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Abstract: 
 
 The present work presents a mathematical framework to simulate steel-
concrete composite columns with equivalent steel columns. A total number of 
three simulation methods are presented, in order to simulate circular and 
rectangular concrete-filled hollow sections, as well as concrete-encased I-shaped 
sections with steel columns of similar shape. The simulation is achieved by the 
satisfaction of three equations regarding their (a) axial resistance, (b) flexural 
stiffness about the major axis and (c) flexural stiffness about the minor axis. 
Solution of the aforementioned provides the dimensions of the equivalent steel 
sections as functions of the characteristics of the steel-concrete composite sections 
(a) in a closed form for all hollow sections and (b) in a high-accuracy 
approximate solution for I-shaped sections. The accuracy of the proposed 
methods and their general applicability are evaluated. The results yielded are 
indicative of the effectiveness of the proposed methods. 
  
Keywords: steel-concrete composite, steel sections, columns, equivalence 

Introduction 

Steel-concrete composite elements were initially used as a means to increase 

the fire-resistance of steel elements. However, they have proven to be particularly 

cost-effective as they use a relatively low-cost material, i.e. concrete, in order to 

substitute a proportion of the required steel. There are numerous applications of 

composite structures, especially in tall buildings. In civil engineering practice, 

though, steel-concrete composite elements are not often used in conventional 

building, mainly due to the lack of suitable finite element software. 

Literature on the performance of steel-concrete composite columns is 

particularly rich, while new original research articles on the topic seem to be 

published in an increasing rate. The topic first investigated was the performance 

of concrete-filled circular hollow sections (CFCHS) (1-15). There is also 

abundance of investigations on concrete-filled rectangular hollow sections 

(CFRHS), such as (16-28), as well as experimental works comparing the 

performance of CFRHS and CFCHS, such as (29-32). The majority of the 
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available literature on their behavior dates back to the 1980s (33-45), while such 

elements have been constructed since the end of the 19th century. 

However, despite the wealth of scientific knowledge available on composite 

columns, the existing engineering software focuses mainly on the design of pure-

steel or reinforced concrete elements. Hence, in order to render their design 

possible using any structural engineering software, composite sections could be 

simulated using equivalent pure-steel sections. In conventional buildings, the 

elements mainly designed as steel-concrete composite are the columns and slabs, 

while use of composite beams is particularly limited. In the work of Papavasileiou 

(46), an extensive investigation on the simulation of composite columns was 

performed, in order to define a mathematical framework which would provide 

solutions in closed form, or of particularly high accuracy. A similar work, dealing 

only with partially-encased I-shaped sections was performed by Marinopoulou et 
al. (47). In both works it is pointed out that the internal stresses developed in 

columns subjected to gravitational or seismic loads, are mainly axial force and bi-

axial bending, while shear forces are particularly low compared to their capacity. 

Hence, in order to simulate a column’s performance, an equivalent fictitious 

section should have the same axial resistance and flexural stiffness about the 

major and minor axes. Furthermore, in order to allow the application of the 

proposed methods for the determination of alternatives in practice, the geometry 

of the fictitious sections should not differ substantially from that of the composite 

steel-concrete sections (e.g. simulating a concrete-encased I-shaped section with a 

circular one). 

Simulation of concrete-filled circular sections 

Two equations need to apply for the simulation of steel-concrete composite 

double-symmetrical circular column sections with pure steel sections: (a) of their 

axial resistance and (b) of their flexural stiffness. The computational advantage of 

concrete-filled circular sections over concrete-filled rectangular sections is that 

their flexural stiffness is the same in all directions. However, when reinforcing 

steel is installed for safety reasons when designing against fire-induced damage 

scenarios, the stiffness of circular sections depends on the direction of lateral 

loading considered. In this work, the number of installed longitudinal 

reinforcement is considered to be a product of 4 (i.e. Nbars = 4n, where n is an 

integer), so that the stiffness of the section about y-axis is the same as its 

stiffness about z-axis. The geometrical characteristics of the steel-concrete 

composite and the fictitious pure-steel section are illustrated in Fig. 1. 

 

 

(a) (b) 

Figure 1. Geometric characteristics of the (a) composite concrete-filled and (b) fictitious pure-steel circular 
hollow section. 

http://esrjournal.org/


ESR Journal 
 

Analytical framework for the substitution of steel-concrete composite columns with equivalent steel sections   

ESR Journal, 13th February 2017  3 

Since all bars have the same diameter, the total area of the reinforcement is 

a product of the area of a single bar multiplied by the number of bars (Eqn. 2.1). 
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The flexural stiffness provided by each bar to the composite section is the 

summation of the flexural stiffness of the bar and the additional stiffness 

calculated by the parallel axis theorem. The axis around which the stiffness is 

calculated is herein referred to as “reference axis”. For any value of n selected, 

there will be two bars the central axis of which is exactly on the reference axis, as 

well as two bars with a distance equal to the radial distance (i.e. the maximum 

distance). All other bars will have a distance of RS,i. The value of RS,I depends on 

the value of n, while at any case there will be 4 bars with the same distance from 

the reference axis. The flexural stiffness of an individual bar is calculated as: 
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The additional stiffness due to the parallel axis theorem is: 
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Hence, the total flexural stiffness of the reinforcement is calculated as the 

summation of the flexural stiffness of all bars (Eqns. 2.2 and 2.3). Introducing the 

normalized variable rs,i = Rs,i/d, the total stiffness of the reinforcement is 

provided in Eqn. 2.4. 








