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Abstract 

Using the cDCC form of the multivariate GARCH models (MGARCH), this paper examines 

the time-varying conditional correlations among green renewable, grey non-renewable, and the 

conventional investment strategy in the exchange-traded funds (ETFs) markets. Daily excess 

returns for the largest energy ETFs are used as proxies for the US energy sector over the period 

of 25 June 2008 to 9 May 2023. The empirical results find that the AR(1)-GARCH(1, 1)-cDCC 

model with t-distribution to be the best fit. The results indicate that the time-varying 

correlations between green and grey energy ETFs are between 0.42 and 0.55 and statistically 

significant at 10%, with lesser degree of persistence in green energy, while there is a high 

significant co-movement between the grey energy and the traditional investment strategy. This, 

in turn, implies that investing in green energy ETFs provides better diversification. These 

results provide important implications for policymakers, portfolio managers and investors on 

the benefits of portfolio diversification in energy markets amid the current global energy crisis. 
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1. Introduction 

 

In the recent two decades, renewable, that is ‘green’, energy has become increasingly crucial 

in addressing the global challenges of climate change and the dramatic growth in energy 

demand (Miralles-Quiros et al., 2018; Su et al., 2020). As governments and private energy 

companies take major steps to reduce their carbon emissions and shift away from non-

renewable, namely ‘grey’, energy to ensure energy security, the demand for green energy 

resources and technologies has remarkably increased (Creti and Nguyen, 2015; Ahmad, 2017; 

Kyritsis and Serletis, 2018). Specifically, according to IRENA and CPI (2023), global 

investment in green energy amounted to a record level of $0.5 trillion in 2022 with 70% coming 

from private sources. Likewise, in the financial markets, the analysis of the exchange traded 

funds (ETFs) has recently attracted much attention due to their stock-like characteristics, tax 

efficiency, low fees, transparency, and trading flexibility (Huang & Lin, 2011; Yan & Garcia, 

2017; Mariani & Florescu, 2020). Interestingly, as a more environmentally friendly and 

sustainable alternative to grey energy, green ETFs have been growing rapidly in recent years 

to a total of 552 green ETFs across the globe with assets under management (AUM) of $174 

billion in 2020 (UNCTAD, 2021). 

In this regard, Rizvi et al. (2022) examine the connectedness between the green and grey energy 

ETFs from 2015 to 2020 using a full/diagonal BEKK-MGARCH models. Their empirical 

results suggest that return shocks generated in green energy and transmitted to grey energy are 

more evident, while the impact of grey energy is diminishing. From a similar point of view, 

Saeed et al. (2020) consider hedging strategies of green assets against grey energy assets from 

2012 to 2019 using the DCC-MGARCH. Their findings suggest that, especially for crude oil, 

clean energy stocks are more superior hedge than green bonds. More recently, Celik et al. 
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(2022) investigate the dynamic connectedness and hedging opportunities among green ETFs 

between 2011 and 2021 using asymmetric DCC-MGARCH models.  

Although the DCC-MGARCH model developed by Engel (2002) is one of the most cited works 

in modelling time-varying correlations for multivariate framework, it is commonly accepted 

that its parameter estimates have severe negative biases for the case of larger dimensions. 

Importantly, Aielli (2006) shows that the DCC model has a considerable asymptotic bias in the 

estimator of the sample covariance matrix, which is a component of the correlation driving 

process. Consequently, Aielli (2006) proposes the corrected DCC (cDCC) to adjust this in such 

a way that it has martingale difference errors. The cDCC model is extended, in Aielli (2013) 

and Aielli and Caporin (2014), by allowing for a clustering structure of the univariate GARCH 

parameters, and the model has been used in several empirical applications (see for instance, 

Hafner & Reznikova 2012; Fresoli & Ruiz, 2016). Moreover, several studies showed that there 

is no significant difference in parameter estimates under both DCC and cDCC representations 

if the error terms are Gaussian (see Carnero & Ertalay, 2014; Bodnar & Hautsch, 2016). Yet, 

as the multivariate normality in DCC errors are rejected in this paper, we can rely on cDCC 

estimates in this setting. 

