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Abstract
Growing evidence shows the potential benefits of robot-assisted therapy for children with Autism Spectrum Disorder (ASD).
However, when developing new robotics technologies, it must be considered that this condition often causes increased
anxiety in unfamiliar settings. Indeed, children with ASD have difficulties accepting changes like introducing multiple new
technological devices in their routines, therefore, embedded solutions should be preferred. Also, in this context, robots should
be small as children find the bigger ones scary. This leads to limited computing resources onboard as small batteries power
them. This article presents a study on gesture recognition using video recorded only by the camera embedded in a NAO
robot, while it was leading a clinical procedure. The video is 2D and low quality because of the limits of the NAO-embedded
computing resources. The recognition is made more challenging by robot movements, which alter the vision by moving
the camera and sometimes by obstructing it with the robot’s arms for short periods. Despite these challenging real-world
conditions, in our experiments, we have tuned and improved state-of-the-art algorithms to yield an accuracy higher than 90%
in the gesture classification, with the best accuracy being 94%. This level of accuracy is suitable for evaluating the children’s
performance and providing information for the diagnosis and continuous assessment of the therapy. We have also considered
the performance improvement of using a low-power GPU-AI accelerator embedded system, which could be included in future
robots, to enable gesture analysis during the therapy, which could be adapted to the child’s performance.

Keywords Autism spectrum disorder · Intellectual disability · Gesture recognition · Deep learning · Automatic feature
extraction

1 Introduction

Interdisciplinary research is successfully exploring robotic
technologies as personalised social companions to deliver or
supplement behavioural interventions [1, 2]. Socially Assis-
tiveRobots (SARs) standout as themost sophisticated among
emerging robotics technologies. These robots incorporate
audio, visual, and movement interfaces, as well as embed-
ded computing hardware for edge AI, to simulate social
behaviour such as complex dialogue with non-verbal com-
munication, recognising emotions, and physical interaction
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with humans [3]. The primary objective of SAR is to estab-
lish a positive and productive interaction with humans, while
also providing assistance and improving their quality of life.
These robots are often utilized in domains such as motiva-
tion, rehabilitation, or learning, with the goal of achieving
measurable progress in these areas [4]. SAR provides a phys-
ical manifestation for intelligent agents, rather than being
confined to a digital screen. This means that SARs can
be present in the physical world and directly interact with
humans and objects in their environment [5]. They are capa-
ble of engaging with users through a rich variety of sensory
modalities such as sound, sight, and touch. This allows for
multiple options for delivering content or interactions, which
can be customized to improve their effectiveness based on
individual user preferences or physical abilities [6]. Several
studies showed that SARs can support therapy and training of
children with Autism Spectrum Disorder (ASD), who have
difficulties in social interaction because of their condition,
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which has a male-to-female prevalence of 4:1 [7] . Children
with ASD consider robots’ behaviour more predictable than
humans and, therefore, it is easier for them to accept robots
as social partners [8]. SARs can prompt children with ASD
in a realistic social interaction via their physical presence and
simulated social abilities, including non-verbal cues like eye
gaze, gestures, and posture [9]. Indeed, many clinical stud-
ies [10] demonstrated significant benefits in the treatment of
children with ASD, e.g. they can enhance training [11] and
perform automated assessment [12]. ASD is a difficult con-
dition, which also includes difficulties in processing novelty,
which can cause anxiety and negative responses by an indi-
vidual with ASD [13]. In this context, it is of fundamental
importance to limit the introduction of novel technological
devices to the strictly necessary ones. Indeed, children with
ASD can be upset by the introduction of many novel items in
their environment, therefore, simplicity is an essential pre-
requisite for successfully including new technology in the
therapy for the widest range of children with ASD. To mon-
itor and acquire information from the interaction, the use of
bulky external setups (e.g. computers, multiple cameras and
other devices) should be avoided, as they can cause distress
to the child. The best approach is to use only the robot’s
embedded sensors and computing abilities to record data
[14]. This necessity represents a challenge for the applica-
tion of SAR in real contexts like clinical therapy because the
onboard computing of commercial robotic platforms is lim-
ited to account for multiple constraints such as cost, space,
heat, and power consumption. In fact, commercial platforms
that are commonly used with ASD, do not have sufficient
computing resources to concurrently control the robot and
acquire data from sensors during the clinical interaction.

In our clinical studies, we minimise the intrusion in the
therapeutic setting to avoid upsetting the children. In this
article, we investigate the feasibility and propose a proof-
of-concept prototype of automatic gesture recognition using
only the data collected by the robot’s embedded camerawith-
out the use of any other device. The clinical study in which
we collected the data consisted of robot-assisted imitation
training (see Fig. 4) with six male children (M-chronological
age=104.3 months, range=66-121, SD=18.6) with ASD and
ID. Two children had a profound ID level, two severe ID lev-
els, one moderate ID level and one with a mild ID level.
The robot used in the study was the Aldebaran Robotics
NAO [15], which is the most common humanoid platform
employed in SAR [16]. NAO was used in 80% of studies in
which a humanoid was employed for robot-led therapy of
children with ASD [17]. The clinical activities included six
encounters, in which the NAO robot was prompting the chil-
dren in three Gross Motor Imitation (GMI) tasks. For each
child, the robot’s camera recorded the video of 18 procedures
(6x3) in total. The robot initiated the procedure by verbally
instructing the child with simple and concise language, fol-

lowed by prompting the child to imitate its movements. Each
session lasted around 6-8 minutes per child, with a 1-minute
break between each activity to allow the children to rest in
the nearby multi-sensory area. More detailed information
on the clinical experiment can be found in [18], which pro-
vides the details on the methodology and the evaluation of a
robot-assisted imitation therapy for children with ASD and
Intellectual Disability (ID). During the therapy sessions, the
children’s imitation of the robot’s gestures was recorded to
evaluate their performance and track their progress over time.
The recordings were manually analysed and labelled accord-
ingly to identify the gestures that children were performing
in each frame. These labelled frames form the dataset used
in this article.

