
Assessing input parameter hyperspace and parameter 
identifiability in a cardiovascular system model via 
sensitivity analysis

SAXTON, Harry <http://orcid.org/0000-0001-7433-6154>, XU, Xu 
<http://orcid.org/0000-0002-9721-9054>, SCHENKEL, Torsten 
<http://orcid.org/0000-0001-5560-1872> and HALLIDAY, Ian 
<http://orcid.org/0000-0003-1840-6132>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/33615/

This document is the Published Version [VoR]

Citation:

SAXTON, Harry, XU, Xu, SCHENKEL, Torsten and HALLIDAY, Ian (2024). Assessing
input parameter hyperspace and parameter identifiability in a cardiovascular system 
model via sensitivity analysis. Journal of Computational Science, 79: 102287. 
[Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Journal of Computational Science 79 (2024) 102287

A
1

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Assessing input parameter hyperspace and parameter identifiability in a
cardiovascular system model via sensitivity analysis
Harry Saxton a,∗, Xu Xu b,e, Torsten Schenkel a,c, Ian Halliday d,e

a Materials & Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, United Kingdom
b Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, United Kingdom
c Department of Engineering and Mathematics, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, United Kingdom
d Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
e Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, S1 4DP, United Kingdom

A R T I C L E I N F O

Dataset link: https://github.com/H-Sax/Subset
Selection

Keywords:
Parameter identifiability
Parameter sensitivity
Condition number
Lumped parameter modelling
Cardiovascular modelling
Parameter subset selection

A B S T R A C T

We aim to clarify our understanding of the process of state-space model input parameter identification, known,
within the clinical context, as model personalisation. To do so, we apply reference sensitivity and identifiability
techniques to a lumped parameter, single ventricle representation of the systemic circulation, chosen in view
of its relative simplicity and prior art. We attempt to quantify the reliability of input parameter identifiability
through the lens of 4 clinically relevant measurements and the attendant difficulty in personalising the model.
In turn, this that we extend existing methods which combine both parameter influence and orthogonality,
to global sensitivities. By examining different parameter sensitivity evaluation methodologies, we investigate
the stability of optimal parameter subsets which are commonly used to aid clinical investigations. In order
to perform the personalisation process, one must understand the complexity of the high dimensional input
parameter hyperspace associated with this class of model. By utilising Sobol indices, we propose a domain-
agnostic and intuitive approach. This involves varying the bounds of the input parameter space relative to
the model’s base state. These investigations yield a pseudo-mapping of the input hyperspace, cementing our
understanding of the role of identifiable input parameters in the state-space model. Our findings suggest a
novel global methodology for input parameter identifiability and input hyperspace mapping, providing valuable
insights into solving the personalisation process.
1. Introduction

Dynamical systems in the life sciences are mathematical descrip-
tions of processes observed in nature [1]. These systems can be used
to predict and infer a wide range of biological processes, such as
population dynamics [2], cell mechanics [3] and global hemodynam-
ics [4]. Due to the complexity of biological processes, the corresponding
dynamical systems are often described through a large set of non-
linear equations, which take the form of ordinary differential equa-
tions (ODEs), differential algebraic equations (DAEs), partial differen-
tial equations (PDEs) or a mixture [5,6]. Due to complexity of the
formulation, computational tools are required to solve the model and
make inferences about the processes under investigation. An invariant
property between all dynamical systems is that they are parameterised
by the set of values of input parameters, which themselves can provide
insight into the process being modelled [7] (e.g., species carrying
capacity, drug diffusion rate and systemic vascular resistance).

∗ Corresponding author.
E-mail address: H.Saxton@shu.ac.uk (H. Saxton).

One impactful use of dynamical systems, and the focus of this study,
is the modelling of the cardiovascular system (CVS). CVS models are
often categorised by their dimensionality, each class of models having
a very different purpose. Zero-dimensional (0D), or lumped parameter
models, divide the CVS into compartments within which the state
variables are assumed to be uniformly distributed and vary only with
time. 0D models can be used to represent the whole CVS physiology,
or any portion of it [8]. The physiological state variables of pressure,
flow and volume are respectively equivalent to voltage, current and
charge in an electrical analogue. Each CVS model or compartment can
be represented as a combination of resistors, capacitors and inductances
which are parameterised by numerical values 𝑅, 𝐶 and 𝐿 respectively.
For a generic vessel or organ located in a larger circulation network, 𝑅,
𝐶 and 𝐿 represent hemodynamic dissipation, vessel distensibility and
the inertial effects blood flow, respectively [9]. Thus, the input parame-
ters of 0D models carry great clinical significance as bio-markers, used
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to inform medical treatment [10]. Higher dimensional models of the
CVS which include spatial variation, are also investigated. This class
of model is based with pdes and is usually utilised for detailed inves-
tigation of specific vessels within the wider circulation network [11–
14], owing to the higher computational cost associated with solving
PDEs, rather than ODEs/DAEs. In order to tackle the computational
cost reduced order modelling is a suitable choice [15,16]. Also, the
input parameter list is often larger and contains less clinically relevant
parameters, making output data model analysis harder. Therefore, 0D
models of the CVS are our modelling technique of choice in this work.
For a detailed review of modelling types see e.g. [17,18].

Mathematically, input parameter identification is an inverse prob-
lem; clinically it is the personalisation process [19,20]. It amounts
to taking a highly detailed dynamical system model with its input
parameters (which are prescribed realistic bounds) and supplying the
model with target observations i.e. experimental or clinical data that
correspond to model outputs. Performing the process returns a new
set of input parameters within the known, realistic bounds, which best
describe the observed data. This new set allows for new inferences to
be made about the physical process under investigation [21] or the
condition of the patient from whom the target data was taken. In the
clinic, 0D models have shown great promise in aiding the personalised
diagnosis and treatment of CV diseases such as coronary artery disease,
pulmonary arterial hypertension and aortic valve stenosis [22–24]. If
one can inform CVS 0D models with measurements specific to patients
and personalise quickly and robustly, one may hope to remove the need
for invasive diagnostic tests. The diagnostic challenge, then, requires
that a model be able to personalise to patho-physiological states, as
well the physiological. Further, if personalised input parameters can
be used to e.g. stratify a cohort, 0D models might rise still further, to
meet the prognostic challenge [25].

The mathematical essence of the personalisation process is a so-
lution for an input parameter coordinate set that locates the global
minimum of a hypersurface, or landscape, spanned by the input pa-
rameters and computed from the target clinical measurements. Patient-
specific data are sparsely available and mathematically insufficient,
so many off-line investigations must be performed to ensure the op-
timal accuracy, efficiency and uniqueness of the solution to the per-
sonalisation process. Despite progress there remain many open ques-
tions surrounding the key personalisation issues, which we distill as
questions

• What is the most effective and stable methods for mapping the
bounded, physiologically realistic input parameter space?

• How does one ensure biomarkers extracted from input parameters
are truly patient specific?

• What is the surface complexity of input parameter space corre-
sponding to the available measurements?

This study aims to provide methodologies and limited answers for all
three questions above. It is important to note our investigation uses
forward data, generated from the prescribed dynamical system, in order
to understand the methods in an ideal setting. Of course, without this
critical, off-line step, Misleading results may be obtained which would
then lead to ill-informed clinical decisions.

In Section 2, we review relevant literature, introduce concepts
germane to the personalisation process, detail the position this type
of investigation has in the personalisation process and summarise the
principal contributions of this work. In Section 3, the mathematical
detail is provided, for each tool used for model analysis (Sobol indices,
identifiability analysis and hyperspace investigation algorithm) and we
detail the quantitative investigation of the complexity of input param-
eter space. Section 4 declares our results from different computational
experiments. Discussion of the personalisation process and of the results
2

is given in Section 5. i
2. Background

Model personalisation is synonymous with the base concepts of
input parameter sensitivity, orthogonality and identifiability [26–28].
The key problem is how to effectively navigate the input parameter
hyperspace. From the discussion in Section 1, it prudent to review
terminologies, prior art and state how the contributions of this work
will fresh perspective on the personalisation process.

2.1. Terminologies

For the value of input parameters to be identified uniquely from
given data, there prerequisite properties.

First, an input parameter effect needs to be influential on the output
hyper-surface, i.e., a change in the input parameter space causes a
detectable change on the desired output. If one can identify such an
input parameter, it is said to be sensitive [29]. One can identify locally
and globally sensitive input parameters, with respect to the measure-
ments. Locally sensitive input parameters are those eliciting the greatest
rate of change of the output about the model base operating point
or state [30]. Globally sensitive input parameters are potential bio-
markers which operate within a physiologically realistic value range.
Input parameters are said to be globally sensitive when they cause the
greatest influence on the outputs, for the prescribed input range [31].
Different methods exist to calculate the sensitivity of input parameters
(see Section 3.2). Through the lens of the personalisation process,
sensitive input parameters play a vital role. We can first identify the
sensitive input parameters – their effect should be present in data –
so under inverse operation, the model should be able to identify the
change in the sensitive input parameter and possible stratify a patient,
with clear clinical implications.

Second, sensitive input parameters having been identified, input
parameter orthogonality is considered. Consider two independent in-
fluential input parameters with respect to a specific measurement,
if the effects of the two input parameters cause the same, or very
similar, change in the outputs, the effects of each parameter cannot
be extracted individually from the data, under inverse model operation
and it is mathematically impossible to identify which input parameters
contribute to the effect on the output. It is important for two indepen-
dent input parameters to have orthogonal effects on specific outputs.
When personalising a 0D model, the property of sensitivity is not
sufficient, input parameters are also required to be orthogonal. Input
parameters that are both sensitive and orthogonal are prime candidates
for personalisation [32]. Mathematical descriptions of orthogonality
are given in Section 3.4.

