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Abstract
Our world is being increasingly pervaded by intelligent robots with varying degrees of autonomy. To seamlessly integrate
themselves in our society, these machines should possess the ability to navigate the complexities of our daily routines even
in the absence of a human’s direct input. In other words, we want these robots to understand the intentions of their partners
with the purpose of predicting the best way to help them. In this paper, we present the initial iteration of cognitive architecture
for social perception and engagement in robots: a symbolic cognitive architecture that uses qualitative spatial reasoning to
anticipate the pursued goal of another agent and to calculate the best collaborative behavior. This is performed through an
ensemble of parallel processes that model a low-level action recognition and a high-level goal understanding, both of which are
formally verified. We have tested this architecture in a simulated kitchen environment and the results we have collected show
that the robot is able to both recognize an ongoing goal and to properly collaborate towards its achievement. This demonstrates
a new use of qualitative spatial relations applied to the problem of intention reading in the domain of human–robot interaction.

Keywords Cognitive human–robot interaction · Cognitive architectures · Cooperating robots · Social human–robot
interaction · Intention reading · Artificial intelligence

1 Introduction

Autonomous robots are increasingly present in our every-
day life. Once limited to research laboratories and industrial
settings, they now frequently inhabit our living spaces and
interact with us during our day. This new generation of
intelligent machines, categorized under the umbrella term
of “social robotics”, is expected to navigate a complex and
uncertain landscape made of human beliefs, desires, inten-
tions and social norms. Additionally, it is desirable for these
agents to be able to act autonomously, that means without
direct input from their human partners.

In order to integrate these robots into our society, it is
paramount for them to be endowed with the same set of cog-
nitive and mental skills that regulate the way in which we,
as people, interact with other agents. One of the most fun-
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damental of such skills is known as “intention reading” and
represents the capacity to understand the implicit goal that is
driving the actions of another agent [1]. By making appro-
priate use of this ability, we can allow a social robot to use its
observations of another agent to extrapolate their underlying
goal, reconstruct their expected future actions and, finally,
determine how and when to enact collaborative behavior.

This paper presents ourfirst, inaugural versionofCASPER
(cognitive architecture for social perception and engagement
in robots), a platform-independent cognitive architecture
that uses a mixture of symbolic and data-driven artificial
intelligence methodologies to perform intention reading and
collaboration in a human–robot interaction (HRI) scenario.
“Social perception” refers to the act of identifying and using
social cues to make judgments about others, while with
the term “engagement” we highlight the system’s ability of
translating this knowledge into practical involvement and
interaction.

This system lays its foundations on the use of qualitative
spatial relations (QSRs) that describe how the observed part-
ner moves inside the environment with respect to the Objects
of Interest (OOIs). CASPER analyzes the temporal evolu-
tion of these descriptors to predict future actions, which are
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subsequently validated by a knowledge-base system and pro-
cessed by a probabilistic plan recognizer. This data-driven
approach to recognition is complemented by a top-down
decision-making strategy to generate assistive activity.

Our contributions to the field include the following:

• A new cognitive architecture that implements inten-
tion reading and collaborative behavior capabilities for
human–robot interaction, the need of which arises from
the scarcity of such models in the current literature [2].

• To the best of our knowledge, CASPER represents one
of the first attempts to introduce the use of QSR descrip-
tors to performefficient and easily generalizable intention
reading for embodied robots. This paper presents a proof
of concept on the untapped potential of these mathemati-
cal tools and tries to promote their use in future cognitive
architectures for action and goal recognition.

• On a technical level, we present a collection of novel
algorithms for social perception and reasoning that take
inspiration from well-established psychology and cogni-
tive science principles.

• Weprovide the first case study for this cognitive architec-
ture: a demonstration of its possible implementation to
solve a collaborative task based in a kitchen environment.

Our long-term goal is to implement CASPER into an het-
erogeneous multi-agent teaming scenario, where a team of
distributed agents, both humans and robots of different kind,
are engaged in joint action to achieve a commongoal. In order
to do so, this paper builds the foundations of this cognitive
architecture and presents a first case study involving a dyadic
interaction that takes place inside a kitchen. Within this spe-
cific application of CASPER, the robot is expected to observe
its partner, identify the goal that is driving their actions and
calculate the best way to assist with their task. Our experi-
ments carried out in simulation (Fig. 1) show that the robot
using this cognitive architecture is able not only to accurately
predict the partner’s goals before they are achieved, but also

Fig. 1 The simulated robot equipped with CASPER observes the
actions of another agent (in this case, a simulated human) in order to
predict their goal and the best collaborative plan

to formulate appropriate collaborative decision-making. This
allowed the human to silently and implicitly delegate part of
the task to their artificial companion.

The organization of the paper is as follows: Sect. 2 offers
a general background on artificial cognitive architectures
and intention reading, other than introducing the notion of
QSRs. Section3 discusses CASPER’s design specifications
and algorithmic details. Section4 covers the implementation
of the general CASPER architecture to the specific example
of the simulated kitchen environment. Section5 discusses the
performance of the system on the selected case study. Finally,
Sect. 6 concludes and highlights possible future directions.

2 PreviousWork

2.1 Cognitive Architectures for Robots

Cognitive Robotics is a discipline that lies at the intersection
of robotics and cognitive science,which is the scientific study
of the mind and its processes such as perception, attention,
anticipation, planning, memory, learning, and reasoning. It
has been defined as “the field that combines insights and
methods from artificial intelligence, as well as cognitive and
biological sciences, to robotics” [3]. This definition high-
lights the interdisciplinary nature of this approach, which
takes inputs from linguistics, psychology, neuroscience, phi-
losophy, computer science and anthropology. Its aim is to
create intelligent robots which are endowed with the same
set of mental skills as a human being.

Cognitive science views the mind as an information pro-
cessor and studies the operations through which perceptual
stimulus are combined to obtain higher-level mental func-
tions [4]. These principles are easily transferable to an
embodied robotic platform that can implement the same func-
tions despite the difference in the underlying structure (a
brain versus a computer). This is done by designing what
is known as an “artificial cognitive architecture”: a com-
putational system which instantiates one or more cognitive
theories using artificial intelligence methodologies in an
attempt to model the human mind.

A recent review has estimated the existence of around 300
cognitive architectures in the current literature [2]. The vast
majority of them specialize on modeling particular aspects
of cognition such as attention [5], emotion [6] or problem
solving [7], while only a fraction aims to achieve Artificial
General Intelligence. The latter case includes some of the
most famous architectures in the current literature, such as
ACT-R [8], Soar [9], LIDA [10] and NARS [11]. These are
all implemented as general frameworks that can be deployed
to specific use cases, including applications in robotics [12].
For example, ACT-R is written as a Common Lisp interpreter
and its applications come in the form of scripts in the ACT-R
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language. Despite their purpose, every cognitive architec-
tures usually models one or more aspects of cognition such
as perception, attention, action selection, memory, learning
and reasoning [2].

