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Abstract. Detailed dynamical systems’ models used in the life sciences
may include hundreds of state variables and many input parameters, of-
ten with physical meaning. Therefore, efficient and unique input parame-
ter identification, from experimental data, is an essential but challenging
task for this class of model. To clarify our understating of the process
(which within a clinical context amounts to a personalisation), we utilise
the computational methods of Unscented Kalman filtration (UKF), sensi-
tivity and orthogonality analysis. We have applied these three techniques
to a test-bench model of a single ventricle, coupled, via Ohmic valves,
to a Compliance-Resistor-Compliance (CRC) Windkessel electrical ana-
logue model of the systemic circulation, chosen in view of its relative
simplicity, interpretability and prior art. Utilising an efficient, novel and
real-time implementation of the UKF4, we show how, counter-intuitively,
input parameters are efficiently recovered from experimental data even
if they are not sensitive parameters in the currently accepted sense. This
result (i) exposes potential limitations in the standard interpretation of
what it means for an input parameter to be designated identifiable and
(ii) suggests that the concepts of sensitivity and identifiability may have
a weaker relationship than commonly thought - at least in the presence
of an appropriate data set. We rationalise these observations.

Practically, we present results which show the UKF to be an efficient
method for assigning personalised input parameters from experimental
data in real-time, which enhances the clinical significance of our ap-
proach.

Keywords: Unscented Kalman Filter · Sensitivity Analysis · Parameter
Estimation · Julia · Cardiovascular System Modelling.

4 Code available at https://github.com/H-Sax/CMSB-2023
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1 Introduction

Mechanistic mathematical models of the cardiovascular system (CVS) can be
made representative of physiology and pathophysiology [18] - provided they have
accurately optimised input parameters, ideally from suitable patient data [9,7].
The relationship between model functionality and available data must be care-
fully balanced - a parsimonious model with sufficient functionality, deployment
protocols, the properties of the target data and physiology are all to be consid-
ered.

Three standard approaches are used for the development of CVS models:
(i) complex three-dimensional (3D) models with many degrees of freedom [34]
to provide local insight, (ii) one-dimensional (1D) models in which only the
streamwise flow co-ordinate and time are retained, and which filter information
to reach spatially extended transient physiology such as pulse wave dynamics and
(iii) zero-dimensional (0D) lumped parameter, electrical analogue or compart-
mental models [39], with the ability to simulate the dynamics of the extended
CVS. Closed-loop 0D models are, typically, carefully curated combinations of
low-order sub-models of hemodynamic effects. They are expressed in terms of
passive electrical analogues - resistors representing mechanical dissipation in
flow, capacitors organ compliance and inductors any flow inertial effects. We are
concerned exclusively with such 0D models.

Each compartment of a 0D model represents physiology at a level which is of-
ten clinically amenable, with its corresponding input parameters then serving as
potential bio-markers with clinical significance [19,33]. To exploit this, we must
deduce methodologies which efficiently assign optimal personalised parameters
preferably from patient data (which correspond to a model output), by inverse
operation of the CVS model. This process, termed model personalisation, or
parameter identification, therefore assumes a central significance in the calibra-
tion of any 0D model to (patho)physiology in the individual and, by extension,
to clinical deployment. This process is not exclusive to CVS models of course;
parameter identification algorithms are vital for the deployment of almost all
biological systems’ models[2,41,14].

The task of CVS 0D model personalisation is, apparently, a practical ex-
ercise in model input parameter identification. When considering model input
parameter identifiability, one is concerned with two essential types: structural,
and practical [15] (a weak case, accounting for, e.g., the practical consequences
of experimental error in the target data). Here, we concern ourselves with practi-
cal identifiability only. Given the paucity and notorious inconsistency of clinical
data, the obvious practical response to the problem of model personalisation is
to characterise the patient by a co-ordinate in input parameter space - a model
operating point - or (more likely) a finite but bounded region, or a subspace.
But, how does one discover such a subspace?

Canonically, model personalisation is rooted in assessing the input parame-
ters’ sensitivity against given output metrics. Sensitivity analysis (SA) studies
how a change in a model’s output can be apportioned to different sources of
uncertainty among its likely many input parameters [36]. Often, a lack of model
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sensitivity is deemed the root cause of input parameters’ unidentifiability - when
model parameters’ variation does not shift outputs, their value cannot be inferred
[16,38,11]. Two types of SA exist: (i) local SA addresses sensitivity relative to
change of a single parameter value one at a time about a fixed operating point;
(ii) global SA examines sensitivity with regard to the entire parameter distri-
bution [29]. For personalised medicine, it is deemed essential to examine the
whole parameter space [24]. SA can expose influential parameters in sets, the
members of which all have similar effects across surveyed outputs; without more
data, it then becomes very challenging to determine each uniquely. Accordingly,
if one does not examine -and screen- such dependency between parameters, se-
lecting parameters on influence alone, one does not know if a chosen subset of
parameters are all individually identifiable. There are several methods within
the literature which combine both ideas to produce the optimal input parameter
set [25,31,30].