 







 
 



N

i

iSs R
dd

NI
1

2

,

24

464



















 
 





n

i

iSSs rR
d

N
d

I
4

1

2

,

2
22

164

  










































 
 





4

44

1

2

,

2
22

402
16

4
4

n

i

iSSs rR
d

n
d

I
  

























 
 





1

1

2

,

2
22

212
44

n

i

iSSs rR
d

n
d

I
  (2.4) 

The axial resistance and flexural stiffness of the steel circular hollow section 

are calculated in Eqns. 2.5 and 2.6 respectively. 
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The total area and flexural stiffness of the concrete section (Eqns. 2.7 and 

2.8 respectively) can be calculated considering a solid circular section from which 
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the corresponding characteristics of the longitudinal reinforcement provided in 

Eqns. 2.1 and 2.4, are subtracted. 
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The fictitious pure-steel section is a circular hollow section made out of steel 

of the same grade as that of the composite section. The variables required for its 

definition are the external and internal diameter. The thickness of the section is 

simply calculated as half their difference: tfict = (D1,fict – D2,fict)/2. Eqns. 2.9 and 

2.10 provide the formulas for the calculation of the total area and second moment 

of area of the fictitious section. 
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Using the equilibrium of the axial resistance for the steel-concrete composite 

section (48) and the fictitious pure-steel section (49), a relationship between the 

two variables is defined. The final expression of the equation is defined by 

substituting the section areas using Eqns. 2.1, 2.5, 2.9 and 2.11 and normalizing 

by the total area of the composite section (i.e. As,1 = πD2/4). 
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A second relationship between D1,fict and β Is defined by the equilibrium of 

the flexural stiffness of the actual and the fictitious sections. In order to 

normalize the flexural stiffness of the concrete and the reinforcing steel, the ratio 

of the Young’s modulus of each material over that of the structural steel is 

introduced: ψc = Ec / Ea and ψs = Es / Ea. The remaining dimensions are 

normalized as: d/D = δ, Rs/D = rs and t/D = θ. 
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Since the expressions on the right side of the Eqns. 2.12 and 2.13 are the 

summation of products of positive numbers, they are apparently positive 

numbers. Hence, in order to simplify the solution of the set of equations, they are 

replaced by the positive variables 2

xd  and 2

yd  respectively. So, Eqns. 2.12 and 

2.13 are transformed to Eqns. 2.14 and 2.15 respectively. 

  222 1 xda    (2.14) 

        2222244 111 ydaaa    (2.15) 
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Dividing Eqns. 2.14 and 2.15 and solving for α2, its value is defined as a 

function of β2. 
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Substituting α2 in Eqn. 2.14, using Eqn. 2.16 and solving for β, its value is 

determined in Eqn. 2.17. 
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Hence, substituting β in Eqn. 2.16 and solving for α, its value is defined in 

Eqn. 2.18: 
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(2.18) 

Simulation of concrete-filled rectangular sections 

In order to simulate the performance of concrete-filled rectangular sections, a 

procedure similar to that performed for circular sections is selected. However, 

since the flexural stiffness of rectangular sections about y-axis (major axis) is 

increased compared to that about z-axis (minor axis), two equilibriums of 

stiffness need to apply (one for each direction), as well as the equilibrium of axial 

resistance. The additional equilibrium is necessary because, in order to define a 

fictitious rectangular hollow section, three variables need to be determined: the 

height, the breadth and the thickness of the section. Fig. 2 illustrates the 

geometrical characteristics of the steel-concrete composite section. It should be 

noted that, in this Section, longitudinal reinforcement is also taken into 

consideration, as it could be used for fire-resistance purposes, even though its use 

in practice is not compulsory. 

 

 

(a) (b) 

Figure 2. Geometric characteristics of the (a) composite concrete-filled and (b) fictitious pure-steel 

rectangular hollow section. 

The total area of the longitudinal reinforcement (Eqn. 3.1) is simply 

calculated as the area of a single bar multiplied by the number of bars installed. 

In sections with a rectangular shape the same number of bars would be installed 
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in both directions. However, the larger the ratio of height over breadth is, the 

more bars would be required on the large sides of the column in order to confine 

concrete during a fire-induced damaged scenario. 
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d
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  (3.1) 

The second moment of area of the longitudinal reinforcement is calculated as 

the second moment of area of a single bar multiplied by the number of bars used 

and the summation of the additional second moment of area for each bar 

calculated using the parallel axis theorem. Since the bars’ section is circular, their 

second moment of area is the same about both axes, so the first part (Eqn. 3.2) is 

the same for both axes. For both axes there are bars which have the maximum 

distance from the reference axis (i.e. hs for the calculation of Iy and bs for the 

calculation of Iz), bars with intermediate distance from it (i.e. hs,i for y-axis and 

bs,i for z-axis) and bars directly on the reference axis. Those bars provide the 

values add

yI 1,
 (Eqn. 3.3), add

yI 2,
 (Eqn. 3.4), 0 for y-axis and add

zI 1,
 (Eqn. 3.6), 

add

zI 2,  

(Eqn. 3.7), 0 for z-axis respectively. Hence, the total second moment of area for 

the longitudinal reinforcement is calculated in Eqn. 3.5 about the major axis and 

Eqn. 3.8 about the minor axis.
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Regarding the rectangular hollow section, the total area (Eqn. 3.9) and 

second moment of area about both axes (Eqns. 3.10 and 3.11) are calculate easily 

by subtracting the values corresponding to the internal rectangle, by those 

corresponding to the external one, as they have the same centroids. 

