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Abstract. To date, investigations into extracting photovoltaic (PV)
model parameters remain a prominent and enduring area of scholarly re-
search. The literature provides several methodologies demonstrating sub-
stantial precision, complexity, and practical relevance divergence. This
investigation introduces a meta-heuristic strategy for retrieving the five
parameters of the Single Diode Equivalent Model (SDM) applicable to
photovoltaic modules characterized by varying cell sizes, quantities, and
different PV technologies (including crystalline silicon and polycrystalline).
This study has provided practical recommendations for designing innova-
tive parameter extraction methodologies based on photovoltaic models,
which are relevant for enhancing the efficiency of performance, control,
detection, and diagnosis approaches for PV anomalies.

Keywords: Photovoltaic Array· single diode model · parameters extrac-
tion · failure· GWO.

1 Introduction

Solar energy is deemed sustainable and ecologically benign owing to its lesser en-
vironmental and public health ramifications than fossil fuels. The falling cost of
photovoltaic modules, juxtaposed with the escalating and potentially depleting
price of petrochemical fuels, has accelerated the adoption of solar PV systems.
These systems, formerly considered solely for specific applications in remote
and isolated areas, are now extensively used [1]. Modeling photovoltaic systems
is a vital component of solar energy research, as it plays a pivotal role in their
design and optimization. A comprehensive understanding of their intricate work-
ings is indispensable in responding to the growing need for sustainable energy
options [2–4]. Typically, a model representation of a photovoltaic generator in-
corporates an equivalent circuit and a set of parameters that accurately describe



its electrical characteristics and operational behavior. Eliciting these specifica-
tions is complex, as they are absent in the photovoltaic module’s data sheet, and
their values fluctuate based on varying operating conditions [5]. The precision of
the parameters derived from the model holds paramount significance. Further-
more, the accuracy of the PV model is directly correlated with the quantity of
integrated PV characteristics [6].

In the academic literature, five parameters, namely Iph, Is, a, Rs, and Rsh,
are commonly utilized when applying the single-diode model. This practice sim-
plifies the process, as the double-diode model (DDM) requires the inclusion of
two diodes that present a significant number of unknown variables [7]. Neverthe-
less, the double-diode model replicates the process of minority carrier dispersion
and recombination in photovoltaic solar cells. The fundamental methods for
extracting PV model parameters are divided into three primary classes: numeri-
cal, analytic, non-iterative, and optimization strategies [8]. Numerical techniques
involve solving equations through numerical calculations, trial and error, or al-
ternative iterative algorithms. On the other hand, analytic methods use a set
of equations that are resolved explicitly, simplifying both formulation and con-
ventional implementation. The parameters are deduced through curve fitting to
minimize the disparity between the theoretical and measured I-V curves in the
optimization method. Furthermore, various metaheuristic algorithms fall into
this category. The numerical approach requires the preliminary determination
of the initial parameter values, and certain parameters may exhibit prolonged
convergence times to reach the global optimum. Consequently, it is deemed un-
suitable for online fault diagnosis. However, the key point positioning and sam-
pling accuracy constrain the current analytical solution technique. Consequently,
both methodologies face limitations in extracting the five parameters in a mul-
tipeaked condition induced by partial shading. The optimization technique sur-
passes previous methods in accuracy, and its versatility extends to online fault
detection and diagnosis. Several meta-heuristic algorithms have been proposed
in the literature over the last decade. For instance, the advanced approaches
detailed in references [9] and [10] hinge on the application of genetic algorithms
(GA) and particle swarm optimization (PSO) for the extraction of five unknown
parameters. On the other hand, in this study [11,12], the authors opted for the
Differentiation Evolutionary (DE) approach and the Improved Adaptive Dif-
ferential Algorithm (IADE) to extract the parameters of a single-diode model.
A long PV extraction technique list is presented in the literature, such as CS,
GWO, ABC... The core objective of this study is to investigate the robustness
and accuracy of the proposed procedure rather than to evaluate its performance
across diverse scenarios. The choice to apply the GWO algorithm is grounded
in its demonstrated efficacy in literature, particularly in comparison to analo-
gous methodologies within the same family. Furthermore, this inquiry extends
to the application of the GWO algorithm across multiple photovoltaic modules,
varying in sizes, technological classifications, and cell numbers within the panel.