However, while on one hand, the use of the embed-
ded camera facilitates the acceptance of the system by the
children, on the other, this creates a technological chal-
lenge because, as common for many commercial robots, the
embedded camera does not have the depth measurement and
itwas only able to record images at a frequency of 10 fps and a
resolution of 320x240 pixels because of the limitations of the
onboard computational resources (CPU andmemory), which
were also used to control the robot behaviour for the therapy.
This is a common issue with the small robotic platforms that
are being used for robot-assisted therapy, which have usu-
ally limited computing and sensing on-board. Indeed, the
actual resolution and frame rate of cameras could be higher
but it is are usually restricted due to the limited computing
capacity of the main processor and memory resources [12].
When working with children, particularly those with ID, it
can be difficult to enforce constraints that are necessary for
optimizing algorithm performance. As a result, it is crucial
to be able to accurately estimate a child’s visual movements
without relying on constraints like confining them in specific
positions.While such devices can improve performance, they
can also limit the portability of the system and complicate its
integration into a standard therapeutic environment.

The unique contribution of this article can be summarised
as follows:

• Novel application of machine learning techniques for
automated gesture recognition with real-world data,
which was collected during robot-led imitation therapy
sessions for children with autism spectrum disorder and
intellectual disability.

• Identification of optimal parameters for a multi-layer
LSTM architecture to maximise accuracy for the assess-
ment of children’s success in therapy.

• Proof-of-concept evaluation of a low-power commer-
cial embedded system for edge-AI (NVIDIA Jetson) as
a potential solution for real-time computation onboard
future robotic platforms.
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The rest of the article is organised as follows: Section 2
presents an overview of recent results in gesture recogni-
tion applied to human-robot interaction; Section 3 provides
the details of the machine learning approaches that were
evaluated in our computational experiments with the chil-
dren dataset described above; Section 5 discusses the results;
finally, Section 6 gives our conclusion.

2 Review in gesture recognition during
Human-Robot Interaction

There are numerous methods of classification of gestures in
the literature. In general, the techniques differ from different
feature extraction to classification methods.

Many works involve gesture recognition with OpenPose,
manual feature selection and classicalmachine learning algo-
rithms. In [19], the authors extracted the human pose using
OpenPose and recognising the gestures with Dynamic Time
Warping (DTM) and One-Nearest-Neighbor (1NN) from the
time-series. Other works use instead more devices to bet-
ter identify gestures. In [20], they obtained 3D skeletal joint
coordinates from 2D skeleton extraction with OpenPose and
the depth from a Microsoft Kinect 2. Then, the 3D coordi-
nates are used to detect the gesture using a CNN classifier.
This system was employed for real-time human-robot inter-
action.

The gestures can be classified as static or dynamic. A
gesture is static if the user assumes a certain pose while
it is dynamic when the gesture consists of several poses.
For this reason, the identification of gestures is not triv-
ial and also requires temporal segmentation. Classic gesture
recognition methods are based on HMM, particle filtering
and condensation algorithm, FSM approach, Artificial Neu-
ral Networks (ANNs), genetic algorithms (GAs), fuzzy sets
and rough sets. Deep neural networks have become state-
of-the-art in Computer Vision and are also applied in the
recognition of gestures outperforming the previous state-
of-the-art methods. For a recent review of classic and deep
learning techniques see [21].

In [22], theAuthors usedOpenPose to capture the 2Dposi-
tions of a person’s joints to compare gesture imitation with
recorded gestures. Their goal is to estimate whether real-time
movements correspond precisely with standard gestures. To
make this comparison they used videos of Tai Chi teaching.
From the joints, they calculated the movement trajectory for
each point. A similarity metric was defined as the distance
between the movement trajectories of the standard and real-
time videos. Important features to better describe the gestures
are redundancy reduction, robustness, invariancewith respect
to sensor orientation, signal continuity, and dimensionality

reduction. To make the system robust, they defined the tra-
jectory equation with Bézier curves that are robust to input
noise. To define the distance between the recorded gesture
and the imitated gesture, they calculated the discrete Fréchet
distance. From the joints of the trajectories they then obtained
12 distances that composed a vector, finally obtaining a score
by applying a weighted distance formula.

In [20] they obtained 3D skeletal joint coordinates from
2D skeleton extraction with OpenPose and the depth from
a Microsoft Kinect 2. Then, the 3D coordinates are used
to detect the gesture using a CNN classifier. This system
was employed for real-time human-robot interaction. Human
gesture and activity recognition are some of the main top-
ics of human-machine interaction. Consequently, there are
many works in literature. In [23], the authors used the differ-
ence between subsequent frames from the depth image of the
Microsoft Kinect to recognise eight gestures: CLAP, CALL,
GREET, WAVE, NO, YES, CLASP, REST

In [24] a simultaneous gestures system for multiple users
was introduced and the results on a maximum of six users
had an accuracy higher than 90%. In [25] a Wi-Fi-based
zero-effort domain gesture recognition system (Widar3.0)
estimates the velocity profiles to characterise the gesture
kinetic features. A deep learning model exploits spatial-
temporal features for gesture recognition.The accuracy result
achieved is high, near 90.0%, independently from the domain
in real environments.

In [19] highlighted the need to communicate with service
robots through gestures, for example, to draw the robot’s
attention to someone or something. To avoid using special
hardware they used only RGB videos, extracting the pose
in the frames of the videos with OpenPose. They present
a method for gesture recognition, starting from the pose
extractedwithOpenPose, in conjunctionwithDynamic Time
Warping (DTW) andOne-Nearest-Neighbor (1NN) for time-
series classification. Before passing the joint coordinates to
the DTW classifier, the key points are normalised to achieve
scale and translation invariance so that they are not depen-
dent on the relative position of the person with respect to the
camera. One of the main advantages of this approach is the
ability to easily add new gestures. To reduce the number of
signals processing by DTW, they considered signal variance.
All signals with a low variance, thus indicating no motion,
were considered to be uninformative. For classification with
1NN they used warping distance as a metric instead.