     242222 tthtbhbhbthtbhbAa   
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Due to the existence of longitudinal reinforcement, the section of the 

concrete is irregular. However, since its centroids overlap those of the steel 

section and the reinforcement, its area (Eqn. 3.12) and second moment of area 

(Eqns. 3.13 and 3.14) are calculated by subtracting the values corresponding to 

the aforementioned from those of the solid rectangular section defined by its 

height and breadth. In order to express the equations as a function of b and h, 

the ratios btb   and hth  . Their purpose is to allow for the quantities 

b∙h3/12 and h∙b3/12 to be extracted and, consequently, simplify the equations. 
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The definition of a fictitious pure-steel section with a uniform thickness was 

thoroughly investigated. However, approximations were required, so the resulting 

formulas yielded were not in closed form. The advantage of a closed form formula 

is that there is no deviation between the values obtained for the actual composite 

section and the fictitious pure-steel one. In order to allow for the definition of 

such formulas, the constraint on the thickness should be removed, so that the 

flexural stiffness about one axis can be increased without particular effect. 

However, as the number of variables increased to four, an additional equilibrium 

is required. This equilibrium was strategically selected in order to correlate the 
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variables to each other. Specifically, the ratio of the external dimensions should 

be equal to the ratio of the internal dimensions (Eqn. 3.15). Fig. 2.b illustrates 

the fictitious pure-steel rectangular hollow section. The thickness on each side 

can be calculated using the formulas provided in Eqns. 3.16 and 3.17. 
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The total area and second moment of area of the fictitious section are 

calculated using the formulas that apply on the rectangular hollow section of the 

composite column. Introducing the variable γ (Eqn. 3.15), all formulas are 

expressed in Eqns. 3.18, 3.19 and 3.20 as a function of h1,fict, b1,fict and γ. 
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The definition of the unknown variables is achieved by the solution of the 

set of equations corresponding to the aforementioned equilibriums. The first 

equation is formulated by the equilibrium of axial resistances, substituting the 

respective areas from Eqns. 3.1, 3.9, 3.12 and 3.18. 
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Both sides of Eqn. 3.21 are divided by fa and the variables acc ff , 

totaa AA and aa  1'  are introduced in order to normalize the 

yielding/cracking stresses. 

 
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

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f
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21 
 

  ssccafictfict AAAhb   ,1,1

21  (3.22) 

The area of the longitudinal bars (As) can be replaced by a function of Ac, 

introducing their ratio css AA . From Eqn. 3.12, substituting the area of the 

structural steel and concrete, using the aforementioned, the area of concrete can 

be expressed as a function of b and h (Eqn. 3.23). 

   hbAAhbAAAhbAAA csacscasca  1  

     hbAhbAhb acscsa )1(11   

 
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s
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s

a
c 






'

'

1

1







  (3.23) 
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Finally, both sides of Eqn. 3.22 are divided by b∙h and the variables 

bb fict /,1  and hh fict /,1  are introduced. Hence, the first equilibrium, as 

well as the next two are herein expressed as functions of β, η and γ. 
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a
ssc

'

'
1 2
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
    (3.24) 

The second equation required for the definition of the fictitious section’s 

geometrical characteristics derives from the equilibrium of flexural stiffness about 

the major axis (Eqn. 3.25). Substituting from Eqns. 3.5, 3.10, 3.13 and 3.19, the 

equilibrium of the stiffness about the major axis becomes: 

  fictyasyscycayafictyaacty IEIEIEIEIEIE ,,,,,,   (3.25) 

Both sides of the equation are divided by Ea and the normalized variables 

acc EE  and ass EE  are introduced. Additional normalized values 

(Eqns. 3.26, 3.27, 3.28 and 3.29) are defined in order to allow for the 

simplification of the following formulas. In particular: 

The diameter of the longitudinal reinforcement is normalized using: 

b
b

d
  and h

h

d
  (3.26) 

The dimensions hs,i and bs,i are normalized using:  

is

is

b

b
,

,
  and 

is

is

h

h
,

,   (3.27) 

The thickness of the rectangular hollow section is normalized using: 

b
b

t
  and h

h

t
  (3.28) 

The second moment of area provided by the reinforcement is normalized using: 

 123

,

,
hb

I sy

ys



 

(3.29) 

Substituting Iy,s from Eqn. 3.5, and introducing the necessary normalized 

variables, the expression of αs,y is transformed as provided in Eqn. 3.30. 

 





























 












12

16
2

4
2

12

3

2

1

2

,

2
22

3

,

,
hb

hhn
d

mn
d

hb

I

n

i

iss

sy

ys




 

   


























 





2

1

2

,

2
2

,
16

26
n

i

iss
h

hbys nmn 


  (3.30) 

The normalized values β=b1,fict/b and η=h1,fict/h are introduced, in order to 

allow the resulting expression to be independent of the measurement units used. 