This study aims to evaluate the algorithm’s ability to preserve its efficiency
and precision concerning the number of cells. This evaluation aims to provide
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insights into the optimal quantity of cells required to effectively detect faults.
Finally, the authors agree to present this paper comprehensively and recommend
the following organization: The second section outlines the mathematical formu-
lation of the PV array model, while the third section elaborates on the extraction
parameters of the PV model, emphasizing essential performance indicators. Fol-
lowing this, the fourth section elucidates the approach’s implementation, offering
a comprehensive description of its design and execution. In addition, section 5
details the experimental testing process. Finally, the paper includes a discussion
of results with a brief conclusion, accompanied by recommendations for further
investigations.

2 Mathematical formulation of PV models

2.1 Single diode model

This section briefly overviews the theoretical concepts associated with photo-
voltaic modeling, particularly the single-diode model. It was initially developed
to mimic monocrystalline silicon photovoltaic cells. However, it has become
widely used in photovoltaic modeling due to its simplicity and minimal com-
putational requirements [4, 13]. Further advanced variants that incorporate two
or three diodes to enhance accuracy at low irradiance are available [14]. Never-
theless, the primary emphasis of this study is on the single-diode model, while
its equivalent circuit is presented in Fig 1. This circuit includes five parameters,
which are as follows: The photocurrent (Iph), the diode saturation current (Is),
the modified diode factor (a), the series resistance (Rs) and the shunt resistance
(Rsh). The output current can be formulated as follows:

Fig. 1: PV cell’s equivalent circuit.

I = Iph − Id − Ish (1)

According to Shockley’s equation and Kirchhoff’s voltage law, Id and Ish can be
calculated as follows:

Id = Is × [exp
V +I×Rs

a×Vt − 1] (2)
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Ish =
q(V + I.Rs)

Rsh
(3)

Where Is denotes the diode reverse saturation current, V represents the cell
output voltage, and Vt is the junction thermal voltage, formulated as outlined
in Equation 4.

Vt =
k × T

q
(4)

Where k symbolizes Boltzmann’s constant, T denotes the junction temper-
ature in Kelvin (k = 1.380650310−23J/K), and q signifies the electronic charge
(q = 1.6021764610−19C). From the above equations, the output current I be-
comes the following:

Icell = Iph − Io[exp
V +I.Rs

Vt −1]− V + I.Rs

Rsh
(5)

Identifying these parameters is crucial to accurately simulating the actual
behavior of the photovoltaic system, improving the model’s ability to reflect and
predict the complexities inherent in practical applications.

2.2 PV module model

The layout of a photovoltaic panel establishes a series of interconnections be-
tween a set of solar cells, with the specific aim of increasing the panel’s output
voltage. Similarly, photovoltaic modules can be interconnected in parallel, in se-
ries, or a combination of both interconnection schemes, as seen in Figs 2 and
3. The mathematical expression of a photovoltaic array requires considering the
number of solar modules arranged in series (Ns) and parallel PV strings (Np).
The mathematical formula of a photovoltaic (PV) module is specified in Equa-
tion, where commercially available panels typically comprise cells interconnected
in a series topology [15].

Imodule = Iph − Io

[
exp

(
V + I ·Rs ×Ns

Vt ×Ns

)
− 1

]
− V + I ·Rs ×Ns

Ns ×Rsh
(6)

The validity and applicability of (6) are not limited to a single module, as it can
be applied to any number of cells connected in series. This equation is applicable
if Nmodule modules, each containing Ncell cells in series, are interconnected.

Ns = Ncell ×Nmodule (7)

The equation describing the relationship between the output current (Iarray) and
voltage (Varray) of a photovoltaic panel, which consists of Ns cells connected in
series and Np strings connected in parallel, is as follows:
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Iarray = Np × IPV − IS ×Np ×

(
exp

(
q(Vmodule +

Ns

Np
× Imodule ×Rs)

K × T × n×Ns

)
− 1

)

−
Vmodule +

Ns

Np
× Imodule ×Rs

Ns

Np
×Rsh

(8)

Fig. 2: Synoptic view of photovoltaic system parameters.