Another method of ingesting data into our cardiovascular (CV) model uses an
Unscented Kalman filter (UKF) [46]. Recently, progressive data-assimilation ap-
proaches have increased in popularity, due to quick computation and the UKF’s
ability fully to exploit time-varying measurements (in contradistinction to the
scalar mean, minimum or maximum indices which are often used). It has been
employed in a range of CV models [23,27,28,6]. Within this methodology, iden-
tifiable parameters are characterised by a low variance - which is the object of
the algorithm. However which of the methods cited above correctly identifies the
optimal input parameter? We present a systematic comparison and analysis of
typical methods, used to deduce the optimal set of input parameters. Our com-
parison involves (i) examination of orthogonality within the model, (ii) global
sensitivity and (iii) the UKF algorithm. We develop and detail a novel imple-
mentation which is real-time and adaptable to any system described by a set of
differential equations.

We structure as follows: Section 2 details the methods of and the implemen-
tation used within the work; Section 3 details the results and Section 4 gives a
comprehensive comparison and discussion of the optimal input parameter sets
which are returned by the methods.

2 Methods

We describe the model under investigation, the sensitivity analyses performed,
our parameter orthogonality analysis and, finally, the implementation of the
UKF to the basic single ventricle model. All computation was performed using
Julia [4], using packages including DifferentialEquations.jl [35] and Distribu-
tions.jl [3] to solve the differential algebraic equation (DAE) system [47] for-
mulation and implement the UKF. Specifically, simulations were solved using
Rodas5P algorithm [47], relative and absolute tolerances were set to 10−12. We
enforced a time step of 0.00225 (444 time steps per cycle) and ran the model for
30 cycles, given a steady solution was reached after 3 cycles. We used Makie.jl
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to visualise results [8], and GlobalSensitivity.jl to perform the global sensitivity
analysis [10].

2.1 DAE Model & Measurements

Our base mechanical model is a three-compartment system-level, DAE based,
electrical analogue CV model after Bjordalsbakke et. al. [5]. See Figure 1. Each
compartment state is specified by its dynamic pressure P (t) (mmHg), an inlet
flow Q(t) (mL/s) and a volume V (t) (mL):

Xi(t) = (Vi(t), Pi(t), Qi(t))
T
, i ∈ {lv, sa, sv}, (1)

where X represent the state variables of of our system, lv denotes the left ventri-
cle, sa the systemic arteries and sv the venous system. Formally, t is a continuous
variable. Our system is canonically expressed in a compact, state-space form:

d

dt
X(t) = f(X(t); θ), Y (t) = h(X(t)),

Y (t) = (Plv, Psa, Vlv)
T

(2)

in which θ denotes the input parameter set declared in Table 1 as a vector,
function h is the measurement operator. A full model description, its parameters
and model the solution can be found in Appendix A.

Fig. 1. The systemic circulation, single ventricle, model. An electrical analogue
representation of our state-space system CVS model. The elastance of the left ventricle
chamber used is the Shi double cosine [22]. The valves (diodes) are assumed to have
Ohmic behaviour, under both forward and reverse bias, with a very large regurgitating
resistance. Our textual notations for the resistors and the capacitors are defined in
Table 1.

To examine SA, orthogonality and the UKF, we derive noisy forward data
from numerical solutions based upon nominally true parameter values. We gen-
erate waveform data for lv pressure Plv, lv volume Vlv and systemic pressure
Psa for 30 cycles, representing a clinical scenario of continuous measurements
from (say) echocardiography for Vlv [13] and arterial line measurement for Psa

[37]. (Cardiac cathederisation can be performed to extract Plv [21]). To supply
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Table 1. Model input parameters. Each input parameter’s unit is stated alongside
a chosen initial value. τ is the cardiac cycle length and is fixed such that τ = 1s.