All things considered; this paper makes three contributions to the literature. First, we follow 

the DCC-MGARCH and the cDCC-MGARCH models to estimate the time varying conditional 

correlations among grey and green energy ETFs, along with a more conventional market ETF 

representing the S&P500. Second, unlike previous studies, we consider a larger set of variables 

(Eight grey and green energy ETFs) with a dataset that fully accounts for the GFC and the 

pandemic periods. Third, to the best of our knowledge, this paper is one of the first papers 

attempts to model the energy excess returns using the cDCC representation. 
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This paper proceeds as follows: Section 2 describes the data and methodology. Section 3 

discusses the results. Finally, section 4 concludes. 

 

2. Data and methodology 

 

We use daily data for the exchange-traded funds (ETFs) from Bloomberg, which span the 

period from 25 June 2008 through to 9 May 2023, a total of 3,744 observations. The data 

include four grey US energy ETFs (XLE, VDE, XOP and IEO), four green US energy ETFs 

(ICLN, TAN, QCLN and PBW), the SPDR S&P 500 ETF Trust (SPY) and iShare 1-3 Year 

Treasury Bond ETF (SHY). The list of the funds, their AUM and coverage are provided in 

Appendix Table A.1. With an average AUM of $40 billion over 2018-2023, the grey and green 

US energy ETFs used in this paper can be regarded as proxies for the financial performance of 

non-renewable and renewable US energy sectors, respectively. While SPY gives a traditional 

investment strategy against which the grey and green ETFs can be measured, SHY as a short-

duration government bond fund is used to determine a risk-free rate. Let 𝑃௧ be the ETF’s price 

at time 𝑡 for all ETFs separately, we calculate their daily excess returns 𝑟௧ relative to the return 

on SHY as a risk-free return as follows,  

𝑟௧ = (log 𝑃௧ − log 𝑃௧ିଵ) − (log 𝑆𝐻𝑌௧ − log 𝑆𝐻𝑌௧ିଵ)    

To investigate the dynamic correlation structure, we follow Engle’s (2002) dynamic 

conditional correlation multivariate GARCH (DCC-MGARCH) and Aielli’s (2006) corrected 

DCC-MGARCH (cDCC-MGARCH) models. we start with the mean equation, 

𝒓௧ = 𝐸(𝒓௧|𝑭௧ିଵ) + 𝜺௧,  𝜺௧ = 𝑯௧
ଵ ଶ⁄

𝒛௧    
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where 𝒓௧ = (𝑟ଵ,௧, 𝑟ଶ,௧, … , 𝑟ଽ,௧)′ is a vector of excess returns in the order of four grey, four green 

and SPY ETFs, 𝑭௧ିଵ is the information available at 𝑡 − 1, 𝒛௧ is an iid random vector with mean 

0 and covariance matrix 𝑰ଽ, and 𝑯௧ = (ℎ,௧) is the multivariate dynamic conditional variance-

covariance written as, 

𝑯௧ = 𝑫௧

ଵ
ଶൗ

𝑹௧𝑫௧

ଵ
ଶൗ
        

𝑫௧ = 𝑑𝑖𝑎𝑔(ℎଵଵ,௧ , … , ℎଽଽ,௧)     

𝑹௧ = 𝑸௧

∗ି
భ

మ 𝑸௧ 𝑸௧

∗ି
భ

మ        

𝑸௧

∗ି
భ

మ = 𝑑𝑖𝑎𝑔൫𝑞ଵଵ,௧
ିଵ ଶ⁄

, … , 𝑞ଽଽ,௧
ିଵ ଶ⁄

൯      

where 𝑫௧ is a diagonal matrix containing the conditional variances (ℎ௧) from the univariate 

GARCH-type structures (Table A.2 in the Appendix shows several GARCH-type models 

used),  𝑹௧ is a 9 × 9 conditional correlation matrix, and 𝑸௧ = (𝑞,௧) is a 9 × 9 symmetric 

positive definite matrix and is defined in the DCC as 

𝑸௧ = (1 − 𝜆ଵ − 𝜆ଶ)𝑸ഥ + 𝜆ଵ𝜼௧ିଵ𝜼௧ିଵ
ᇱ + 𝜆ଶ𝑸௧ିଵ    

while it is given in the cDCC by 

𝑸௧ = (1 − 𝜆ଵ − 𝜆ଶ)𝑸ഥ + 𝜆ଵ𝜼௧ିଵ
∗ 𝜼௧ିଵ

∗ ᇱ + 𝜆ଶ𝑸௧ିଵ    

where 𝜆ଵ and 𝜆ଶ are non-negative scalar parameters, 𝜼௧ = (𝜂ଵ௧, … , 𝜂ଽ௧)′  is the standardised 