CASPER belongs to the category of more specialized
architectures and focuses on modeling specifically human–
robot collaboration (HRC) mental capabilities and, in partic-
ular, intention reading. Other cognitive systems that belong
to the same class make use of different techniques such as
unsupervised clustering of human postures [1] and artificial
mirror neuron networks [13].

2.2 Human–Robot Collaboration

The human species’ success is ascribable to its ability to col-
laborate with others to obtain otherwise inaccessible goals.
This instinct towards cooperation is shared by our close rela-
tives in the animal kingdom, which however use it as a means
to achieve a purpose, rather than being intrinsicallymotivated
in pursuing it [14]. Given the importance that collaboration
has for humans, it seems natural to try and transpose this skill
to the autonomous intelligent machines that we are designing
as everyday companions.

HRC is a branch of HRI which studies the best ways
to ensure a safe and effective interaction between humans
and robots engaged in joint tasks with common goals: we
call this a “team”. The vast majority of works in this field’s
literature focus on industrial settings, where robotic arms
such as Sawyer or Kuka robots offer assistance in some kind
of assembly task [15–17]. Many of these studies deal with
the scheduling and subdivision of tasks between the two
agents. Hoffman et al. [18] argue that collaborative robots
(or “cobots”) should possess communication mechanisms
in order to both understand humans and to inform them
about their own goals, and in so doing maintain a set of
shared beliefs which support the execution of a joint plan.
In fact, many HRC models focus on direct verbal coop-
eration and implement dialogue managers [19–21]. More
recently, a number of studies have adopted Machine Learn-
ing methodologies (sometimes encased in artificial cognitive
architectures) to learn and modulate the robot’s response to
human tasks [22].

2.3 Intention Reading

On a psychological point of view, one of the main cogni-
tive skills that enable social and collaborative attitudes in
humans is known as “intention reading” [23]: this is the abil-
ity to understand the driving goal of another agent by the
observation of their physical clues. This is possible because
we don’t understand the behavior of others as a series of
unrelated motions through space, but rather as sets of goal-
directed actions [24]. Intention reading is a fundamental skill

to implement in a collaborative intelligence because an agent
has to first understand what their partner’s goal is before
knowing how to offer its assistance.

Balwdin et al. [25] state that humans process continuous
actions as streams of hierarchical relations that link low-level
intentions (such as grasping a plate, bringing it to the sink and
opening the tap) to high-level intentions (to wash the dishes
or clean the kitchen). Additionally, they state that adultsmore
reliably identify the higer-level goals based on some actions
that are understood to be more crucial than others (for exam-
ple, they point to the fact that scrubbing a plate is a stronger
signal for the intention to wash the dishes than the equally
necessary but less central action of turning on the water).
Some of the most important social cues that are used for this
purpose are biological motion and gaze direction [26].

On a computational perspective, there have been many
attempts to develop intention reading models for HRI.
A notorious experiment by Dominey and Warneken [27]
investigates the shared intentionality in a turn-taking game
between a human and a robotic arm, where the artificial agent
would build a representation of the shared plan and sub-
divide the actions between itself and its partner. Duarte et
al. [28] perform action anticipation exploiting several social
cues such as saccadic eye movement, gaze directing and arm
movements processed through a Gaussian Mixture Model.
Bien et al. [29] developed a system that analyzes posture
and movements in elderly people and tries to decode the
inner intentions they are driven by. Other relevant researches
involve the use of dynamic Bayesian networks [30], self-
organizing maps [31], first order logic [32] or the imitation
of the biological mirror neuron system [33]. An interesting
approach has been adopted byGranada et al. [34], who divide
the intention reading task on a low-level action recognition
paired with a high-level goal understanding and execute the
task combining a convolutional neural network with a sym-
bolic plan recognizer.

The high-level cognitive process of intention reading often
relies on additional abilities.One such skill ismovement clas-
sification, involving the description of human actions using
primitive elements. Perceptual data, collected through spe-
cialized sensors [35] or vision techniques [1], can be analyzed
using models such as Hidden Markov Models, Dynamic
Bayesian Networks, and grammars [36]. Once an intention
is recognized, plan recognition techniques using AND/OR
trees [37] or probabilistic context-free grammars [38] can be
used to infer the higher-level objective.

Previous works by the authors [1, 39, 40] have explored
the use of social cues and psychological theories to develop
intention reading capabilities in humanoid robots. In these
works, we analyzed kinematic signals (body posture, head
gaze) to infer the human’s current goal using clustering algo-
rithms paired with probabilistic modeling. Our interest is
shifting from dyadic interactions to heterogeneous multi-
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agent environments in which the TeamGoal is shared among
sub-teams distributed along a structured world. For this rea-
son, we felt the need to adopt a higher-level approach and
shift our focus from subtle kinematic signals to qualitative
relations between the entities in the environment. This work
lays the foundations of CASPER, which will be in the future
applied to a complex scenario like the one we have just
described.

2.4 Qualitative Spatial Relations

Most mathematical and engineering modeling of phenom-
ena rely on quantitative representations:measurementsmade
on standard units that define physical properties. This is not
how human commonsense generally works: in order to pro-
cess information in a timely and efficient manner, we tend
to discard unnecessary details, reducing the concept of space
into coarse categories. For example, in our everyday life we
would say that something is “far away” without specifying
the exact number of meters. This is an example of qualitative
spatial reasoning.

QSRs are tools that allow commonsense reasoning about
space and time using qualitative relations for different spatial
aspects such as topology, direction and position [41]. In other
words, QSRs enable an agent to reason about actions such
as “the human is approaching the fridge” without having to
maintain precise metric information on the positions of both
the actor and the reference point (in this example, the human
and the fridge). Such a representation does not depend on
factors such as the starting positions of the actor and refer-
ence, the speed of movement or its exact trajectory and so it
is easily generalizable [42].

QSRs have been used for a broad range of artificial intelli-
gence applications, such as human activity learning [42] and
monitoring [43], language learning [44], imitation learning
[45] and even to encode spatial structure features for artificial
neural networks [46].

The use of QSRs for intention reading purposes is, to the
best of our knowledge, novel. Many papers that make use
of them focus on action recognition, which is an important
but non exhaustive step in the process of understanding the
underlying goal that is driving an agent’s behavior. One of
the main scientific contributions of this paper is to demon-
strate that QSRs can be effectively used in this domain, since
they are more prone to generalization than the features usu-
ally employed by intention reading models (such as motion
trajectories or posture keypoints).

