampling method may improve the robustness associated with a parameter orthogonal-

ity ranking. One notable observation as seen in Tables 4 and 7 is that while the robustness of

the Jansen and Janon estimator can be observed in both tables, the ranking associated with the

orthogonality of input parameters changes quite dramatically (for example, Emin, Rmv, Zao and

Rs), highlighting how the change in data type may have consequences in parameter interpreta-

tion when conducting a sensitivity analysis.

Overall, for the 1-chamber model with 9 input parameters, we have seen consistent themes

of the Jansen and Janon estimators being most robust and most reliable which appear attribut-

able to the excellent convergence exhibited by these estimators. Sobol and Homma estimators

exhibit very variable parameter rankings across different sampling methodologies which are in

line with the poor convergence of these estimators. The Sobol sampling method appears to

reduce the level of uncertainty associated with an input parameter’s orthogonality ranking, as

shown in Tables 6 and 9. Interestingly, continuous measurements appear to reduce the level of

variation associated with parameter orthogonality ranking when compared to discrete

measurements.

Fig 8. Orthogonality distributions of input parameters for the 1-chamber model with discrete measurements—Histograms A-T show the

distribution of orthogonality returned from examinations of the sensitivityvectors, calculated from continuous measurements. Here, an

orthogonality score of 1 represents total independence of input parameters, whereas 0 represents total dependence. Each individual diagram denotes a

specific combination of sampling methodology and estimator type. The frequency of each histogram is normalised such that it is comparable between

plots, i.e., the larger the frequency of a bin, the larger the number of orthogonality scores calculated from the original sensitivity vectors.

https://doi.org/10.1371/journal.pcbi.1011946.g008
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3.3 2-chamber model

In this section, we present the results of our uncertainty study on the 20 parameters, 2-cham-

ber model. First, the uncertainty associated with the computation of Sobol total order indices,

for this more complex model, with N = 20, 000 samples, is presented in Fig 9. Only the results

for the left ventricular maximum elastance Emaxlv are displayed here. The Jansen and Janon

Table 7. Input parameter ranking for the 1-chamber model with discrete measurements—Again, input parameters are ranked based on the averaged orthogonality

score returned from the calculated total order sensitivity matrix. The ranking is also stratified by both sampling and estimator types.

τes τep Rmv Zao Rs Csa Csv Emax Emin

Homma SS 3 1 4 2 5 9 8 6 7

LR 3 1 4 2 6 7 9 8 5

GR 2 4 6 1 7 5 8 9 3

U 5 2 8 6 7 3 9 4 1

LH 3 4 5 6 1 8 2 7 9

Sobol SS 3 2 4 1 5 8 7 6 9

LR 6 2 4 1 3 9 7 5 8

GR 3 2 5 1 6 7 8 4 9

U 1 3 5 2 4 8 7 6 9

LH 7 1 4 2 3 6 8 5 9

Jansen SS 5 2 3 1 4 9 7 6 8

LR 5 2 3 1 4 9 7 6 8

GR 5 2 3 1 4 9 7 6 8

U 5 2 3 1 4 9 7 6 8

LH 5 2 3 1 4 9 7 6 8

Janon SS 5 2 3 1 4 9 7 6 8

LR 5 2 3 1 4 9 7 6 8

GR 5 2 3 1 4 9 7 6 8

U 5 2 3 1 4 9 7 6 8

LH 5 2 3 1 4 9 7 6 8

https://doi.org/10.1371/journal.pcbi.1011946.t007

Table 8. The range of parameter ranking across 5 sampling types for a specific estimator for the 1-chamber model with discrete measurements.

τes τep Rmv Zao Rs Csa Csv Emax Emin Mean Variation of input set

Range Homma 3 3 4 4 6 6 7 5 8 5.11

Range Sobol 6 2 1 1 3 3 1 2 1 2.22

Range Jansen 0 0 0 0 0 0 0 0 0 0

Range Janon 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pcbi.1011946.t008

Table 9. The ranges of input parameters across 4 estimator types for a specific sampling method for the single ventricle model with discrete measurements.

