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Bayesian Theory of Mind for False Belief Understanding in
Human-Robot Interaction

Mehdi Hellou∗1, Samuele Vinanzi1,2 and Angelo Cangelosi1

Abstract— In order to achieve a widespread adoption of social
robots in the near future, we need to design intelligent systems
that are able to autonomously understand our beliefs and
preferences. This will pave the foundation for a new generation
of robots able to navigate the complexities of human societies.
To reach this goal, we look into Theory of Mind (ToM): the
cognitive ability to understand other agents’ mental states. In
this paper, we rely on a probabilistic ToM model to detect
when a human has false beliefs with the purpose of driving the
decision-making process of a collaborative robot. In particular,
we recreate an established psychology experiment involving the
search for a toy that can be secretly displaced by a malicious
individual. The results that we have obtained in simulated
experiments show that the agent is able to predict human
mental states and detect when false beliefs have arisen. We
then explored the set-up in a real-world human interaction to
assess the feasibility of such an experiment with a humanoid
social robot.

I. INTRODUCTION
As autonomous robots become more prevalent in our daily

lives, they need to be capable of adapting to a variety of
social situations. In particular, society has started taking
an interest in social robots, which are intelligent agents
specifically designed to operate in human environments, in-
teract with people, and adapt their behavior to their partners’
needs, preferences, and personalities. The emphasis on the
robot’s ability to adapt to different users is often known as
“personalization” [1]. The latter has been proven to enhance
user engagement in long-term human-robot interaction (HRI)
and to foster rapport and trust for tasks such as education,
rehabilitation, and elderly care [1], [2].

The aim of our study is to design an artificial cognitive
architecture for autonomous robots that is able to personalize
its behavior based on the user’s mental states. To do so,
we tap into the domain of psychology to computationally
model a cognitive skill known as Theory of Mind (ToM),
which is defined as the ability to infer others’ mental states,
such as beliefs, desires, and intentions (often known as
BDI), to predict behavior [3]. It is a cognitive process we
unconsciously practice to understand other people’s behavior
and actions in the environment.

Our ability to understand and predict the actions of others
is closely linked to our visual perception of their movements.
For instance, if a restaurant customer suddenly stands up
from their table and heads toward the kitchen, an observer
may infer that the person is either seeking the restroom
or some additional service, such as the bill. But if they
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Fig. 1. Lab experiment setting with the boxes and the robot that will be
deployed to infer a person’s mental state. Here, one person is manipulating
a toy the robot is tracking while another is standing close to him.

also notice that there are still plates on the table and the
customer seems a little lost, they are likely to infer that the
person is looking for the restroom and may offer directions to
help. Such cognitive processes illustrate the human capacity
to comprehend and anticipate other people’s actions, based
on their mental states, including beliefs. This is why ToM
has been extensively studied in psychology, particularly for
understanding the cognitive development of infants and their
understanding of others’ minds [4], [5].

Several experiments and procedures have been proposed
over the years to assess ToM abilities in infants. One of the
better-known tests is the “false belief understanding”, which
has been largely used to evaluate whether preschoolers can
understand people’s mental states, in particular their beliefs
for the purpose of action anticipation. More specifically,
some of these tests aim to evaluate whether a child can
understand when a person has a belief that contradicts reality
[6], [7]. A famous experiment, still used at this time as a
test to evaluate ToM with children with Autism Spectrum
Disorder, is the ”Sally-Anne” test from Baron-Cohen et al.
[7] that evaluates whether the child can detect when people
have false beliefs concerning the location of the toy.

This paper presents an artificial intelligence system capa-
ble of detecting false beliefs, a critical skill for social agents
involved in collaborative tasks or caring for elderly people
in retirement homes. For instance, a robot keeping track of a



patient’s medication could benefit from this ability to prevent
the patient from taking the wrong medication. Our approach
is inspired by a human-human experiment involving a toy
swapping game [8], where we evaluate the robot’s ability to
detect when a user has a false belief and determine the best
collaborative course of action. To achieve this, we integrated
the Bayesian theory of mind (BToM) framework developed
in [9], [10] and modeled it in a simulated environment of the
toy swapping game. We then conducted an HRI experiment
replicating similar situations in [8] to analyze how a robot
endowed with a ToM reasoning would respond (Figure 1).