In [26] they propose an approach based on the temporal
and spatial relationship between joints and joint pairs. To
alleviate the variation of the temporal sequence they propose
a new temporal transformation module (TTM). Finally, all
extracted features aremerged into amulti-streamarchitecture
and then classified by a full-connected layer. This kind of
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approach has been tested on datasets such as ChaLearn 2013,
ChaLearn 2016 and MSRC-12 obtaining very good results.

EfficientGCN-B4 [27], an action transformer, used a
fully self-attentional architecture. The skeleton poses are
extracted from 2D videos with Openpose [28]. Similar to
BERT and Vision Transformers, the sequences are rep-
resented as embeddings. The embeddings are fed to a
Transformer Encoder. The output is fed into a linear clas-
sification head. It exceeds more elaborated networks that
mix convolutional, recurrent and attentive layers. The accu-
racy of the EfficientGCN-B4 [27] outperforms other models
like MS-G3D (J+B) [29], MS-G3D (J) [29], ST-TR [30] on
MPOSE2021 dataset.

In recent years, there has been a surge of interest in
developing accurate and efficient methods for gesture recog-
nition. A number of research papers have been published,
each proposing different approaches to address this challeng-
ing problem. Some of the most promising methods include
Convolutional Transformer Fusion Blocks [31], Spike rep-
resentation of depth image sequences with spiking neural
networks [32], and Deep Hybrid Models that combine Con-
volutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks [33].

One common theme among these papers is the focus on
hand gesture recognition.While accurate hand gesture recog-
nition is undoubtedly important, there are other factors to
consider as well. For example, our recent paper on the recog-
nition of gestures in autistic children takes a more holistic
approach by considering the entire body of the child as they
attempt to imitate the gestures of a humanoid robot.

In this work, we investigate the automatic recognition of
gestures using only the RGB camera of the robot’s fore-
head using the video recordings collected during the previous
study. We should point out that, even if the video quality of
the NAO camera is very low because of the limited comput-
ing resources, it has been demonstrated that it is possible to
successfully extract the skeleton joints using OpenPose [28],
even in case of occlusions [34], with very good accuracy.

3 Methods

In our work, we wanted to automate and make more objec-
tive the assessment of the success or failure of the children’s
imitation of the robots’ gestures in a clinical setting. To this
end, we investigated the use of neural networks, particularly
the Long Short Term Memory (LSTM) recurrent networks,
for gesture recognition in a clinical setting. The approach
is divided into two steps: first to automatically extract the
human skeleton pose and the temporal features between the
different poses from a low-res video sequence taken during
the clinical therapy; second, the resulting features are classi-
fied into the possible gestures; finally, the gesture recognised

is compared with the one performed by the robot to assess
the success or failure of the imitation.

Tomake it applicable in real clinical settings, our approach
aims at yielding the built-in camera of the NAO robot to
recognise the child’s gestures from a sequence of 2D poses
with a deep recurrent neural networkmade of 2 LSTMs. This
approach reduces to the minimum the intrusion in the child
space, which makes it more acceptable and suitable for the
real world application than previous experimental settings,
e.g. [11].

For the feature extractionwe selectedOpenPose [28] algo-
rithm (version 1.7.0), the first real-time multi-person system
to jointly detect the human body andmore, which is the state-
of-the-art algorithm to extract the humanpose from the image
frame of the videos. OpenPose uses a bottom-up approach
and it has a constant runtime compared to Alpha-Pose [35–
37] (top-down approach) and Mask R-CNN [38] (similar to
the top-downapproach). It can achieve better accuracy results
with different average confidence compared to Posenet (a
similar but lighter approach) and, with aMobileNet [39] ver-
sion, OpenPose can also run on devices with low computing
performance.

In videos, there are a lot of occlusions or the robot looks
away from the child since its performed gesture movements.
Moreover, children are always on the move and they can
have difficulties with other devices, like other cameras or a
Microsoft Kinect, in the therapeutic environment. With the
use of high-resolution cameras or a Microsoft Kinect, we
can increase the performance, limiting the portability of the
system [12]. In [34], OpenPose [28] was compared with the
Microsoft Kinect. The final results showed that OpenPose is
accurate at recognizing gestures and it can overcome the fail-
ures of the Kinect. We assumed that the OpenPose solution
on the 2D video is robust enough for gesture recognition. In a
preliminary analysis, we found that it is much more accurate
than Kinect when there are occlusions in the videos.

A secondary aim of our investigation was to evaluate
alternative technologies to allow recognition in real-time,
which may prompt autonomous adjustments of the robot’s
behaviour to the child’s performance level during the therapy.
To this end, we tested the inference time of our recognition
system on an NVIDIA Jetson TX2 to explore the perfor-
mance for a possible real-time gesture recognition when the
robot has AI acceleration integrated onboard.

We would specify that the focus on this real-world appli-
cation and low resources makes unfeasible the use of large
deep neural network architectures, which would require sig-
nificant additional computation on the robot and drain the
battery very quickly. We could also consider the use of cloud
computing, but this is not simply applicable to this clinical
application, indeed streaming clinical therapy sessions over
the network will create significant security concerns due to
the sensible and private nature of the data and, therefore, sig-
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Fig. 1 In these examples you can see that the children’s height is always smaller than the caregivers height

nificant overheads and further delays to secure the data via
encryption/decryption.

3.1 Gesture recognition approach

The proposed method is divided into three steps. In the first
step, each frame is computed by OpenPose [28] which is a
real-time pose estimator. OpenPose returns the human pose
in a reasonable time which depends on the computational
power, extracting the pose from the image by a deep network
based on the CNNs. See for instance Fig. 4. We considered
only the child’s pose, discarding the caregiver’s pose, which
differs in greater height (see Fig. 1).

Nevertheless, OpenPose was able to extract the human
joints even if they are lacking. After gathering data from each
video, transformed in human pose sequences with 18 joints,
we normalised data according to the following equations that
are applied for each joint (X ,Y ) assuming that the image
centre is the origin (0, 0):

X = �X + 0.5 ∗ width� ; Y = �Y + 0.5 ∗ height�

where width and height are the image dimensions of the
video. Normalisation allows gestures to be better described

by making the data invariant with respect to the person’s
height and positioning relative to the sensor.