Personalisation has come to mean the search for an identifiable
odel and identifiable input parameters. Identifiability analysis of a
VS model needs to include three analyses: structural, sensitivity-
ased and practical identifiability. Structural (theoretical) identifiabil-
ty [33] assumes copious and noise free target output data so a model’s
tructural identifiability is deemed clinically academic often. (This, of
ourse, overlooks the fact that one may be unable to identify input
arameters because of the model structure, not because of data issues.
aturally, if a model is not structurally identifiable, any practical at-

empt at its use is limited.) Sensitivity based identifiability analysis [34]
ombines the above points of identifying sensitive and orthogonal input
arameters, subject to model synthetic data, in order to investigate
hich input parameters are identifiable, in an ideal setting. Practical

dentifiability analysis [35] accounts for data quality in patient data,
here the noise and sampling rate of the patient data may impact

he identification of unique input parameters. In the personalisation
rocess, each stage must be performed in order for a model to have
irect clinical utility. This study concerns itself with sensitivity based

dentifiability analysis.
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2.2. Relevant literature

Our CVS model, (Fig. 1) chosen in part for its relevant prior art, is
essentially that proposed by Bjordalsbakke et al. [36]. It is a closed-
loop, lumped parameter model of the systemic circulation and the left
ventricle. It is a reasonable candidate for clinical applications, in which
focal patho-physiology (say, a defective heart valve) precipitates effects
across the patient physiological envelope. Similar models have been
proposed, some of which are open-source [37–40]. Bjordalsbakke et al.
use the model in Fig. 1 (with a reduced double Hill elastance param-
eterisation) to demonstrate their Stepwise Subset Reduction Method, or
SSRM, for selecting the optimal number of input parameters for the
personalisation, using global sensitivity analysis. Bjordalsbakke was
also able to confirm the structural identifiability of the model. Using
the same essential model, Schiavazzi et al. [38] used Bayesian analysis
to examine the probability of recovering unique model parameters and
Pironet et al. [41] examined whether model input parameters could be
recovered in principle, from chosen outputs. Significantly, Pironet was
able to prove injectivity between the inputs and outputs, confirming the
structural identifiability of their model. Furthermore, Pironet et al. [42]
examined the chances of recovering unique model parameters, when
data were corrupted by noise, or were too sparsely collected. Olsen
et al. [32] proposed, then examined their structural correlations and
orthogonal sensitivities method in reference to a full circulatory model.
Whilst a number of other investigations have been conducted, the
above cover the main aspects of the personalisation process. Most
studies which are concerned with input parameter subset selection do
not first understand the identifiability of input parameters in an ideal
situation, either by examining just structural considerations or using
noisy patient data, thus any identifiability results are often confounded
by the innate noise associated with clinical data. Using measurements
generated from a model (identifiability in an ideal setting) presents
as a natural first step to understand what identifiability issues can
be related to data noise. Other limitations reported studies are that
local sensitivities are used to select the identifiable input parameters
(despite the intrinsic global nature of the personalisation process) and
optimisation of a cost function, to some data, without the guarantee
that the resulting parameters are unique.

Often, a lack of model sensitivity is deemed the root cause of input
parameters’ lack of identifiability [38,43,44]. Certainly, parameters
may be influential but if a group are linearly-dependent (meaning
they have similar effects across outputs), it is impossible to determine
each uniquely. Accordingly, if one does not examine and screen culprit
parameters, obstinately selecting on influence alone, one does not
know if a chosen subset of parameters are individually identifiable. A
method that aggregates orthogonality and influence is the orthogonal
sensitivities method of Li et al. [45], which provides an intuitive means
of combining input parameter identifiability with orthogonality. For a
full mathematical description see Section 3.5. The original method of
Li et al. uses local sensitivities; we argue that an extended exploration
of input parameter space is necessitated by the non-local nature of
the personalisation problem. Similarly motivated, Ottesen et al. [46]
have devised the structural correlations method, which investigates the
correlations between parameters of a chosen dynamical system.

2.3. Study justification

The personalisation process is a large and detailed procedure with
many choices to be made to ensure unique and patient specific input
parameters. Given that cohorts of patients may exist at many different
patho-physiological states, one must explore the input parameter space
globally [21,25]. Off-line assessment of a 0D model is a vital prelude.
as it ensures a complete understanding, in an ideal setting, of input
parameter space. Thus, when practical identifiability is performed,
profile likelihood or global optimisation, or any problem in parameter
3

identification can be attributed to issues surrounding available data.
We aim to extend the sensitivity-based identifiability stage of the
procedure, to utilise global sensitivities, and to provide an investigative
test to quantify the complexity of input parameter, which could aid
future studies on practical identifiability. The essential contributions of
the work are as follows:

1. Extension of Parameter Selection Method: We extend the
parameter selection method proposed by Li et al. [45], incor-
porating global sensitivities to ensure the innate global nature
of the personalisation process.

2. Stability of Optimal Input Parameter Subset Selections: We
address the stability of optimal input parameter subset selec-
tions, considering competing considerations and various param-
eter sensitivity methods, both local and global.

3. Quantification of Input Parameter Space Complexity: We
detail an investigative test, driven by global sensitivity analysis,
to quantify the complexity of the input parameter space.

Collectively, these contributions enhance the understanding and ro-
bustness of the personalisation process, offering valuable tools for
parameter identification in patient-specific models.

3. Methods

Here, we examine the methods used for analysing a declared, min-
imal system model. In Section 3.1, we declare the model, chosen
synthetic measurements and our computational framework. We detail
the methods of local and global sensitivity analysis, along with the
Fisher information matrix, including the Sobol [47] and eFAST [48]
methodologies, in Section 3.2. The definition of orthogonal input pa-
rameters given in Section 3.4 and the definition of input parameter
influence in Section 3.3. A full description of the global parameter
subset selection method in Section 3.5 and in Section 3.6 we detail an
investigative test utilising Sobol indices to understand the complexity
of the input parameter hyper-surface.

3.1. Model and measurements

Mathematically, our system is conveniently expressed in state-space
form
𝑑
𝑑𝑡

𝑋(𝑡) = 𝑓
(

𝑋(𝑡); 𝜃
)

, 𝑌 (𝑡) = ℎ(𝑋(𝑡)), (1)

in which 𝜃 denotes an input parameter vector, 𝑋 represents the set
of state variables of the system, 𝑓 is a function describing the system,
normally this is an collection of ODEs, ℎ is the measurement function
where forward model synthetic measurements are generated, using the
computed state variables 𝑋 and 𝑌 , as the measurements of interest.

3.1.1. Single ventricle model
The model declared in electrical analogue form in Fig. 1 is a

system-level, ordinary differential equation based, electrical analogue
CV model, after Bjordalsbakke et al. [36], with three compartments.
The state of each compartment is specified by its time-dependent
dynamic pressure 𝑃 (mmHg), inlet flow 𝑄 (mL/s) and volume 𝑉 (mL):

𝑋𝑘(𝑡) =
(

𝑉𝑘(𝑡), 𝑃𝑘(𝑡), 𝑄𝑘(𝑡)
)

, 𝑘 ∈ {𝑙𝑣, 𝑠𝑎, 𝑠𝑣}, (2)

where 𝑙𝑣 denotes the left ventricle, 𝑠𝑎 the systemic arteries and 𝑠𝑣 the
venous system. Formally, 𝑡 is a continuous variable.

In generic form, the equations relating to the passive compartmental
state variables all take the form:
𝑑𝑉𝑠,𝑘
𝑑𝑡

= 𝑄𝑘 −𝑄𝑘+1,
𝑑𝑃𝑘
𝑑𝑡

= 1
𝐶𝑘

(𝑄𝑘 −𝑄𝑘+1), 𝑄𝑘 =
𝑃𝑘−1 − 𝑃𝑘

𝑅𝑘
. (3)

Above, the subscripts (𝑘 − 1), 𝑘, (𝑘 + 1) respectively represent the
proximal, present and distal system compartments, 𝑉𝑠,𝑘(mL) denotes
the circulating (stressed) volume [50] and 𝐶 (ml/mmHg) and 𝑅
𝑘 𝑘
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Fig. 1. The systemic circulation, single ventricle, model. An electrical analogue representation of our state space system CVS model, with the elastance of the left ventricle,
𝐸𝑙𝑣, represented by the Shi double cosine model [49]. The valves (diodes) are assumed to have Ohmic behaviour, under both forward and reverse bias, with the regurgitating
resistance very large. Our textual notation for the resistances and the capacitance’s is defined in Table 1.
.

Table 1
Input parameters for the single ventricle model. Each input parameter’s unit is
stated alongside a chosen initial value for the 9 parameter, single ventricle model. 𝜏 is
the cardiac cycle length and is fixed such that 𝜏 = 1 s. The ventricular shift parameter
𝐸shift = 0 s as no atrium is present.