τes τep Rmv Zao Rs Csa Csv Emin Emax Mean variation of input set

Range SS 2 1 1 1 1 1 1 0 1 1.11

Range LR 3 1 1 1 3 2 2 3 3 2.11

Range GR 3 2 3 0 3 4 1 5 6 3.00

Range U 4 1 3 5 3 6 2 2 8 3.56

Range LH 4 3 2 5 3 3 6 2 1 3.22

https://doi.org/10.1371/journal.pcbi.1011946.t009
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estimators display identical index and confidence interval calculations, apart from when com-

bined with the lattice rule sampling methodology, the plots show slightly larger confidence

intervals for the left ventricular volume comparing to the other cases. The Homma and Sobol

estimators again display much larger confidence interval estimates compared to the Jansen

and Janon estimators. The errors associated with the Sobol sampling methodology when the

Homma and Sobol estimator are used, are much smaller compared to the Latin hypercube and

uniform sampling methodologies, hence demonstrating the impact sampling methodology

can have on the estimations of sensitivity indices.

Next, we calculate total order indices on the 20 dimensional 2-chamber model with contin-

uous measurements. From the histograms presented in Fig 10, the orthogonality spreads for

Fig 9. Total order Sobol indices ST of the maximal left ventricular elastance Emaxlv
for the 2-chamber model with continuous measurements.

Panels A—T show ST of Emaxlv , for 3 continuous measurements—left ventricular pressure, systemic arterial pressure and the left ventricular volume

(represented in blue, yellow and green curves, respectively), over a single cardiac cycle with differing estimators and sampling methodologies.

Measurements are evaluated with N = 20, 000 samples, using B = 1000 bootstrapped samples to evaluate the uncertainty of the estimate. The bands

represent 95% confidence intervals associated with specific indices displayed as solid curves.

https://doi.org/10.1371/journal.pcbi.1011946.g009
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the Jansen and Janon estimators are nearly identical for all sampling methodologies, excluding

the uniform sampling, which shares the same orthogonality spread between the two estima-

tors. With the Homma estimator, the spreads of orthogonality appear more consistent

amongst the sampling techniques associated with itself, comparing against the test cases on the

1-chamber model, however, they are largely different from what returned from the Jansen and

Janon estimators. The Sobol estimator generated results which appear closer to the orthogo-

nality distributions of the Jansen and Janon estimators, whilst they are not identical, the

orthogonality distributions between different sampling methodologies are more consistent

than the ones exhibited by the Homma estimator. Examining Table 10, the rankings of input

parameters are more consistent for the Jansen and Janon estimators, although there are slight

discrepancies, as seen on the simple 1-chamber model.

In Table 11, stratifying by estimator type and examining the range an input parameter

exhibits across all sampling methodologies reveal that the Jansen and Janon estimators exhibit

minimal variations to sampling methodologies—1.3 and 1.45, respectively. The Homma and

Sobol estimators exhibit variations of 8.2 and 7.35 respectively upon the input parameter set.

When stratifying by sampling type, Table 12 shows the Sobol sampling method exhibits the

smallest mean variation of an input set across all estimator types of 7.2. This is still a large

Fig 10. Orthogonality distributions of input parameters for the 2-chamber model with continuous measurements—Histograms A-T show the

distribution of orthogonality returned from examinations of the sensitivity vectors, calculated from continuous measurements. Here, an

orthogonality score of 1 represents total independence of input parameters, whereas 0 represents total dependence. Each individual diagram denotes a

specific combination of sampling methodology and estimator type. The frequency of each histogram is normalised such that it is comparable between

plots, i.e., the larger the frequency of a bin, the larger the number of orthogonality scores calculated from the original sensitivity vectors.

https://doi.org/10.1371/journal.pcbi.1011946.g010
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variation due to all estimator types being considered and therefore the range accounts for

some of the spurious values generated by the Homma and Sobol estimators.

Fig 11 displays the convergence and uncertainty associated with the computation of the

total order indices of the venous compliance Csvn, for the 2-chamber model, against the dis-

crete measurements. We see in all cases that as the sample size is increased, the estimate and

uncertainty associated with the indices improve. Similar as the continuous measurement case

for Emaxlv shown in Fig 9, the Jansen and Janon estimators provide the most efficient conver-

gence and the smallest error when calculating the indices. A sample size of N = 20, 000 is taken

for the discrete measurements, as seen in the Jansen and Janon columns (Panels K—T), any

additional sampling would return minimal improvements in terms of accurate calculation of

the indices. The Homma and Sobol estimators display errors which are considerably larger

than that of Jansen and Janon estimators. We see when the upper limit sample size of N = 30,

000 is reached, the Homma and Sobol estimator errors are still large. This results demonstrates

that for this complex model, less efficient estimators (such as Homma and Sobol) and a less

accurate sampling method (such as Latin hypercube) display large confidence intervals and

struggle to return converged index values.