In the second step, the human poses extracted from each
video frame are given as input to a deep model based on
LSTMs like in [40]. This model (see Fig. 2) automatically
extracts the temporal features of the pose sequence. We used
84 and 66 units respectively for the first and the secondLSTM
layer for the “Already Seen” setting while 80 and 64 units for
the “Leave Child Out” and “Interleave” settings. The number
of epochs was 300 to train the different models. The kernel
initializer was the Xavier uniform and the optimisation algo-
rithm for gradient descent was Adam.

The final step consists in classifying the gestures by a
full-connected layer. As an activation function we used soft-
max and the number of nodes of the full-connected layer is
5 corresponding to the number of classes. During the exper-
iments, 207 videos of about 1.10 minute and about 10 fps
were recorded for six children. The gestures are four: “kiss”,
“clap the hands”, “greeting”, “raise the arms”.We also added
a “failure” class to label imitation failures.

Then we trained our model with different configurations
using a sliding window approach (see Fig. 3) with one and
two steps. We can also find a step approach in [41] and in
[40] where the authors combine the results with different
steps, considering different temporal scales, in contrast to us

LSTM Layer 1

LSTM Layer 2

PREDICTIONDENSE Layer
(Softmax)

EXPECTED ACTION

Fig. 2 Our model is based on two layers of LSTMs that take as an input
the skeleton sequence and the expected action and it gives as an output
the action/activity performed by the user. Remember that the goal is

not the prediction of the action itself, but the verification of whether the
child has imitated the robot’s movements
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window length

video sequence

Final Step

video sequence

Sliding Window

window length
Predicted Ac vity

First step

AI Model

Predicted Ac vity

AI Model

window length

video sequence

Sliding Window

Secondo Step

Predicted Ac vityAI Model

window length

video sequence

Sliding Window

Third Step

Predicted Ac vityAI Model

Fig. 3 A diagram graphically explaining the sliding window approach.
The information from the slidingwindow is processed recursively along
the video sequence frames and, at the end of this recursively process,

this approach returns the final activity or action performed. Activity or
action is predicted for each sliding window. The final activity is the one
with the highest frequency

who do not combine the different steps. We used a sliding
window of 5, 10, 15, 20, 25 sequence frames. The input of
the model is composed of a sequence of human skeleton
joints normalised according to the image dimensions and the
label of the gesture performed by the robot (“kiss”, “clap the
hands”, “greeting”, “raise the arms”). The output is one of

the four gesture labels or the label “failure” in case the child
fails to imitate the robot.

The deep model based on LSTMs is composed of two
LSTM layers that take in input the pose sequence. The fea-
tures extracted from the sequence are concatenated with the
gesture label (“kiss”, “clap the hands”, “greeting”, “raise the

Fig. 4 Four frame video showing the children (and their caregivers) with their skeleton joints recognised by OpenPose [28]
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arms”) that is encoded using the one-hot-encoding process
that which refers to the gesture performed by the robot.

3.2 Settings

Three evaluation settings are proposed to assess the results of
our approach: Already Seen, proposed [42] as "have seen",
in which the training data is composed by five children and a
half of the sixth child’s data that is taken randomly; the test
data is the remaining of the sixth child’s data; Leave Child
Out: the model was trained on five children and tested on
the sixth; in literature, we can find the same configuration
named as “new person” or “leave-one-out cross-validation”
[42]; Interleave, similar to the “Leave Child Out” setting,
but the gestures of different children were interleaved to take
into account the significantly different quality and efficacy
of the gesture executions.

3.3 Comparison with classical MLmethods
for gesture recognition

We compared the type of approach proposed with classi-
cal machine learning methods using Weka [43]. We have
tested these algorithms both with and without normalisation.
The results show a general improvement in accuracy with-
out normalisation with respect to frame resolution. The pose
sequences have been processed to extract the 5 most sig-
nificant poses. We applied K-means, a clustering algorithm,
to search for 5 clusters. Then we identified the 5 centroids
that represent the 5 most significant poses that identify the
sequence of the gesture. The 5 poses extracted for each
instance are the samples of ourML classifier training dataset.
We used the following classification algorithms [44] which
are models of supervised learning to compare our proposed
approach:

• Bayesian Network is a probabilistic model that repre-
sents a set of stochastic variables with their conditional
dependencies using a DAG (direct acyclic graph);

• HMM (Hidden Markov Model) is a Markov chain in
which states are not directly observable and is widely
used in the recognition of the time pattern of time series;

• Naive Bayes is a simplified Bayesian classifier that
assumes assumptions of independence of characteristics;

• SVM(SupportVectorMachine) is amodel that represents
data as points in space, mapping them in order to define
the belonging of each data to a class;

• J48 [45] is the implementation in Weka of the C4.5 algo-
rithm, based on decision trees;

• Random Forest is a classifier obtained from the aggrega-
tion of multiple random decision trees;

• Random Tree is based on random decision trees.

4 Results

Three different settings, two different steps and five different
timesteps are tested using our deep LSTM model obtaining
the results shown in Table 1. Figure 5 shows two confusion
matrices for theAlreadySeen settingwith 1 and 2 frames. The
final average accuracy result has a very good result since the
number of instances of failures is almost equal to the sum
of successes. In general, however, we have very good recog-
nition of failures and successes of the children’s imitation
despite the NAO camera movement during gesture execution
and despite the low resolution. We would like to emphasise
the best results (see Tables 1 and 2) with a timestep of 5 and
in general the tendency to overcome the 90.00% of accuracy.
We want to underline the worst accuracy with “Interleave”
and timestep 25 which is 87.13% of accuracy with step 1
and 87.06 of accuracy with step 2. The results gradually
rise decreasing the timestep. Indeed, we have the best accu-
racy results in the setting “Already Seen” with 94.56% and
94.13% for steps 1 and 2.