error vector, where 𝜂௧ = 𝜀௧ ඥℎ,௧⁄  , 𝜼௧
∗ = 𝑸௧

∗
భ

మ𝜼௧ and 𝑸ഥ  is unconditional covariances matrix 

of 𝜼௧. Both models have advantages using flexible GARCH specifications in the conditional 

variance. However, the cDCC allows for more tractable dynamic conditions (Aielli, 2013). 
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3. Results 

 

In Table 1, Panel A shows the summary statistics on each daily excess return. All means are 

close to zero. Despite the standard deviation suggests little variation across all ETFs, SPY 

shows relatively small volatility. The skewness indicates all excess returns are skewed left with 

extreme losses in the grey energy sector, while higher kurtosis suggests more extreme outliers 

in this sector. The significance of Jarque-Bera implies none of the excess returns obeys normal 

distribution, whilst the ARCH tests identify the presence of ARCH effects. The volatility 

clustering of the daily excess returns is also evident in Figure 1. During mid-2008 to mid-2009, 

there were significantly bigger movements in green energy funds as a result of the GFC, while 

the variability in grey energy was much higher from 2020 to 2023 due to the pandemic. After 

checking each ETF for stationarity, we determined that stationarity holds for all ETFs after first 

difference. Panel B in Table 1 contains unit root tests which all rejects the presence of unit root 

in the excess returns.  

 

Figure 1. Daily excess returns of the grey and green energy ETFs. 
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Table 1. Descriptive statistics and unit root tests. 

 Panel A: Descriptive statistics  Panel B: Unit root test statistics 
Indices Mean Max. Min. Std Dev. Skewness Kurtosis JB ARCH(5)  ADF PP DF-GLS DF-B 
XLE -0.000020 0.15692 -0.23035 0.02051 -0.73764 16.6121 29237*** 805.43***  -64.95*** -64.93*** -7.02*** -66.62*** 
VDE -0.000037 0.16225 -0.22640 0.02070 -0.67980 15.1293 23233*** 796.74***  -64.74*** -64.69*** -6.87*** -66.35*** 
XOP -0.000218 0.20261 -0.46542 0.02793 -1.29595 28.1642 99806*** 255.60***  -64.00*** -64.00*** -7.66*** -67.57*** 
IEO -0.000004 0.20078 -0.30544 0.02457 -0.79202 16.1077 27186*** 562.16***  -63.41*** -63.39*** -9.27*** -65.43*** 
              
ICLN -0.000279 0.16442 -0.16877 0.02159 -0.58512 13.4989 17404*** 1106.14***  -59.75*** -59.73*** -2.78* -61.08*** 
TAN -0.000377 0.20010 -0.20964 0.02919 -0.35198 9.1337 5945*** 619.83***  -58.15*** -58.13*** -3.66*** -59.23*** 
QCLN 0.000149 0.15334 -0.15817 0.02253 -0.38065 8.0662 4093*** 775.49***  -60.06*** -60.05*** -3.42** -60.09*** 
PBW -0.000294 0.16262 -0.15799 0.02399 -0.34566 7.7964 3662*** 888.90***  -59.55*** -59.55*** -3.08** -60.27*** 
              
SPY 0.000305 0.13999 -0.11751 0.01330 -0.38620 16.3959 28080*** 1105.49***  -68.32*** -68.66*** -7.71*** -69.36*** 

Notes: JB denotes Jarque-Bera statistics. For unit root tests, ADF, PP, DF-GLS and DF-B represent the augmented Dicky-Fuller, Phillips and Perron test, Elliott, Rothenberg 
and Stock generalised least squares version of ADF, and the Perron modified DF with breakpoints, respectively. Significant at 10%, 5% and 1% *, **, ***, respectively. 
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Table 2 reports summary results of several MGARCH models with DCC and cDCC 

representations. The log-likelihood and all information criteria find the AR(1)-GARCH(1,1)-