The goal of our study is to demonstrate the efficacy
of using a validated model for reasoning about people’s
mental states to improve robot behaviors in human-robot
interaction (HRI) situations. By taking inspiration from a
specific false beliefs experiment, we show how a robot
endowed with theory of mind (ToM) abilities can reason
about people’s behaviors. We conducted two experiments to
test the applicability of our cognitive model in HRI situations
and to determine whether it could be implemented in a
real interaction with a social robot. We analyzed the results
of these experiments quantitatively through simulations and
interactively through an HRI experiment to determine if they
were consistent. Overall, our study aims to contribute to the
development of more effective and adaptive social robots
through the use of ToM reasoning.

II. RELATED WORKS

A. Psychological studies in ToM

ToM has been extensively studied in the field of psychol-
ogy, with a particular focus on children’s understanding of
people’s mental states. Several researchers have specified
that children undergo cognitive development that enables
them to understand other people’s mental states, such as
beliefs, desires, emotions, and intentions [11]. Psychologists
have investigated the years in which infants started devel-
oping their ToM and the ways in which it manifests [11],
[12], [13], [14], [6]. Various tasks have been provided to
evaluate this phenomenon in children, but one of the main
measurements used is the ”false belief understanding.” In
particular, some tests aim to evaluate whether a child can
understand when a person has a belief that contradicts reality
[6], [7]. Researchers have observed the reactions of children
in false belief situations to assess how they understand
other people’s mental states such as beliefs [12] and their
impact on other mental states, such as desire [13]. However,
earlier studies primarily indicated that infants were aware
that something strange had occurred during the experiments,
rather than clearly demonstrating their understanding of false
beliefs. More recent experiments have implemented tasks
that require active behavior from children to measure their
understanding of these particular situations, involving their
active participation [8], [15], [16].

B. ToM applied in robotics and AI

Although most research on ToM has been conducted in the
field of psychology, there is growing interest in using ToM

Fig. 2. Simulation setting. The labels denote the different possible states
of the agents and the object in the experiment.

principles to develop autonomous and intelligent systems in
the fields of computer science and robotics. One popular
technique for designing ToM-capable agents is the use of
Bayesian Networks (BN), which are graphical models for
data analysis and a popular tool for encoding uncertain expert
knowledge in expert systems [17]. This type of model is well-
suited for representing the knowledge and learning of infants,
who are thought to represent the world by constructing a
causal map: an abstract, coherent, learned representation of
the causal relations among events [18], [19].

For example, Vinanzi et al. [20] have developed a robot
learning architecture based on BNs that is able to estimate the
trustworthiness of human partners based on an understanding
of their mental states. Another notable example comes from
Baker et al. [9], [10], who implemented a dynamical BN as
the “Bayesian model of ToM” (BToM), which uses Bayesian
inverse planning to represent how people infer others’ goals
or preferences. This model is combined with a partially
observable Markov decision process (POMDP) to represent
an agent’s planning and inference about the world. The
model then uses Bayesian inference to invert the planning
and reconstruct the agent’s joint belief state and reward
function, conditioned on observations of the agent’s behavior
in some environmental context.

Other methods for incorporating ToM into autonomous
systems exist in the literature. For instance, Patacchiola et
al. [21] developed a cognitive architecture for trust and ToM
in humanoid robots using an actor-critic framework [22]: a
model called ERA [23] which utilizes self-organizing maps
as function approximators, and a BN to represent the intrinsic
values of the robot’s environment

III. PROPOSED METHOD

A. BToM for false beliefs understanding in HRI

The BToM model, first implemented by Baker et al. [9]
and used in other social scenarios [10], is a probabilistic
model that leverages Bayesian inverse planning to represent
how people infer others’ goals or preferences. It is the first



model in the literature to reason jointly about beliefs, desires,
and perceptions by observing an agent’s behaviors. Designed
as a dynamic Bayesian network (DBN), it symbolizes how
external and internal elements, such as the agent’s location,
observations, preferences, and beliefs, can influence the
agent’s behaviors over time to complete a specific task.