From the histograms presented in Fig 12, the orthogonality spreads exhibit similar trends

to that of the continuous measurements, shown in Fig 10. We note that the histograms are

identical for the Jansen and Janon except when the Uniform sampling method is used (which

exhibits slight variations from the other histograms). With the Homma and Sobol estimators,

although there appears to be low level consistency amongst their orthogonality distributions,

they are very different to the ones produced by the Jansen and Janon estimators. Examining

Table 10. Input parameter ranking for the 2-chamber model with continuous measurements—Here, input parameters are ranked based on the averaged orthogonal-

ity score returned from the calculated total order sensitivity matrix. In addition, the ranking is stratified by both sampling and estimator types.

Homma Sobol Jansen Janon

SS LR GR U LH SS LR GR U LH SS LR GR U LH SS LR GR U LH

Eminlv 3 8 8 2 2 12 8 13 9 11 5 5 5 6 5 5 5 6 6 5

Emaxlv 7 11 15 1 1 2 3 3 5 5 1 1 1 1 1 1 1 1 1 1

teslv 1 4 6 6 8 8 5 8 8 8 3 3 3 4 3 3 3 3 4 3

teplv 2 5 7 7 9 9 4 6 6 9 2 2 2 2 2 2 2 2 2 2

Eminla 8 10 1 12 11 13 14 7 2 14 7 7 7 7 7 7 7 7 7 7

Emaxla 9 9 2 11 12 16 17 18 14 15 18 18 18 19 18 18 18 18 19 18

tesla 19 16 16 18 19 19 19 15 20 13 8 8 8 16 9 8 8 8 16 13

tepla 13 1 11 13 17 15 15 20 18 20 16 16 17 17 16 16 16 17 17 15

Zao 10 2 13 14 13 11 10 12 7 10 4 4 4 3 4 4 4 4 3 4

Rmv 17 15 12 3 5 18 16 17 10 18 17 17 16 15 17 17 17 16 15 17

Csas 16 17 18 20 20 7 6 4 17 16 9 9 9 8 8 9 9 9 8 8

Rsas 18 18 19 16 16 14 7 14 4 12 6 6 6 5 6 6 6 5 5 6

Lsas 14 20 17 17 15 1 2 2 1 1 15 15 15 14 15 15 15 15 14 16

Csat 6 3 3 4 4 6 11 9 12 7 10 10 10 9 10 10 10 10 9 9

Rsat 12 12 14 15 18 3 9 5 19 6 13 11 12 11 13 13 11 12 10 10

Lsat 15 19 20 19 14 10 1 1 3 2 14 14 14 13 14 14 14 14 13 14

Rsar 5 6 4 9 6 5 12 11 16 3 12 13 13 12 12 12 13 13 12 12

Rscp 4 7 5 10 7 4 13 10 15 4 11 12 11 10 11 11 12 11 11 12

Rsvn 20 14 9 5 10 20 18 16 11 19 19 19 19 18 19 19 19 19 18 19

Csvn 11 13 10 8 3 17 20 19 13 17 20 20 20 20 20 20 20 20 20 20

https://doi.org/10.1371/journal.pcbi.1011946.t010
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Table 11. The ranges of input parameters across 5 sampling types for a specific estimator for the 2-chamber model with continuous measurements.

Range Homma Range Sobol Range Jansen Range Janon

Eminlv 6 5 1 1

Emaxlv 14 3 0 0

teslv 7 3 1 1

teplv 7 5 0 0

Eminla 11 12 0 0

Emaxla 10 4 1 1

tesla 3 7 8 8

tepla 16 5 1 2

Zao 12 5 1 1

Rmv 14 8 2 2

Csas 4 13 1 1

Rsas 3 7 1 1

Lsas 6 1 1 2

Csat 3 6 1 1

Rsat 6 16 2 3

Lsat 6 9 1 1

Rsar 5 11 1 2

Rscp 6 11 2 1

Rsvn 15 9 1 1

Csvn 10 7 0 0

Mean Variation Of Input Set 8.2 7.35 1.3 1.45

https://doi.org/10.1371/journal.pcbi.1011946.t011

Table 12. The ranges of input parameters across 4 estimator types for a specific sampling method for the 2-chamber model with continuous measurements.