Parameter 𝜃 (units) Description Initial value

𝐸𝑚𝑎𝑥

[

mmHg
ml

]

Maximal ventricular contractility 1.5

𝐸𝑚𝑖𝑛

[

mmHg
ml

]

Minimal ventricular contractility 0.03
𝜏𝑒𝑠 (s) End systolic time 0.3𝜏
𝜏𝑒𝑝 (s) End pulse time 0.45𝜏
𝑍𝑎𝑜

[

mmHg s
ml

]

Aortic valve resistance 0.033

𝑅𝑚𝑣

[

mmHg s
ml

]

Mitral valve resistance 0.006

𝑅𝑠

[

mmHg s
ml

]

Systemic resistance 1.11

𝐶𝑠𝑎

[

ml
mmHg

]

Systemic compliance 1.13

𝐶𝑠𝑣

[

ml
mmHg

]

Venous compliance 11.0

(mmHgs/mL) denote compartmental compliance and the Ohmic resis-
tance between compartments 𝑘, (𝑘 + 1). See Fig. 1 and Table 1.

Note in our model formulation, (i) we use a C-R-C Windkessel [51]
to represent the systemic circulation, (ii) no inertance appears in our
formulation, (iii) the systemic and venous compartments are passive,
having fixed compliances 𝐶𝑠𝑎 and 𝐶𝑠𝑣, respectively and (iv) flow in and
out of the active left ventricle is controlled by the mitral and aortic
valves, respectively, the latter being modelled as diodes, with Ohmic
resistance under forward bias and infinite resistance under reverse bias:

𝑄𝑘 =

{ 𝑃𝑘−1−𝑃𝑘
𝑅𝑣𝑎𝑙

, 𝑃𝑘−1 > 𝑃𝑘,

0 𝑃𝑘−1 ≤ 𝑃𝑘,
(4)

here 𝑍𝑎𝑜 and 𝑅𝑚𝑣 represent the resistance across the aortic and mitral
alves respectively.

Let us consider the single active model compartment. The dynamics
f the left ventricle is described by a time-varying compliance 𝐶𝑙𝑣(𝑡), or
eciprocal elastance, 𝐸𝑙𝑣(𝑡) (mmHg/ml), which determines the change
n pressure for a given change in the volume [50]:

𝑙𝑣(𝑡) =
𝑃𝑙𝑣(𝑡)

(𝑉 (𝑡) − 𝑉0)
=

𝑃𝑙𝑣(𝑡)
𝑉𝑠(𝑡)

, (5)

here 𝑉0&𝑉𝑠(𝑡) represent the chamber unstressed and stressed volumes,
espectively.

𝐸(𝑡) is written [49]:

𝑙𝑣(𝑡) = (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) ⋅ 𝑒(𝑡) + 𝐸𝑚𝑖𝑛,

𝑒(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2

[

1 − cos( 𝜋𝑡
𝜏𝑒𝑠

)
]

, 0 ≤ 𝑡 < 𝜏𝑒𝑠,
1
2

[

1 + cos( 𝜋(𝑡−𝜏𝑒𝑠)𝜏𝑒𝑝−𝜏𝑒𝑠
)
]

, 𝜏𝑒𝑠 ≤ 𝑡 < 𝜏𝑒𝑝,

0, 𝜏𝑒𝑝 ≤ 𝑡 < 𝜏,

(6)

here 𝑒(𝑡; 𝜏𝑒𝑠, 𝜏𝑒𝑝) is the activation function for the ventricle and is
arameterised by the end systolic and end pulse timing parameters 𝜏𝑒𝑠
nd 𝜏𝑒𝑝 respectively.

The elastance function is defined over one cardiac cycle, i.e., time
̄

4

∈ [0, 𝜏] with 𝜏 (the length of the cardiac cycle) fixed in this work to
Table 2
Derived, discrete output metrics. We declare discrete output metrics, derived from
the extrema and temporal means of computed internal states of our model in figure 1

𝑌 =

⎡

⎢

⎢

⎢

⎢

⎣

max𝜏 (𝑉𝑙𝑣(𝑡)) − min𝜏 (𝑉𝑙𝑣(𝑡))
max𝜏 (𝑃𝑙𝑣(𝑡)) − min𝜏 (𝑃𝑙𝑣(𝑡))
max𝜏 (𝑃𝑠𝑎(𝑡)) − min𝜏 (𝑃𝑠𝑎(𝑡))

1
𝜏
∫ 𝜏
0 𝑄𝑠𝑎(𝑡)𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑆𝑉
𝑃𝑃𝑙𝑣
𝑃𝑃𝑠𝑎
�̄�𝑠𝑎

⎤

⎥

⎥

⎥

⎥

⎦

𝜏 = 1 s. The contractility, 𝐸𝑚𝑎𝑥, and the compliance, 𝐸𝑚𝑖𝑛, both control
the elastance extrema of the left ventricular and the left atrium.

3.1.2. Measurements
recall, we investigate the identifiability of input parameters assum-

ing certain patient measurements will be available. Here, though, we
use of the model solution as a surrogate for the patient data. This
allows us to remove issues associated with noise, sampling rate and
indeterminacy — we know the answer. Put another way, we consider
identifiability of input parameters in the best possible setting, given
the available measurements. We utilise the measurements declared in
Table 2, which are all clinically plausible. Solving the system, we have
acquire time-series waveforms for left ventricular pressure, left ventric-
ular volume, systemic arterial pressure and systemic arterial flow. From
these, we compute the derived metrics of left-ventricular stroke volume
(𝑆𝑉 ), e.g. measured by echocardiography [52]. Left ventricular pres-
sure can be measured invasively using left heart catheterisation [53],
allowing for computation of the pulse pressure in the left ventricle
(𝑃𝑃𝑙𝑣). Systemic arterial pressure and flow are obtained via arterial line
measurements and Doppler ultrasound [54,55], leading to evaluation
of pulse pressure in the systemic artery (𝑃𝑃𝑠𝑎) and mean arterial flow
(�̄�𝑠𝑎) respectively.

3.1.3. Computational framework
All model solution and analysis are conducted in Julia [56], which

is chosen due to the superior speed and technical versatility in solving
differential equation systems [57,58]. It has been shown previously
that any model analysis involving sensitivity analysis, and by extension
identifiability analysis, only becomes too expensive when the model
solution time is too large. To solve our single ventricle model we
utilise the Vern7 algorithm [59], with each cardiac cycle comprised
of 250 time steps and 1𝑒 − 6 absolute and relative tolerance. All
global sensitivity analysis is conducted with GlobalSensivity.jl [60] and
plotting is performed using Makie.jl [61].

3.2. Sensitivity analysis

As discussed briefly in Section 2.1, sensitivity analysis is the study
of how uncertainty in the output of a model (numerical or otherwise)
can be apportioned to different sources of uncertainty in the model
input parameters (henceforth termed ‘factors’) [62]. Local sensitivity
analysis (LSA) and global sensitivity analysis (GSA) are considered in
Sections 3.2.1 and 3.2.3. The Fisher information matrix, utilising the
sensitivity matrices, is defined in Section 3.2.2.
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3.2.1. Local analysis
Local, derivative based sensitivities are essentially partial deriva-

tives, evaluated at a base state in input parameter space, 𝜃0 at time
𝑡. To compare a parameter 𝑖’s influence evenly against the output 𝑗, we
scale the raw sensitivity metric by �̂�𝑖

�̂�𝑗
. The result is a relative sensitivity

atrix �̂� with entries �̂�𝑖,𝑗 . The input parameters 𝑖 ∈ (1,… , 𝑛) (here
= 9) are defined in Table 1 and the measurements 𝑗 ∈ (1,… , 𝑚) (here
= 4) are defined in Table 2.

̂𝑖,𝑗 (𝑡) =

[

�̂�𝑖
�̂�𝑗

𝜕𝑦𝑗 (𝑡)
𝜕𝜃𝑖

]

𝜃0

. (7)

e define relative sensitivity column vectors associated with a specific
odel input, 𝑖, as follows:

̂
𝑖 =

(

�̂�𝑖,1, �̂�𝑖,2, �̂�𝑖,3, �̂�𝑖,4
)𝑇 , (8)

here �̂�𝑖,1 represents the influence of input parameter 𝑖 against the
easurement 1 (say). To compute the above sensitivity statistics, the

nputs are, of course, varied one at a time about 𝜃0.

.2.2. Fisher information matrix
Another important matrix derived from sensitivity matrices is the

quare (𝑛 × 𝑛) Fisher information matrix (FIM) [63]:

= �̂��̂�𝑇 . (9)

The FIM is a symmetric matrix representing the information one can
extract on factors from the model outputs which correspond to the
available measurements [64]. It is important to note that the FIM can
be constructed from either global or local sensitivity matrices.

3.2.3. Global analysis
We detail each global methods used to quantify parameter influ-

ence. Two are variance-based methods (Sobol and eFAST), whereas the
Morris method is a one-at-a-time method. To ensure fair comparison
between, 𝑁 = 100, 000 samples are utilised for each method. For the

orris method, this means 100,000 trajectories, taken in the input
arameter space. Note that this does not ensure that the same number
f model evaluations is needed, but it does ensure equal density of input
arameter space is explored for the variance-based methods. As we are
nterested in the second order indices, given 𝑝 as the dimensionality of
nput parameter space (here 𝑝 = 9), Sobol’s method suggest 𝑁(2𝑝+1) =
, 900, 000 evaluations, eFAST requires 𝑁𝑝 = 900, 000 evaluations and

Morris’ method 𝑁(𝑝 + 1) = 1, 000, 000 evaluations [65,66]. To sample
the input parameter space bounds of ±15% are prescribed; where a
probability distribution is required, a uniform distribution is given with
the respective upper and lower bounds. To ensure the true value of the
sensitivity indices, we use ‘sampling with replacement’ — a bootstrap-
ping method (with 𝐵 = 1000), to calculate confidence intervals for the
derived sensitivity indices [67]. As Sobol indices are commonly used as
a benchmark against other methods, the convergence is only calculated
in this case [68,69].