To represent how an agent behaves in an environment
regarding its beliefs and preferences about the world via
the principle of rational belief, the model uses partially ob-
servable Markov decision processes (POMDPs). In following
the schematic model of ToM proposed by psychological
researchers [24], [9], [10], the BToM follows three causal
principles to explain an agent’s core mentalizing, or how an
agent reasons about other agents’ behavior: (1) the agent uses
its perception or what is in its line of sight to constitute its
world model; (2) the agent builds its beliefs regarding the
combination of its visualizations and prior knowledge; and
(3) the agent plans a rational sequence of actions that, given
its beliefs, is expected to achieve its desires.

The model represents the agent’s desires as a utility
function, which measures the subjective rewards received for
taking actions in certain states, such as making decisions
when close to the goal object. The agent’s beliefs about
the environment are represented as a probability distribution,
which may be uncertain and different from reality. The
contents of the distribution represent a possible world that the
agent believes corresponds to reality. For instance, the agent’s
beliefs may be shared between different possible worlds if it
is unsure about the contents of the environment, such as the
exact location of an object.

Following Baker et al. [10], we modeled our false beliefs
experiment as depicted in Figure 2. The experiment involves
two humans, a toy, and two boxes, and the model focuses
on inferring the blue agent’s mental state, who plays the
role of the searcher, and being tricked by the other agent
(black one), who swaps the toy in his presence or not. We
utilized POMDPs to represent the environment of the agent,
where the state space S = {X,Y } represents the set of
agent’s locations X and the possible location of the toy,
Y . As previously explored in Baker’s papers [9], [10], the
world is dynamic and subject to change over time, i.e., yt
represents a possible world y at time t. The agent can take
different actions a from a set of actions A to move into
the environment, for example, to visit one of the boxes, and
have observations o from the set of observations O, such as
whether the agent can visualize the toy’s location. Finally, a
set of observation probabilities Ω represents the observations
the agent can make regarding its location x and the world
y, for instance, the agent can observe if the toy is located in
the yellow box and if it is close to the box, i.e., state {1,2}.

Overall, the process of inferring the joint beliefs and
desires is divided into two steps: 1) updating the agent’s
beliefs based on prior knowledge; and 2) performing joint
inference on the posterior probability of the agent’s unob-
servable mental states (beliefs, desires, and visualizations).
Specifically, the belief that a world yt is true at time t
is denoted as bt(yt), given its prior belief bt−1(yt−1), the

likelihood P (ot | xt, yt) of observing the agent state xt and
the world yt, and the probability P (xt, yt | xt−1, yt−1, at−1)
of observing the agent move from position xt−1 to xt, and
the world changing from yt−1 to yt given the action at−1.
The Bayesian belief update for bt(yt) is given by:

bt(yt) ∝ P (ot | xt, yt)P (xt, yt | xt−1, yt−1, at−1)

bt−1(yt−1)

To infer joint beliefs and desires, the model utilizes a method
similar to the belief filtering technique proposed in [25],
adapted for the scenario of one agent reasoning about the
behavior of another agent. In this approach, the observer
agent’s inference about the belief and desire of the other
agent is akin to the backward-forward algorithm used in
Hidden Markov Models. Specifically, given a state sequence
up to a time T , the joint belief-desire at any time t ≤ T ,
denoted as P (bt, dt | x1:T , y1:T ), can be computed.

B. Robot implementation

This section details an artificial cognitive architecture de-
signed to enable social robots to reason about the preferences
and false beliefs of other agents. We developed this system
specifically for the Pepper robot from Aldebaran, a humanoid
platform created for human interaction. Figure ?? provides
an overview of the cognitive architecture.

The Vision Module serves as the interface between the
robot and the external environment, and is responsible for
collecting sensory information through the robot’s RGB
cameras. It includes the following components:

• Face recognition: This component is based on a Local
Binary Patterns Histograms (LBPH) [26] model trained
on a handmade face dataset. Its purpose is to classify
the human currently interacting with the robot as the
searcher or the tricker.

• Toy recognition: This component recognizes the toy
and determines its location within the world. We use a
red plastic ball and a variety of methods provided by
the robot’s API.

• Box recognition: This component keeps track of the
two boxes, which are marked with special markers that
assist the robot in identifying them.

• People recognition: This component uses the YOLOv4
neural network [27] to determine the number of people
present in the robot’s field of view. It is used to
understand if the searcher is in the true or false belief
condition (more details on the latter in Section IV-B).

The Cognitive Module gathers all the information provided
by the Vision Module and uses it to construct a plan for
the human, which is then analyzed to infer their beliefs
and preferences. This is accomplished through the BToM
model presented in Section III-A. The output of this module
is forwarded to the Decision-Making Module, which is
responsible for selecting appropriate actions.