4.1 Computational performance and power
consumption evaluation

The execution time on 1000 frames of OpenPose takes on
average 0.13 ± 0.01 sec on each frame while our model
takes on average 0.03±0.00 sec on an entire sequence of 25

Table 1 Accuracy results for the three settings with a step of 1 frame
using our method

Timestep Setting Accuracy (%) Mean (%)

5 AlreadySeen 94.37 ± 2.34 90.59 ± 7.52

5 Interleave 88.32 ± 3.86

5 LeaveChildOut 89.08 ± 12.07

10 AlreadySeen 76.63 ± 37.64 84.80 ± 22.07

10 Interleave 88.11 ± 3.90

10 LeaveChildOut 89.66 ± 10.11

15 AlreadySeen 92.35 ± 3.92 88.92 ± 7.80

15 Interleave 87.45 ± 4.49

15 LeaveChildOut 86.95 ± 12.25

20 AlreadySeen 93.20 ± 3.55 88.38 ± 7.15

20 Interleave 85.21 ± 3.26

20 LeaveChildOut 86.74 ± 10.36

25 AlreadySeen 93.45 ± 2.69 88.35 ± 8.11

25 Interleave 86.54 ± 2.83

25 LeaveChildOut 85.06 ± 12.66
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Fig. 5 Two confusion matrices for the setting AlreadySeen with 1 and 2 frames

frames. We used the Mobilenet network in OpenPose algo-
rithm to decrease the computational time on the Jetson TX2.
We compared our method with classical machine learning
algorithms (Table 3). The classifiers used in the comparison
are the following: SVM (Support VectorMachine), Bayesian
Network, HMM (HiddenMarkovModel), J48, Random For-
est, and Random Tree. The results of the SVM and the HMM
algorithms are identical while in general all the other algo-
rithms, except the Random Forest, have statistically worse
results than the SVM and HMM algorithms at a significance
level of 0.05. The Random Forest algorithm performs better
than the SVM and the HMM only in the “AlreadySeen” set-

Table 2 Accuracy results for the three settings with a step of 2 frames
using our method

Timestep Setting Accuracy (%) Mean (%)

5 AlreadySeen 95.09 ± 2.48 85.12 ± 22.47

5 Interleave 88.31 ± 4.13

5 LeaveChildOut 71.97 ± 36.79

10 AlreadySeen 92.47 ± 3.44 89.10 ± 7.57

10 Interleave 87.50 ± 3.01

10 LeaveChildOut 87.33 ± 12.38

15 AlreadySeen 93.34 ± 2.61 89.16 ± 6.04

15 Interleave 86.62 ± 3.43

15 LeaveChildOut 87.51 ± 8.58

20 AlreadySeen 93.64 ± 2.38 89.12 ± 6.56

20 Interleave 85.98 ± 2.87

20 LeaveChildOut 87.73 ± 9.67

25 AlreadySeen 92.11 ± 2.94 87.78 ± 7.63

25 Interleave 86.10 ± 1.81

25 LeaveChildOut 85.14 ± 12.32

ting. In short, our deep model has statistically better results
than all the tested machine learning algorithms at the signif-
icance level of 0.05. One of the additional information we
have is the behaviour of the robot that the child must imitate.
In the final results, we have noticed that they improve slightly
by adding this information to the 5 poses extracted from the
sequence of the gesture.

Finally, we performed a power consumption analysis in
order to provide an indicative evaluation for the future inte-
gration of an edgeAI board like the NVIDIA Jetson TX2 into
the robot. The analysis was made by measuring the current
drawn by the board and the supply voltage from the standard
power brick (AC to DC power converter). First, wemeasured
the baseline current, which was on average 240mA, with 20
a standard deviation (st. dev.), then the current drawn during
the inference, which was on average 491mA with 38mA st.
dev. and a peak of 533mA. The supply voltage was almost
constant at 19V with 0.02 st. dev. This result shows that the
gesture recognition with our method consumes on average
only 4.77W on the NVIDIA Jetson TX2. The peak consump-
tion is 10.14W (including the baseline consumption).

This power consumption is theoretically compatible with
the battery specifications of a small robot like NAO, which
has a 48.6Wh battery with a nominal voltage of 21.6V and a
maximum current of 2A, with amaximumpeak consumption
of 43.2W .

5 Discussion

The results present a solution posed by the clinical require-
ment to not introduce other devices, indeed the only device
used to acquire data was the built-in camera of the NAO
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Table 3 Accuracy results for the
three settings with ML methods

Classifier Setting Accuracy (%) Mean (%)

SVM AlreadySeen 66.38 65.67

Interleave 63.64

LeaveChildOut 66.99

Bayesian Network AlreadySeen 33.90 33.34

Interleave 32.55

LeaveChildOut 33.56

HMM AlreadySeen 66.38 65.67

Interleave 63.64

LeaveChildOut 66.99

Naive Bayes AlreadySeen 29.08 27.12

Interleave 26.29

LeaveChildOut 25.98

J48 AlreadySeen 62.84 58.53

Interleave 56.89

LeaveChildOut 55.85

Random Forest AlreadySeen 72.03 66.24

Interleave 62.15

LeaveChildOut 64.55

Random Tree AlreadySeen 61.41 53.96

Interleave 48.80

LeaveChildOut 51.67

robot, which operates at a low resolution (320 x 240) and a
low frame rate (10 fps).

Our method incorporates a variety of techniques includ-
ing motion capture, computer vision, and machine learning
to accurately recognize the gestures of autistic children. By
considering the entire body, we are able to capture a wider
range of subtle movements that may be missed by methods
that only focus on the hand.

The results show that the proposed algorithm was able to
efficiently deal with the lack of depth information by extract-
ing the 2Dposes of the childrenwith theOpenPose algorithm.

Another practical problem was the motion of the NAO
while performing gestures. The video recorded by the camera
fixed on the robot’s foreheadwas unstable and, in a few cases,
the vision of the child’s movements was partially occluded
because of the robot’s movements (head, torso, arms and
hands). The solution to this problem was investigated using
different timesteps and taking the most likely results from a
time window that corresponds to the time spent by the robot
performing the gesture to imitate.