Morris. Morris’ method computes the sensitivity of the model out-
puts, to each parameter 𝜃𝑖, by sampling the elementary effects (EE
ereafter) [70], perturbing one input parameter at a time:

𝐸 =
𝑓 (𝜃 + 𝛥) − 𝑓 (𝜃)

𝛥
, 𝛥 = 𝑙

2(𝑙 − 1)
,

where 𝛥 is the parameter step size describing the ‘‘levels’’ of effects.
Choosing 𝑙 to be even provides a more symmetric sampling distribu-
tion [70], hence we choose 𝑙 = 100 giving 𝛥 = 0.51. Morris’ method
then creates a sampling trajectory, characterised by a single parameter
change. One then estimates the mean and variance of the distribution
of the |𝐸𝐸𝑗 |, with a high mean (variance) value, implying an important
parameter (non-linear effects, or interactions with other inputs).
5

𝑆

eFAST. The extended Fourier amplitude test [71] offers a computa-
tionally efficient alternative to Sobol indices (below). eFAST utilises
mono-dimensional Fourier decomposition along a curve exploring the
parameter space. The curve is defined by a set of parametric equations:

𝜃𝑖(𝑠𝑗 ) = 𝐺𝑖(sin(𝜔𝑖𝑠𝑗 )),∀𝑖 = 1,… , 𝑛

𝑠𝑗 =
2𝑗𝜋
𝑁

− 𝜋,∀𝑗 = 1,… , 𝑁
(10)

where 𝐺𝑖 is a transformation function chosen to ensure that the variable
is sampled according to the desired probability density function. 𝜔𝑖
is a set of different (angular) frequencies, to be properly selected,
associated with each input parameter. As 𝑠 varies, all the factors
change simultaneously along a curve that systematically explores input
parameter space. Each 𝜃𝑖 oscillates periodically at the corresponding
frequency 𝜔𝑖, whatever 𝐺𝑖 is. The output 𝑌 shows different periodicity,
combined with the different frequencies 𝜔𝑖, whatever the model 𝑓 is.
If the 𝑖th factor has strong influence on the output, the oscillations of
𝑌 at frequency 𝜔𝑖 will be of high amplitude. This provides a basis for
computing a sensitivity measure, which, for factor 𝜃𝑖, is founded on the
coefficients of the corresponding frequency 𝜔𝑖 and its harmonics. For a
full derivation and discussion of frequency choice, see [48,72].

Sobol analysis. Consider discrete outputs, 𝑌𝑖 = 𝑓 (𝑡𝑖), computed from a
sample of those in Eq. (1). We regard the 𝑌𝑖 as determined by the choice
of input parameters which are continuously distributed (presumably
over some physiological range), so one can view the 𝑌𝑖 = 𝑓 (𝑡𝑖) as
ntegrable multivariate functions. Use a Hoeffding-Sobol decomposi-
ion [47], which, for the sake of brevity, we state for three parameters:

(𝜃1, 𝜃2, 𝜃3) = 𝑓0 + 𝑓1(𝜃1) + 𝑓2(𝜃2) + 𝑓3(𝜃3) + 𝑓12(𝜃1, 𝜃2) + 𝑓13(𝜃1, 𝜃3)

+ 𝑓23(𝜃2, 𝜃3) + 𝑓123(𝜃1, 𝜃2, 𝜃3).

(11)

f we assume that input parameters are independent and can be trans-
ormed to 𝜃𝑖 ∈ [0, 1] are normalised and that the eigenfunctions in the
xpansion on the right hand side exhibit the orthogonality property:
1

0
𝑓𝑖(𝜃𝑖)𝑑𝜃𝑖 = ∫

1

0
𝑓𝑖𝑗 (𝜃𝑖𝜃𝑗 )𝑑𝜃𝑖 = ∫

1

0
𝑓𝑖𝑗𝑘(𝜃𝑖𝜃𝑗𝜃𝑘)𝑑𝜃𝑖 = 0, (12)

hen it is straightforward to show, by a recursive process of integrating-
ut first all, then two, then a single variable, that these eigenfunctions
ave a simple and intuitive realisation:

𝑓0 = 𝐸(𝑌 ), (13)
𝑓𝑖(𝜃𝑖) = 𝐸𝜃𝑐𝑖

(𝑌 |𝜃𝑖) − 𝑓0,

𝑖𝑗 (𝜃𝑖, 𝜃𝑗 ) = 𝐸𝜃𝑐𝑖𝑗
(𝑌 |𝜃𝑖, 𝜃𝑗 ) − 𝑓0 − 𝑓𝑖(𝜃𝑖) − 𝑓𝑗 (𝜃𝑗 ).

bove, 𝐸(..) denotes the expectation value and 𝑖, 𝑗, 𝑘 = 1,… , 3 and
𝑐
𝑖 represents the complement set of the input parameter 𝜃𝑖. Taking a
elative variance yields a single intuitive measure- the first order Sobol
ndex of the parameter 𝜃𝑖:

𝑖 =
var𝜃𝑖

(

𝑌𝑖(𝜃𝑖)
)

var(𝑌 ) =
var𝜃𝑖

(

𝐸𝜃𝑐𝑖
(𝑌 |𝜃𝑖) − 𝑌0

)

var(𝑌 ) =
var𝜃𝑖

(

𝐸𝜃𝑐𝑖
(𝑌 |𝜃𝑖)

)

var(𝑌 ) , (14)

here 𝐸 is the expectation operator. The inner expectation operator
unctions such that the mean of 𝑌 is taken over all possible values of
𝜃𝑐𝑖 while keeping 𝜃𝑖 fixed. The outer variance is taken over all possible
values of 𝜃𝑖. Then utilising the identity [73]:

Var𝜃𝑖 (𝐸𝜃𝑐𝑖
(𝑌 |𝜃𝑖)) + 𝐸𝜃𝑖 (Var𝜃𝑐𝑖 (𝑌 |𝜃𝑖)) = Var(𝑌 ), (15)

here Var𝜃𝑖 (𝐸𝜃𝑐𝑖
(𝑌 |𝜃𝑖)) measures the first order (additive) effects of

𝑖 on the model outputs. Another popular variance measure (promi-
ent in this work) are the total order estimators, first introduced by
omma [74]:

= 𝐸 𝑐 (Var (𝑌 |𝜃𝑐 )) = Var(𝑌 ) − Var 𝑐 (𝐸 (𝑌 |𝜃𝑐 )). (16)
𝑇 ,𝑖 𝜃𝑖 𝜃𝑖 𝑖 𝜃𝑖 𝜃𝑖 𝑖
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Here 𝑆𝑇 ,𝑖 measures the total effect, i.e., first and higher order effects
(multiplicative interactions) of input parameter 𝜃𝑖. One can consider
this by recognising that Var𝜃𝑐𝑖 (𝐸𝜃𝑖 (𝑌 |𝜃

𝑐
𝑖 )) is the first order effect of 𝜃𝑐𝑖 ,

so Var(𝑌 ) − Var𝜃𝑐𝑖 (𝐸𝜃𝑖 (𝑌 |𝜃
𝑐
𝑖 )) must give the contribution of all terms in

the variance decomposition, which include the input 𝜃𝑖.
To interpret Sobol indices, we note that a quantity of interest

with high values of either index, for a given factor, suggests that
measurement of that quantity may provide substantial information
about that parameter. If 𝑆𝑖 is low but 𝑆𝑇 ,𝑖 is large, then parameter
𝜃𝑖 impacts the quantity of interest primarily through interactions with
other parameters and so still may substantially affect the quantity of
interest.

3.3. Average parameter influence

So far, we have not postulated a metric for the overall influence of
an input parameter across all the outputs. In [45], Li et al. derive such
a metric based upon the FIM 𝑭 in Eq. (9). Li’s method has only been
applied to an FIM derived from LSA. We now extend to an FIM derived
from GSA, deriving a parameter influence, or effect using principal
component analysis (PCA) [45,75]. The principal components (PC) are
the eigenvectors of the FIM.

Let 𝑸 be the matrix of the ordered PC eigenvectors of 𝑭 , in which
the absolute value of each element 𝑄𝑖𝑗 reflects the contribution of the
𝑖th parameter to the variance of the 𝑗th output. We follow Li et al. [45],
who measure an overall effect for the 𝑖th parameter as:

𝑒𝑖 =

∑𝑚
𝑗=1 |𝜇𝑗𝑄𝑖𝑗 |
∑𝑚

𝑗=1 |𝜇𝑗 |
, (17)

here 0 ≤ 𝑒𝑖 ≤ 1 and 𝜇𝑗 represents the non-zero eigenvalues of 𝑭 . This
easure reflects the difficulty in determining the 𝑖th factor when only
single factor is estimated. Accurate estimation from limited data sets

s favoured by large values of 𝑒𝑖.

.4. Orthogonality analysis

Using Eq. (8), we can define the orthogonality between two in-
ut parameters by utilising the derived sensitivity vectors. 𝑑𝑖𝑗 can be
iewed as the averaged orthogonality between two input parameters 𝜃𝑖
nd 𝜃𝑗 , aggregated across all the outputs (see Table 2).