Fig. 3: Fundamental Components of PV Systems: Cells, Modules, and Arrays.
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3 Extraction parameters of PV model

PV models are significant for cell performance assessment, simulation, control,
and optimization. They also properly simulate PV cell current-voltage character-
istics. Model precision depends on unknown parameter retrieval accuracy. There-
fore, proper extraction of these traits is crucial. As parameter extraction entails
acquiring experimental data, including solar irradiance, temperature, voltage,
and current measurements. Consequently, an appropriate PV model and opti-
mization algorithm are utilized to ensure alignment between the model and the
collected data. This process involves iteratively refining the parameter estimates
until a satisfactory level of agreement is achieved. Several key performance in-
dicators serve the purpose of the objective function, including parameters such
as the absolute individual current error (IAEC), absolute individual power er-
ror (IAEP), cumulative sum of absolute individual current error (SIAE), mean
absolute error (MAE), relative error (RE), root mean square error (RMSE),
and correlation coefficient, which are indispensable for meticulous assessment of
prediction accuracy and reliability.

– Individual Absolute Current Error (IAEc): The Individual Absolute
Current Error at a given moment is the absolute difference between the
calculated current (Icalculated) and the measured current (Iexperimental).

IAEc(t) = |Icalculated(t)− Iexperimental(t)| (9)

– Individual Absolute power Error (IAEp): The Individual Absolute
Power Error is the absolute difference between the measured power (Pcalculated)
and the desired or reference power (Pexperimental) at that time:

IAEp(t) = |Pcalculated(t)− Pexperimental(t)| (10)

– the sum of individual absolute current error (SIAE): The Sum of In-
dividual Absolute Current Error (SIAE) is the sum of the calculated absolute
current errors. It represents the cumulative absolute discrepancy between the
measured and calculated currents over a specified period.

SIAE =

N∑
i=1

IAEci (11)

– Root Mean Squared Error (RMSE): The Root Mean Squared Error
(RMSE) measures the deviation between observed true values and estimated
values.

RMSE =

√∑n
i=1(Icalculated − Îexperimental)2

n
(12)

– Correlation coefficient R2: The correlation coefficient, labeled as R2,
quantifies the extent to which the variation in the dependent variable can
be predicted by the independent variables.
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R2 = 1−
∑n

i=1(experimentali− Calculatedi)2∑n
i=1(experimentali − ¯experimental)2

(13)

Where:
t: presents the specific time instance.
Icalculated(t): is the calculated current at time t.
Iexperimental(t): is the experimental or reference current at time t.
Pcalculated(t): is the calculated power at time t.
Pexperimental(t): is the experimental or reference power at time t.
n: denotes the number of data points or samples in a dataset. In the context of
RMSE, it represents the total number of observations being compared.

4 Grey wolf optimization technique

The grey wolf optimizer (GWO) selected in this study as the optimization al-
gorithm was created by Mirjalili et al [16]. It is an innovative meta-heuristic
algorithm miming grey wolves’ leadership structure and hunting tactics. The
GWO model consists of four main components: Alpha, Beta, Delta, and Omega
grey wolves, each serving a specific function. Alpha wolves assume leadership
roles and optimize their lifestyles, whereas beta wolves follow and provide as-
sistance. Delta, representing the third-ranking class with the lowest Grey Wolf
(GW) level, assumes the role of a scapegoat, while Omega represents the lowest-
ranking class as shown in Fig 4. This investigation applies GWO method for

Fig. 4: Social hierarchy of wolves in the GWO.

optimizing the extraction of parameters for a single diode model. The GWO
approach is comprised of three main components: encirclement, hunting, and
prey attacks. The following equations illustrate the mathematical formulations
utilized to elucidate the GWO approach:
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– Encircling: Each search agent surrounds the target after detecting and
pinpointing the prey location. The following mathematical model illustrates
the cyclical nature:

−→
Ai = 2−→a −→r1 −−→a (14)

−→
Ci = 2×−→r2 (15)

Where A and C represent coefficient vectors designed to preserve an optimal
equilibrium between exploration and exploitation. r1 and r2 are random in-
tegers ranging between [0, 1]. Simultaneously, the components of ’a’ undergo
a gradual reduction from 2 to 0 across successive iterations.