3 ProposedMethod

The purpose of our work is the development of an artificial
cognitive architecture that will allow an autonomous social

robot to observe the actions of a partner (be it a human or a
humanoid), understand their underlying goal and collaborate
on the ongoing task. Our design choices are inspired by the
low- and high-level subdivision of actions and goals theo-
rized by psychologists and use biologically plausible inputs
[26].We allow thismodel to generate an appropriate assistive
response by leveraging on the prediction of the current goal,
the observed actions and the incomplete part of the plan. The
overall system is depicted in Fig. 2. The architecture is com-
posed of several parallel processes which gather, elaborate
and share data between them.

3.1 Goal and Intention Representation

Before giving a detailed description of each component
showed in Fig. 2, it is worth explaining how this cognitive
architecture represents intentions. Within CASPER, every
goal is described by a Plan: a sequence of events that have
to be executed in order for the task to be accomplished. Fig-
ure3 describes this structure as a non-binary tree. The main
goal is formed by a collection of sub-goals, each of which is
achievable by a sequence of actions. The latter, in turn, are
composed by a set of movements. The nodes of the Plan are
temporally ordered from left to right.

The nodes represented as ellipses in Fig. 3 are the abstract,
conceptual representations of the plan and fall under the
domain of the High-Level module (Sect. 3.5), while the ones
drawn as rectangles are the ones that can be directly observed
by the Low-Level module (Sect. 3.4). The hierarchical orga-
nization of goals is inspired by cognitive science [4].

This data structure is used both when reading the partner’s
intention (bottom-up, data-driven inference) and when gen-
erating an appropriate collaborative behavior for the robot
(top-down, conceptually-driven inference).

3.2 Environment and Robot Control

This architecture assumes the existence of a robot r which is
observing another agent a performing actions within an envi-
ronment E . The latter will contain a set O = {o1, o2, ..., on}
of OOIs which can be interacted with. For example, possible
OOIs in a kitchen would be pieces of cutlery and food items,
but not structural elements such as walls and floors.

Wehavedesigned this cognitive architecture to beplatform-
independent. This means that any robot with basic vision
capabilities can be programmed to interact with CASPER.
Of course, the physical limitations of the chosen robot define
how it will be able to interact with the world and assist its
partner, but this information can be easily encapsulated in
the knowledge base (see Sect. 3.6).
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Fig. 2 Overview of the proposed system. CASPER is composed of sev-
eral parallel processes that interact with each other in a joint effort to
decode an agent’s intention and to formulate an appropriate response.
The Perception module transforms visual observations into QSRs. The
latter are used by the Low-Level process to predict the actions that
are being performed in the environment and passes this information

to the High-Level component, which tries to match them against the
plan library to infer the pursued goal. A knowledge base, enveloped
in the Verification module, ensures the step-by-step soundness of these
predictions. Finally, the Supervisor coordinates all the other processes,
collects the results and composes a collaborative plan that will be exe-
cuted by the robot

Fig. 3 Aplan in CASPER. Each goal is formed by a temporally ordered
set of sub-elements with varying levels of abstraction. This structure is
used for both intention reading and collaborative behavior generation

3.3 Perception

ThePerceptionmodule interacts directlywith theRobotCon-
trol system and is used to produce a qualitative description
of the relations between the observed agent and the OOIs
in the environment. The agent will periodically update this
component by transmitting a World State: a dictionary that,
at every timestep, records the absolute coordinates of each
OOIs calculated from the robot’s visual sensors (such asRGB
orRGBDcameras). ThisWorld State is then processed by the
QSR Engine to obtain the qualitative spatial descriptors of
the scene at the current timestep. For our purposes, we chose
to use QSRlib [47], an open-source software library designed
to calculate QSRs from a scene description. Employing an

established library likeQSRLib eliminates the need to imple-
ment the mathematical formulations for these metrics from
scratch.

The QSRs we calculate from our World State are the fol-
lowing:

• Qualitative Distance Calculus (QDC) [48].
• Qualitative Trajectory Calculus (QTC) [49].
• Moving or Stationary (MOS).
• Holding Object (HOLD).

QDC: defines the qualitative Euclidean distance between
two entities in the scene, which in our case are a and oi ∈
O . On an intuitive level, this QSR describes how close the
agent is to the OOIs under consideration. The thresholds are
parameterized within QSRlib and are defined as: ‘touch’ [0–
0.6m], ‘near’ (0.6–2m], ‘medium’ (2–3m], ‘far’ (3–5m] and
‘ignore’ for distances greater that 5m.

QTC: represents the relativemotion between a set ofmov-
ing point objects having a free trajectory in an n-dimensional
space. The current literature contains several variations of
this descriptor [50], out of which we chose QTCB11. The
latter involves two points (which for our purposes will be
a and oi ) and makes use of the Euclidean distance calcu-
lated on the reference line that connects them. Because of the
nature of this QSR, it can only be calculated over two distinct
timesteps. The results of this calculation can be either: a is
stationary with respect to oi (represented by the symbol 0),
a is moving towards oi (−) or a is moving away from oi (+).

MOS: a unary QSR that describes whether the entity is in
motion or stationary between two different timesteps.

HOLD: this unary descriptor indicates whether the agent
a is holding an object in one of their hands or not.
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After having produced a QSR description of the cur-
rent timestep, the Perception module stores it in a local
library, which acts as the system’s sensory memory. The lat-
ter contains all the time-ordered QSRs calculated since the
beginning of the activity and it can be accessed on request
by other processes.

3.4 Low-Level Action Recognition

This component of the cognitive architecture is in charge
of predicting the first elements of the data-driven inference
as shown in Fig. 3: movements and actions. The main idea
behind this module is to incrementally aggregate and refine
data: a set of QSRs will be classified as a movement and a
set of movements will define an action.

3.4.1 Focus Estimation

If there are n OOIs in the environment, the Low-Level would
be able to perform n distinct classifications, one for each
OOI. This means that, at every timestep, CASPER would be
able to identify n different movements. In reality, we know
that the partner is an intentional agent which is performing
one movement at a time, directed towards a specific entity in
the scene which we call the “target”.