Range SS Range LR Range GR Range U Range LH

Eminlv 9 3 7 7 9

Emaxlv 6 10 14 4 4

teslv 7 2 5 4 5

teplv 7 3 5 5 7

Eminla 6 7 6 10 7

Emaxla 9 9 16 9 6

tesla 11 11 8 4 10

tepla 3 15 4 5 5

Zao 7 8 8 11 9

Rmv 1 2 5 12 13

Csas 9 11 14 12 12

Rsas 12 12 14 11 10

Lsas 14 18 15 16 15

Csat 4 8 7 8 6

Rsat 10 3 9 9 12

Lsat 5 18 13 16 12

Rsar 7 7 9 7 9

Rscp 7 4 7 5 8

Rsvn 1 5 10 13 9

Csvn 9 7 10 12 17

Mean Variation Of Input Set 7.2 8.15 9.3 10.65 9.75

https://doi.org/10.1371/journal.pcbi.1011946.t012
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Table 13, the rankings of input parameters are consistent for the Jansen and Janon estimators

apart from the Uniform column which often returns a parameter ranking differing to the

other sampling types.

In Table 14, stratifying by estimator type and examining the range a input parameter exhib-

its across all sampling methodologies reveals that the Jansen and Janon estimators exhibit min-

imal variation to sampling methodologies—0.9 and 1.0, respectively. This is an improvement

on the continuous measurements as the Jansen estimator returns less than 1 parameter range

variation. The Homma and Sobol estimators produce variations of 10.9 and 5.55 respectively

upon the input parameter set. When stratifying by sampling type, Table 15 shows the Lattice

Fig 11. Total order Sobol indices ST of the venous compliance Csvn for the 2-chamber model with discrete measurements. Panels A—T show ST of

Csvn, for 3 discrete measurements: mean left ventricular pressure, maximum systemic arterial pressure and maximum left ventricular volume

(represented in blue, yellow and green, respectively), evaluated at increasing sample sizes (N 2 [10000, 30000] using B = 1000 bootstrapped samples),

with differing estimators and sampling methodologies. The bands represent 95% confidence intervals associated with specific indices displayed as solid

curves. The red solid vertical lines represent the point (N = 20, 000) at which the sample size is taken.

https://doi.org/10.1371/journal.pcbi.1011946.g011
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Rule sampling method exhibits the smallest mean variation of an input set across all estimator

types of 5.75. This is still a large variation but is less than the variation exhibited by the contin-

uous measurements.

Overall, for the more complex 2-chamber model with 20 input parameters, the Jansen

and Janon estimators are consistently the most robust and reliable estimators. When using

continuous measurements, neither returns an input parameter set mean variation greater

than 1. When using discrete measurements, they return a mean variation less than or equal

to 1 (see Tables 11 and 14). This, as in the 1-chamber case, could be attributable to the effi-

cient rate of convergence displayed by the Jansen and Janon estimator. The Sobol and

Homma estimators exhibit very different parameter rankings across different sampling

methodologies with variations of up to 10.9. These large variations are in line with the poor

convergence associated with these estimators. The Sobol and Lattice Rule sampling method

appears to reduce the level of uncertainty associated with an input parameter’s orthogonality

ranking (see Tables 12 and 15), despite spurious parameter rankings from the Homma and

Sobol estimators leading to large parameter variation when stratified by sampling

methodologies.