– Hunting: Following the positions of all agents α, β, γ, the grey wolves en-
gaged in pursuing the prey after encircling it. The ensuing equations encap-
sulate the refined conceptual framework underpinning this procedure. Sure,
here’s the equation split into two separate equations:

−→
Dα = |

−→
C1

−−−→
Xα(t)−

−−→
X(t)|,

−→
Dβ = |

−→
C2

−−−→
Xβ(t)−

−−→
X(t)|,

−→
Dδ = |

−→
C3

−−−→
Xδ(t)−

−−→
X(t)|

(16)

−→
d1 =

−→
Xα −

−→
Dα

−→
A1,

−→
d2 =

−→
Xβ −

−→
Dβ

−→
A2,

−→
d3 =

−→
Xδ −

−→
Dδ

−→
A3

(17)

−−→
dout =

−→
d1 +

−→
d2 +

−→
d3

3
(18)

Where
−→
X and

−→
Xα,β,δ indicate the search agent and optimum solution posi-

tions, respectively, and t denotes the number of iterations.
– Attacking: Grey wolves surrounded the prey and started readying them-

selves for the catch. When A is greater than one, the grey wolves tend to
stay away from the prey and engage in global scanning. However, when A
is smaller than one, the grey wolves tend to approach the prey to perform
local scanning. The range of A is between -2a and 2a.

The following process is applied to the PV parameters extraction. Hence, Fig
5 depicts the GWO flowchart.
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Fig. 5: Flowchart of the GWO algorithm for the PV parameter extraction appli-
cation.
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5 Experimental Test Process

In this section, the objective of the testing process is to collect I–V curve data for
diverse PV panels of varying sizes to evaluate the applicability of the extraction
algorithm across a spectrum of cells. The instrument chosen for this purpose is
the I-V tracer referenced as (PVPM 1000X), renowned for its high input voltage
capacity. Fig 6 shows a graphical illustration of the experimental testing process
performed in this study. This procedure utilizes specific reference panels, the
specifications of which are listed in Table 1. Figs 7 to 12 depict the I-V tracer
schematics for these panels and outline the approach for accessing a particular
PV cell number. The testing methodology incorporated a junction box of a
designated panel to access the subparts of the PV module, facilitating targeted
assessment of specific cell numbers, as illustrated in Fig 13.

Fig. 6: Proposed strategy for extracting parameters of photovoltaic modules.

Fig. 7: First scenario with small photovoltaic panel.
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Fig. 8: Second scenario
where a sub-part of the
photovoltaic panels is ex-
plored.

Fig. 9: Third scenario
where two sub-parts of
the photovoltaic panels
are explored.

Fig. 10: Fourth scenario
for a single photovoltaic
panel.

Fig. 11: Fifth scenario for a two photo-
voltaic panel.

Fig. 12: Sixth scenario for three photovoltaic panels.
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(a) (b)

Fig. 13: Visualization of PV Panel Sub-parts Access: (a) Single sub-part inter-
connection figure, (b) Two sub-parts interconnection figure.

Table 1: Almaden SEA P72T polycrystalline PV panel characteristics at STC

Characteristics Values of first Panel Values of second Panel

Maximum Power Pmax (W) 280 20
Voltage at Maximum Power
Vmpp (V)

31.6 17.2

Current at Maximum
Power Impp (A)

8.84 1.17

Open Circuit Voltage Voc

(V)
39 21.2

Short Circuit Current Isc
(A)

9.32 1.28

Weight (kg) — —
Dimension (m) 1.680× 0.99× 0.005 0.48× 0.35× 0.017
Number of Cells 60 36