The challenge, then, is to identify the target using per-
ceptual information from the observed scene. Traditional
techniques utilize gaze modeling [51], but this information
might be inaccessible to the robot due to its relative position
in relation to the human. Given the inherent uncertainty of
this task, it seems natural to solve it through the use of proba-
bilistic models. Our algorithm assigns a score S to each OOI
based on the following equation, which envelops the use of
motion and gaze as perceptual inputs to the intention reading
cognitive functions theorized by Tomasello et al. [26]:

S(oi ) = wQDC · QDC(oi ) + wQTC · QTC(oi )

1 + θ
(1)

Table 1 Encodings for the
QSRs used in the focus
estimator

QDC Encoding

Touch 0.5

Near 0.25

Medium 0.125

Far 0

QTC Encoding

0 0.5

− 0.25

+ 0

for oi ∈ O . In the above equation, QDC(oi ) and QTC(oi )
represent the QDC and QTC QSRs calculated on OOI oi .
These are categorical variables, so they need to be encoded
into numerical values using the conversion shown in Table
1. wQDC and wQTC are the positive weights that we assign
to these components, with wQDC + wQTC = 1.

Given an uniform weight distribution, the numerator in
Eq.1 is maximized when the agent is maintaining touching
distance with the object. On the contrary, it is minimized
when the agent is at a far distance, walking away from it. This
value is scaled by θ , which represents the angle between the
agent’s heading and the reference line connecting them with
the OOI. Intuitively, the denominator penalizes OOIs which
are not in the field of view of the agent.

After calculating the attention score for every OOI, these
are normalized into probabilities. Towin the competition and
be elected as the target, an element must both possess the
maximum score and surpass the threshold τ = 0.5. To elimi-
nate any possible noise in the prediction that would affect the
processing chain, this item is not forwarded as it is, instead
it is inserted into a sliding window of size w = 4 which
allows the system to select the target as a measure of central
tendency. Any OOI that at any time occupies the majority of
the sliding window slots is declared to be the current target
of the observed agent’s focus.

The Focus Estimator keeps also track of the second-
highest scoring OOI, processing it independently using the
same procedure described above. This element, when it
exists, is assumed to be the “destination”, which will be later
used to contextualize the agent’s action. For example, if the
agent is transporting an empty glass towards a bottle, then
they are probably going to fill it and have a drink, conversely
if the destination is the sink, then they will likely going to
wash it.

In case a tie occurs between the OOIs, if one of them
was previously declared as a target it will maintain its status,
while the other one will be regarded as the destination.

3.4.2 Movement Classification

Once the Focus Estimator has identified the partner’s target,
it is possible to proceed with the movement prediction with
respect to the inferred OOI. For this purpose, we make use of
a symbolic data-driven model: specifically, a Decision Tree
[52]. We have chosen this model because it fits well for our
purpose, that is to form a mapping from a set of QSRs to a
domain of discrete movements, each representing a motion
that the observed agent is performing in a single timestep.

A graphical representation of this process can be viewed
in Fig. 4.
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Fig. 4 The Decision Tree maps a set of QSRs into a movement

3.4.3 Action Prediction

Through the procedures described in the previous sections,
CASPER is able to determine the movement performed by
the agent at each timestep, providing the robot with an instan-
taneous information of what is happening in a single unit of
time. To fully understand the behavior of the partner, how-
ever, we need to analyze the temporal evolution of these
movements: we call this an “action”.

To represent the composition of each action, we use a
Markov-chain Finite State Machine (FSM) [53]. This model
describes a process in which the transition to a state at time
t + 1 is probabilistic rather than deterministic and depends
only on the state at time t . Then, we combine these FSMs in
an ensemble which is used to classify a sequence of obser-
vations. Every time the Movement Classifier generates new
data, this is initially filtered such that only transitions between
different states are considered.This technique, already imple-
mented in other activity recognition and prediction models
[1, 54], allows the system to be time-invariant: thismeans that
the speed at which the action is performed does not influence
its representation.

Every time a new filtered observation is detected, it is
queued up with the previous ones. The ensemble samples
each of its FSMs using the initial observation as the first state
of the chain. Thereafter, it calculates the similarity between
the ordered sequence of observations and the generated
samples using the Ratcliff-Obershelp Pattern Recognition
algorithm [55]. Each FSM is assigned a score in [0, 1] based
on this metric. An action is predicted when there is a clear
winner between the models, but only if the score surpasses
a certain threshold: this allows the system to be more robust
to transient effects that will create noise in the inference.

Actions might be ambiguous and require contextualiza-
tion based on the location within the environment in which
they are performed. When this is the case, we have opted to
use a simple lookup table in which we use information from
the destination (see Sect. 3.4.1) to disambiguate actions.

3.5 High-Level Goal Prediction

The purpose of this component is to form a computational
representation of the plan structure described in Fig. 3 on
which it is possible to execute inference and reasoning. We
model this data structure as a non-binary tree where the
root represents the goal and each terminal node is a possible
action (derived from sequences of movements as described
in Sect. 3.4).

The Plan Library L is then defined as:

L = {�, NT ,G, T } (2)

Where � is a set of terminal symbols that represent the
observable actions, NT are the non-terminal symbols which
stand as sub-goals, G is the set of goals and T are the trees
that describe the ordered production rules that compose the
plans.

During the intention reading process, the Low-Level mod-
ule will produce a serialized set of observed actions σ̂ =
{σ̂1, ..., σ̂n} ∈ � that have to be matched against the avail-
able plans T in the Plan Library in order to infer which goal
g ∈ G is driving the observable actions of the agent. We
work on the assumption that σ̂ is temporally ordered, which
means that σ̂1 happens and is observed before σ̂2 occurs.

The intuition behind our design is the following: using
Occam’s razor principle, the plan that better describes the
data is the one that more simply fits the observations and that
leaves less gaps in the explanation (intended as nodes that
should have been observed but are not present in σ̂ ).

The probability that goal g is generating the observations
σ̂ is:

P(g|σ̂ ) = η · s(g) (3)

Where the score s is defined as a function on the number of
observed nodes and the missed ones:

s(g) = observed · (1 − missed) (4)

Fig. 5 A visual demonstration of the Plan Library’s scoring system.
These trees represent two plans for two distinct goals with a single
observation σ̂1 = A. The non-root nodes are drawn differently based
on their status: filled if observed, dashed if unobserved and textured if
missed. In this example, P(G1|σ̂ ) = 0.59 and P(G2|σ̂ ) = 0.39, so
G1 is considered the best explanation
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And η is a normalization factor calculated as:

η = 1
∑

g∈G s(g)
(5)

Equation4 penalizes the explanations that contain missed
nodes, which are nodes that should be present in the
description but don’t appear in σ̂ . This process is explained
graphically in Fig. 5.