cDCC model with t-distribution as the best fit to capture the fat tails and the skewed features 

present in the daily excess returns. Interestingly, the parameters 𝜆ଵ and 𝜆ଶ are statistically 

significant, implying that the correlations between the ETFs change over time, however the 

estimated dynamic conditional correlation coefficients, reported in Table 3, are only 

statistically significant at 1% among SPY and all grey energy ETFs, indicating high co-

movement among these asset classes. Furthermore, the multivariate diagnostics show the 

suitability of the fitted cDCC model.  
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Table 2. Summary results of several MGARCH models with DCC and cDCC representations under t-distribution. 
  𝜆ଵ 𝜆ଶ Tail: 𝜐 Log-likelihood AIC BIC LM(5) LM2(5) M. Normality 
DCC GARCH 0.02029*** 0.96728*** 7.41*** 120252 0.01301 0.11805 190.91 332.28 1299.7*** 
 GJR 0.02187***  0.96255***    7.44*** 120199 0.02865 0.17130 187.38 290.87 1108.6*** 
 APARCH 0.02123*** 0.96351***   7.43*** 120163 0.03433 0.19467 190.19 288.63 1044.9*** 
 IGARCH 0.02061*** 0.96754***  7.17*** 120189 0.01724 0.12435 189.80 322.00 1278.5*** 
 FIGARCH 0.01789*** 0.97233***    7.42***  120248 0.02870 0.17149 186.23 322.03 1273.7*** 
 HYGARCH 0.01796*** 0.97204*** 7.48*** 120242 0.03443 0.19509 186.08 327.04 1280.4*** 
cDCC GARCH 0.02439*** 0.96391*** 7.35*** 120337 0.01298 0.11803 189.70 192.25 1290.6*** 
 GJR 0.02603*** 0.95930***   7.39*** 120284 0.02865 0.17134 186.48 287.98 1097.0*** 
 APARCH 0.02463*** 0.02463***   7.37*** 120242 0.03434 0.19473 188.35 284.55 1040.7*** 
 IGARCH 0.02556***  0.96432***    7.08*** 120279 0.01724 0.12438 188.87 319.79 1261.8*** 
 FIGARCH 0.02048***  0.97081***    7.36*** 120315 0.02638 0.16199 160.18 223.29 1041.1*** 
 HYGARCH 0.02039*** 0.97040***   7.43***  120329 0.03183 0.18441 183.971 314.71 1257.6*** 

Notes: Standard errors in parentheses. LM and LM2 are Li and McLeod multivariate portmanteau statistics on standardised and square standardised residuals, respectively.  M. 
Normality denotes Multivariate Normality. Significant at 10%, 5% and 1% *, **, ***, respectively. 
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Table 3. The estimated dynamic conditional correlation coefficients for the AR(1)-GARCH(1,1)-cDCC. 

 VDE XOP IEO  ICLN TAN QCLN PBW  SPY 
XLE 0.99429*** 0.91401*** 0.94700***  0.49179* 0.43217* 0.52962* 0.53720*  0.71162** 
VDE  0.92802*** 0.95342***  0.49855* 0.44014* 0.54114* 0.54987*  0.71198** 
XOP   0.96824***  0.45861* 0.41861* 0.52320* 0.53843*  0.62252** 
IEO     0.46972* 0.42593* 0.53096* 0.53805*  0.65049** 
           
ICLN      0.82812** 0.72567** 0.73827**  0.59253* 
TAN       0.78011** 0.79911**  0.51721* 
QCLN        0.88379***  0.68773** 
PBW          0.65913* 

Notes: Significant at 10%, 5% and 1% *, **, ***, respectively. 
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Figures 2 and 3 present the dynamic conditional correlations for the best fitted DCC and cDCC 

models respectively, while Table 4 shows the summary statistics. It is evident that there are 

significant variations in the pathways of the conditional correlations. Some, in particular among 

grey funds, are always positive and higher than 0.78, while they reach values close to zero with 

alternating signs among grey and green funds, for example, XLE and VDE against all green 

funds, XOP versus TAN, and IEO versus ICLN, TAN and QCLN. Interestingly, a deep plunge 

can only be noticed in the conditional correlation between SPY and all grey energy funds, not 