Another issue faced is that the dataset is unbalanced since
it hasmultiple instances of children’s failures: the sumof ges-
tures on the test set is about half of the number of failures.
Although the results of the LSTM model with 1 step and 5

timestep are slightly better, in general, the 2 step behaveswell
with the various timesteps. This result is useful for reducing
the performance, indeed the 2 steps approach has a shorter
inference time using an embeddedAI acceleration device like
theNVIDIA JetsonTX2,whichmixes good performance and
low power consumption. In practice, it reduces the computa-
tion almost by half by applying OpenPose every two frames.

We highlight that the LSTM model has significantly
exceeded the results of the machine learning algorithms pro-
posed for comparison. We would like to remark that articles
mentioned in the related work report an accuracy of around
90-93% with synthetic data, our approach achieves the same
levels of accuracy with real-world data Furthermore, by con-
sidering the entire body, we are able to provide a more
comprehensive understanding of the child’s behaviour and
their attempts to interact with the robot.

We also provided a proof-of-concept evaluation of the
use of state-of-the-art off-the-shelf embedded systems for
edge-AI. We tested the performance of the NVIDIA Jetson
TX2 (see Fig. 6) which is increasingly used in studies that
require AI algorithms to run on low-cost, low-power plat-
forms [46]. This proof-of-concept demonstration provides
experimental information that will guide the design of future
robots for robot-led therapy that will be able to provide
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Fig. 6 Computational performance in seconds of the OpenPose algorithm and our model on NVIDIA Jetson TX2

real-time evaluation of the children’s behaviour, therefore
adapt the interaction to personalise the clinical intervention
autonomously.

6 Conclusion

In this work, we studied the automation of imitation recog-
nition during robot-assisted training of children with Autism
Spectrum Disorder. Indeed, we used a new data set col-
lected during a clinical study with children with ASD in a
real unconstrained setting. The clinical study provided low-
resolution videos recorded by the robot camera during the
robot-led therapy. The aim of the automation of this task is
to guarantee the objectivity of the evaluation and provide data
for continuous assessment of the progress during the therapy.
This technological solution can overcome the limitations of
manual annotation which is a long and tedious process which
requires multiple assessors to ensure impartiality, with a con-
siderable cost for the healthcare providers. From an applied
perspective, a fundamental point of our approachwas to com-
ply with the clinical requirements, i.e. to reduce the intrusion
by using only the camera that is embedded in the robotic
platform. Indeed, children with ASD may be upset by the
introduction ofmany novel items in their environment, there-
fore, simplicity is an essential pre-requisite for the inclusion
of any technology in the actual therapy. At the same time,
this creates a technological challenge because the embedded
camera does not provide the depth measurement and was
only able to acquire images with a frequency of 10 fps and

a resolution of 320x240 pixels because of the limitations
of the onboard computational resources (CPU and mem-
ory). Considering the lack of depth images, we opted for the
OpenPose algorithm which is more accurate than Microsoft
Kinect when there are occlusions in videos. The proposed
method to automatically evaluate the gesture is a deep model
based on LSTMs. Three settings were used to test the model:
“AlreadySeen”, “Interleave”, “LeaveChildOut”. To enhance
the performance of the deep model, we tested five differ-
ent timesteps (5, 10, 15, 20, 25) and two steps (1 and 2).
The final results show a very good accuracy: on average the
93.01% of accuracy with timestep 5 and step 1. We wanted
to compare these results with some classic machine-learning
algorithms. The results of the deepmodel are statistically bet-
ter than the proposed ML algorithms at the significance level
of 0.05. Finally, given the low computational power of the
NAO robot, in order to evaluate the performance level of imi-
tation training during the therapy, we tested our model with
OpenPose on anNVIDIA Jetson TX2, which is an embedded
AI computing device. In the production stage, we can say that
the deep LSTM model with step 2 would reduce by half the
computational time to predict the gesture for the calculation
of joints with OpenPose. In short, the calculation of joints
with a step equal to 2 is not done for each frame but for every
two frames.
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Autism Research. Annu Rev Biomed Eng 14:275–294. https://doi.
org/10.1146/annurev-bioeng-071811-150036

10. Wood LJ, Zaraki A, Robins B, Dautenhahn K (2019) Developing
Kaspar: A Humanoid Robot for Children with Autism. Int J Soc
Robot. https://doi.org/10.1007/s12369-019-00563-6

11. CaoH,EstebanPG,BartlettM,Baxter P,BelpaemeT,BillingE,Cai
H, CoeckelberghM, Costescu C, David D, Beir AD, Hernandez D,
Kennedy J, LiuH,MatuS,MazelA, PandeyA,RichardsonK, Senft
E, Thill S, Perre GVd, Vanderborght B, Vernon D, Wakanuma K,
Yu H, Zhou X, Ziemke T (2019) Robot-Enhanced Therapy: Devel-
opment andValidation of SupervisedAutonomous Robotic System
for Autism SpectrumDisorders Therapy. lIEEERobot AutomMag
26:49–58. https://doi.org/10.1109/MRA.2019.2904121

12. Di NuovoA, Conti D, Trubia G, Buono S, Di Nuovo S (2018) Deep
learning systems for estimating visual attention in robot-assisted
therapy of childrenwith autism and intellectual disability. Robotics
7:25

13. Boucher J (1977) Alternation and sequencing behaviour, and
response to novelty in autistic children. J Child Psychol Psychi-
atry 18:67–72

14. Conti D, Trubia G, Buono S, Di Nuovo S, Di Nuovo A (2021) An
empirical study on integrating a small humanoid robot to support
the therapy of children with autism spectrum disorder and intellec-
tual disability. Interact Stud 22:177–211

15. Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafour-
cade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic
design of NAO humanoid. 2009 IEEE International conference on
robotics and automation

16. Robaczewski A, Bouchard J, Bouchard K, Gaboury S (2021)
Socially assistive robots: The specific case of the nao. Int J Soc
Robot 13:795–831

17. Alabdulkareem A, Alhakbani N, Al-Nafjan A (2022) A system-
atic review of research on robot-assisted therapy for children with
autism. Sensors 22. https://www.mdpi.com/1424-8220/22/3/944.
https://doi.org/10.3390/s22030944