Parameter θ (units) Description Initial Value

Emax

[
mmHg

ml

]
Maximal ventricular contractility 1.5

Emin

[
mmHg

ml

]
Minimal ventricular contractility 0.03

τes (s) End systolic time 0.3τ
τep (s) End pulse time 0.45τ

Zao

[
mmHg s

ml

]
Aortic valve resistance 0.033

Rmv

[
mmHg s

ml

]
Mitral valve resistance 0.06

Rs

[
mmHg s

ml

]
Systemic resistance 1.11

Csa

[
mmHg s

ml

]
Systemic compliance 1.13

Csv

[
mmHg s

ml

]
Venous compliance 11.0

surrogates for the metrics defined above, our model’s numerical solutions are
subject to multiplicative corruption as follows:

Y m
j = h(X(tj , θt), Y n

j = h(X(tj , θt)) · (1 + ψj). (3)

Above, the subscript j denotes sampling time, deemed to be the discrete time of
the numerical solution, superscript n indicates a noisy solution and superscriptm
denotes the measured, un-corrupted numerical solution. ψj is an independently
distributed normal random variable, with zero mean and a standard deviation
0.025, which is typical [6].

2.2 Sensitivity and Orthogonality

Global SA explores tracts of system input parameter space and decomposes pa-
rameters’ effects on our representative outputs. Here we consider Sobol analysis
[42] in a probabilistic framework, which decomposes model outputs’ variance into
fractions which can be attributed to (sets of) inputs. Often, Sobol analysis is per-
formed on discrete outputs to attribute variance to a specific measurement. Here
we examine continuous outputs [1] and produce waveform data which demon-
strate the sensitivity of each input parameter over the cardiac cycle at each
time point. We defer further discussion to Appendix B. Rather than average
across a time range (which process weights regions of low variance equally to
those of high variance) we seek to expose differential sensitivities by examining
variance-weighted averages:

S[1,T ],i =

∑
k S[1,T ],iY (tk)Var(Y (tk)∑

k Var(Y (tk))
, (4)

where S1 represents the first-order indices which inform on relative influence
of every input (total order indices, ST , inform relative influence of every input
parameters interactions with others). Y m denotes the measured model output
and i identifies the particular input parameter whose sensitivity is at issue.
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To determine a parameter’s net importance across all measurements we use
the overall importance measure introduced by Li et al. which uses an eigen-
decomposition of the Fisher matrix, to rank input parameters. See [25] and
Appendix C.

We use the measure dij to measure orthogonality between input parameters
θi and θj .

dij = sin

[
cos−1

(
ST
1,j · S1,i

||S1,j ||||S1,i||

)]
, i, j = 1, .., n, dij ∈ [0, 1]. (5)

Here we concern ourselves only with first order Sobol indices S1, which allows us
to concentrate solely on a parameter’s independent effects. S1,i are multidimen-
sional vectors due to each input parameter, i/j, having an independent effect
against the 3 measurements explored in this work.

2.3 Unscented Kalman Filter

The UKF is made up of two distinct steps, firstly the unscented transform (UT)
which is a method for calculating the statistics of a random variable which
undergoes a nonlinear transformation [20]. The first distinction is that we assume
additive noise through the whole model which is accepted practice for biological
systems [26,40,32]. We generate an augmented vector x = [X, θ], where X and
θ are the state variables and input parameters; see (2).

We assume that the augmented state vector x is a Gaussian random variable
(GRV) of dimension L where L = dim(X) + dim(θ). Now consider propagating
the augmented state-vector through the nonlinear function f . Here and for most
biological systems, the non-linear function is represented by a set of ODEs. We
measure Plv, Psa, Vlv, Y (t) = h(x(t)), h is the previously-used operator- we
acquire the ODE solution to Plv, Psa and Vlv. Assume our GRV has a mean xµ
and a covariance Px. To compute the statistics on the propagation of our GRV
through f , we construct a matrix χ of 2L+1 sigma vectors χi, where i represents

the ith column of the matrix according to the following. For t = 0, ...,∞:

χ0,t = xAµ,t, χi1,t = xAµ,t +
(√

(L+ λ)PA
x,t

)
j
, χi2,t = xAµ,t −

(√
(L+ λ)PA

x,t

)
j
,

i1 = j = 1, ..., L, i2 = L+ 1, ..., 2L.
(6)

We also compute a set of corresponding weights Wi:

Wµ
0 =

λ

L+ λ
, W c

0 =
λ

L+ λ
+ (1 + β − α2), Wµ

i =W c
i =

1

2(L+ λ)
,

i = 1, ..., 2L, λ = α2(L+ κ)− L,

(7)

where the superscript A represents the assimilated state and parameter vector,
λ is a scaling parameter, α determines the spread of sigma points around xµ (we

use α = 10−3). κ is another scaling parameter (here κ = 0). β incorporates prior
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knowledge of which distribution x follows, here β = 2 is used as this is optimal
for GRV. The matrix square root is performed using a Cholesky decomposition
[17] which requires the matrix to be positive definite. We then propagate each
sigma vector through the ODE system such that Υi = f(χi) and determine the
the mean and covariance of Y using the weighted sample mean and covariance
of the propagated sigma vectors. Before we can do this, we must first define the
prediction step in the algorithm