Substituting in Eqn. 3.25 the respective second moment of area expressions from 

Eqns.  3.5, 3.10, 3.13 and 3.19, dividing both sides of the equation by Ea∙b∙h3/12 

and introducing the normalized variables described above, the equation forms as: 

   syscycayafictyaactyfictya IEIEIEIEIEIE ,,,,,,
 

http://esrjournal.org/


ESR Journal 
 

Analytical framework for the substitution of steel-concrete composite columns with equivalent steel sections   

ESR Journal, 13th February 2017  11 

      









 









 











 





12

12
21211

12

12
1

3

,,

3
3

3

3

,1,14

hb
E

IEIE
hb

E

hb
E

hb
E

a

syscychba

a

fictfict

a
  

       








 









 


1212

212111
3

,

3

,334

hb

I

hb

I sy

s

cy

chb 
 

           yscshbc a ,

334 2121111    (3.31) 

Applying a similar procedure on the equilibrium of flexural stiffness about 

the minor axis, the third equation is formulated. The variable αs,z is designated as 

the ratio of Iz,s over b3h/12, in order to simplify the expression of final equation. 

Using the expression of Iz,s defined in Eqn. 3.8 and using all aforementioned 

normalized values, the expression of αs,z is given in Eqn. 3.32. 
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 (3.32) 

The second moment of area values of each constituting component are 

replaced by the formulas defined in Eqns. 3.8, 3.11, 3.14 and 3.20. Both sides of 

the equation are divided by Ea∙b3h/12, and the equation is simplified to Eqn. 

3.33. 
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           zscshbc a ,

334 2121111    (3.33) 

The three equations forming the set under investigation are Eqns. 3.24, 3.31 

and 3.33. In all the aforementioned, the expressions on the right side of the 

equation consist of variables with known values. By definition, the variables used 

on the left side are positive numbers, so their product is a positive number as 

well. Hence, the expressions on the right side are positive numbers, the value of 

which is known. Hence, in order to simplify the solution process, they are 

replaced by the positive variables 
2

xd , 
2

yd  and 
2

zd , so Eqns. 3.24, 3.31 and 3.33 

transform to  Eqns. 3.34, 3.35 and 3.36. 

  221 xd   (3.34) 

  2341 yd   (3.35) 

  2341 zd   (3.36) 

Apparently,         222224 1111   . So, replacing it in Eqns. 3.35 

and 3.36 and dividing by Eqn. 3.34, formulas giving η2 and β2 as functions of γ 

are received. 
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Multiplying Eqns. 3.37 and 3.38 and receiving their square root, an 

expression of β∙η as a function of γ is determined. 
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Substituting the expression of β∙η from Eqn. 3.39 in Eqn. 3.34 and 

introducing the variable 2222 )( yzz dddK  , the equation can be solved for γ. 
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(3.40) 

Variables β (Eqn. 3.41) and η (Eqn. 3.42) are determined by substituting the 

expression of γ in Eqns. 3.37 and 3.38 from Eqn. 3.40. 
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(3.42) 

Simulation of concrete-encased I-shaped sections 

Formulation of the mathematical simulation model 

Concrete-encased steel I-shaped sections require the use of transversal 

reinforcement (stirrups) which, along with the longitudinal reinforcement confine 

the concrete core. Hence, the composite section resembles that of reinforced 

concrete one. However, particular provisions are required in order to ensure the 

composite performance of the column. Transference of stresses from the concrete 

component to the steel core takes place with shear studs welded on the steel 

section before the installation of the reinforcement, while additional dowels might 

be required for the longitudinal bars that are not adequately constrained by the 

installed stirrups. Nevertheless, all aforementioned do not affect the column’s 

resistance to axial loading, or its flexural stiffness, so in this work the components 

taken into consideration are the I-shaped section, the concrete and the 

longitudinal reinforcement, as illustrated in Fig. 3.a. 

 
(a) (b) 

Figure 3. Geometric characteristics of the (a) composite concrete-encased and (b) fictitious pure-steel 

I-shaped section 

Longitudinal reinforcement is installed so that it forms a rectangular cage. 

The same geometry was considered for the rectangular hollow sections, so the 

total area and combined second moment of area of the reinforcement are 

determined using Eqns. 3.1, 3.5 and 3.8. Regarding the steel I-shaped section, the 

same properties are calculated considering rectangular components and adding or 

subtracting their properties correspondingly. Two additional variables are defined 

for the dimensions of the hollow rectangles defined by the section’s flanges and 

its web:
 

  2' waa tbb   and
faa thh  2' . In order to simplify the resulting 

equations, normalized values are used in this Section as well (Eqns. 4.1 and 4.2).  

 Normalized by the breadth of the composite section: 


b

tw , a
a

b

b
  and 

a
a

b

b
'

'
  (4.1) 

 Normalized by the height of the composite section: 
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'
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h

h
  and 

a
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h

h
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'
  (4.2) 

So, the total area of the steel I-shaped section (Eqn. 4.3) is calculated as the 

area of the surrounding rectangle, subtracting the area of the two hollow 

rectangles on both sides of the web. The same applies on the calculation of the 

second moment of area about the major axis (Eqn. 4.4), since the center of all 

aforementioned components is on y-axis. For the calculation of the second 

moment of area about the minor axis (Eqn. 4.5), three rectangles (breadth ; 

height) with the same center need to be considered: the external one (b ; h), the 

one defined by the internal sides of the section’s flanges (b ; h’a), and the web of 

the section between the two flanges (tw ; h’a). 
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The concrete section has a particularly irregular shape, mainly due to the 

existence of the longitudinal reinforcement, so its geometrical properties (Eqns. 