18. Conti D, DiNuovo S, DiNuovoA (2021) A brief review of robotics
technologies to support social interventions for older users. Human
Centred Intell Syst pp 221–232

19. Schneider P,MemmesheimerR,Kramer I, PaulusD (2019)Gesture
recognition in rgb videos using human body keypoints and dynamic
time warping. In: Robot World Cup, Springer, pp 281–293

20. Mazhar O, Ramdani S, Navarro B, Passama R, Cherubini A (2018)
Towards real-time physical human-robot interaction using skeleton
information and hand gestures. In: 2018 IEEE/RSJ International
conference on intelligent robots and systems (IROS), IEEE, pp
1–6

21. Ojeda-Castelo JJ, Capobianco-Uriarte MdLM, Piedra-Fernandez
JA,AyalaR (2022)A survey on intelligent gesture recognition tech-
niques. IEEE Access 10:87135–87156. https://doi.org/10.1109/
ACCESS.2022.3199358

22. QiaoS,WangY,Li J (2017)Real-timehumangesture gradingbased
on openpose. In: 2017 10th International congress on image and
signal processing, biomedical engineering and informatics (CISP-
BMEI), IEEE, pp 1–6

23. Biswas KK, Basu SK (2011) Gesture recognition using microsoft
kinect®. In: The 5th International conference on automation,
robotics and applications, IEEE

24. Venkatnarayan RH, Page G, Shahzad M (2018) Multi-user gesture
recognition using wifi. In: Proceedings of the 16th annual interna-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MRA.2018.2833157
https://doi.org/10.1109/MRA.2018.2833157
https://doi.org/10.1126/scirobotics.aat5954
https://doi.org/10.1007/978-3-319-32552-1_73
https://doi.org/10.1007/978-3-319-32552-1_73
https://doi.org/10.1007/s11370-017-0237-6
https://doi.org/10.1146/annurev-bioeng-071811-150036
https://doi.org/10.1146/annurev-bioeng-071811-150036
https://doi.org/10.1007/s12369-019-00563-6
https://doi.org/10.1109/MRA.2019.2904121
https://www.mdpi.com/1424-8220/22/3/944
https://doi.org/10.3390/s22030944
https://doi.org/10.1109/ACCESS.2022.3199358
https://doi.org/10.1109/ACCESS.2022.3199358


6590 G. Ercolano et al.

tional conference on mobile systems, applications, and services,
ACM, pp 401–413

25. Zheng Y, Zhang Y, Qian K, Zhang G, Liu Y, Wu C, Yang Z (2019)
Zero-effort cross-domain gesture recognition with wi-fi. In: Pro-
ceedings of the 17th annual international conference on mobile
systems, applications, and services, ACM, pp 313–325

26. Li C, Zhang X, Liao L, Jin L, Yang W (2019) Skeleton-based
gesture recognition using several fully connected layers with path
signature features and temporal transformer module. In: Proceed-
ings of the AAAI conference on artificial intelligence, vol 33 pp
8585–8593

27. Mazzia V, Angarano S, Salvetti F, Angelini F, Chiaberge M (2022)
Action transformer: A self-attention model for short-time pose-
based human action recognition. Pattern Recog 124:108487

28. Cao Z, Simon T, Wei S-E, Sheikh Y (2017) Realtime multi-person
2d pose estimation using part affinity fields. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
7291–7299

29. Liu Z, ZhangH, Chen Z,Wang Z, OuyangW (2020) Disentangling
and unifying graph convolutions for skeleton-based action recog-
nition. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 143–152

30. Plizzari C, Cannici M, Matteucci M (2021) Skeleton-based action
recognition via spatial and temporal transformer networks. Comput
Vis Image Underst 208:103219

31. Hampiholi B, Jarvers C, Mader W, Neumann H (2023) Con-
volutional transformer fusion blocks for multi-modal gesture
recognition. IEEE Access 11:34094–34103

32. Miki D, Kamitsuma K, Matsunaga T (2023) Spike representation
of depth image sequences and its application to hand gesture recog-
nition with spiking neural network. SIViP pp 1–9

33. Ramalingam B, Angappan G (2023) A deep hybrid model for
human-computer interaction using dynamic hand gesture recog-
nition. Comput Assist Methods Eng Sci

34. Rahman A, Clift LG, Clark AF (2019) Comparing gestural inter-
faces using kinect and openpose. In: CGVC, pp 103–104

35. Fang H-S, Xie S, Tai Y-W, Lu C (2017) Rmpe: Regional multi-
person pose estimation. In: 2017 IEEE International conference on
computer vision (ICCV), pages 2353–2362

36. Li J, Wang C, Zhu H, Mao Y, Fang H-S, Lu C (2019) Crowdpose:
Efficient crowded scenes pose estimation and a new benchmark.
In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp 10863–10872

37. Xiu Y, Li J, Wang H, Fang Y, Lu C (2018) Pose flow: Efficient
online pose tracking. In: British Machine Vision Conference 2018,
BMVC 2018, Newcastle, UK, BMVA Press, p 53. Accessed 3–6
Sept 2018

38. Bharati P, Pramanik A (2020) Deep learning techniques—r-cnn
to mask r-cnn: a survey. In: Computational intelligence in pattern
recognition, Springer, pp 657–668

39. Sinha D, El-Sharkawy M (2019) Thin mobilenet: An enhanced
mobilenet architecture. In: 2019 IEEE 10th Annual ubiqui-
tous computing, electronics & mobile communication conference
(UEMCON), IEEE, pp 0280–0285

40. Ercolano G, Riccio D, Rossi S (2017) Two deep approaches for adl
recognition: A multi-scale lstm and a cnn-lstm with a 3d matrix
skeleton representation. In: 2017 26th IEEE International sympo-
sium on robot and human interactive communication (RO-MAN),
IEEE, pp 877–882

41. Neverova N, Wolf C, Taylor GW, Nebout F (2014) Multi-scale
deep learning for gesture detection and localization. In: European
conference on computer vision, Springer, pp 474–490