χ̂t+1|t = f(χt), Υt+1|t = h(χ̂t+1|t). (8)

The above have corresponding mean and sample covariance:

xµ,t+1 =

2L∑
i=0

Wµ
i χ̂i,t+1|t, Px,t+1 =

2L∑
i=0

W c
i [χ̂i,t+1|t − xµ,t+1][χ̂i,t+1|t − xµ,t+1]

T + δQI,

Y µ
t+1 =

2L∑
i=0

Wµ
i Υi,t+1|t, PY ,t+1 =

2L∑
i=0

W c
i [Υi,t+1|t − Y µ,t+1][Υi,t+1|t − Y µ,t+1]T +R,

PxY ,t+1 =

2L∑
i=0

W c
i [χ̂i,t+1|t − xµ,t+1][Υi,t+1|t − Y µ,t+1]T ,

(9)
where PxY is designated the cross correlation matrix. R is the additive noise on
the predicted measurements. δQI is considered a regularisation term to avoid
sigma point collapse [45,32], I is an L× L identity matrix with δQ = 10−8.

We now correct the prediction that has been made by assimilating the noisy
data generated on (3). The Kalman gain matrix is calculated as

Kt+1 = PxY ,t+1(PY ,t+1)
−1,

which then leads to:

xAµ,t+1 = xµ,t+1 +Kt+1(Y
n
t+1 − Y µ

t+1),

PA
x,t+1 = Px,t+1 −Kt+1PY ,t+1K

T
t+1,

(10)

where xAµ,t+1 and PA
x,t+1 are used to generate new sigma points for the t+1 time

point.

In order to implement the UKF, we take advantage of the versatile SciML
ecosystem within Julia. Here we implement a discrete callback which performs
the Kalman filtration at each time point and returns the corrected result. This
has been shown to contribute no additional computational time associated with
the callback, which explains our ability to produce the result in real time. Most
workers manually discretise the ODE, in order to transform it into a discrete time
system for the implementation of an UKF. Implementing a callback allows us to
take advantage of advanced ODE solvers within package DifferentialEquations.jl
with improved accuracy.
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3 Results

We summarise results from the preliminary global SA and the average impor-
tance and the orthogonality of input parameters. We then examine the results
of the Kalman filtration and reinforce this by examining relationships within the
model equations.

3.1 Sensitivity & Orthogonality Analysis

In Figure 2A, we present the converged Sobol analysis. Each parameter was
run for n = 3000 iterations which, when the first order indices were summed,
resulted in values of 0.97, 0.98 and 0.99 for left ventricular pressure, systemic
arterial pressure and left ventricular volume respectively. These results were then
checked for n = 5000 iterations for which we saw no change to 2dp. We see clearly
that Emin has the strongest influence over all 3 measurements and it appears Rs

and τep have strong independent influence over arterial pressure and ventricular
pressure, respectively. But Csv and Zao appear to have minimal influence over
all 3 measurements. Figure 2B reinforces these findings with 86% of the overall
influence concentrated around minimal contractility parameter Emin, where as
only 0.05% of influence an be attributed to the aortic valve resistance Zao. Figure
2C displays the orthogonality of the input parameters in which 0 denotes total
dependence between parameters. We see Emin and Rs are the most orthogonal
parameters in the whole space. It appears as (Csa, Rmv) and (Csv, Zao) exhibit
the strongest coupling with an orthogonality score of 0.01, which is surprising.
Figure 2D is a histogram showing how the orthogonality appears to concentrated
around [0.1, 0.4] and [0.8, 1.0). This concentration towards high orthogonality
scores is due to Rs and Emin exhibiting high independence over the parameter
space.