𝑖𝑗 = sin
[

cos −1
( �̂�𝑇

𝑗 ⋅ �̂�𝑖

‖�̂�𝑗 ||||�̂�𝑖‖

)]

, 𝑖, 𝑗 = 1,… , 𝑛, 𝑑𝑖𝑗 ∈ [0, 1], (18)

where, ‖.‖ denotes an Euclidean norm, the sin function ensures or-
thogonality measure 𝑑𝑖𝑗 ∈ [0, 1]. This measure of orthogonality will
e utilised below, for our extended subset selection method. It will
lso be used to rank parameters based on the most independent effects
hile not considering influence at all. To calculate a rank based on
rthogonality, we take the mean orthogonality score for an input
arameter with respect to all the others across all the outputs.

.5. Parameter identifiability

We require a practical strategy for finding suitable input parameter
ubsets for the purpose of model personalisation. Our method is based
pon a technique dating from 2004, due to Li et al. [45], originally
pplied to local sensitivity of bioreactor design; it offers an intuitive
alance of parameter influence and orthogonality. This selection will
se an aggregated identifiability index, which is a simple, scalar product
f a measure for: (i) parameter influence given in Eq. (17) and (ii)
arameter linear independence given in Eq. (18) (we want a subset,
he members of which are optimally linearly independent):

𝑖 = 𝑒𝑖 × 𝑑𝑖, 1 ≤ 𝑖 ≤ 𝑛. (19)

bove, 𝑒𝑖 is our measure of influence obtained from Eq. (17) and 𝑑𝑖 is
ur measure of the linear independence obtained from Eq. (18).
6

The concept of orthogonality underlies the method of Li et al. [45],
s follows. Parameter dependence is quantified from the FIM (Eq. (9)).
he rank of 𝑭 , defined as the dimension of the vector space spanned
y its columns [76], gives the number of identifiable combinations of
nput parameters at any given model operating point [77,78]. Given
hat we have 4 measurements, 4 identifiable (independent) parameters
re required to span the whole output space. It is thus our extension to
erform global sensitivities to identify which input parameters may be
niquely extracted from the available measurements.

Assuming �̂�𝑟, for 𝑟 = 1,… , 𝑛 with 𝑛 < 𝑚 are all linearly independent,
e find the projection of another vector, �̂�, into the subspace spanned
y �̂�𝑟 where 𝑟 < 𝑚, effectively by removing out its orthogonal projection
which lies outside that subspace). The remaining part is given by

̂∥ =
𝑛
∑

𝑟=1
𝑐𝑟�̂�𝑟, 𝑛 < 𝑚. (20)

onsider, now, a new candidate sensitivity vector �̂�𝑖, for a generic 𝑖th
nput parameter. The extent to which �̂�𝑖 is linearly dependent upon the
lready-chosen �̂�𝑟, is measured by finding the above projection of �̂�𝑖,
nto the subspace spanned by the �̂�𝑟, that is, by removing from �̂�𝑖 its
rthogonal compliment, �̂�⟂𝑖 . Accordingly, �̂�∥𝑖 is defined by its expansion
oefficients, 𝑐𝑟. The latter may, in fact, be efficiently computed in an
ptimisation process, with solution [45]:

=
⎡

⎢

⎢

⎣

�̂�𝑇1 �̂�1 … �̂�𝑇𝑛 �̂�1
⋮ ⋱ ⋮

�̂�𝑇1 �̂�𝑛 … �̂�𝑇𝑛 �̂�𝑛

⎤

⎥

⎥

⎦

−1

×
⎡

⎢

⎢

⎣

�̂�𝑇𝑖 �̂�1
⋮

�̂�𝑇𝑖 �̂�𝑛

⎤

⎥

⎥

⎦

. (21)

e summarise our algorithm for input parameter subset selection.

1. For each parameter, 𝜃𝑖, 𝑖 = 1,… , 𝑛, each having relative sensi-
tivity vector �̂�𝑖, calculate its overall effect, using Eq. (17);

2. Select the parameter with the highest value of 𝑒𝑖, 𝑖 = 1,… , 𝑛, to
be the first parameter in the selected set;

3. For 𝑛 < 𝑚, repeat the following steps until no more parameters
can be added to the accumulating set. For the 𝑗th candidate:

(a) Use Eq. (21) to find the nearest vector �̂�∥𝑗 , to the present
candidate, lying in the subspace already spanned by the
𝑘 (say) currently selected parameters.

(b) Use Eq. (18) to calculate the orthogonality between �̂�∥𝑗 and
�̂�𝑗 as follows

𝑑𝑗 = sin
[

cos −1
( �̂�𝑗 ⋅ �̂�

∥
𝑗

‖�̂�𝑗 ||||�̂�
∥
𝑗 ‖

)]

. (22)

(Of course, 𝑑𝑗 is a proxy for the magnitude of the or-
thogonal projection of �̂�𝑗 which, in turn, measures an
overall orthogonality for candidate 𝑗 relative to the 𝑘
already-selected parameters.)

(c) Attribute to candidate parameter 𝑗 a simple aggregate
identifiability index which reflects both its sensitivity and
orthogonality

𝐼𝑗 = 𝑒𝑗 × 𝑑𝑗 . (23)

(d) Provided 𝐼𝑗 > 0.05 [32], include in the set that parameter
with max𝑗 (𝐼𝑗 ).

4. If 𝑛 ≥ 𝑚 form all (m-1) tuples of the already selected parameters.
The number of possible candidates is

𝑞 =
𝑞!

(𝑚 − 1)!(𝑛 − 1 + 𝑚)!
.

Use Eq. (22) to calculate the orthogonality of the input param-
eter 𝜃𝑗 across all 𝑞 possible combinations of parameters 𝑑𝑞,𝑗 .
Determine the worst case scenario (𝑑𝑗 = min(𝑑𝑞,𝑗 )) and continue
with the calculation of 𝐼𝑗 .

5. Continue until no more parameters (elements) can be added.
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3.6. Hyperspace dimension

From Eq. (16), one can interpret the total order Sobol indices
as [79]:

𝑆𝑇 ,𝑖 = 𝑆𝑖 +
∑

𝑖≠𝑗
𝑆𝑖𝑗 +

∑

𝑖≠𝑗≠𝑘
𝑆𝑖𝑗𝑘 +⋯ ,

i.e., for a given input parameter 𝜃𝑖, the total order indices are the first
order indices plus all higher order interactions. Subtracting the first
order indices

𝑆𝑇 ,𝑖 − 𝑆𝑖 =
∑

𝑖≠𝑗
𝑆𝑖𝑗 +

∑

𝑖≠𝑗≠𝑘
𝑆𝑖𝑗𝑘 +⋯

𝑆𝑇 ,𝑖 − 𝑆𝑖 = 𝑆𝐻,𝑖,
(24)

where we denote 𝑆𝐻,𝑖 as the higher order interactions, for an input
parameter 𝜃𝑖. If 𝑆𝐻,𝑖 ≈ 0.0, one can deduce that the model inputs impact
the model outputs in an independent way.

Total order sensitivity indices have been shown to exhibit superior
ability to recover the true value of sensitivity indices, when compared
to first order indices [69,80]. Thus, one can utilise the total order
indices to quantify the complexity of the input parameter space. We
now define the investigative test procedure for our problem as follows:

1. Perform an extensive SA at the maximum bounds for our study:
±15% to compute 𝑆1, 𝑆2 and 𝑆𝑇 . Calculate the respective confi-
dence intervals.

2. Ensure all sensitivity indices exhibit a statistical variation of less
than 5% of the mean value.

3. Calculate 𝑆𝐻 .

(a) if 𝑆𝐻 < 0.01, proceed using only 𝑆𝑇 .
(b) If 𝑆𝐻 > 0.01, proceed as follows but examine 𝑆1 and 𝑆𝑇

to ensure each sensitivity index has converged.

4. Ensure consistent sampling density and converged sensitivity
indices, iteratively reduce the hyperspace dimension, recording
the rank and sensitivity values of each input parameter.

5. Once the hypercube dimension investigated is less than ±0.05%
from base state, finish the investigation.

6. Once all input parameter rankings and values have been
recorded, examine the variation between the edges of the input
parameter hypercube compared to the minimal variation from
the base state.

f a consistent ranking is exhibited at all hypercube sizes, one can infer a
ess complex input parameter space, with obvious consequences model
ersonalisability. On the other hand, if we observe large variations in
nput parameter rankings when the hypercube sizes are varied, one
ould infer a complex input parameter space hyper-surface — a greater
ncumbrance to personalisation (due to multiple possible local minima
ausing the input parameter ranking variations), when compared to the
revious example.

In this study, we examine hypercube sizes of ±15%,±7%,±3%,±0.5%
and ±0.01% starting with a sample size of 𝑁 = 100, 000 at ±15%.