the green, during the GFC and the pandemic periods. Importantly, the conditional correlation 

for all green funds significantly varies from – 0.22 to 0.91 with grey funds and SPY indicating 

their potential as alternative diversifiers.  It can also be pointed out that although the time plots 

of the two models are qualitatively similar, the cDCC is more variable, particularly between 

the grey energy funds and SPY. Moreover, whilst the sample correlations means are very close 

for both models, the cDCC model have larger ranges. All in all, there is no distinction between 

the two models, indicating that we can rely on the cDCC representation in this case. 
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Figure 2. Time plot of time-varying correlation coefficients based on the DCC representation. 
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Figure 3. Time plot of time-varying correlation coefficients based on the cDCC representation. 
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Table 4. Descriptive statistics of time-varying correlations. 
 AR(1)-GARCH(1,1)-DCC  AR(1)-GARCH(1,1)-cDCC 
 Mean SD Min. Max. Skewness Kurtosis  Mean SD Min. Max. Skewness Kurtosis 
(XLE, VDE) 0.995 0.005 0.856 0.998 -14.201 294.41  0.995 0.005 0.866 0.999 -13.028 255.39 
(XLE, XOP) 0.929 0.024 0.777 0.973 -1.963 9.46  0.928 0.024 0.784 0.975 -1.603 7.85 
(XLE, IEO) 0.960 0.013 0.870 0.983 -2.462 12.99  0.959 0.013 0.873 0.984 -2.011 10.57 
(XLE, ICLN) 0.527 0.193 -0.077 0.892 -0.506 2.64  0.527 0.191 -0.052 0.913 -0.400 2.79 
(XLE, TAN) 0.487 0.189 -0.266 0.866 -0.453 2.97  0.487 0.187 -0.215 0.883 -0.325 3.00 
(XLE, QCLN) 0.560 0.183 -0.143 0.879 -0.680 2.96  0.561 0.181 -0.100 0.890 -0.622 3.09 
(XLE, PBW) 0.575 0.188 -0.106 0.915 -0.579 2.73  0.577 0.186 -0.060 0.933 -0.516 2.83 
(XLE, SPY) 0.679 0.207 -0.178 0.964 -0.903 3.53  0.691 0.195 -0.189 0.969 -0.935 3.98 
(VDE, XOP) 0.941 0.021 0.773 0.977 -2.496 14.08  0.940 0.021 0.781 0.980 -2.164 12.67 
(VDE, IEO) 0.965 0.012 0.856 0.984 -2.684 16.34  0.965 0.012 0.865 0.988 -2.124 12.01 
(VDE, ICLN) 0.535 0.191 -0.056 0.891 -0.504 2.61  0.535 0.188 -0.033 0.914 -0.383 2.68 
(VDE, TAN) 0.494 0.187 -0.245 0.865 -0.467 3.00  0.495 0.185 -0.198 0.881 -0.325 2.95 
(VDE, QCLN) 0.569 0.183 -0.125 0.881 -0.670 2.97  0.570 0.180 -0.076 0.887 -0.581 2.98 
(VDE, PBW) 0.584 0.184 -0.067 0.913 -0.555 2.71  0.586 0.183 -0.023 0.929 -0.480 2.74 
(VDE, SPY) 0.675 0.203 -0.113 0.963 -0.778 3.13  0.686 0.192 -0.125 0.968 -0.785 3.45 
(XOP, IEO) 0.971 0.020 0.801 0.993 -3.800 24.54  0.971 0.019 0.808 0.995 -3.569 23.02 
(XOP, ICLN) 0.507 0.168 0.033 0.835 -0.248 2.313  0.507 0.167 0.049 0.864 -0.098 2.31 
(XOP, TAN) 0.491 0.157 -0.106 0.812 -0.290 2.73  0.491 0.155 -0.068 0.824 -0.137 2.67 
(XOP, QCLN) 0.565 0.155 0.031 0.846 -0.396 2.59  0.567 0.152 0.073 0.879 -0.256 2.48 
(XOP, PBW) 0.582 0.150 0.120 0.867 -0.241 2.40  0.585 0.150 0.154 0.885 -0.134 2.33 
(XOP, SPY) 0.603 0.189 0.088 0.929 -0.391 2.35  0.612 0.183 0.098 0.936 -0.337 2.34 
(IEO, ICLN) 0.513 0.177 -0.005 0.851 -0.341 2.40  0.513 0.177 0.008 0.877 -0.219 2.47 
(IEO, TAN) 0.491 0.168 -0.172 0.832 -0.381 2.86  0.492 0.168 -0.134 0.851 -0.258 2.83 
(IEO, QCLN) 0.568 0.165 -0.044 0.846 -0.554 2.74  0.569 0.165 -0.002 0.875 -0.487 2.75 
(IEO, PBW) 0.578 0.169 0.004 0.883 -0.469 2.58  0.581 0.170 0.040 0.906 -0.406 2.60 
(IEO, SPY) 0.632 0.190 0.043 0.936 -0.606 2.75  0.645 0.179 0.060 0.941 -0.572 2.86 
(ICLN, TAN) 0.845 0.097 0.514 0.966 -0.961 3.36  0.848 0.093 0.524 0.967 -0.974 3.57 
(ICLN, QCLN) 0.772 0.107 0.340 0.922 -0.931 3.44  0.772 0.104 0.362 0.940 -0.729 3.14 
(ICLN, PBW) 0.781 0.106 0.405 0.946 -0.986 3.53  0.783 0.098 0.458 0.965 -0.699 3.02 
(ICLN, SPY) 0.663 0.099 0.309 0.906 -0.462 2.83  0.661 0.103 0.311 0.929 -0.242 2.92 
(TAN, QCLN) 0.829 0.060 0.615 0.931 -0.822 3.20  0.828 0.060 0.631 0.945 -0.593 2.99 
(TAN, PBW) 0.855 0.042 0.629 0.946 -1.492 6.89  0.854 0.042 0.638 0.966 -1.027 5.68 
(TAN, SPY) 0.599 0.105 0.030 0.862 -0.627 3.84  0.595 0.110 0.080 0.890 -0.307 3.43 
(QCLN, PBW) 0.916 0.028 0.810 0.963 -0.619 2.64  0.915 0.029 0.819 0.975 -0.354 2.43 
(QCLN, SPY) 0.734 0.083 0.385 0.903 -1.034 4.32  0.734 0.084 0.391 0.915 -0.830 4.00 
(PBW, SPY) 0.712 0.104 0.276 0.929 -0.840 3.91  0.714 0.103 0.309 0.939 -0.669 3.74 
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4. Conclusion 