3.2 Kalman Filtration

We initialise our parameters 10% from their truth value, while prescribing the
largest initial variances to ensure no physiological principles are undermined.
From Figure 3 we see τes, τep, Zao, Csa, Emax and Emin are estimated very close
to their truth values and that 5 parameters are found within 7 cycles, evidencing
considerable facility at recovering truth parameter values. Running the UKF for
30 cycles takes 27.3 seconds which was averaged over 10 successful runs of the
UKF. τep, τes and Emin are the parameters which were found most accurately,
with an error of 0.0163%, 0.0607% and 0.339%. Then in order of accuracy:
Csa, Zao, Emax all showed error less than 1.3%. The parameters with the largest
errors were Rs, Rmv and Csv with 2.7%, 12.0% and 21.0% error respectively.
We see small fluctuations surrounding the estimation of certain parameters even
after the truth value has been found, which relates to the internal dynamics of
the system and valve actuation points- where the system reacts to the Heaviside
Ohmic valve- and recovers the true parameter value during its current cycle.
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Fig. 2. A: Sobol indices of first order interactions between inputs and outputs; B:
average parameter importance; C: orthogonality score between the Sobol first order
matrix; D: a histogram showing the orthogonality score spread.
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Figure 4 represents the evolution of the parameter variance as the UKF
evolves. We again see the majority of parameters reach a steady variance within 7
cycles, which then oscillates with the cardiac cycle. Parameters with the smallest
variance are τep, Emin and τes with variances 3.36 × 10−6, 3.72 × 10−6 and
3.98 × 10−6, respectively. The ranked parameters are Zao, Rmv, Csa which all
have a variance less than 1.3×10−4. Emax, Rs and Csv have the largest variances
of 1.30×10−4, 8.96×10−4 and 9.76×10−2. We remark that Rmv has low variance,
but from the figure we see that it has not settled.

Fig. 3. Results of using the UKF to recover input parameter values from noisy synthetic
data. The “true” parameter values are represented as a yellow line, where as the UKF
estimate is shown in blue.

3.3 Dynamical equations

Here we derive equations in terms of model input parameters and pressures;

volume is derived using E(t) = Plv(t)
Vlv(t)

[43]. We break the cycle up into systole

and diastole, assuming infinite resistance on the mitral (aortic) valve during
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Fig. 4. Evolution of the parameter variance during the cardiac cycle. Results are dis-
played with a log scale.
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systole (diastole). For a full derivation see Appendix D. For systole we have

dPlv

dt
=
Psa − Plv

Zao
E(t) +

Plv

E(t)

dE

dt
,
dPsa

dt
=
Plv − Psa

CsaZao
− Psa − Psv

CsaRs
,

dVlv
dt

=
Plv − Psa

Zao
,
dPsv

dt
=
Psa − Psv

CsvRs
,

(11)

and for diastole

dPlv

dt
= (

Psv − Plv

Rmv
)E(t)+

Plv

E(t)

dE

dt
,
dPsa

dt
=
Psv − Psa

CsaRs
,

dPsv

dt
=
Plv − Psv

CsvRmv
+
Psa − Psv

CsaRs
.

(12)

From these equations we infer the following:

1. τes, τep, Emin, Emax interact directly and independently with with mea-
surements Plv, Psa, Vlv. As derived from the pressure volume relationship
specified at the start of section 3.3.

2. Zao interacts independently with Plv, Psa, Vlv from ventricular pressure
volume equation in (11).

3. Csa interacts collectively with Zao and Rs on the measurements Plv and
Psa from arterial pressure equation in (11). Csa directly controls our arterial
pressure.

All the above parameters are found with an error of less than 1.5%, which we
observe due to their independent interactions with measurements. We are left
with 3 parameters which have an error larger than 2%:

1. Rs interacts collectively with Csa and Csv, on the arterial pressure measure-
ment, therefore has no independent interaction with any measured data. Rs

has an error of 2.7% and ranks 4th on the importance scale.

2. Rmv interacts with E(t) on Plv and with Csv on Plv. Here we see no inde-
pendent interaction with any measurement. Rmv has an error of 12% and
ranks 6th on the importance scale.

3. Csv interacts with Rs on Psa and Rmv on Plv. Despite Csv interacting with
two measurements both it’s interactions are conflated by parameters which
themselves do not interact independently with any measured experimental
data.

We remark that the parameters which are exposed to both pressure and volume
measurements independently are recovered accurately, despite them not being
particularly sensitive, whereas parameters which are not recovered efficiently
often interact collectively with other parameters, so independent effects can not
be extracted from the measurements.
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Table 2. Parameter results. We tabulate the results of the input parameters,
ranked as 1 - 9, where, 1st represents the lowest variance, largest importance, largest
orthogonality and smallest error. The first rank average (column 5) denotes rank aver-
age, displays the parameter’s rank excluding error. The second rank average (column
7) includes the error of the UKF estimate. †: The error increases to 7.52% given we
examine t > 15s. *: The error decreases to 0.291% given we examine t > 15s.