42. Sung J, Ponce C, Selman B, Saxena A (2012) Unstructured human
activity detection from rgbd images. In: 2012 IEEE International
conference on robotics and automation, IEEE, pp 842–849

43. Desai A, Sunil R (2012) Analysis of machine learning algorithms
using weka. Int J Comput Appl 975:8887

44. Alpaydin E (2014) Introduction toMachine Learning. Adapt Com-
put Mach Learn (3rd edn.) publisherMIT Press, Cambridge, MA

45. MathuriaM (2013) Decision tree analysis on j48 algorithm for data
mining. Int J Adv Res Comput Sci Softw Eng vol 3

46. Mittal S (2019) A survey on optimized implementation of deep
learningmodels on the nvidia jetsonplatform. JSystArchit 97:428–
442. https://doi.org/10.1016/j.sysarc.2019.01.011

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Giovanni Ercolano is a gradu-
ate student in Computer Science
with a master’s degree and a PhD
in Computer Science and Elec-
trical Engineering (ITEE) from
the University of Naples Fed-
erico II. During my academic
career, I focused on human-robot
interaction and the development
of deep learning algorithms for
human activity classification.
In particular, I contributed to
the User-centered Profiling and
Adoption for Socially Assistive
Robotics (UPA4SAR) project,

where I participated in the implementation and real-world testing of a
socially interactive robot designed to autonomously assist the elderly
within their homes.

123

https://doi.org/10.1016/j.sysarc.2019.01.011


Gesture recognition with a 2D low-resolution... 6591

Silvia Rossi is an associate pro-
fessor at the Department of
Electrical Engineering and Infor-
mation Technologies, University
of Naples Federico II, where she
is the scientific director of the
PRISCA Lab (Projects of Intel-
ligent Robotics and Advanced
Cognitive Systems). She received
the M.Sc. degree in Physics from
the University of Naples Fed-
erico II, Italy, in 2001, and the
Ph.D. in Information and Com-
munication Technologies from
the University of Trento, Italy,

in 2006. Prof. Rossi has been involved in several EU and non-EU
projects. She is currently the principal investigator and coordinator
of the MSCA-ITN-2020 PERSEO (European Training Network on
Personalized Robotics as Service Oriented applications), PI of the
HORIZON-TMA-MSCA-DN project TRAIL (TRAnsparent, Inter-
pretabLe Robots), and Coordinator of the national PRIN project
ADVISOR (ADaptiVe legIble robotS for trustwORthy health coach-
ing). She was the general chair of RO-MAN 2020 and RO-MAN 2022
and she is in the program committee of several international con-
ferences on human–robot interaction and artificial intelligence. Her
research interests include Socially Assistive Robotics, Human-Robot
Interaction, Cognitive Architectures, and User Profiling and Recom-
mender Systems. Her main research activities aim at the investigation
of computational approaches for autonomous agents’ behaviors able
to interact and support people by extracting meaningful information
to model the user and to adapt the agent behavior. She published more
than 180 papers in international journals, books, and conferences.

Daniela Conti is currently an
Assistant Professor (Tenure
Track) in the Department of
Humanities at the University of
Catania. She is a graduate (B.Sc.
and M.Sc.) in Psychology (2008,
2010) and B.Sc. in Psychiatric
Rehabilitation and Social Edu-
cation (2002), all awarded with
the highest distinction (110/110
cum laude), and received the PhD
in Neuroscience at the Univer-
sity of Catania, Italy (2016). Her
work mainly focuses on Artificial
Intelligence, the applicability of

robotics to autism spectrum disorder with intellectual disability, and
the acceptability of robotics in clinical and educational settings.

Author of several scientific publications, her work has been sup-
ported by the H2020 research and innovation program of the European
Union, CARER-AID, project “Controlled Autonomous Robot for
Early Detection and Rehabilitation of Autism and Intellectual Dis-
ability”, Marie Sklodowska Curie Individual Fellowship in UK. Since
2021 she is a member of the Editorial Board of the international
journal “Interaction Studies”. Member of the Italian Association of
Psychology - Experimental Psychology section, since 2020. Member
of the European Network for the Advancement of Artificial Cogni-
tive Systems, Interaction and Robotics (EUCOG), since 2014. She
is a licensed clinical psychologist certified by the National Board of
Psychologists (Italy), since September 2011 (A-6007).

Alessandro Di Nuovo is Pro-
fessor of Machine Intelligence
at the Department of Comput-
ing, Sheffield Hallam University
(SHU). He received the Laurea
(M.Sc.Eng.) and Ph.D. degrees
in Informatics Engineering from
the University of Catania, Italy,
in 2005 and 2009, respectively.
From 2012 to 2015, he was a
Research Fellow with the Uni-
versity of Plymouth, U.K.

Prof. Di nuovo is the leader
of AI, Robotics and Digital for
the SHU Advanced Wellbeing

Research Institute. He is the founder and leader of the Smart Interac-
tive Technologies (SIT) Research Laboratory, which has cutting-edge
facilities and equipment for conducting internationally renowned
research in interdisciplinary applications of machine intelligence,
including healthcare and well-being. Currently, he is the scientific
coordinator of the Horizon Europe project “Performance in Robots
Interaction via Mental Imagery” (PRIMI), which was awarded C7.3
million for 50 months, from 2023–2027.

Since 2021, I am serving as Topic Editor-in-Chief of the Interna-
tional Journal of Advanced Robotic Systems (Sage). I am also serving
as Associate Editor for the IEEE Journal of Translational Engineer-
ing in Health & Medicine, Applied Sciences and Robotics journals
(MDPI). For his academic and professional service, in 2014, he was
awarded the status of Senior Member of the IEEE.

123


	Gesture recognition with a 2D low-resolution embedded camera  to minimise intrusion in robot-led training of children with autism spectrum disorder
	Abstract
	1 Introduction
	2 Review in gesture recognition during Human-Robot Interaction
	3 Methods
	3.1 Gesture recognition approach
	3.2 Settings
	3.3 Comparison with classical ML methods  for gesture recognition

	4 Results
	4.1 Computational performance and power consumption evaluation

	5 Discussion
	6 Conclusion
	References