Algorithm 1: Explanations from partial observations
Input: A plan library L , a set of observations σ̂

Output: A set of ranked explanations P
Initialize P with the unmarked plans T in L
foreach σ̂i ∈ σ̂ do

Initialize P ′ to empty
while P is not empty do

Pop p from P
foreach unobserved node n in p named σ̂i do

Generate a copy p′ of p
Mark n as observed in p′
if there are any unobserved nodes on the left of n in p′
then

Mark them as missed
end
Insert p′ in P ′

end
end
Insert P ′ in P

end
Calculate the score for each plan;
return The generated explanations P, ordered by score

The procedure to derive the best explanation from a set
of observations is described in Algorithm 1. The process
dynamically generates a set of explanations, each of which
accounts for every possible interpretation of the observed
symbols. This means that Algorithm 1 is able to deal with
missed observations, where the robot might for any reason
not record some of the actions performed by the partner. The
explanation with the highest score at the end of the compu-
tation is chosen as the inferred intention.

3.6 Real-timeVerification

The Verification module represents the robot’s cognitive
common sense and is responsible for the correctness of the
predictions formulated step-by-step by both the Low-Level
and the High-Level. In its essence, it serves the purpose
of filtering out predictions that might arise at any level of
abstraction which do not constitute valid statements on the
state of the world. For example, an action prediction such
as “the human picks up the table and places it in the oven”
might be a possible statement generated by the Low-Level,
but it makes no logical sense and must be a product of noise
or a transient state.

In order to address the problem, we make use of a knowl-
edge base in the form of an ontology in which we represent
the entities of our world and the relations between them.
Every time the Low-Level infers an action or the High-Level
generates an explanation, these are verified through a Seman-
tic Reasoner and if they are proven invalid they are discarded
from the processing pipeline. Additionally, this component is
also used by CASPER to decide which actions are assignable
to the robot during the final collaborative decision-making.
As an example, it would not be possible for the robot to “eat
the meal”, while on the contrary it would be capable of per-
forming the action “wash the dishes”.

On a technical level, CASPER makes use of an OWL2
ontology and a Pellet reasoner [56].

3.7 Collaborative Intelligence

The final element of CASPER is the Supervisor, which is
in charge of the coordination of the sub-processes that con-
stitute the cognitive architecture. In particular, it manages
the communication between these processes and collects the
data produced by the Low-Level and High-Level in order to
achieve the final purpose of this architecture: generate a col-
laborative behavior to help the partner with whatever tasks
they are involved with.

To do so, it uses the goal explanation produced by the
High-Level to generate an appropriate assistive plan. This
involves the robot understanding which actions are yet to
be executed and reason about which ones it is able to assist
with. From the goal explanation, the Supervisor obtains the
“frontier”, that is the ordered set of all the unobserved nodes:
these are the actions that have yet to be performed in order to
achieve the goal. Using the validation procedure explained
in Sect. 3.6, it then identifies the longest sequence of actions
which the robot itself is able to perform. It then continues
observing, waiting for the partner to execute the rest of the
plan up to the point where the collaboration will start and in
that moment it will send instructions to the Robot Control.

4 Experiments

4.1 Experimental setup

In order to test the effectiveness ofCASPER,wehavedecided
to deploy it on a selected case study. In particular, we have
developed an experiment involving a human and a TIAGo++
robot interacting inside a kitchen containing 7 OOIs: a water
bottle, a canned meal, a box of biscuits, an empty glass, a
plate, a set of hobs and a sink. This environment is shown in
Fig. 6. This was developed as a virtual environment created
using the Webots open-source physics simulator [57].
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Fig. 6 The experimental kitchen environment rendered in Webots. A
TIAGo++ robot is tasked with observing a human performing actions
in the scenery. The 7 OOIs are marked and annotated

The robot is instructed to visually find and track the
human, collect observations on their actions within the room
and process them through CASPER to infer their goal and
generate an appropriate collaborative behavior. Both the
human and the robot are able to navigate the environment,
grasp items and release them.

4.2 Low-Level

The movements we have defined for our experiment are the
following:

• STILL: the agent is fixed in space, neither moving or
interacting.

• WALK: the agent moves in the environment, holding
nothing.

• TRANSPORT: same as WALK, but performed while
carrying an object.

• PICK: the agent collects and item.
• PLACE: the agent positions a previously collected object
somewhere in the environment.

In order to train the Decision Tree to map a set of QSRs
to these movements, we need to generate a dataset. We do
this by positioning the human in a random position inside the
room and tasking them to stay still for a while, then walk to a
random OOI, pick it up, transport it to a random destination,
place it and then stand still again. This demonstrates the full
range ofmovements that wewish to learn through ourmodel.
The robot, in turn, will observe the scene, calculate the QSRs
and associate them to a label which is manually provided
by the experimenter. A Decision Tree is a small-data model
so we don’t require a large amount of training samples: we

repeat the previous procedure 10 times, then fit the model
with the collected data.

The chosen actions for the kitchen setup are:

• Pick and place: a PICK movement followed by a
TRANSPORT and terminated by a PLACE.

• Use: a loop of PICK and PLACE movements.
• Relocate: STILL, followed by WALK and another
STILL movement.

The FSMs that describe these actions are reported in
Fig. 7.The transition probabilities have been designed based
on the expected sequence of actions the model aims to rec-

Fig. 7 The FSMs which describe how each action is composed from
the primitive movements: a Pick and place, b use, c relocate
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Table 2 Contextualization for the action ‘Use’

Destination Contextualized Action

Sink Wash

Hobs Cook

Plate Eat

Glass Sip

ognize. Additionally, a margin for a small degree of potential
error was accounted for, allowing for a certain level of flexi-
bility within subsequent state changes.

There is one action which requires contextualization: Use.
This is because the latter can have a different meaning based
on the location in which it is performed, or in other words
the destination of the action. The lookup table that we use to
contextualize it is reported in Table 2.

4.3 High-Level

We define 3 distinct goals for our experiment:

• Breakfast: the humanwill collect the biscuits, bring them
to the plate and eat them, then move the plate to the sink
and rinse it.

• Drink: the human will fetch the bottle of water, bring it
to the glass and have a sip, then wash the glass.

• Lunch: the human will walk to the fridge and collect the
cannedmeal, place it on the hobs and cook it. Afterwards,
they will bring it to the plate, eat and wash the dishes.

The detailed plans for each of these goals are depicted in
Fig. 8.

In our plan library, as defined in Sect. 3.5:

� = [Pick AndPlace,Wash,Cook, Eat, Sip] (6)

NT = [PrepareMeal,Warm,Clean] (7)

Note that the action Relocate is missing from Eq.6: this is
because our current experiment involves a single room. We
have nevertheless implemented this action because of our
future development plans for CASPER (see Sect. 6).