Parameter
Variance
& Rank

Importance
& Rank

Orthog.
& Rank

Average
Rank

Error %
& Rank

Average
Rank

τes (3.98 · 10−6, 3) (4.51 · 10−2, 7) (0.444, 4) 4.67 (6.07 · 10−2, 2) 4

τep (3.36 · 10−6, 1) (6.84 · 10−2, 5) (0.545, 3) 3 (1.63 · 10−2, 1) 2.5

Rmv (1.16 · 10−5, 5) (5.02 · 10−2, 6) (0.365, 6) 5.67 (12.0, 8) 6.25

Zao (5.29 · 10−6, 4) (5.28 · 10−4, 9) (0.364, 8) 7 (1.00, 5) 6.5

Rs (8.96 · 10−4, 8) (9.44 · 10−2, 4) (0.888, 1) 4.33 †(2.70, 7) 5

Csa (3.67 · 10−5, 6) (0.101, 3) (0.364, 7) 5.33 (0.364, 4) 5

Csv (9.76 · 10−2, 9) (1.59 · 10−2, 8) (0.363, 9) 8.67 (21.0, 9) 8.75

Emax (1.30 · 10−4, 7) (0.124, 2) (0.393, 5) 4.67 ∗(1.29, 6, 3) 5, 4.25

Emin (3.72 · 10−6, 2) (0.866, 1) (0.816, 2) 1.67 (0.339, 3) 2

4 Discussion

From Table 2 we could choose an optimal set of input parameters based only on
sensitivity and orthogonality. From the importance column, we could choose an
optimal set of input parameters (1-6) given we exclude any parameter which does
not contribute more than 5% influence on the outputs. As we assume that we can
not extract the parameters’ effects on the outputs, they can not be readily iden-
tified. This then means τes, Csv and Zao are considered to be the unidentifiable
parameters. From the error column, we find that the least sensitive parameter
Zao exhibits an error of only 1%, this is 5th smallest error and has 4th smallest
variance of 5.29×10−6. τes which we have assumed to be unidentifiable, exhibits
the 2nd smallest error of 0.0607% and the 3rd smallest parameter variance of
3.98× 10−6. From Figure 4, input parameters which are recovered with minimal
error also exhibit a steady variance. We note from the above, a parameter may
not be sensitive, but this does not mean that the parameter is not identifiable.

When considering the dynamical equations we showed that both τes and
Zao interact independently with all three measurements Plv, Psa and Vlv, which
implies that sensitivity is not the determinant of input parameter identifiability.
We note that a parameter’s variance reaching a steady minimum and interacting
with all measurements appears to indicate that a parameter will be identifiable.

The sensitivity of parameters is not a redundant concept however; Csa and
Emax exhibit the 6th and 7th highest variances of the parameter set, higher than
the variance of Rmv, which was found with an error of 12.0%. From this, one
may conjecture that Csa and Emax may be unidentifiable. However, Emax and
Csa rank as the 2nd and 3rd most influential input parameters across the cycle.
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In Figure 4, we see Emax takes almost 30 cycles to reach a steady variance. If
we compare this to the worst performing parameter Csv, which has an error of
21.0%, we observe that Csv struggles to move away from its initial variance.
If we compare Csv to Emax and Csa, we notice, the main difference is Emax

and Csa have considerably more influence over the cycle. We also see from our
analysis of the dynamical equations Csa directly controls the Psa measurement
so we can expect this parameter to be accurately recovered. In addition, Emax

interacts with all 3 measurements independently, whereas Csv does not interact
with any measurements independently. Therefore, given a parameter does not
reach a steady minimal variance, it appears that, if a parameter is sensitive
and interacts with all measurements independently this can aid the parameter’s
efficient recovery.

In this research, we have also demonstrated the vital importance that a range
of data have on the accurate recovery of input parameters. An exemplar is the
systemic resistance Rs, an important parameter which is often used as a bio-
marker of pathophysiology [44]. Rs has an error of 2.7% - considerably larger
than the other errors observed in this work. From Table 2 we see Rs ranks 4th in
sensitivity and 1st for orthogonality, indicating good identifiability. We see that
Rs never acts independently and is only exposed to the arterial pressure mea-
surement Psa. From the results discussed above, exposing Rs to an orthogonal
measurement along with arterial pressure (i.e., volume/flow), one might expect
this parameter to be recovered more efficiently than in the current case.

While we have discussed how important it is for the variance to reach a min-
imal level - which is an indicator for identifiability - we have also demonstrated
the importance of subject expertise. With variance of said input parameter being
a dominating factor in whether the parameter is identifiable or not, we note that
during the modelling phase if one can include subject experts within research
discussions this can lead to more assurance as to what the “true” value of an
input parameter is, hence reducing the initial uncertainty prescribed to the input
parameter set. If this is not possible we have shown that the recovery of input
parameters is still largely more accurate than the estimated values that come
from medical equipment.