Fig 12. Orthogonality distributions of input parameters for the 2-chamber model with discrete measurements—Histograms A-T show the

distribution of orthogonality returned from examinations of the sensitivity vectors, calculated from continuous measurements. Here, an

orthogonality score of 1 represents total independence of input parameters, whereas 0 represents total dependence. Each individual diagram denotes a

specific combination of sampling methodology and estimator type. The frequency of each histogram is normalised such that it is comparable between

plots, i.e., the larger the frequency of a bin, the larger the number of orthogonality scores calculated from the original sensitivity vectors.

https://doi.org/10.1371/journal.pcbi.1011946.g012
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4 Discussion

Utilising two cardiovascular system models, the main aim of our investigation is to test the

robustness of the calculation of the input parameter orthogonality, while varying total order

estimator types and sampling methodologies, across differing input parameter dimensionali-

ties and types of data on which the total order indices were calculated. The results presented in

Section 3 display overwhelming robustness for the Jansen and Janon estimators when calculat-

ing total order indices when compared to other options. For the 1-chamber, 9-parameter

model, we observed that these two estimators gave nearly invariant outcomes to both the sam-

pling methodology and the data type. When the dimensionality of the model parameters is

increased to 20, we noted that the Jansen and Janon estimators exhibited small variations on

the input parameter orthogonality rankings. For the Jansen estimator with discrete measure-

ments, it returned a mean variation of less than 1. We observed that the Homma and Sobol

estimators regularly returned mean variations for input parameter sets greater than 1, which is

particularly amplified when the model dimensionality is increased.

Given our aim is to assess the use-ability of estimators and sampling methodologies for

practical identifiability studies, these results indicate that if the used estimator and sampling

methodology are not robust, the calculated optimal parameter set is unreliable. The usage of

unrobust estimators and sampling methods can therefore produce misleading conclusions

with practical consequences, especially in investigations applied to life sciences. Interestingly,

we witnessed that the variations attached to the Sobol and Lattice Rule sampling methods were

the lowest across all model dimensionalities and data types. Our results also reinforce the

Table 13. Input parameter ranking for the 2-chamber model with discrete measurements—Here, input parameters are ranked based on the averaged orthogonality

score returned from the calculated total order sensitivity matrix. In addition, the ranking is stratified by both sampling and estimator types.

Homma Sobol Jansen Janon

SS LR GR U LH SS LR GR U LH SS LR GR U LH SS LR GR U LH

Eminlv 17 18 14 1 3 7 6 6 9 6 5 5 5 5 5 5 5 5 5 5

Emaxlv 18 14 9 3 7 19 18 19 20 20 20 20 20 19 20 20 20 20 19 20

teslv 4 5 4 10 11 8 7 8 6 5 4 4 4 4 4 4 4 4 4 4

teplv 1 1 1 2 8 4 4 7 7 4 3 3 3 3 3 3 3 3 3 3

Eminla 19 19 8 14 12 14 14 14 1 16 16 16 16 18 16 16 16 16 18 16

Emaxla 20 20 6 9 9 15 13 16 15 9 17 17 17 16 17 17 17 17 16 17

tesla 9 12 17 19 17 16 19 18 17 15 12 12 12 12 12 12 12 12 12 12

tepla 15 17 7 12 15 17 17 17 18 7 15 15 15 17 15 15 15 15 17 15

Zao 14 6 12 20 13 3 2 5 4 2 1 1 1 1 1 1 1 1 1 1

Rmv 13 15 10 4 5 18 15 15 16 17 14 14 14 15 14 14 14 14 15 14

Csas 11 7 16 15 16 12 16 11 2 18 7 7 7 7 7 7 7 7 7 7

Rsas 7 10 19 18 20 6 3 4 5 3 2 2 2 2 2 2 2 2 2 2

Lsas 8 8 18 17 19 1 1 1 3 1 18 18 18 14 18 18 18 18 14 18

Csat 5 4 5 11 6 5 5 3 12 12 6 6 6 6 6 6 6 6 6 6

Rsat 10 11 15 13 14 11 11 2 8 8 10 11 9 9 10 10 11 9 9 10

Lsat 6 9 20 16 18 2 10 12 13 13 8 8 8 8 8 8 8 8 8 8

Rsar 3 2 2 8 4 9 8 9 11 11 9 9 10 11 11 9 9 10 11 11

Rscp 2 3 3 7 2 10 9 10 10 10 11 10 11 10 9 11 10 11 10 9

Rsvn 16 16 13 6 1 13 12 13 14 14 13 13 13 13 13 13 13 13 13 13

Csvn 12 13 11 5 10 20 20 20 19 19 19 19 19 20 19 19 19 19 20 19

https://doi.org/10.1371/journal.pcbi.1011946.t013
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findings reported in [14, 63] that the commonly used Latin Hypercube method is less than

optimal in exploring the input parameter space, especially at high dimensionalites.