4.6, 4.7 and 4.8) are indirectly calculated by subtracting the ones corresponding 

to the steel core and the longitudinal reinforcement from those of the external 

rectangle (b ; h).  
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Using the normalized values ρa, ρs, ρa’ and ρs’ defined in Section 2, a more 

compact expression is determined for the area of the concrete (Eqn. 4.9). 

   hbAAhbAAAhbAAA csacscasca  1  
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     hbAhbAhb acscsa )1(11   

 
 

hbhbA
s

a

s

a
c 






'

'

1

1







  (4.9) 

The fictitious pure-steel section selected is based on a similar method used 

for partially-encased I-shaped sections (47). It consists of the steel I-shaped 

section used in the composite section, reinforced by additional plates installed on 

its flanges and web, as illustrated in Fig. 3.b. The flange plates installed have the 

same thickness as the web of the steel section, while their height (dadd), as well as 

the height (hadd) and breadth (badd) of the web plates are variables. 

The position of the plates was selected so that their centroids match those of 

the I-shaped section. The geometrical properties of the I-shaped section have 

already been calculated (Eqns. 4.3, 4.4 and 4.5), so only those of the additional 

plates (Eqns. 4.10, 4.11 and 4.12) need to be defined. The plates’ dimensions are 

normalized by dividing with the breadth of the composite section ( bbadd  
 
and 

btw   ) and its height ( hhadd 
 
and hdadd   ). 
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Applying the equilibrium of axial resistances, dividing by the yielding stress 

of structural steel and eliminating the area of the steel I-shaped section which 

appears on both sides of the equation, a relationship between the area of the 

plates and those of the concrete and the reinforcement is determined (Eqn. 4.13).  
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Substituting the areas of the plates (Eqn. 4.10), concrete (Eqn. 4.9) and 

reinforcing steel ( cs AA  s ) in Eqn. 4.13 and dividing by b∙h, it transforms to 

a function between β, η and χ (Eqn. 4.14). 
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The second and third equations are determined by the equilibrium of 

flexural stiffness about the major and minor axis respectively. In order to simplify 

the final equations received, the ratios αs,y (Eqn. 3.30) and αs,z (Eqn. 3.32) are 

introduced. Where possible, the normalized values previously defined in this work 

are used. In both equations, the each component’s geometrical properties are 

replaced with the expressions provided in (a) Eqns. 4.4, 4.7, 3.5 and 4.11 for the 
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second moment of area about the major axis and (b) Eqns. 4.5, 4.8, 3.8 and 4.12 

for the second moment of area about the minor axis. Normalizing by 12/3hb 
 

and 12/3 hb   respectively, the resulting equations (Eqns. 4.15 and 4.16) are both 

functions of β, η and χ. 
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Since the expressions on the left side of Eqns. 4.14, 4.15 and 4.16 are positive 

numbers, while all variables on the right side of the equations have known values, 

the latter are replaced by the positive known variables 
2

xd , 
2

yd  and 
2

zd . It 

should be noted that the aforementioned should not be confused with those 

defined in Sections 2 and 3. Hence, Eqns. 4.14, 4.15 and 4.16 transform into the 

following: 
222 xd   (4.17) 

  233 22 ya d   (4.18) 

  2333 22 zd   (4.19) 

Three additional variables are defined, in order to perform the required 

operations on Eqns. 4.17, 4.18 and 4.19 and solve for the unknown variables β, η 

and χ:  

2

xx d , 3 23
  yy d  and  

2

zz d . Eqn. 4.17 
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is divided by θ and Eqns. 4.18 and 4.19 are divided by θ3, so Eqns. 4.20, 4.21 and 

4.22 are formulated. 
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The product   23
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in Eqn. 4.21 is particularly smaller than the 

others, so it may be omitted without significant effect on the final outcome. So, 

eliminating   23
2    from the equation, the unknown variable χ is 

determined. 
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 (4.25) 

Eqn. 4.25 is a quadratic equation in which the unknown variable is  2 . 

Since both its numerator and denominator are positive numbers, only the positive 

solution of the equation is valid. So, solving for β, its value is determined in Eqn. 

4.26. 
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(4.26) 

The unknown variable η is defined by dividing     2  by  2 , 

using the expressions provided in Eqns. 4.24 and 4.26 respectively. 
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Finally, the dimensions of the installed plates on the fictitious pure-steel 

section are provided in Eqns. 4.28, 4.29 and 4.30: 
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Assessment of the simulation method 

Since a simplification was made in order to define the solution of the set of 

Eqns. 4.17, 4.18 and 4.19, resulting in the removal of the component 

  23
2    

in Eqn. 4.21, the formulas determined are not in a closed form, and 

so they provide an approximate value for each variable. Hence, the accuracy of 

the simulation formulas needs to be evaluated. For this purpose, a variety of 

standard I-shaped sections were selected. As a reference, a typical concrete-

encased composite column section consisting of a HE320A steel core is used. The 

concrete compressive strength is 25MPa (i.e. C25/30 grade), while its cover on all 

sides of the column is 50mm from the rectangle defined by the steel section’s 

flanges. Its linear reinforcement consists of 12mm diameter bars, the yielding 

stress of which is 500MPa. A total number of 12 bars are installed: 5 bars parallel 

to the column’s height and 3 bars parallel to its breadth. Eqns. 4.31, 4.32 and 

4.33 provide the formulas to calculate the deviation of the composite section’s 

axial capacity (Eqn. 4.31) and flexural stiffness about the major and minor axis 

(Eqns. 4.31 and 4.32 respectively). 