The real-time implementation of the UKF is conducted through a single ven-
tricle model; as the model grows with complexity, we expect that its ability to
compute input parameters within real-time may decrease. However, real-time is
only a constraint which is needed for a systems model to be implemented into
a clinical workflow [19], so given we can implement a more complex model into
Julia which returns results in real-time, we have bridged the first step needed
to integrate physiological models into clinical workflows. Aside from this, re-
searchers interested in systems biological now have a simple usable example in
which the only things needing changing are the model, the initial conditions and
the noise errors associated with the system.
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5 Conclusion

Broadly, we have quantitatively assessed the capability of the UKF accurately
to recover input parameter values and states of a single ventricle model of the
CV system by ingesting continuous and discrete time data. We use the SciML
framework within the Julia language to develop an open-source, novel, real-time
implementation. Our approach is amenable to a clinical workflow, can recover
personalised patient state and parameter values with minimal error and may be
applied to any system model. Specifically, input parameter global sensitivity and
orthogonality analysis have been performed to assess the relationship between
parameter recovery of the UKF and the sensitive and orthogonal input parame-
ters. We have analysed a simple DAE model which contains 9 input parameters
and have generated realistic synthetic clinical measurements.

Perhaps surprisingly, we show that there is not an injective relationship be-
tween input parameter sensitivity and our filter’s ability to recover input param-
eters and while high parameter sensitivity can contribute to accurate recovery of
input parameters, it is not a sufficient condition. Rather, we find that a param-
eter’s variance reaching a steady minimum is a stronger predictor of accurate
assignment, compared with input parameter sensitivity and orthogonality anal-
ysis. Further, our analysis exposes the importance of utilising a diverse range of
experimental data, which allow identifiable parameters to be precisely recovered.
Our observations question the received wisdom of deducing identifiable input pa-
rameters - we have shown that finding the identifiable parameters based solely on
sensitivity and orthogonality methods may lead to misleading conclusions. The
central concern of recovering parameter values from experimental data seems
to be answered by the UKF which presents itself as a very practical method
of uniquely identifying input parameters with low sensitivity. Our method is
computationally inexpensive so the common approach of pre-screening input
parameters to fix the unidentifiable ones is unnecessary.

In the future, our method could be adapted to more realistic physiologi-
cal models and applied to real clinical data, opening up new possibilities for
personalised patient care. Directions for future research involve assessing a pa-
rameter’s ability to adapt to perturbations within the cardiac cycle and adapting
the method to deal with cycle-to-cycle heart rate variability. Exploring the re-
lationship between input parameter sensitivity and the UKF’s ability to recover
parameters apparently has important, if nuanced practical implications for all
system model parameter identification.
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A Model Derivation and Model Solution

In generic form, the equations relating to the passive compartmental state vari-
ables all take the form:

dVs,i
dt

= Qi −Qi+1,
dPi

dt
=

1

Ci
(Qi −Qi+1), Qi =

Pi − Pi+1

Ri
. (13)

Above, the subscripts (i − 1), i, (i + 1) respectively represent the proximal,
present and distal system compartments, Vs,i(mL) denotes the circulating (stressed)
volume [43] and Ci (ml/mmHg) and Ri (mmHgs/mL) denote compartmental
compliance and the Ohmic resistance between compartments i, (i+1). See Fig-
ure 1 and Table 1.

We return to system compartment number 1 and its activation function
shortly. Figure 1 is a schematic representation. Note, (i) we use a C-R-C Wind-
kessel [48] to represent the systemic circulation, (ii) no inertance appears in
our formulation, (iii) the systemic and venous compartments are passive, having
fixed compliance Csa and Csv respectively and (iv) flow in and out of the active
left ventricle is controlled by the mitral and aortic valves respectively, the latter
being modelled as diodes, with Ohmic resistance under forward bias and infinite
resistance under reverse bias

Qi =

{
Pi−Pi+1

Rval
, Pi > Pi+1,

0 Pi ≤ Pi+1,
(14)

where Rval represents the resistance across the respective valves.
Let us consider the active model compartment. The dynamics of the left

ventricle is described by a time varying compliance Clv(t), or reciprocal elastance,
E(t) (mmHg/ml) which determines the change in pressure for a given change in
the volume [43]

E(t) =
Plv(t)

V (t)− V0
=
Plv(t)

Vs(t)
, (15)

where V0 & Vs(t) represent the unstressed and stressed volumes, respectively, in
the chamber.