4.4 Verification

The ontology which we use to describe the kitchen exper-
iment is reported in Fig. 9. This knowledge base defines
each entity in the environment as belonging to one of three
macro-groups: Goals, Agents or Objects. Each Agent can be
a Human or a Robot, the latter only containing the TIAGo++
robot we are using but potentially expandable to include
several kinds of robots grouped by their capabilities (for
example, humanoid and non-humanoid). The Objects can

Fig. 8 Detailed plans for each of the goals of the kitchen experiment:
a Breakfast, b Drink, c Lunch. In each graph, the root node is the goal,
every non-terminal represents a sub-goal and each terminal depicts an
action. Movements are not shown for clarity

Fig. 9 The ontology used as a knowledge base to perform verification
during the kitchen experiment
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Table 3 Data properties for the ontological representationof the kitchen
experimental environment

Move Eat Drink Cook Wash
Sink

Hobs

Plate � �
Glass � � �
Biscuits � �
Meal � � �
WaterBottle � �

be Items or Furniture: the former includes both vessels and
food.

Each element is characterized by some properties which
define the kind of interactions that are possible with each
of them. These are reported in Table 3. For example, the
biscuits can be eaten and moved, but not cooked, drinked or
washed. At the same time, the ontology defines some object
properties, i.e. relations between entities of the knowledge

base which impose limitations useful to verify the validity
of the statements produced by the Low-Level and the High-
Level. For example, the Eat action might only be performed
by Humans with a target which is eatable and a destination
which is a Vessel. A pair of object properties are defined for
each of the actions (including the contextualized ones).

Finally, we use Semantic Web Rule Language (SWRL)
[58] definitions to allow the reasoner to perform inferences
on incomplete statements. For example, we know that if an
Agent iswashing an item, then the destinationmust be a Sink.

5 Results and Discussion

5.1 Focus Evolution in Time

Figure10 explores the output of the Focus Estimator while
observing a human performing the goal Lunch (which, we
recall, is executed by collecting the meal from the fridge,
cooking it on the hobs, eating it at the table and finally
washing the dishes). In particular, each OOI oi is anno-

Fig. 10 Each OOI is annotated with a graph showing the evolution of the focus estimation probability in time during the execution of the goal
‘Lunch’. The arrow on the floor shows the trajectory of the human through the environment
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tated with a graph describing the temporal evolution of the
assigned normalized probability values P(oi ). Of course, at
each timestep:

∑
oi∈O P(oi ) = 1.

At the start of the simulation, the farthest OOIs have the
lowest chance to be considered as the target of the observed
agent’s attention. When the human starts moving and turns
to their right, the probability for the Bottle increases up to
the designed threshold of 0.5, but soon after they face away
and the score drops. Thanks to the sliding window, this OOI
is not realistically considered as the human’s target.

The agent then continues its path to the north: the Plate’s
probability decreases as it exits their field of view, while the
probabilities for theMeal increases steadily.Around timestep
20, the human turns momentarily towards the Biscuits and
once again creates a probability spikewhichdoes not last long
enough to influence the system. Once the Meal is grasped,
QDC(Meal) = Touch and QTC(Meal) = 0, so the focus
estimation for this OOI is high.

Further ahead in time, around timestep 50, the focus is
evenly divided between the Meal and the Hobs during the
Cook action. The human then turns towards the table: the
probability for the Hobs decreases rapidly while the ones
for the Plate increase. At this point, around timestep 90, the
human finishes approaching the table and starts eating. The
Focus Estimation dividesmore or less equally the probability
for both the Meal and the Plate, with a 60/40 split.

Finally, the Plate is brought to the Sink. The focus score
for the former is high and eventually evens out with the lat-
ter, while the probability value of the Meal drops to 0 very
quickly.

Overall, Fig. 10 shows that the Focus Estimator module
is correctly able to predict the human’s attention while they
move around the environment.

5.2 Decision Tree Training

The Decision Tree that acts as the Movement Predictor is
trained on a dataset generated in the simulated environment
following the procedure described in Sect. 4.2. This dataset
contains 362 training examples obtained from 10 random
trials. The total number of samples per class is the following:
STILL (46), WALK (97), PICK (30), TRANSPORT (161)
and PLACE (28). The model fitted on this data is shown in
Fig. 11.

To evaluate the fitness of this model, we have performed
a 10-fold cross-validation: we split our dataset into the 10
groups from which it was generated, leave one aside for test-
ing and train on the remaining, then repeat for each of the
unique groups. Our average 10-fold cross-validation accu-
racy is 0.94.

Fig. 11 The Decision Tree
trained from the experimental
data in the kitchen collaboration
environment. The QSRs are
classified as one of the
following movements: Still,
Walk, Transport, Pick or Place

123



International Journal of Social Robotics

Fig. 12 Temporal response of the three FSMs which define the actions
‘Pick and Place’, ‘Use’ and ‘Relocate’ on different sequences of move-
ments (reported below each graph). The vertical dashed line indicates
the moment in which the ensemble has inferred the action

5.3 Markov Chain Finite-State Machines

To evaluate the fitness of the Action Predictor, we generate
3 sequences of 9 movements and we input them incremen-
tally into the ensemble to analyze its temporal response to
the observations. The results are reported in Fig. 12, where
we have plotted the similarity score calculated through the
Ratcliff-Obershelp algorithm at each timestep.

Since the sampling of each FSM uses the initial observed
symbol as the starting state, the similarity score is maximum
for the first iterations. Despite that, none of the models pre-
vails on the others and no winner is declared yet. As soon
as more symbols are fed into the system, the scores start to
oscillate and differ, leaving one clearwinner: this is themodel
that best describes the observed sequence of observations.
The first two sequences produce a prediction on timestep 6,
while the third one receives an inference on timestep 5. These
predictions are in line with what we would expect given the
symbols in the input sequences.

5.4 Explanation Generation

To test the Goal Reasoner embedded in the High-Level mod-
ule, we have run 9 trials in which we have provided it with
several sequences of observations. For the rest of this dis-
cussion, please refer to Fig. 8 for the structure of our Goal
Library.

Table 4 summarizes the data we have collected. The latter
shows, from left to right: the id of the trial, the observation
(action) that was incrementally input in the system, the num-
ber of explanations generated by the reasoner, the time in
microseconds required to produce the result, the confidence
of the top-scoring explanation and finally the output of the
component. If the latter is blank, then the reasoner could not
formulate a prediction, otherwise it will report the name of
the goal whose plan explains the observations. The system
was reset between each trial.

Trial 1 presents to the High-Level the actions ‘Pick and
place’ and ‘Eat’. There are three possible explanations for
these observations: one that describes the goal Breakfast with
only observed and unobserved nodes and two that represent
the plan for Lunch that accounts for several missing nodes
(recall that an unobserved node ismarked asmissed if another
node is observed on its right-hand side). Since our model
assigns a higher score to the simplest model to describe the
data, Breakfast is chosen as the prediction.