4. Results

Sections 4.1 and 4.2 respectively examine LSA and GSA results for
our model and Sections 4.2.1–4.2.3 the Morris, eFAST and Sobol GSA
methods explored. In Section 4.3 the overall effect of input parameters
is compared between methods utilising Eq. (17). We then compare the
ranking of input parameters, based solely on their orthogonality score,
between methods utilising Eq. (22), in Section 4.4. Section 4.5 exam-
ines the stability of input parameter identifiability when we extend
subset selection to GSA methods and finally Section 4.6 examines the
complexity of the input parameter space of our single ventricle model,
7

using the method of Section 3.6.
4.1. Local sensitivity

Fig. 2 is the local sensitivity matrix. The minimal elastance of the
left ventricle 𝐸𝑚𝑖𝑛 is most influential, across all measurements, followed
by the maximal elastance 𝐸𝑚𝑎𝑥 and windkessel factors 𝑅𝑠, 𝐶𝑠𝑎 and 𝐶𝑠𝑣.
The end diastole timing parameter 𝜏𝑒𝑝 and the valve parameters 𝑍𝑎𝑜
and 𝑅𝑚𝑣 are the least influential.

4.2. Global sensitivity

The mean vs. variance plots are displayed, for Morris’ method in
Fig. 3. Figs. 4 and 5 show first order indices (panel A), total order
indices (panel B) and the higher order indices (panel C) as defined
in Eq. (24), for the eFAST and Sobol methods, respectively.

4.2.1. Morris method
Fig. 3, plotted on a log 10 scale, shows using Morris’ method, that

both valve parameters 𝑍𝑎𝑜, 𝑅𝑚𝑣 and the minimal elastance 𝐸𝑚𝑖𝑛 have
high mean and variance values against all 4 measurements, implying
these inputs are influential and have either a non-linear relationship
with the output, or non-linear interactions with other inputs. Here
the venous compliance 𝐶𝑠𝑣 has a low mean and variance for all 4
measurements, implying 𝐶𝑠𝑣 has little influence on the output, and may
be fixed.

4.2.2. eFast method
The sensitivity indices generated from the eFAST method are dis-

played in Fig. 4. Panel C displays the higher order sensitivity indices
𝑆ℎ ≈ 0 with the highest order interaction value of 0.0066, for 𝐸𝑚𝑖𝑛,
impacting the pulse pressure of the systemic artery. Thus, using the
eFAST method, we infer the inputs to act independently on the out-
puts. Examining panels A and B, the ventricular elastance parameters
𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 appear influential across all 4 measurements. The systemic
resistance 𝑅𝑠 appears influential across all measurements apart from
the ventricular pulse pressure. The arterial compliance 𝐶𝑠𝑎 appears in-
fluential when the measurement includes a pressure. The other system
parameters appear to have little influence across all outputs.

4.2.3. Sobol indices
Fig. 5 displays the Sobol indices. As in the eFAST case, we note

that panel C, for the higher order indices, are all approximately 0. The
largest higher order interaction is the minimal elastance 𝐸𝑚𝑖𝑛, with a
value 𝑆ℎ = 0.0099, impacting the stroke volume of the left ventricle.
Because the higher order indices are of very low value, the second
order indices are not displayed here but in Fig. 7 in the appendix
instead. Panels A and B show the first and total order indices (their
respective convergences are displayed in Figs. 8 and 9). 𝐸𝑚𝑖𝑛 appears
most influential across all measurements, with the system parameters
𝑅𝑠, 𝐶𝑠𝑎 and 𝐶𝑠𝑣 next.

4.3. Input parameter influence comparisons

Figs. 2, 3, 4 and 5 show our sensitivity matrices for each input
parameter, using different methods. Utilising the method in Section 4.3,
Table 3 displays the average influence ranking of all input parameters,
averaged across all 4 measurements. Although exact influence values
differ, all sensitivity measures rank the minimal elastance 𝐸𝑚𝑖𝑛 as
the most influential across all measurements. All sensitivity measures,
except the Morris’ method, rank the arterial compliance 𝐶𝑠𝑎 as second
most influential, with Morris’ method attributing an influence measure
and order of magnitude lower than all other methods. Interestingly,
the Morris sensitivity measure ranks the valve parameters as the next
most influential. All global measures apart from Morris’ rank input pa-
rameters in the same orders, apart from the parameters with negligible
influence values. The first order and total order indices exhibit the
same ranking, which once again is indicative of a system driven by
independent input factors 𝑆ℎ ≈ 0. The Local sensitivity matrix displays
a very similar ranking to the global measures, with small differences in

positions.
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Fig. 2. Local relative sensitivity Matrix: Shows the local relative sensitivity matrix, measuring input parameters’ (column headings) influence on specific model outputs (row
headings).

Fig. 3. Morris’ method scatter plots: Each plot displays a normalised mean value plotted against the variance value for each input parameter on a log 10 scale. Panel A: Morris’
method results for the stroke volume of the left ventricle. Panel B: Morris’ method results for the pulse pressure. Panel C: Morris’ method result for the pulse pressure in the left
ventricle. Panel D: Morris’ method results for the mean systemic flow.

Fig. 4. eFAST sensitivity matrices: Each matrix, with input parameters as column headings and specific model outputs as row headings, displays an influence value for an input
parameter against a specific output. Panel A: the first order indices. Panel B: the total order indices. Panel C: the difference sensitivity matrix as defined in Eq. (24).
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Fig. 5. Sobol sensitivity matrices: Each matrix, with input parameters as column headings and specific model outputs as row headings, displays an influence value for an input
parameter against a specific output. Panel A: the first order indices. Panel B: the total order indices. Panel C: the difference sensitivity matrix, as defined in Eq. (24).
Table 3
Parameter influence ranking: A table displaying the ranking of each input parameter influence, averaged across all 4 measurements.
Rankings are displayed for both local, global, first order and total order sensitivity measures.
Sensitivity metric Parameter ranking Parameter influence value

Local 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝐸𝑚𝑎𝑥 , 𝑅𝑠 , 𝐶𝑠𝑣 , 𝜏𝑒𝑠 , 𝜏𝑒𝑝 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 0.674, 0.388, 0.324, 0.322, 0.078, 0.062, 0.018, 0.018, 0.009
Morris 𝐸𝑚𝑖𝑛 , 𝑅𝑚𝑣 , 𝑍𝑎𝑜 , 𝐶𝑠𝑎 , 𝜏𝑒𝑠 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑝 , 𝐶𝑠𝑣 0.919, 0.384, 0.074, 0.014, 0.013, 0.012, 0.008, 0.005, 0.001
eFAST S1 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.796, 0.223, 0.213, 0.141, 0.009, 0.003, 0.001, 0.000, 0.000
eFAST ST 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.794, 0.228, 0.216, 0.144, 0.012, 0.006, 0.004, 0.003, 0.003
Sobol S1 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝜏𝑒𝑝 , 𝑅𝑚𝑣 0.796, 0.224, 0.209, 0.142, 0.009, 0.003, 0.001, 0.000, 0.000
Sobol ST 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.795, 0.224, 0.214, 0.142, 0.009, 0.003, 0.001, 0.000, 0.000
4.4. Orthogonality analysis

Fig. 6 (Panels A-F) display the orthogonality matrices for the re-
spective sensitivity measures. Overall, the orthogonality rankings of
input parameters are different using different sensitivity measures. In
some instances, for example, for the eFAST and Sobol methods, there
are vastly different orthogonality scores between the first and total
order indices, e.g. 𝜏𝑒𝑝. Despite this, there are still common themes for
the orthogonality scores: 𝜏𝑒𝑠 being consistently independent, 𝑅𝑠 having
independent effects from 𝐶𝑠𝑎, and 𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 having dependent effects.
Panels G-L underscore varied orthogonality scores between different
sensitivity measures. Sobol first order, Sobol total order, eFAST first
order and the local measure are consistent with more orthogonal pa-
rameters. Morris’ and eFAST total order produce orthogonality rankings
which suggest that the input parameters are more dependent on each
other.

Table 4 displays the average (as defined in Section 3.4) input
parameter ranking based on orthogonality. In contradistinction to the
influence case shown in Table 3, no clear patterns in the ranking
emerge. 𝑍𝑎𝑜 appears the most orthogonal for the eFAST first order,
Sobol first order and Sobol total order methods. The venous compliance
𝐶𝑠𝑣 ranks as least orthogonal in all sensitivity measures, apart from the
eFAST total order and the Sobol first order, but even in these settings,
the rank of 𝐶𝑠𝑣 is low. Examining the parameter orthogonality value
column in Table 4, we see a large variation in the average values of or-
thogonality for each input parameter, with the lowest ranked parameter
exhibiting an average orthogonality score between (0.21-0.549).
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4.5. Identifiability analysis

Utilising Eq. (9), for every sensitivity matrix generated from LSA
and GSA, we find the FIM to be singular, i.e., certain model parameters’
effects are totally dependent on others. 𝑅𝑎𝑛𝑘(𝐹 ) = 4 for the single
ventricle model defined in Eqs. (2)–(6) implies 9−4 = 5 non-identifiable
parameter combinations. Thus, we expect 4 identifiable input parame-
ters. From the definition of the identifiability index (Eq. (19)), we use a
cut off of 𝐼 < 0.05 [32] although further investigation of the reliability
of this measure is indicated. We note all sensitivity methods, except
Morris’ obtain the expected number of identifiable input parameters
in Table 5. All global methods identify the minimal elastance (𝐸𝑚𝑖𝑛)
and arterial compliance (𝐶𝑠𝑎) as the most identifiable parameters. The
local sensitivity measure agrees with the global methods, with the
minimal elastance as the most identifiable and the arterial compliance
as identifiable (but this is ranked 4th). Sobol first order indices and the
local measure are the only methods that find the systemic resistance
𝑅𝑠 as identifiable. eFAST and the Morris method first order indices are
the only methods to find the maximal elastance as also identifiable.
Both total order indices for the global methods give the same set of
identifiable input parameters. Examining the identifiability index value
of each input parameter, all global methods except Morris’ attribute a
similar value for each rank position, indicating that although the input
parameter rankings may vary between methods, their quantifiable
identifiability value remains constant.
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Fig. 6. Orthogonality Matrix and Orthogonality histograms: Panels A-F show the orthogonality matrices for the local, Morris, eFAST first order, eFAST total order, Sobol first order
and Sobol total order methods, respectively. A value of 1(0) indicates that the two input parameters have orthogonal effects on across all the outputs (contribute the same effect
on the output). Panels G-L are histograms of the respective orthogonality matrices, indicating the distribution of orthogonality present within the input parameters when computed
through the different sensitivity measures.
Table 4
Parameter orthogonality ranking: A table displaying the rank of input parameters based on their average orthogonality score, calculated
by taking the mean orthogonality score for each input parameter across all outputs for each sensitivity measure.
Sensitivity metric Parameter ranking Parameter orthogonality value