E(t) may be described in analytical form as follows: [22]

E(t) = (Emax − Emin) · e(t) + Emin, (16)

e(t) =


cos( πt

τes
) 0 ≤ t < τes,

cos(
π(t+τep−τes)

τes
) τes,≤ t < τep,

0, τep ≤ t < τ.

(17)

Above, e(t; τes, τep) is the activation function, which is parameterised by the end
systolic and end pulse timing parameters τes and τep respectively.

The elastance function is defined over one cardiac cycle, i.e time t̄ ∈ [0, τ ] with
τ (s) the length of the cardiac cycle, and contractility, Emax, and compliance,
Emin, both of which control the left ventricular elastance extrema. There is a
discontinuity in E(t) at t = τ .
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Fig. 5. Sample model solutions. Shown are the model states of (A) ventricular and
aortic pressures, (B) the PV-loop, (C) the ventricular volume and (D) the aortic and
venous flow rates.

B Continuous Sensitivity Analysis

From Figure 6 this displays the continuous waveform results for τes, Emin, Zao

and Rs we see that Zao which displayed negligible sensitivity when averaged
across the cycle exhibits some sensitivity at a point in the cycle which the UKF
is able to get hold of. τes while not overly sensitive during the whole cycle is
exhibits points during the cycle in which it displays large sensitivity which is
why it is found with the second smallest error in the UKF estimation.

C Parameter Importance PCA Method

We determine parameter influence, or effect, using principal component analysis
(PCA) on equation (4), [25,49]. The PCs are the eigenvectors of a n× n Fisher
information matrix (FIM) [30,12] based, note, upon first order Sobol indices:

F = ST
1 S1. (18)

Let Q be the matrix of ordered PC eigenvectors of F , in which the absolute
value of each element Qij reflects the contribution of the jth parameter to the
variance of the ith output. We follow Li et al. [25], who measure an overall effect
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Fig. 6. Continuous Sensitivity Analysis. Shown are the time-dependent first order
Sobol indices for the ventricular volume LV.P for both sensitive (top) and insensitive
(bottom) parameters.
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for parameter jth as:

ej =

∑m
i=1 |µiQij |∑m

i=1 |µi|
. (19)

Above, µi represents the non-zero eigenvalues of F .

D Analytical Work

During Systole, the equations are as follows, for the pressures, we also have the

auxiliary equation in volume as a consequence of the relationship E(t) = Plv(t)
Vlv(t)

.

dPlv

dt
= −Q1E(t) +

Plv

E(t)

dE

dt
,
dPsa

dt
=
Q1 −Q2

Csa
,

dPsv

dt
=

Q2

Csv
,
dVlv
dt

= −Q1,

and the corresponding flows

Q1 =
Plv − Psa

Zao
, Q2 =

Psa − Psv

Rs
.

No flows are measured in our synthetic dataset so we can eliminate flows which
allow us to derive equations. Firstly we can examine the elastance relationship

E(t) =
Plv(t)

Vlv(t)
. (20)

Here we see the elastance and its parameters are made up of two measured
quantities hence it makes intuitive sense that one should be able to extract the
parameters from the above relationship.

We examine the equation for the ventricular volume and find

dVlv
dt

=
Plv − Psa

Zao
. (21)

Here we note Zao has direct influence on all the measured quantities. We can
derive an equation for arterial pressure

dPsa

dt
=
Plv − Psa

CsaZao
− Psa − Psv

CsaRs
. (22)

Here we note the effects Csa on the measured quantities are clouded by Zao

however due to Zao acting independently in the ventricular volume equation the
effects of Ca can be quantified independently. In this equation we see that Rs

only interacts with arterial pressure and is clouded by the effects of Csa. Csa

directly controls our measured pressure Psa.

dPsv

dt
=
Psa − Psv

CsvRs
.
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From the venous pressure equation we see that the effects of Csv and Rs are
seen collectively on the measurement PSA and Rmv on Plv.

During Diastole we assume Q1 = 0 the equations as:

dPlv

dt
= Q3E(t) +

Plv

E(t)

dE

dt
,
dPsv

dt
=
Q2 −Q3

Csv
,

dPsa

dt
=

−Qs

Csa
, Q3 =

Psv − PLV

Rmv
, Q2 =

Psa − Psv

Rs
.

Eliminating flow:

dPlv

dt
= (

Psv − PLV

Rmv
)E(t) +

Plv

E(t)

dE

dt
,
dPsa

dt
=
Psv − Psa

CsaRs
,

dPsv

dt
=
Plv − Psv

CsvRmv
+
Psa − Psv

CsaRs
.

Here we see that Rmv interacts with E(t) on Plv and Csv acts collectively with
Rmv on Plv.
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