𝛥(𝑁𝑑) =
𝑁𝑅𝑑,𝑎𝑐𝑡 − 𝑁𝑅𝑑,𝑓𝑖𝑐𝑡

𝑁𝑅𝑑,𝑎𝑐𝑡

=
(𝑓𝑎 ∙ 𝐴𝑎 + 𝑓𝑐 ∙ 𝐴𝑐 + 𝑓𝑠 ∙ 𝐴𝑠) − 𝑓𝑎 ∙ 𝐴𝑓𝑖𝑐𝑡

(𝑓𝑎 ∙ 𝐴𝑎 + 𝑓𝑐 ∙ 𝐴𝑐 + 𝑓𝑠 ∙ 𝐴𝑠)
 (4.31) 

𝛥(𝐸𝐼)𝑦 =
𝐸𝐼𝑡𝑜𝑡,𝑦,𝑎𝑐𝑡 − 𝐸𝑎 ∙ 𝐼𝑦,𝑓𝑖𝑐𝑡

𝐸𝐼𝑡𝑜𝑡,𝑦,𝑎𝑐𝑡
=
(𝐸𝑎 ∙ 𝐼𝑦,𝑎 + 𝐸𝑐 ∙ 𝐼𝑦,𝑐 + 𝐸𝑠 ∙ 𝐼𝑦,𝑠) − 𝐸𝑎 ∙ 𝐼𝑦,𝑓𝑖𝑐𝑡

(𝐸𝑎 ∙ 𝐼𝑦,𝑎 + 𝐸𝑐 ∙ 𝐼𝑦,𝑐 + 𝐸𝑠 ∙ 𝐼𝑦,𝑠)
 (4.32) 

𝛥(𝐸𝐼)𝑧 =
𝐸𝐼𝑡𝑜𝑡,𝑧,𝑎𝑐𝑡 − 𝐸𝑎 ∙ 𝐼𝑧,𝑓𝑖𝑐𝑡

𝐸𝐼𝑡𝑜𝑡,𝑧,𝑎𝑐𝑡
=
(𝐸𝑎 ∙ 𝐼𝑧,𝑎 + 𝐸𝑐 ∙ 𝐼𝑧,𝑐 + 𝐸𝑠 ∙ 𝐼𝑧,𝑠) − 𝐸𝑎 ∙ 𝐼𝑧,𝑓𝑖𝑐𝑡

(𝐸𝑎 ∙ 𝐼𝑧,𝑎 + 𝐸𝑐 ∙ 𝐼𝑧,𝑐 + 𝐸𝑠 ∙ 𝐼𝑧,𝑠)
 (4.33) 

The proposed simulation method was applied and the fictitious section’s 

axial capacity and flexural stiffness were calculated. Comparing the 

aforementioned with the properties of the composite section, the largest deviation 

is noticed on the stiffness about the major axis, I.e. 0.021%. In engineering 

practice, an admissible deviation level would be less than 5%, while for values 

less than 1% the method would be considered to have high accuracy. The 

determined values are particularly smaller than the aforementioned high accuracy 

limit, so one could consider the steel-concrete composite section and the fictitious 

pure-steel section to have practically the same properties. In order to evaluate 

the proposed method and to determine the limitations that might apply, a  
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(a) 

 
(b) 

 
(c) 

Figure 4. Assessment of the accuracy of the simulation method: (a) IPE, (b) HEA, (c) HEB 

sections. 
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Figure 5. Assessment of the accuracy of the simulation method: Structural steel grade. 

 
Figure 6. Assessment of the accuracy of the simulation method: Concrete strength class. 

 
Figure 7. Assessment of the accuracy of the simulation method: Rebar diameter. 

 
Figure 8. Assessment of the accuracy of the simulation method: Reinforcing steel grade. 
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thorough investigation on the factors which affect its accuracy needs to take 

place. Hence, a total number of 101 simulations were performed. The factors 

taken into consideration are: (a) the core I-shaped steel section, (b) the structural 

steel yielding stress, (c) the concrete strength, (d) the rebar diameter and (e) the 

reinforcing steel yielding stress. 

In order to determine the effect of the steel core size on the accuracy of the 

proposed simulation method, three sets of standard I-shaped sections were 

considered: (a) 18 IPE sections with sizes from IPE80 to IPE600, (b) 25 HEA 

sections with sizes from HE100A to HE1100A and (c) 25 HEB sections with sizes 

from HE100B to HE1100B. It should be noted that typically HEA and HEB 

sections are preferred for steel or composite columns, while IPE sections are 

mainly used as beam sections. So their use in this work is mainly for investigation 

purpose. The fictitious section properties were compared to those of the actual 

composite sections and the results are illustrated in Figs. 4.a, 4.b and 4.c for the 

IPE, HEA and HEB sections respectively. For all sections it is noticed that there 

is no deviation between the axial capacity of the actual and the defined fictitious 

section. Furthermore, the deviation on the section’s stiffness about the minor axis 

is in all cases negative. Compared to the deviation on the section’s stiffness about 

its major axis, it is particularly smaller. Its minimum absolute value is 0.002% 

and its maximum value is 0.0149%. In all scenarios it can be assumed negligible, 

as it is less than the deviation that occurs for a composite column simulated 

using fiber element model with a large number of fibers for each component and a 

simple model using the minimum admissible number of fibers.  