This paper investigates the dynamic linkages among excess returns representing grey and green 

ETF energy against the conventional investment strategy. Using cDCC-MGARCH, we find 

that the time-varying correlations between green energy and the other ETFs tend to be weak, 

between 0.42 and 0.55, and statistically significant at 10%. Although the correlations among 

all the ETFs change over time, the estimated cDCC coefficients are only statistically significant 

at 1% among all grey energy funds. All in all, green energy shows the least degree of 

persistence between 2008 and 2023. Moreover, it should be noted that these results aid 

policymakers, analysts, portfolio managers and investors in understanding the benefits of 

portfolio diversification. Weak dynamic correlation between green energy funds versus grey 

and conventional ones indicates better diversification by investing in these ETFs. 

Acknowledgment 

The author is grateful for valuable feedback from the editor (Professor Mark P. Taylor) and 

two anonymous referees. 

 
Disclosure statement 

No potential conflict of interest was reported by the author. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16 
 

References: 
 
Ahmad, W. (2017). On the dynamic dependence and investment performance of crude oil and 
clean energy stocks. Research in International Business and Finance, 42, 376–389. 
https://doi.org/10.1016/j.ribaf. 2017.07.140 
 
Aielli, G.P. (2006). Consistent estimation of large scale dynamic conditional correlations. 
[Unpublished manuscript, Department of Statistics, University of Florence] 
 
Aielli, G.P. (2013). Dynamic conditional correlations: on properties and estimation. Journal of 
Business and Economic Statistics, 31(3), 282-299. 
 
Aielli, G.P. & Caporin, M. (2014). Variance clustering improved dynamic conditional 
correlation MGRACH estimators. Computational Statistics & Data Analysis, 76, 556-576. 
 