Trials 2 and 3 are straightforward: the goals Drink and
Lunch are the only ones that contain respectively the actions
‘Pick and Place’ followed by either ‘Sip’ and ‘Cook’, so the
Goal Reasoner can formulate a very confident prediction.

Trial 4 and 5 aremore ambiguous: both of them beginwith
two ‘Pick and place’ actions which could describe each of
the models with similar probability. Only when the system
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Table 4 Experimental results
on the goal reasoner

Trial Actions Explanations Time (μs) Confidence Outcome

#1 Pick&Place 7 3.58 0.23

Eat 3 1.91 0.53 Breakfast

#2 Pick&Place 7 5.72 0.23

Sip 1 2.15 1 Drink

#3 Pick&Place 7 3.34 0.23

Cook 1 1.91 1 Lunch

#4 Pick&Place 7 3.58 0.23

Pick&Place 5 3.34 0.28

Eat 1 1.43 1 Lunch

#5 Pick&Place 7 4.29 0.23

Pick&Place 5 3.34 0.28

Pick&Place 1 1.19 1 Lunch

#6 Pick&Place 7 3.34 0.23

Pick&Place 5 2.62 0.28

Wash 5 2.62 0.3

#7 Sip 1 3.1 1 Drink

#8 Eat 2 2.38 0.69

#9 Wash 3 4.29 0.41

Cook 0 4.53 0

See Sect. 5.4 for the full explanation

receives the third observation it can commit to a clear infer-
ence. Trial 6 follows a similar narrative, but the third input
is still not able to disambuigate the goal: each of the possi-
ble plans share an uniform probability distribution and the
reasoner fails to produce a prediction. No additional inputs
would change the situation, since the rightmost node of the
tree has been observed (remember that we assume that each
observation happens after the preceding one). Of course, one
could object that the goal could indeed by identified by the
OOIs with which the human is interacting. This will be done
in the full-scale experiment by the Verification component,
which uses its ontology to filter out invalid explanations such
as the goal Lunch if the first action ‘Pick and Place’ has been
performed on the Biscuits.

In trial 7, we provide the system with a single observation
that, alone, is able to discern the goal. We try doing the same
with the observation ‘Eat’ in trial 8, but that action on its own
could describe both Breakfast or Lunch. No further observa-
tion would be able to disambiguate this scenario, since the
only next possible actions are ‘Pick and Place’ and ‘Wash’,
which are common to both the candidates.

Finally, trial 9 shows an invalid sequence of actions: there
is no goal plan in which the action ‘Wash’ is followed by any
other action. For this reason, the system produced no valid
explanations.

5.5 Intention Reading and Collaboration

Having verified the single components that constitute the
Low-Level and High-Level modules of CASPER, we are
now ready to analyze the overall performance of the cognitive
architecture working together to read the human’s intention
and producing collaborative decision-making. The procedure
we have followed is the following: we have run 5 trials for
each of the 3 goals, collecting a total of 15 data samples. To
test the system’s robustness, at each iteration we have ran-
domized the human’s starting position and movement speed.
For each trial, we have recorded: the number of observed
and missed nodes in the winning explanation, the number of
actions that the robot waits for the partner to complete before
collaborating, the number of actions that the robots plans to
execute, the accuracy of the prediction and the time, in sec-
onds, needed to make an inference. The mean values of these
variables are collected in Table 5.

The first thing to notice is that the robot was always able
to correctly read the human’s intention, despite some noise
in the perceptual data collected by the system: the synergis-
tic interaction of CASPER’s components results in a robust
intention reading performance. Table 5 also indicates that
the time and observations required to infer the goal Lunch
were higher than for the other two goals: this is in line with
the higher complexity of its plan compared to the ones for
Breakfast and Lunch.
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Table 5 CASPER’s
performance on the kitchen
experiment

Goal Observed Missed Waiting Planned Accuracy Time (s)

Breakfast 1.0 0.2 0.0 1.8 100% 42.21

Drink 1.0 0.4 0.0 1.6 100% 54.14

Lunch 1.8 0.2 1.8 2.0 100% 82.46

See Sect. 5.5 for the full explanation

The collaborative plan calculated from the cognitive archi-
tecture in each case was to wait for the human to finish eating
their meal and then clean up the kitchen, which involves
transporting the plate to the sink and washing it.

5.6 Verification

An additional experiment, this time in the form of an ablation
study, was carried out to investigate the performance of the
Verification module. In particular, we run the same experi-
ment used to generate the data we have discussed in Sect. 5.5,
this time disabling the formal verification of both the Low-
Level and the High-Level: we call this the Non-Verified
condition, as opposed as the Verified condition which rep-
resents the full cognitive architecture.

Figure13 shows the comparison between the two con-
figurations. The results that we collected prove that by
disabling the Verification module we don’t hurt the accu-
racy of the system, but instead we cause a slower prediction
time. Despite the computational overhead introduced by the
semantic reasoner, the Verified condition outperformed the
Non-Verified one. This happens because the latter requires
more observations to make sense of the environment, whilst
the Verification module is able to discard noisy observations

Fig. 13 Average prediction time of CASPER with and without the
Verification module. Despite the computational overhead of the Pellet
reasoner, the verification module ensures a faster inference from less
observations

and illogical explanations before either of them are further
processed, cutting down the overall inference time.

6 Conclusion and FutureWork

6.1 Summary

In this paper, we have introduced CASPER: a symbolic cog-
nitive architecture designed to perform intention reading and
to calculate collaborative behaviors for human–robot team-
ing scenarios. Our system is able to accomplish the task
through a set of parallel processes that communicate with
each other and that can translate QSR descriptors into move-
ments, then into actions and finally into goals and sub-goals
using a bottom-up approach. Through the implementation of
a simulated experimental case study based on a kitchen envi-
ronment, we have empirically demonstrated the soundness
of our methodologies.

The design of this system is driven by the requirement to
embed in social robots the ability to autonomously integrate
themselves in the structure of our daily routines, without
the need for a human operator to explicitly provide instruc-
tions for the machine. Instead, by being able to understand
the actions of other agents within the environment, a robot
endowed with this cognitive architecture is able to seam-
lessly cooperate with them. In fact, despite our focus on
human–robot interaction, this architecture would be equally
applicable to robot-robot interactions.

Our main scientific contribution is the demonstration that
QSRs can be used as an efficient means to achieve intention
reading capabilities in artificial intelligence systems, a proof
of concept that is lacking in the current state-of-the-art. Our
technological contribution comes in the form of a cognitive
architecture that incorporates novel algorithms for percep-
tion, reasoning and action selection which take inspiration
from psychology and cognitive science.