Fig. 3. HRI experiment involving two human actors, a searcher (wearing a white shirt), a tricker (wearing a grey shirt), and the social robot Pepper
with a total view of the scene. The mosaic of pictures depicts the two experiments we set up, where pictures A and B correspond to the initial condition,
and pictures C to F correspond to the rest of the experiments under different conditions. The top pictures are related to the false belief condition, and the
bottom ones correspond to the true belief condition (refer to Section IV-B).

IV. EXPERIMENTS

A. Simulation

As a preliminary evaluation of our architecture, we
conducted a simulation experiment to assess the performance
of the Cognitive Module under conditions similar to those in
which the robot would be subsequently tested. Following the
methodology of [8], the simulation included an environment
with two humans (a searcher S and a tricker T ), a toy and
two boxes b1 and b2. This is depicted in Figure 2). In the
simulation, S is capable of entering and leaving the room
and moving to one of the boxes, while T has the ability to
place the toy outside the boxes or in one of them.

To evaluate the predictions generated by our model, we
randomly generate sequences of behaviors for S and T
during trials. This process is conducted in two steps: “ini-
tialization” and “generation”. The initialization phase is the
same for every trial: S is outside the room, T is inside the
room, and the toy is outside the boxes. Then, S moves into
the room, takes the toy, and places it in one of the boxes.
The second phase depends on a set of parameters:

• The “rate of false belief” Rfb ∈ [0, 1] determines the
probability that S will leave or not the room before T
switches the toy’s location, i.e. the rate of true or false
belief instances.

• The “alternate false belief” Afb ∈ [True, False] in-
structs the generator to alternate the belief condition
between iterations in a sequential or random manner.

• The “rate of preference” Rp ∈ [0, 1] represents the prob-
ability that the human is interested or not in retrieving
the toy.

• The “alternate preference” Ap ∈ [True, False] in-
structs the generator to flip the preference of the human

agent between iterations either successively (i.e., True)
or randomly (i.e., False).

The generation process is described by following proce-
dure:

1) Set the belief condition (true or false) and the human’s
preference (interested in the toy or not) regarding the
values of the parameters described above.

2) The human moves back to the initial position (state
{1,0}).

3) If the agent is in the false belief condition, it leaves the
room (state {0,0}). If, instead, it is in the true belief
condition, it stays in the room (state {1,0}).

4) The toy’s position is randomly switched or preserved.
5) If the agent is outside, it re-enters the room.
6) The agent moves to b1 (state {1,1}) or b2 (state {1,2})

according to its current belief and its preference: if it
is interested in the toy, it will move to the box where
it believes the toy is located; if it is not the case, then
it will move to the box where it believes the toy is not
located.

The set of parameters above contextualizes each trial,
depending on how we define the size of the path Spath,
which represents the number of times S will reach boxes
b1 and b2 to retrieve the toy or not. This allows us to assess
the model’s performance over time and determine whether
it can accurately track beliefs and preferences throughout
multiple iterations. This is particularly important for using
social robots in long-term interactions where they need to
be aware of the human’s mental state over time.

For instance, suppose we have a trial of size
Spath = 8 with the following parameter values:
Rfb = 0.75, Afb = True, Rp = 0.5, Ap = False. This

means:
• The tricker T will exchange the location of the toy six



Fig. 4. Human agent’s preference prediction, obtained by fixating Afb = False, Rfb = 0.5 and varying Rp. (a) Ap = True, closed condition. (b)
Ap = True, opened condition. (c) Ap = False, closed condition. (d) Ap = False, opened condition.

Fig. 5. Human agent’s belief prediction, obtained by fixating Rp = 0.5 and varying Rfb. (a) Afb = True. (b) Afb = False.

times while S is outside of the room and two times with
S present.

• We determine the belief condition successively with
respect to Rfb.

• S will approach the box where they believe the toy is
located four times and the other box for the remaining
times.

• We randomly assign preferences to S with respect to
Rp.