Local 𝜏𝑒𝑝 , 𝜏𝑒𝑠 , 𝐶𝑠𝑎 , 𝑍𝑎𝑜 , 𝑅𝑠 , 𝑅𝑚𝑣 , 𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑣 0.694, 0.686, 0.635, 0.620, 0.566, 0.465, 0.405, 0.398, 0.398
Morris 𝐶𝑠𝑎 , 𝑅𝑠 , 𝜏𝑒𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑝 , 𝐸𝑚𝑖𝑛 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 , 𝐶𝑠𝑣 0.537, 0.468, 0.410, 0.236, 0.229, 0.223, 0.218, 0.212, 0.210
eFAST S1 𝑍𝑎𝑜 , 𝜏𝑒𝑝 , 𝑅𝑠 , 𝜏𝑒𝑠 , 𝐶𝑠𝑎 , 𝑅𝑚𝑣 , 𝐸𝑚𝑖𝑛 , 𝐸𝑚𝑎𝑥 , 𝐶𝑠𝑣 0.865, 0.770, 0.730, 0.729, 0.714, 0.631, 0.553, 0.552, 0.549
eFAST ST 𝐶𝑠𝑎 , 𝑅𝑠 , 𝜏𝑒𝑠 , 𝑍𝑎𝑜 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑝 , 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑣 , 𝑅𝑚𝑣 0.761, 0.701, 0.693, 0.517, 0.370, 0.361, 0.357, 0.348, 0.347
Sobol S1 𝑍𝑎𝑜 , 𝑅𝑠 , 𝐶𝑠𝑎 , 𝜏𝑒𝑠 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 , 𝐶𝑠𝑣 , 𝐸𝑚𝑎𝑥 , 𝐸𝑚𝑖𝑛 0.798, 0.768, 0.754, 0.732, 0.647, 0.614, 0.534, 0.529, 0.520
Sobol ST 𝑍𝑎𝑜 , 𝜏𝑒𝑝 , 𝑅𝑠 , 𝜏𝑒𝑠 , 𝐶𝑠𝑎 , 𝑅𝑚𝑣 , 𝐸𝑚𝑖𝑛 , 𝐸𝑚𝑎𝑥 , 𝐶𝑠𝑣 0.863, 0.742, 0.729, 0.726, 0.706, 0.623, 0.547, 0.545, 0.545
Table 5
Identifiable input parameters: Table displaying the identifiable input parameters calculated using the global subset selection
method. Parameters in red indicate an unidentifiable input parameter utilising a cut off of 𝐼 < 0.05.

Sensitivity metric Identifiability parameter ranking Identifiability index value

Local 𝐸𝑚𝑖𝑛 , 𝑅𝑠 , 𝑍𝑎𝑜 , 𝐶𝑠𝑎 , 𝐶𝑠𝑣 , 𝜏𝑒𝑠 , 𝐸𝑚𝑎𝑥 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.703, 0.169, 0.097, 0.068, 0.023, 0.017, 0.016, 0.003, 0.000
Morris 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝐸𝑚𝑎𝑥 , 𝐶𝑠𝑣 , 𝑅𝑠 , 𝜏𝑒𝑠 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.919, 0.396, 0.114, 0.008, 0.005, 0.002, 0.000, 0.000, 0.000
eFAST S1 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝐶𝑠𝑣 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝑅𝑠 , 𝑍𝑎𝑜 , 𝜏𝑒𝑝 , 𝑅𝑚𝑣 0.814, 0.210, 0.085, 0.040, 0.034, 0.034, 0.003, 0.000, 0.000
eFAST ST 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝐶𝑠𝑣 , 𝜏𝑒𝑠 , 𝐸𝑚𝑎𝑥 , 𝑅𝑠 , 𝜏𝑒𝑝 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 0.812, 0.201, 0.079, 0.050, 0.045, 0.017, 0.000, 0.000, 0.000
Sobol S1 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.815, 0.150, 0.078, 0.076, 0.006, 0.003, 0.000, 0.000, 0.000
Sobol ST 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝐶𝑠𝑣 , 𝜏𝑒𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑝 , 𝑅𝑠 , 𝑅𝑚𝑣 , 𝑍𝑎𝑜 0.813, 0.192, 0.086, 0.069, 0.036, 0.010, 0.000, 0.000, 0.000
4.6. Hypercube dimension

Next, in Table 6, extending the input parameter space volume, from
local to one characterised by a parameter variation of ±15% reveals
an input parameter ranking which remains constant from a boundary
±0.01% upward. When using the local sensitivity measure, we note
that the ranking is similar to the global setting, with the minimal
10
elastance 𝐸𝑚𝑖𝑛 and arterial compliance 𝐶𝑠𝑎 ranking first and second. The
other input parameters, when using the local measure, appear to vary
by only a single rank position, when compared to the global setting.
As each hypercube dimension is sampled with the same density, one
would expect to see the parameter influence value to remain the same.
Here, as the hypercube dimension is extended, we observe some slight
variation in the influence value. This shows that, as the hypercube is
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Table 6
Hyperspace dimension: Table showing input parameter rankings for varying sizes of input parameter space explored when computing
total order Sobol indices. Both the ranking and the value of the influence are displayed.
Hypercube dimension Parameter ranking Parameter influence value

Local 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝐸𝑚𝑎𝑥 , 𝑅𝑠 , 𝐶𝑠𝑣 , 𝜏𝑒𝑠 , 𝜏𝑒𝑝 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 0.674, 0.388, 0.324, 0.322, 0.078, 0.062, 0.018, 0.018, 0.009
±0.01% 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝜏𝑒𝑝 , 𝑅𝑚𝑣 0.788, 0.227, 0.210, 0.167, 0.009, 0.003, 0.001, 0.001, 0.000
±0.5% 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝜏𝑒𝑝 , 𝑅𝑚𝑣 0.785, 0.236, 0.222, 0.141, 0.009, 0.003, 0.001, 0.000, 0.000
±3.0% 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.792, 0.226, 0.215, 0.140, 0.009, 0.003, 0.001, 0.000, 0.000
±7.0% 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.792, 0.226, 0.214, 0.141, 0.009, 0.003, 0.001, 0.000, 0.000
±15.0% 𝐸𝑚𝑖𝑛 , 𝐶𝑠𝑎 , 𝑅𝑠 , 𝐸𝑚𝑎𝑥 , 𝜏𝑒𝑠 , 𝐶𝑠𝑣 , 𝑍𝑎𝑜 , 𝑅𝑚𝑣 , 𝜏𝑒𝑝 0.795, 0.224, 0.214, 0.142, 0.009, 0.003, 0.001, 0.000, 0.000
Table 7
The mean rank and the range of the input parameters: Table showing the effect of
different parameter subset methodologies (influence, orthogonality and the extended Li
methodology [45]) when we stratify across all sensitivity metrics.

Input parameters

𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛

Influence Mean Rank 5.2 8.3 7.3 6.5 3.6 2.3 6.3 3.6 1.0
Range 6–5 9–7 9–2 8–3 6–3 4–2 9–6 7–3 1-1

Ortho Mean Rank 3.3 3.6 6.6 3.0 2.8 3.0 8.5 6.6 7.3
Range 4–2 6–1 9–6 7–1 5–2 5–1 9–7 8–4 9-6

Li Method Mean Rank 5.3 8.0 8.3 6.5 4.8 3.0 8.5 6.6 7.3
Range 7–4 9–6 9–8 9–3 7–2 4–2 5–3 7–3 1-1

extended, there is some quantifiable change in an input parameter’s
influence.

5. Discussion

With an aim to address the stability of input parameter identifia-
bility, we extended the subset selection method of Li et al. [45] to
global sensitivities, then utilised different global sensitivity methods
to interrogate the input parameter space. Tables 7 and 8 highlight
issues surrounding this problem. Comparing influence and orthogo-
nality rankings directly, we noted that influence had a much more
consistent ranking with all methods, except the local and the Morris
methods. When the ranks are based on orthogonality, we observe that
no methods exhibit a consistent ranking of input parameters. This is
further apparent when the extended parameter subset selection method
is applied. Table 5 highlights that all global methods except Morris’
found the minimal elastance 𝐸𝑚𝑖𝑛, the arterial compliance 𝐶𝑠𝑎 and the
enous compliance 𝐶𝑠𝑣 to be identifiable, however the 4th parameter
ound to be identifiable varied between each method. The total order
ndices for eFAST and Sobol produced the same subset of identifiable
arameters in the same order, which is reassuring, although we see that
he model is driven mainly through independent effects (𝑆ℎ ≈ 0), where

the total order indices capture all contributing affects to the output
variance. Thus, the identifiable subset returned is the same.