6.2 Positioning in the Research Landscape

According to the taxonomydefinedbyKotseruba andTsotsos
[2], CASPER is a symbolic architecture which implements
the most common cognitive mechanisms, which we shall
now summarize. Perception, the process that transforms raw
input into the system’s internal representation for carrying
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out cognitive tasks, is performed by vision. Attention is mod-
eled as a viewpoint/gaze selection mechanism: this means
that the robot endowed with CASPER is able to select a
target and track it through space. Action selection, which
drives decision-making, is the result of a planning strategy
which aims to maximize the relevance of the selected behav-
ior. This architecture possesses all three types of memory:
sensory (the QSR Library), working (handled by the Low-
and High-Level) and long-term (in the form of the learned
models and ontology). Learning comes in the form of declar-
ative knowledge,which is a collectionof facts about theworld
and various relationships defined between them. Reasoning
is a cognitive ability which is present and central to each
and every cognitive architecture, including this one. Finally,
CASPER also implements metacognition, that is the abil-
ity to reason about one’s own thoughts: this is done by the
Verification module, which constantly monitors the other
internal processes, identifying and correcting any erroneous
decisions.

CASPER can be compared to some of the most renowned
cognitive architectures designed for inferring human team-
mates’ intentions. For instance, Scassellati [59] introduced
a model of shared attention that enables the Cog robot to
decode social cues such as gaze direction and pointing ges-
tures. Both architectures share a fundamental assumption
that intricate social skills can be deconstructed into sim-
pler behavioral components, which can be more feasibly
implemented on a robotic platform. Scassellati’s work, in
particular, delves into a division of joint attention into four
developmental psychology-inspired stages: sustaining eye
contact, tracking gaze, imperative pointing, and declarative
pointing. Each stage builds on the preceding skills to develop
increasingly complex behaviors. In contrast, CASPER per-
forms intention reading by modularizing the cognitive skills
required for perception, attention estimation, action recog-
nition and prediction, goal composition and common-sense
reasoning. The primary distinction between these two sys-
tems lies in the role of the human element. As postulated
by Kanno et al. [60], the model from Scassellati performs
“intended recognition", meaning that it assumes an active
engagement of the partner, who is directly and explicitly
involved in communicating with the robot through social
cues. Conversely, CASPER adopts a form of observation
often known as “keyhole recognition", where the human is
not actively attempting to convey signals to the robot.

HAMMER (Hierarchical Attentive Multiple Models for
Execution andRecognition) [61] employs a set of learned for-
ward and inverse models to align world states with the motor
actions needed to achieve or sustain them. This cognitive
architecture serves both for executing actions and recogniz-
ing themwhen demonstrated by another agent.When applied
across different hierarchical levels, this approach enables the
robot to grasp the intentions of its partner. While this gener-

ative method is powerful, allowing for adaptable learning of
actions and goals, its versatility comes at the expense of the
generalizability that QSRs offer in terms of how each action
can be performed and observed.

Finally, it is worth noting that CASPER adopts the cog-
nitivist approach to cognition: it represents an hypothesis
about those aspects of human cognition that are both rel-
atively constant over time and independent of the task. In
particular, it tries to achieve cognition by computations per-
formedon internal symbolic knowledge representations.This
stands in contrast to another category of cognitive archi-
tectures that embrace the emergent paradigm of cognitive
science. In these models, the agent capitalizes on its embodi-
ment to establish a close and dynamic connection between its
sensorimotor system and the surrounding environment. One
example of these architectures is EICA (Embodied Interac-
tive Control Architecture) [62], which conceives intentions
as interlinked processes, structured hierarchically and real-
ized as dynamical systems. Both these approaches have their
respective strengths and limitations, which could potentially
be mitigated in the future through the development of hybrid
cognitive architectures, combining the best attributes of both
paradigms.

6.3 Limitations and FutureWork

A limitation of our work is represented by the intrinsic
nature of symbolic artificial intelligence: our methodolo-
gies suffer from the Knowledge Acquisition Bottleneck [63],
which refers to the human intervention required to translate
real-world conditions in symbolic inputs for the intelligent
system. In our case, this comes in the form of the selec-
tion of OOIs, the plans for each goal and the ontology that
envelops the properties of the environment, which have to be
known a priori. Despite this, we argue that this disadvantage
is compensated by the interpretability of each of the com-
ponents that build up CASPER (the decisions of which can
be explained at each step of computation, leading to poten-
tial increases in user trustworthiness and acceptability [64])
and the lack of computationally expensive and data-hungry
processes.

Another limitation is given by the fact that we have tested
CASPER in simulation andwith fairly simple goals. The rea-
son for this is that the work presented here is foundational
to the true purpose of this cognitive architecture: that is, to
offer support for intention reading and trust considerations in
heterogeneous multi-agent teaming scenarios. Our planned
future work involves initially testing the system’s scalabil-
ity: we aim to measure CASPER’s accuracy and response
time in more complex environments, incorporating a higher
number of OOIs and an expanded collection of actions and
movements. Subsequently, we plan to deploy CASPER in
a scenario comprising multiple rooms, where distributed
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groups of humans will interact with robots of varying make
and capabilities to achieve a Team Goal. In this kind of set-
ting, the individual robots will not be able to gather all the
necessary information needed to predict the shared objective,
rather they will have to rely on partial observations and com-
municationwith their peers.Moreover, performing empirical
trials in simulation gives us the freedom to experiment with
arbitrarily different environments, including varying num-
bers and type of agents.

It is important to remember that the purpose ofCASPER is
not to allowan agent to generalize across tasks, rather to equip
the robot with a tool for performing appropriate collaborative
actions in familiar environments. Integrating CASPER with
another artificial cognitive architecture that models long-
term memory learning, such as SOAR [9], might allow it to
iteratively learn from unseen tasks. Another pathway might
be the integration of Reinforcement Learning (RL). The lat-
ter has been used as a valid tool to create more generalizable
and adaptive systems, bypassing the Knowledge Acquisition
Bottleneck [63], but it often requires a large number of sam-
ples to learn optimal policies [65]. In addition, RL models
can be challenging to interpret and explain, leading to a lack
of transparency in decision-making that would conflict with
one of the central design philosophies of CASPER.

Finally, it is worth mentioning one additional future
expansion of CASPER: the inclusion of Artificial Trust (AT)
[39, 66, 67]. By leveraging AT abilities, the robot will be able
to assess the capabilities of other agents, whether humans or
robots, to pursue the desired goal. Our hypothesis is that
this cognitive skill will be valuable in enabling a group of
heterogeneous robots to assign collaborative tasks among
themselves effectively, thereby assisting the humans in their
team.
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