The Jansen and Janon robustness at calculating total order indices can be attributed to the

Jansen estimator never allowing negative values in the numerator (see estimator definitions in

Table 1), where as the Janon estimator is the only estimator which has been proven to be both

asymptotically normally distributed and asymptotically efficient meaning as the sample size

increases the estimation error associated with calculating the indices is negligible [50]. They

are both highly optimised estimators with very little room for improvement [49, 50]. The

allowance of negative indices in both the Sobol and Homma estimators is an explanation for

the poor performance in the calculations of these indices. From the Hoeffding-Sobol decom-

position, the total order indices can be viewed as a decomposition of the variance. Thus, any

negative value obtained from an estimator is not theoretically possible (the average of the

squared deviations). Any negative value returned from an estimator is likely to be due to

numerically instability, or some points in the parameter space returning unphysiological

results. Thus reinforcing the important point of ensuring any sensitivity indices have ade-

quately converged in order to avoid any of these unstable points.

While the robustness of the Homma and Sobol estimators have been questioned within this

work, this does not mean they lack ability to produce accurate estimations of parameter influ-

ence. Fig 13 displays the Homma and Sobol total order estimator results against the maximum

left ventricular volume with an increased sample size comparing to the tests conducted earlier

—N = 100, 000 (which requires 2, 200, 000 model evaluations). We observe that now with a

much extended sample size, the confidence intervals (green bands in Fig 13) and parameter

Table 14. The ranges of input parameters across 5 sampling types for a specific estimator for the systemic circulation model with discrete measurements.

Range Homma Range Sobol Range Jansen Range Janon

Eminlv 17 3 0 0

Emaxlv 15 2 1 1

teslv 7 3 0 0

teplv 6 3 0 2

Eminla 11 15 2 1

Emaxla 14 7 1 0

tesla 10 4 0 2

tepla 10 11 2 2

Zao 14 3 0 0

Rmv 11 3 1 1

Csas 9 16 0 0

Rsas 13 3 0 0

Lsas 11 2 4 4

Csat 7 9 0 0

Rsat 5 9 2 2

Lsat 14 11 0 0

Rsar 6 3 2 2

Rscp 5 1 2 2

Rsvn 15 2 0 0

Csvn 7 1 1 1

Mean Variation Of Input Set 10.9 5.55 0.9 1.0

https://doi.org/10.1371/journal.pcbi.1011946.t014
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Fig 13. Estimator comparisons with larger samples for the 2-chamber model with discrete measurements—The

Sobol and Homma estimators results are based on 100k samples, compared to the Jansen and Janon estimators

using 40k samples both with 95% confidence. The input parameter effect is displayed against the maximum left

ventricular volume as an example here.

https://doi.org/10.1371/journal.pcbi.1011946.g013

Table 15. The ranges of input parameters across 4 estimator types for a specific sampling method for the 2-chamber model with discrete measurements.

Range SS Range LR Range GR Range U Range LH

Eminlv 12 13 9 8 3

Emaxlv 2 6 11 17 13

teslv 5 3 4 6 7

teplv 3 3 6 5 5

Eminla 5 5 8 17 4

Emaxla 5 7 11 7 8

tesla 7 7 6 7 5

tepla 2 2 10 6 8

Zao 13 5 11 19 12

Rmv 5 1 5 12 12

Csas 5 9 9 13 11

Rsas 5 8 17 16 18

Lsas 17 17 17 14 18

Csat 1 2 3 6 6

Rsat 1 0 13 5 6

Lsat 6 2 12 8 10

Rsar 6 7 8 3 7

Rscp 9 7 8 3 7

Rsvn 3 4 0 7 13

Csvn 8 7 9 15 9

Mean Variation Of Input Set 6 5.75 9.35 9.7 9.15

https://doi.org/10.1371/journal.pcbi.1011946.t015
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interpretations from Homma and Sobol estimators are similar to that of the Jansen or Janon

estimators, which are displayed in panels C and D for N = 40, 000 samples. Theoretically, this

demonstrates all estimators can produce equivalent results, when ‘large enough’ samples are

used. However, in the case of a limited computational budget, our results indicate a clear esti-

mator choice, to obtain robust and valid parameter interpretations with the best computa-

tional efficiency.