Table 2: Values of Parameters
Parameter Scenario 1 value Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Iph 1.228 9.601 8.339 8.347 8.907 8.787
Isd 0.065 0.294 0.0001 0.0018 5.118 e-09 4.246e-11
Rsh 594.724 2000 257.699 400 781 243
Rs 0.360 0.269 0.924 1.166 0.285 0.025
n 50 78.272 102.078 172.489 23.051 10.670
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(a) First scenario (b) Second scenario

(c) Third scenario (d) Fourth scenario

(e) Fifth scenario (f) Sixth scenario

Fig. 14: Different power curve result scenarios

6 Discussion of Results

To evaluate the objective of this study, a detailed analysis was conducted, span-
ning from a restricted sample of individual photovoltaic cells to a more extensive
array of photovoltaic strings and sub-components of PV modules. This approach
allows the effectiveness of parameter extraction methodologies to be rigorously
evaluated across varying scales and configurations. Our analysis relied on the
key performance indicators defined in Section II, with a specific focus on the
Root Mean Square Error (RMSE), which indicated values of 0.036 for the initial
scenario, 1.4 for the subsequent scenario, and 0.009 for the final scenario. How-
ever, our focus in this investigation was on the discrepancy between the global
maximum power point of the experimental data and the estimated data. Given
the critical requirement for photovoltaic arrays to operate continuously at the
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GMPP, especially in applications utilizing the Global Maximum Power Point
Tracking (GMPPT) technique, this assessment was conducted using the Global
Maximum Power Point (GMPP), which is deemed logical and has a significant
impact. The results, illustrated in Figure 14a, reveal a significant variance in
a small PV panel setup of 36 cells, emphasizing the challenges in achieving
accurate parameter estimations in smaller arrays. This significant discrepancy
persisted in the second scenario with a configuration of 20 cells, as shown in
Figure 14b, where the gap between the estimated and actual values was also no-
table. However, in the third scenario, as depicted in Figure 14c, the discrepancy
was markedly reduced, suggesting better model alignment with the actual mea-
surements as the scale of the photovoltaic system increased. The fourth scenario
Figure 14d further confirmed the model’s efficacy in larger PV module config-
urations, showing a minimal disparity between the estimated and actual data,
thereby substantiating the model’s accuracy in extensive setups. The intrigue
deepens in the scenarios outlined in Figures 14e and 14f, where the disparities,
while still present, are minor and suggest an intriguing pattern. The model’s ac-
curacy in the parameter estimation appears to improve as the complexity of the
PV system configuration increases. This observation is crucial for applications in-
volving complex PV arrays, where precise parameter estimation is crucial. These
findings highlight the optimal performance of the model when applied to sys-
tems incorporating multiple cells interconnected by cables and soldering, which
may introduce complexities such as varying series and shunt resistances. This
configuration not only challenges the model but also shows its potential to re-
flect the intricate dynamics of real-world PV systems accurately. Ultimately, this
investigation concludes that extracting photovoltaic parameters is well suited to
photovoltaic modules, particularly photovoltaic strings. Its effectiveness in larger
configurations especially recommends its implementation in settings where fault
detection and diagnostic systems are integral to operational efficiency and sys-
tem reliability. The ability of the model to adapt to the nonlinear characteristics
of PV systems and effectively locate global optima under complex conditions
was observed in terms of computational time and stability. Furthermore, in-
sights gained from the variability observed in smaller system setups highlight
a potential area for further research, and we suggest additional research to im-
prove the model’s accuracy, especially in smaller or less complex systems, which
would increase its adaptability across a wide range of photovoltaic technologies
and installation sizes.

7 Conclusion

This paper introduces the application of a metaheuristic technique, GWO, for
extracting photovoltaic parameters, which is a pivotal process within the realm
of failure detection and diagnosis. Our contribution lies in advocating for the
optimal scale of cell numbers required for accurate parameter extraction, which
is crucial for simulating the behavior of photovoltaic panels. Furthermore, this
study evaluates the efficacy of various scenarios based on disparities in the max-
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imum power point (MPP) levels which a critical aspect of the PV system oper-
ating at this power point. Ultimately, this investigation is a valuable reference
for researchers embarking on the detection, diagnosis, and digital twin develop-
ment of PV arrays. A further improvement in this area involves the extraction
of parameters during the system operation.
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