The range of values of deviation on the stiffness about the major axis is 

significantly larger. In all cases it is positive and it was calculated from 0.0041% 

up to 0.5434%. It should be noted that the largest values are found for the 

smaller sections of each group (IPE80-IPE100, HE100A and HE100B). Steel 

sections with height less than 200mm are typically not used in engineering 

practice as core for concrete-encased composite sections, as there is not enough 

space on its web for the installation of the required shear headed studs, in order 

to achieve the composite performance of the column. For larger section sizes, the 

deviation is particularly decreased with the maximum value being less than 0.1% 

(it is determined for IPE200). In all Figs. it can be noticed that the larger the 

size of the core section is, the more the deviation decreases. In order to verify this 

correlation, one needs to examine the stiffness percentage provided to the column 

section by the steel core. Fig. 9 illustrates the total stiffness contribution of (a) 

the steel core and (b) the reinforced concrete to the composite section. It can be 

noticed that for small sizes the contribution of the steel core is particularly lower 

than that of the reinforced concrete: IPE80 section provides only 5.78% of the 

composite section’s stiffness, so it could be considered as a practically reinforced 

concrete section. For larger sections this is reversed and it reaches up to 53%. 

However, even though the stiffness of the steel core is taken into consideration on 

both the composite and the fictitious section, the additional plates simulate the 

reinforced concrete only. So, the deviation to the total stiffness about the major 

axis is directly related to the contribution of the reinforced concrete. 

Similar effect to the accuracy of the simulation method was found to have 

the structural steel yielding stress. Even though it does not affect directly the 

overall stiffness of the composite or the fictitious section, but only their axial 

resistance, increased yielding stress was found to lead to reduced deviation on the 

stiffness about the major and minor axis. In particular, 6 steel grades with 

yielding stress from 195MPa to 460MPa (49) were considered and the results are 

presented in Fig. 5. In all cases there was no deviation on the axial capacity of 
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the sections, while the highest deviation for the stiffness about its minor axis was 

as low as 0.005%. The stiffness about the major axis reaches up to 0.118% for fy,a 

= 195MPa, while there is no deviation for yielding stress higher than 460MPa. It 

should be noted that structural steel with yielding stress below 235MPa is 

currently not used in practice. The most common steel grades for normal 

capacity carbon steel are 275MPa and 355 MPa.  

 

 
Figure 9. Contribution of the constituent materials (steel I-shaped core and surrounding reinforced 

concrete) to the total effective stiffness (EI)eff of each composite column. 

High grades of steel (fy,a > 500MPa) were also considered, but the results 

are not presented, as they do not provide additional information. In particular, 

for yielding stress higher than 355MPa the deviation is below 0.003%, while for 

460MPa or higher there is no deviation. However, a remark made applying the 

proposed method for fy,a = 800MPa was that the method could not yield results. 

The problem occurs on the calculation of the normalized value β. The calculation 

formula for β contains (μx - μy) as a denominator. Since μz
3 is a positive number, 

the product of (μx - μy) should be positive as well. The larger the value of fy,a is, 

the smaller the normalized value μx becomes, while μy is not affected. No problem 

occurred when increased concrete strength was assumed. So, for particularly 

increased structural steel yielding stress, very low concrete strength classes 

cannot be used. However, the same applies in engineering practice already. The 

concrete strength is directly related to the structural steel yielding stress. As the 

stresses are transferred between the steel core and the concrete by the means of 

shear headed studs installed on the core section’s web, the lower the concrete 

strength is, the larger the number and diameter of the studs is required. So, high 

grade steel is typically used in cooperation with high strength concrete. 

Therefore, even though the aforementioned limitation applies on the proposed 

method mathematically, it is highly unlikely that such an issue might occur 

during its application in practice. 

The investigated factor with the strongest effect on the accuracy of the 

simulation method is the concrete strength. A total number of 14 concrete 

strength classes were taken into consideration, from C12/15 up to C90/105 (50). 

It should be noted that concrete with strength less than 20MPa is typically not 

used for reinforced concrete or composite steel-concrete columns. Furthermore, 

concrete with strength equal to or more than 50MPa is classified as high-strength 

concrete (51). The results yielded are illustrated in Fig. 6. While, for low strength 

concrete classes the deviation is as low as 0.001%, for high-strength concrete, it 

increases dramatically, reaching up to 2.370%. This is a result of the increased 

contribution of the concrete to the stiffness of the composite section. The 
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concrete strength is directly related only to the section’s axial resistance, on 

which there is no deviation in all investigated cases. However, increased concrete 

strength results in increased modulus of elasticity of the concrete as well (50). 

While C12/15 has a modulus of elasticity of 27GPa, it increases up to 44GPa for 

C90/105. Contrary to the contribution of the steel section investigated 

previously, that of reinforced concrete increases up to 63.74% for C50/60, but 

then drops down to 60.64% for C90/105. Hence, it can be assumed that the 

concrete’s strength and its modulus of elasticity affect the results not only 

directly due to the properties of the composite section, but also through the 

normalized variables used. 

The composite section’s stiffness is also related to the reinforcing steel 

yielding stress, as well as the diameter of the installed bars. In order to 

investigate their effect on the accuracy of the proposed method, two more sets of 

simulations took place. In the first set, 10 bar diameters were used, ranging from 

6mm to 32mm. In all cases there was found to be no deviation in the simulation 

of the axial resistance. The maximum deviation on the section’s stiffness about 

both minor axes was found for the largest bar size used i.e. 32mm: Δ(EI)y = 

0.453% and Δ(EI)z = -0.006%. Evaluation of the results illustrated in Fig. 7 

shows that the deviation on the calculated stiffness dramatically for the larger 

bar sizes. This is directly related to the proportion of the section’s stiffness 

provided by the longitudinal reinforcement, which increases with a similar rate. It 

is the combination of the rebars’ location in relation to section’s centroid and the 

elasticity modulus of the steel. In particular, for 6mm bars considered the 

proportion of the total stiffness about the major axis provided by the 

reinforcement is below 1%, while for the largest size considered, i.e. 32mm, it 

reaches up to 44%. In the second set, 5 steel grades were considered: from 

250MPa to 517MPa (US grade 75) and the results yielded are presented in Fig. 8. 