With the highly optimised Jansen and Janon estimators, it is evident that they consistently

exhibit the most efficient convergence and produce the smallest uncertainties when calculating

total order indices. This phenomenon matches the consistent orthogonality observed among

input parameters across various sampling techniques when coupled with the Jansen and Janon

estimator. Conversely, the Homma and Sobol estimators tend to yield significantly larger

uncertainties when sample sizes are held constant among estimators, thus explaining the lack

of consistent orthogonality rankings for the input parameters. Increasing the sample size

seems to ameliorate the uncertainties associated with the Homma and Sobol estimators, partic-

ularly when employing the Sobol, lattice rule, and Golden sampling methods. This observation

underscores the resilience of low-discrepancy sequences, demonstrating their effectiveness

even in conjunction with a sub-optimal estimator. While the work of Puy et al. [18] did not

delve into extensive convergence or uncertainty quantification, it is plausible to infer that the

Jansen and Janon estimators, with their superior convergence rates and lower uncertainty,

played a pivotal role in their conclusion that these estimators are the most efficient at capturing

the true effects of input parameters.

Our investigation has been confined to two highly non-linear stiff differential algebraic

equation systems with the understanding that they represent a high level of complexity, there-

fore good modelling guidelines obtained here would be readily applicable to simpler, more lin-

ear models which are associated with a less variable input parameter space. Thus, obtaining

sensitivity estimates for linear models is considerably less expensive than what has been con-

ducted here. Convergence and uncertainty quantification have historically been left out of sen-

sitivity analysis studies, despite being highlighted as vital, if the results of studies were then to

influence policy /societal /clinical decisions [14, 64]. In this study, we have highlighted the

impact that convergence has on a total order estimator, alongside this, we have also shown the

impact of the level of sampling taken, on the calculation of total order estimators. It appears

intuitively sensible that the higher density of sampling leads to better resolution of the input

parameter space, hence our sensitivity analysis gives a better indication about which input

parameters are truly influential. Current literature states that N> 500 but this recommenda-

tion is based on physical systems which are mostly linear. The work conducted and results

shown in this study highlight that for a highly non-linear system, one should investigate

N> 5000. More importantly, it is clear that no two systems are the same, so for one to ensure

adequate resolution of an input parameter space, convergence and uncertainty quantification

through bootstrapping must be an essential step in any modeller’s workflow, given the aim is

to perform accurate and robust parameter identification studies.

While it is clear that a large sample size is needed in order to ensure accurate sensitivity esti-

mates, researchers are often restricted by the computational budget available to them. Without

sufficient computational speed, it would be unfeasible to perform the needed number of

model evaluations in order to obtain accurate indices interpretation. In our example of the

2-chamber model, 100k samples required 2.2 million model evaluations. 1 model evaluation

took 0.039 seconds to run in Julia, thus would require 23.8 hours if this was computed in serial.

The Julia language has consistently shown to be 10 to 100 times [59, 65] quicker than other

comparable languages in solving systems of this class and the usage of parallel computation on

high performance computing facilities has further sped up our simulations. Therefore, in
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situations of a limited computational budget, the selection of an efficient language and estima-

tors which require less samples to reach convergence is key.

Although not exhaustive, the list of estimators investigated in this paper does represent

what are readily available, practically usable and computationally feasible. Puy et al. [18] also

recommended the estimator introduced by Azzini et al. [66], which appeared to produce simi-

lar results to the Jansen estimator. The Azzini estimator requires k = 2N(n + 1) model evalua-

tions, compared to N(n + 2) evaluations needed by the estimators investigated in this work.

The 2-chamber model would require k = 1, 320, 000 model evaluations for Azzini estimator.

For models with higher parameter dimensions, this would be computationally infeasible. With

the increasing prospect of digital twins in healthcare, more complex and detailed models

which accurately represent the true physiological processes are generated. However, the bottle-

neck which prevents the progression of these models to clinically applicable situations is the

computational cost associated with a detailed sensitivity analysis. This does not refer to the cal-

culation of the indices, but the process of solving the dynamical system. Therefore, while new

estimators may prove to be accurate, the focus must be on efficient resolution of complex

dynamical systems and the efficiency of the estimators for low sample numbers, in order to

ensure a thorough sensitivity analysis.