B. Human-robot interaction

An important aspect of this study is to implement
a human-robot interaction experiment with the described
model and analyze its performance. The goal is to prove
whether the robot can observe and analyze people’s behav-
iors to infer their mental states and how it should affect
its interaction with people. To achieve this, we followed
the setup of the false beliefs experiment in [8]. In this
experiment, a robot observes two humans manipulating and
putting a red ball into a box. The robot is placed in front
of a table with two boxes to store the ball. As in the initial
experiment, one person plays the role of the searcher who
will be tricked by a second person putting the toy in a
different box from the initial one.

Figure 3 shows pictures of the interactions, which indicate
the scenarios and the robot’s responses under different condi-
tions. During the first step, the robot learns to recognize who
the searcher and the tricker are (picture A). Then, according

to the conditions, we have two scenarios where we evaluate
the robot’s response at the end:

1) False Belief condition: : The searcher puts the toy in
the first box (picture B1) and leaves the room (picture C1). In
their absence, the tricker approaches the robot (picture D1)
and switches the toy’s position from the original container
(picture E1) to the other one. Finally, the searcher returns to
the table and stands next to the first box, the one where they
believe still contains the toy (F1).

2) True Belief condition: : In contrast with the first
condition, after placing the toy in the aasecond box (B2), the
searcher does not leave the room (C2). They are then aware
of the tricker approaching the robot (D2), and swapping the
toy’s location (E2). When the malicious user leaves, the
searcher steps back in front of the robot, standing next to
the box where the toy was originally located (F2).

At the conclusion of both tasks, the robot must make a
decision about what advice to provide based on its under-
standing of the searcher’s mental state. Our expectation is
that in the “False Belief” condition, the robot will point to
the box containing the toy to help the searcher retrieve it,
while in the “True Belief” condition, the robot will verbally
acknowledge that the searcher is not interested in it.

V. RESULTS

A. Simulation

To evaluate the performance of our model, we generated
500 paths with Spath = 8, varying the associated parameters.



We also conducted the evaluation process in two different
ways: the “closed” and “open” conditions. In the “closed”
condition, we only assessed the model’s predictions when S
was located next to the boxes (states 1,1 and 1,2 in Figure 2).
In the “open” condition, we measured the model’s inference
at any possible state of S.

The evaluation consisted of two parts: the evaluation of
the human’s preferences and the evaluation of the human’s
beliefs.

1) Evaluation of the human’s preferences: To assess the
model’s ability to identify the simulated human’s prefer-
ences, we set Rfb = 0.5 and varied Rp between the values
of [0, 0.25, 0.5, 0.75, 1]. For instance, a preference rate of
0.5 indicates that the agent would move to the box where it
believes the toy is located 50% of the time, while it would
choose the other box 50% of the time.

Figure 4 displays the evaluation of the agent’s preferences.
The four charts correspond to different combinations of Ap

and the evaluation type (closed or opened). For instance, Fig-
ure 4a represents the closed evaluation with Ap = True, and
Figure 4b shows the opened evaluation with Ap = False. As
the graphs demonstrate, the model can accurately infer the
agent’s preferences based on the provided preference ratios,
even when the preference rate is set to 0.5, where the agent’s
behavior alternates more frequently. However, the model’s
performance is relatively lower when inferring the agent’s
preferences by considering all the states. Specifically, when
the preference rate is set to 0.5, the model predicted that
the agent was interested in the toy less than 40% of the
time and close to 40% of the time when the preferences
were not alternating. This might be attributed to the model’s
uncertainty about the agent’s preferences when the agent is
not close to either of the boxes.

2) Evaluation of the human’s beliefs: For the belief infer-
ence evaluation, we set Rp = 0.5 and varied Rfb between
the values of [0, 0.25, 0.5, 0.75, 1]. The results, depicted
in Figure 5, show that the model can accurately infer the
human agent’s beliefs regarding Rfb. For instance, when
Rfb is 0.5, corresponding to a belief condition change 50%
of the time, the model can correctly infer that S has false
beliefs approximately 50% of the time, and true beliefs for
the remaining time.

The evaluations of both beliefs and preferences validate
the performance of the BToM in this false-beliefs under-
standing experiment. The results shown in Figure 5 demon-
strate that the model can accurately track the searcher’s
beliefs. Joint inference of beliefs and preferences is depicted
in Figure 4, where we can observe how beliefs affect the
agent’s desires. As observed in the evaluation of beliefs,
we notice a similar symmetry related to the assigned values
of Rp. However, the inconsistent predictions in the opened
condition indicate that the model cannot accurately determine
the searcher’s preference and assumes that the agent is not
interested in the toy. This can be explained by the fact that
the model’s understanding of the agent’s intention becomes
clearer when it is approaching one of the boxes. In any case,
the model is mainly used to explain the reason behind the

agent’s choice of a particular box.