Bodnar, T., & Hautsch, N. (2016). Dynamic conditional correlation multiplicative error 
processes. Journal of Empirical Finance, 36, 41-67. 
https://doi.org/10.1016/j.jempfin.2015.12.002 
 
Carnero, M.A. & Eratalay, M.H. (2014). Estimating VAR-MGARCH models in multiple steps. 
Studies in Nonlinear Dynamics & Econometrics, 18(3), 339-365.  
https://doi.org/10.1515/snde-2012-0065 
 
Celik, I., Sak, A.F., Ozdemir A. & Vergili, G. (2022). The dynamics connectedness and 
hedging opportunities of implied and realised volatility: Evidence from clean energy ETFs, 
The North American Journal of Economics and Finance, 60, 101670. 
https://doi.org/10.1016/j.najef.2022.101670 
 
Creti, A. & Nguyen, D.K. (2015). Energy markets’ financialization, risk spillovers, and pricing 
models. Energy Policy, 82, 260-263. https://doi.org/10.1016/j.enpol.2015.02.007 
 
Engle, R.E. (2002). Dynamic conditional correlations: A simple class of multivariate GARCH 
models. Journal of Business and Economic Statistics, 20, 339-350. 
 
Fresoli, D.E. and Ruiz, E. (2016). The uncertainty of conditional returns, volatilities, and 
correlations in DCC models. Computational Statistics & Data Analysis, 100, 170-185.  
https://doi.org/10.1016/j.csda.2015.03.017 
 
Hafner, C.M. & Reznikova, O. (2012). On the estimation of dynamic conditional correlation 
models, Computational Statistics & Data Analysis, 56(11), 3533-3545.  
https://doi.org/10.1016/j.csda.2010.09.022 
 
Huang, M.Y. and Lin, J. B. (2011). Do ETFs provide effective international diversification? 
Research in International Business and Finance, 25, 335-344.  
https://doi.org/10.1016/j.ribaf.2011.03.003 
 
IRENA & CPI (2023). Global landscape of renewable energy finance. Abu Dhabi: 
International Renewable Energy Agency. 
 



17 
 

Kyritsis, E., & Serletis, A. (2018). The zero lower bound and market spillovers: Evidence from 
the G7 and Norway. Research in International Business and Finance, 44, 100–123. 
https://doi.org/10.1016/J.RIBAF. 2017.05.015  
 
Mariani, M.C., & Florescu, I. (2020). Quantitative Finance. John Wiley & Sons. 
 
Miralles-Quirós, J.L., Miralles-Quirós, M.M. & Nogueira, J.M. (2018). Diversification benefits 
of using exchange-traded funds in compliance to the sustainable development goals. Business 
Strategy and the Environment, 28(1), 244–255. https://doi.org/10.1002/bse.2253 
 
Rizvi, S.K.A., Naqvi, B., & Mirza, N. (2022). Is green investment different from grey? Return 
and volatility spillovers between green and grey energy ETFs. Annals of Operations Research, 
313(1), 495-524. https://doi.org/10.1007/s10479-021-04367-8  
 
Saeed, T., Bouri, E., & Tran. D.K. (2020). Hedging strategies of green assets against dirty 
energy assets. Energies, 13(12), 3141. https://doi.org/10.3390/en13123141 
 
Su, C.W., Naqvi, B., Shao, X.F., Li, J.P., & Jiao, Z. (2020). Trade and technological innovation: 
The catalysts for climate change and way forward for COP21. Journal of Environmental 
Management, 269, 110774. https://doi.org/10.1016/j.jenvman.2020.110774  
 
UNCTAD (2021). The rise of the sustainable fund market and its role in financing sustainable 
development. New York and Geneva: United Nations. 
 
Yan, L., & Garcia, P. (2017). Portfolio investment: Are commodities useful? Journal of 
Commodity Markets, 8, 43-55. https://doi.org/10.1016/j.jcomm.2017.10.002  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18 
 

Appendix A 

Table A.1. A list of used ETFs tracking a specific asset class. 
Asset class Ticker Index ETF AUM Coverage 
Grey energy XLE Energy Select Sector SPDR 22.83 XLE targets investment results of the Energy Select Sector Index, an index of U.S. 

companies in the oil, gas and consumable fuel, and energy equipment and services 
industries. 