All the estimators used in this work are available in the global sensitivity packages such as

SALib, GlobalSensitivity.jl, SenSobol and sbiosobol [60, 67, 68]. It is reassuring to see that the

default estimator used to calculate the total order index, in the available packages, is the Jansen

estimator. Given the conclusion drawn from Puy et al. [18] and the findings from this work,

researchers could straightforwardly use the above packages when performing practical iden-

tifiability studies and would obtain a reliable optimal set of input parameters which best

describes the experimental data available to them.

Another area of research is the calculation of total order sensitivity indices where one

assumes dependency between input parameters. This is partially investigated by Puy et al. [68]

in implementing the method of Glen et al. [69]. This method requires a prescription of linear

dependencies between parameters, however, these are often not known in realistic life science

models. As a result, Puy et. al. [68] demonstrated the inaccuracy associated with this method

when calculating the true effects. There have been various methods deriving variance based

sensitivity indices with dependent inputs [70–72], however, similar as the method of Glen

et al. [69], they require knowledge of the dependencies that exist within the model and there-

fore the computational power needed to simulate these indices is often much larger than the

standard Sobol indices. On top of this, there is no accepted method for how to calculate these

dependent indices which should be of interest for future work. Therefore, the need to under-

stand how input parameter orthogonality is affected by varying estimators and sampling meth-

odologies is of significant importance, in order for total order sensitivity indices to be utilised

in identifiability studies.

While we have conducted this work through the lens of utilising the method of Li et. al. [7]

(see Eq (1)) for practical identifiability studies, it is also applicable to other methods. Another

approach of identifying input parameters is the structured correlations method [73], where

one seeks to identify correlations between parameters and to calculate ranks (based on which

parameters can be identified uniquely if they are not strongly correlated with other parame-

ters). This approach utilises the total order sensitivity matrix to calculate these correlations.

Therefore, the need for reliable and robust sensitivity matrices is vital to whichever method is

implemented.

The work of Puy et al. [18] is conclusive in its findings of the Jansen and Janon estimators

being the most reliable in finding the “truth” input parameter effects. Our work complements

these conclusions in that we find the Jansen and Janon are the most reliable in the calculation
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of input parameter orthogonality, which appears to be motivated by input parameter conver-

gence. Puy et al. [18] also reported that any choice made on the model have a non-negligible

effect. While we agree with these conclusions for the most part, we are able to identify that sim-

ilar to the model dimensionality, it appears choices we make, such as the sampling methodol-

ogy and type of data used, have more impactful consequences. The lower variation associated

with input parameter sets, when low discrepancy sequences are used, implies their effective-

ness in returning robust and reliable input parameter sets. It appears that there is no clear

advantage of using either continuous or discrete measurements when choosing how to calcu-

late the total order indices.

5 Conclusion

Our study delved into the intricacies of varying sampling methodologies and variance-based

total order estimators, aiming to establish best practices for practical identifiability studies. We

conducted our investigation using two highly non-linear and stiff 0D models of the human

cardiovascular system as our test cases: (i) a 1-chamber, 9-parameter model and (ii) a 2-cham-

ber, 20-parameter model, both based on differential algebraic equations. Through a thorough

empirical assessment of total order estimators and sampling methodologies, we gained valu-

able insights into their strengths and weaknesses, shedding light on the orthogonality of the

input parameters within the models. This analysis complements prior work that focused on

the estimators’ ability to uncover the “true” effects of a model, enriching our comprehension

of their practical identification.

Our findings strongly advocate for the Jansen and Janon estimators as robust choices across

different sampling methodologies, measurement data variations, and model dimensions.

These two estimators emerge as preferred tools for calculating total order indices and, conse-

quently, for identifying the optimal set of input parameters. Their efficient convergence and

the consequential reduction in index uncertainty make them the optimal choice for this task.

Furthermore, we recommend the use of low-discrepancy quasi-random Sobol and Lattice Rule

sampling schemes as optimal sampling methodologies to complement Jansen and Janon

estimators.

In essence, our work establishes a robust framework of good modelling practice for practi-

cal identifiability studies, considering both the influence of input parameters and their orthog-

onality. By incorporating these best practices into modeling studies, researchers can

consistently and reliably identify the optimal input parameters for dynamical systems. This

approach not only enhances the quality and accuracy of parameter identification, but also

paves the way for more informed decision-making in various scientific and practical domains.
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