B. Human-robot interaction

Following the promising results from the simulation pre-
sented in Section V-A, we aimed to confirm the model’s
performance through an HRI experiment wherein a robot
tracks the mental states of a human and takes appropriate
actions based on the context. Our main objective in this
experiment was to evaluate the robot’s behavior in response
to the task and assess how well the robot follows the
searcher’s beliefs and preferences.

In terms of both conditions discussed in Section IV-B,
we observe similarities and differences with the results
depicted in Figures 6 and 7 that reflect how the robot’s
cognitive model infers those mental states over time. In
both conditions, the model starts with no knowledge of the
environment, which is reflected by the equiprobability of
the human’s beliefs and preferences during the introductory
step. However, over time, the model begins inferring those
mental states by observing human behavior.

1) Evaluation of the human’s beliefs: In the False Belief
(FB) condition, the robot accurately infers that the searcher
has false beliefs by determining that they believe the toy is
in box 1, even after the tricker swaps its location (Figure
3 E1). Conversely, in the True Belief (TB) condition, the
robot infers that the searcher has a true belief regarding the
toy’s location (Figure 3 E2).

2) Evaluation of the human’s preferences: The robot
demonstrated its ability to infer the searcher’s preferences
in both conditions. In both conditions, the cognitive model
predicts that the searcher is interested in the toy when
they try to put it in box1 (Figure 3 B1) or box2 (Figure
3 B2). When they move away from it (Figure 3 C-E), the
model assumes that they are no longer interested in the toy.
Finally, when they move back close to it, the preference
levels rise again in the FB condition (Figure 3 F1), whereas
in the TB condition, the searcher’s preference remains low.
By understanding this and analyzing the searcher’s position
with respect to the two boxes, the robot can successfully
determine which action to take: in the FB condition, it will
direct the searcher to the correct location of the toy, while
in the TB condition, it will acknowledge that they are no
longer interested in it.

These outcomes are consistent with our initial hypothesis
about the impact of beliefs and preferences on human be-
havior and how a cognitive robots can use this information
to drive their action selection capabilities. Furthermore, they
validate the use of BToM as a model for empowering social
robots to understand and predict human actions, granting
them a greater degree of social autonomy.

VI. CONCLUSIONS

In this paper, we presented the results of our HRI experi-
ment on a ToM-capable cognitive architecture and discussed



Fig. 6. The robot’s reasoning on the searcher’s beliefs during the two interactions under the “False Beliefs” (FB) and “True Beliefs” (TB) conditions.
Each bar graph represents the searcher’s belief about the toy’s location.

Fig. 7. The robot’s reasoning on the searcher’s preferences during the two interactions under the “False Beliefs” (FB) and “True Beliefs” (TB) conditions.
The curve depicts the interest level of the searcher regarding the toy.

the importance of false belief understanding for collaborative
agents. We traced the development of this mental skill in
both the psychological and computational domains. Our
methodology involved the use of BToM [9], [10], a DBN
originally used to determine an agent’s desires in a 2D world,
and applied it to a more complex environment involving a
psychology experiment used to test false belief understanding
in children. Our simulated tests provided data in line with our
expectations, and our real-world HRI experiment replicated
the false belief understanding experiment to observe and
analyze the behavior of a social robot embedded with a
ToM cognitive model. The results demonstrate the effec-
tiveness of using a BToM model for enabling a social
robot to understand and reason about human beliefs and

preferences in a false-belief understanding experiment. Our
study suggests that by tracking the mental states of humans,
robots can better assist and collaborate with them. While
our scenario provides a clear demonstration of our model’s
performance in HRI, we recognize the need to implement
more complicated and real-world-oriented situations to eval-
uate the adaptability of our system. In the future, we plan
to conduct more complex scenarios with multiple actors and
objects. Additionally, we aim to conduct user studies to test
whether the predictions made by the BToM model align
with how humans reason about false beliefs. Such studies
would provide valuable insights into how robots can better
understand human behavior and improve their ability to
interact and collaborate with humans in real-world settings.
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