It is clear from the way each sensitivity method aggregates that
orthogonality has a large impact on an input parameter’s identifiability
and therefore should be examined further. However, it is important to
note that the extended subset methodology (with results in Table 5)
utilises the concept of orthogonality differently to the way it was
analysed in Table 4. Once the number of the selected input parameters
is greater than the number of measurements available, the orthogo-
nality score used to calculate the identifiability index from Eq. (19)
(i.e., the worst case/maximum orthogonality) is chosen. Thus, for input
parameters deemed unidentifiable, the rank should not be examined
too closely, as there are an infinite number of unidentifiable ranking
positions for the input parameters. Moreover, with the extended subset
methodology, we examine orthogonality against groups of input param-
eters, so the rankings presented in Table 4 (which are based on averages
of orthogonality pairings of the parameters) may not translate directly
to the extended subset methodology.

The Morris method has failed to return consistent results for both
the influence and an identifiable subset. While it is still popular for
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Table 8
The mean rank and the range of input parameters across all subset selection
methodologies when we stratify by different sensitivity methods.

Input parameters

𝜏𝑒𝑠 𝜏𝑒𝑝 𝑅𝑚𝑣 𝑍𝑎𝑜 𝑅𝑠 𝐶𝑠𝑎 𝐶𝑠𝑣 𝐸𝑚𝑎𝑥 𝐸𝑚𝑖𝑛

Local Mean Rank 4.6 5.6 7.6 5.0 3.6 3.0 6.3 5.6 3.3
Range 6–2 9–1 9–6 8–3 5–2 4–2 9–5 7–3 8-1

Morris Mean Rank 4.6 7.3 6.0 5.6 4.3 2.3 7.3 4.6 2.6
Range 6–3 9–5 8–2 7–3 6–2 4–1 9–4 7–3 6-1

eFAST S1 Mean Rank 4.6 6.3 7.6 5.0 4.0 3.0 6.0 5.3 3.0
Range 5–4 9–2 9–6 7–1 6–3 5–2 9–3 8–4 7-1

eFAST ST Mean Rank 4.0 7.3 8.6 6.3 3.6 1.6 5.6 5.0 3.0
Range 5–3 9–6 9–8 8–4 6–3 2–1 8–3 5–5 7-1

Sobol S1 Mean Rank 5.3 7.6 7.3 4.0 2.6 2.3 5.6 6.0 3.6
Range 7–4 9–6 9–5 7–1 3–2 3–2 7–4 8–4 9-1

Sobol ST Mean Rank 4.3 5.0 7.3 5.6 4.3 3.0 6.0 5.6 3.0
Range 5–4 9–2 8–6 9–1 7–3 5–2 9–3 8–4 7-1

higher dimensional models, its low ability to explore input parameter
space has here been highlighted. This ability deteriorates exponentially
with increasing dimensions [81]. Ideally, one would use a variance
based method such as eFAST or Sobol indices to characterise input
parameter, however this is often not utilised due to the associated
computational expense. Sensitivity analysis is driven by the speed in
which a dynamical system can be solved. For our system, see Sec-
tion 3.2.3. The time taken to compute Morris, eFAST and Sobol indices
on 28 threads was 3568.6, 3325.1 and 6893.0 s respectively. Thus, eFAST
presents itself as a reliable and efficient GSA method. Note, for the
Sobol method, the time quoted above included the computation of sec-
ond order indices also; if we were only interested in the first and total
order the number of model evaluations would be the same as Morris’
method. Thus, given one can optimise the model solution time, efficient
GSA is assured. This may be achieved through use of surrogates [82,83]
or by utilising the efficient ODE solvers in DifferentialEquations.jl [58],
as here.

Overall, eFAST is a reliable method to assess the uncertainty of
the single ventricle model. However it relies on a sinusoidal function
to sample input parameter space, which creates two problems. This
sampling method produces a zigzag pattern in the input parameter
space and it can struggle to capture the extremes of the input parameter
space [84]. When the size of the input parameter space increases, and
with more physiologically detailed models, the eFAST method may also
struggle to return true input parameter sensitivities. On the other hand,
the Sobol methodology utilises Quasi-Monte Carlo sampling strategies,
which allow for an easy computation of the confidence intervals as-
sociated with the sensitivity index. No such method exists for the
eFAST methodology, due to the sampling nature of the method [85].
Therefore, for assessing uncertainty, the Sobol method is still preferred,
because of its ability to compute confidence intervals, through the
bootstrapping methodology alongside the sensitivity indices.

A secondary aim of our investigation was to develop a GSA based
methodology for a mapping of the input parameter space. We have
shown in Table 6 that as one migrates from base state, input param-
eters’ influence rank remain constant, when exploring an extended
region. A possible explanation for the change in parameter rank moving
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Fig. 7. Second Order Sobol indices: The second order Sobol indices are presented as lower triangular matrices due to their symmetric nature. Each matrix element displays the
influence an interaction between two input parameters have on a selected output. Panel A: Displays the second order indices stroke volume for the left ventricle. Panel B: Displays
second order indices for the pulse pressure for the left ventricle. Panel C: Displays the second order indices pulse pressure for the systemic artery. Panel D: Displays the second
order indices for the mean systemic flow.
from base state to ±0.01% is that local SA is a linearisation around a
point meaning that any non-linear effects in the model are neglected.
The total order Sobol indices method captures all effects — no matter
how minor. In addition, in Table 6 the value quantifying parameters’
influence remains largely constant with minor variations, implying that
as the size of the hyperspace is extended, new domains of parameter
influence are reached. However, the effects as a whole do not change
because of the extension of the hyperspace dimensions. This indicates a
largely additive model, representing a flat input parameter hyperspace.
A (mostly) additive nature suggests that the single ventricle model is a
good candidate for personalisation. Validation of this conclusion can be
performed from patho-physiological patient measurements; however,
our present model is only shown to be effective in identifying patient’s
characteristics from exercise data using local optimisation [86]. Our
findings, utilising the hyperspace dimension test are consistent with
this.

Despite the promising findings of our hyperspace dimension test,
there are important issues to consider. First, we use a GSA method is
used to quantify the input parameter space. Often, GSA is performed
without any assessment of the error associated with the sensitivity
value. Previous work has shown that in order to achieve the true input
parameter influence, convergence must be achieved. Thus, we propose
Sobol indices are used for the hyperspace dimension test. Second,
one should ensure the same density of sampling is applied at every
hyperspace dimension size. The selection of samples suffers ‘the curse
of dimensionality’ [87]. But if a large enough sample size over the
hypercube was not utilised, consistent sample sizes close to the base
state would become too small. Here, we have utilised the total order
indices due to 𝑆ℎ ≈ 0. If this was not the case, one would have to
perform investigations with both the first and total order indices. The
first order indices are much harder to converge [69,79,80], thus for
a model with slightly more complexity and higher non-linearity, it
may not be possible to perform such a convergence test. However, for
12
dynamical systems where the outputs are driven by independent effects
of the inputs, this test will prove useful.

For the personalisation process, investigations must be assumed to
rely on a fixed set of measurements. In reality, one may not have access
to a rich and diverse set. While our methodology defines the ideal off-
line scenario to investigate identifiability – before using live patient
data – it should be acknowledged ever investigation is constrained
by the measurements available. So, every time a new measurement
becomes available, a new identifiability study is indicated. This also has
implications for parameter inference, because parameter identifiability
is only valid in the presence of a set of measurements.

6. Conclusion

Our study provides a clear and intuitive investigation of a key stage
of the personalisation process. We have studied a single ventricle, 9
parameter, 0D model, to probe the identifiability of its input parame-
ters, in the presence of 4 synthetic clinically available measurements.
We have: (i) extended the parameter subset selection method of Li
et al. [45], to encompass the global nature of the personalisation
process, (ii) revealed how a new and different set of globally iden-
tifiable input parameters could be obtained and (iii) provided novel
perspectives, compared to the previous local studies. Assessing the sta-
bility of this identifiable input parameter subset, we employed various
global and local measures of input parameter sensitivity, revealing how
alternative sensitivity methods which depict input parameter space in
contrasting ways lead to similar but subtly different identifiable input
parameter subsets (driven mainly by the dissimilar orthogonality be-
tween input parameters). Finally, we have detailed a novel and intuitive
input parameter hypersurface structure investigation, utilising Sobol
indices. The connection with Sobol index error evaluation provides a
guide for mapping of the complexity of input parameter space, with a
view to aid the inverse problem. When applied to the single ventricle
model, within the presence of the 4 chosen measurements, the single
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Fig. 8. First Order Sobol indices convergence: Panel A, B, C and D display, for each individual input parameter, the first order convergence for the stroke volume of the left
entricle, the pulse pressure of the left ventricle, the pulse pressure of the systemic artery and the mean systemic flow, respectively.
Fig. 9. Total Order Sobol indices convergence: Panel A, B, C and D display, for each individual input parameter, the total order convergence for the stroke volume of the left
ventricle, the pulse pressure of the left ventricle, the pulse pressure of the systemic artery and the mean systemic flow, respectively.
ventricle model revealed itself as a prime candidate for personalisation,
due to its stable input parameter rankings, in the presence of expanding
hyperspace boundaries.
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