It can be noticed that higher steel grades are associated with increased deviation 

on the section’s stiffness. However, unlike the bar diameter, the effect of the steel 

yielding stress seems to have a linear correlation to the calculated deviation. It is 

also remarkable that, even though Δ(EI)y is particularly low, Δ(EI)z is not also 

reduced; its value is constantly -0.003%. Hence, it should be pointed out that, 

even though the ratio of Δ(EI)z over Δ(EI)z is particularly increased, the value of 

both is extremely low. 

The applicability of the proposed method on reinforced concrete sections was 

also investigated. Because the functions of the variables μx, μy and μz required for 

the determination of the dimensions of the fictitious section contain components 

divided by θ, the particular variable cannot be equal to zero. Hence, a fictitious 

composite section with a steel core without area or stiffness, but for which the 

variable θ is equal to 10-77 was considered. The value 10-77 was not selected 

arbitrarily, but it is the smallest value for which the calculations can be 

performed in the software used. The materials comprising the fictitious section 

have the same properties as those used for the reference section, including the 

structural steel which is not installed. Finally, its height was considered to be 

300mm and its breadth 200mm. Applying the proposed simulation method, it was 

noticed that while there is no deviation for the axial capacity and the stiffness 

about the minor axis, the calculated stiffness about the major axis is totally 

erroneous: its deviation reaches -99.515%. Various alternatives were also 

evaluated in order to improve the results to a deviation below the admissible 

limit, but all were unsuccessful. Hence, it can be assumed that the proposed 

method cannot be applied on reinforced concrete columns. Nevertheless, as the 

methods proposed in Sections 3 and 2 are mathematical functions of closed form, 
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a reinforced concrete column can alternatively be simulated as a pure-steel 

rectangular or circular hollow section. 

Concluding remarks 

In this work, three methods were proposed in order to simulate steel-

concrete composite columns with equivalent pure-steel columns. All methods 

intend to determine pure-steel sections which have the same axial resistance and 

stiffness about the major and minor axis as the composite steel-concrete section 

simulated. The methods outlined define fictitious hollow circular and rectangular 

pure-steel sections are in a closed form. Hence, the results yielded from their 

application define steel sections with exactly the same properties as their 

composite steel-concrete counterparts. 

Formulas are provided regarding the calculation of the properties of the 

composite sections, but for standard sections such data can be retrieved directly 

from section tables and be normalized appropriately in order to calculate the 

variables dx
2, dy

2 and dz
2 when they are required. The formulas provided for the 

calculation of known variables, such as dx
2, dy

2 and dz
2, as well as unknown 

variables, i.e. α, β, η, χ and γ, use normalized values. So, the application of the 

proposed methods is independent of the measurement units used, while it is 

possible to scale the results (e.g. define a section with 1.5 times the stiffness 

about the minor axis) simply by multiplying dx
2, dy

2 and dz
2 with the required 

factor. 

It is remarkable that both methods proposed for hollow sections are 

applicable on any type of section (e.g. reinforced concrete section). However, the 

same does not apply for the simulation method presented for I-shaped sections, 

which requires the existence of such a section in the core of the initial section, in 

order to yield accurate results. Nevertheless, the method is applicable with high 

accuracy for any concrete-encased I-shaped section, the construction of which is 

feasible in practice as well. 

Application of the proposed simulation methods on sections with simpler 

geometry than the ones proposed, i.e. square hollow sections instead of 

rectangular sections and partially-encased I-shaped sections instead of “fully”-

encased sections is possible. The formulas provided could be easily simplified, but 

this is not presented in this work, as it does not provide additional information. 

The proposed methods could also be generalized in order to simulate column 

sections with any type of materials. Additionally, the sections consisting of a 

single material (in this work it is steel), could consist of other materials, provided 

that the yielding stress (fy) and Young’s modulus (Es) are replaced by the 

respective values used in order to define the axial resistance and flexural stiffness 

of the alternative material accordingly. Nevertheless, when such an application 

takes place, the investigator should take into consideration all the differences 

between the materials on the actual sections and the simulated ones. 

This work is not intended as an alternative to EC4, but as an additional tool 

for engineers in practice, so phenomena such as the various buckling types should 

be addressed according to the applicable design codes. Of particular importance is 

also that all proposed methods simulate the elastic behavior of the column 

sections. They can be applied for design purposes, in order to evaluate alternative 

solutions, or reduce the computational time required, especially when time-

demanding procedures such as structural design optimization take place (52-56). 

However, the inelastic behavior of the composite section and its equivalent pure-
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steel counterpart are not the same. Hence, the proposed methods cannot be 

applied in order to evaluate the inelastic performance of a building e.g. under a 

seismic excitation. 

The post-elastic behavior of the sections depends mainly on their mechanical 

properties, while the formulas used consider a linear behavior up to the maximum 

stress/strain. Application of the described procedure in order to define a similar 

model in order that simulates the section’s post-elastic behavior would be 

impractical, as one would need to define a different equivalent section for each 

step of the analysis,  in order to achieve an acceptable level of accuracy of the 

simulation. A different approach than the one described in this work might be 

more suitable for this purpose. 
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