VDE Vanguard Energy 5.239 VDE tracks the performance of the MSCI US Investable Market Index, an index 
made up of stocks of large, mid-size, and small U.S. companies within the energy 
sector as classified under the GICS. 

XOP SPDR S&P Oil & Gas 
Exploration & Production 

3.175 XOP tracks the performance of the S&P Oil & Gas Exploration & Production Select 
Industry Index, which represents the oil and gas exploration and production segment 
of the S&P Total Market Index. 

IEO iShares US Oil & Gas 
Exploration & Production 

0.460 IEO tracks the investment results of the Dow Jones U.S. Select Oil Exploration & 
Production Index composed of US equities in the oil and gas exploration and 
production sector. 

Green energy ICLN iShares Global Clean Energy 3.192 ICLN tracks the investment results of the S&P Global Clean Energy Index, an index 
tracks the performance of approximately 100 clean energy companies. 

TAN Invesco Solar 1.836 TAN tracks the investment results of the MAC Global Solar Energy Index, an index 
seeks to track the performance of companies in global solar energy businesses. 

QCLN First Trust NASDAQ Clean 
Edge Green Energy 

1.330 QCLN fund tracks the investment results of the NASDAQ Clean Edge Green Energy 
Index, which tracks the performance of small, mid, and large capitalisation clean 
energy companies. 

PBW Invesco WilderHill Clean 
Energy 

0.920 PBW tracks the investment results of the WilderHill Clean Energy Index, an index 
tracks the performance of companies that engage in the business of advancement of 
cleaner energy and conservation. 

Equity SPY SPDR S&P 500 333 SPY tracks the investment performance of the S&P 500 Index. 
Bond SHY iShares 1-3 Year Treasury 

Bond 
21.68 SHY tracks the investment results of an index composed of US Treasury 1-3 Year 

Bond Index, which measures the performance of public obligations of the US 
Treasury that have a remaining maturity of 1-3 years. 

Note: AUM is the assets under management in billion dollars and averaged over 2018-2023. Source: Bloomberg and YCharts.
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Table A.2. GARCH-type models used. 

GARCH ℎ௧ =
𝜔

𝛽(𝐿)
+ ቈ1 −

𝜓(𝐿)

𝛽(𝐿)
 𝜀௧

ଶ 

GJR ℎ௧ =
𝜔

𝛽(𝐿)
+ ቈ1 −

𝜓(𝐿)

𝛽(𝐿)
(1 − 𝐿) (|𝜀௧| − 𝛾𝜀௧)ଶ 

APARCH ℎ௧

ఋ
ଶൗ

=
𝜔

𝛽(𝐿)
+ ቈ1 −

𝜓(𝐿)

𝛽(𝐿)
 (|𝜀௧| − 𝛾𝜀௧)ఋ 

IGARCH ℎ௧ =
𝜔

𝛽(𝐿)
+ ቈ1 −

𝜓(𝐿)

𝛽(𝐿)
(1 − 𝐿) 𝜀௧

ଶ 

FIGARCH ℎ௧ =
𝜔

𝛽(𝐿)
+ 1 −

𝜓(𝐿)

𝛽(𝐿)
(1 − 𝐿)ௗ൨ 𝜀௧

ଶ 

FIAPARCH ℎ௧

ఋ
ଶൗ

=
𝜔

𝛽(𝐿)
+ ቈ1 −

𝜓(𝐿)

𝛽(𝐿)
(1 − 𝐿)ௗ (|𝜀௧| − 𝛾𝜀௧)ఋ 

HYGARCH ℎ௧ =
𝜔

𝛽(𝐿)
+ 1 −

𝜓(𝐿)

𝛽(𝐿)
(1 + 𝑎[(1 − 𝐿)ௗ − 1])൨ 𝜀௧

ଶ 

Note: The polynomials 𝛽(𝐿) = 1 − 𝛽ଵ𝐿 − ⋯ − 𝛽𝐿 and 𝜓(𝐿) = 1 − 𝜓ଵ𝐿 − ⋯ − 𝜓𝐿 . The GJR, FIAPARCH 
and HYGARCH are Glosten, Jagannathan, and Runkle, fractionally integrated asymmetric power ARCH and 
hyperbolic GARCH models. 


