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Abstract

Previous authors have produced analytical models which accurately simulate
tennis impacts. However, currently there are few published studies on the
simulation of tennis impacts using finite-element (FE) technique. The purpose of
this study was to produce accurate FE models of tennis impacts, which will
serve as design tools as well as aid in furthering the understanding of how the
ball, string-bed and racket behave during play.

An FE model of a pressurised tennis ball was produced in Ansys/LS-DYNA 10.0
and validated against experimental data. The ball model was updated to
simulate the extreme playing temperatures of 10 and 40°C and validated
against experimental data, obtained inside a climate chamber. Following
validation of the ball model, an FE model of a head-clamped racket was
produced and validated against experimental data. The validation included a
range of inbound velocities, angles and spin rates, for impacts at a nhumber of
nominal locations on the string-bed. Finally, an FE model of a freely suspended
racket was constructed and validated against experimental data. Impacts were
simulated at a number of nominal impact locations on the string-bed, with a
range of ball inbound velocities, angles and spin rates. The impacts were
recorded using two Phantom v4.2 high-speed cameras and analysed in 3D. The
FE models were all in good agreement with the experimental data, for the
individual stages of the validation.

A parametric modelling program was produced to be used in conjunction with
the model. This program enables the user to adjust a variety of parameters,
such as the inbound velocity of the ball, impact location and mass of the racket,
and run simulations without any specialist knowledge of the FE model. This
program was used to analyse the model against ball to racket impact data
obtained during player testing. There was relatively good agreement between
the model and player testing data.

Finally, the model was used to determine the influence of racket structural
stiffness, mass and the position of the balance point, when performing a typical
topspin forehand. It was found that using a head-heavy racket, with high
structural stiffness and mass, will increase the rebound velocity and topspin of
the ball, for a shot of this type at the centre of the string-bed.

Keywords: tennis ball, tennis racket, high speed cinematography, finite-element modelling.
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1. Introduction

The following chapters contain a three year study into the creation and
validation of a finite element (FE) model of an impact between a tennis ball and

racket.

1.1. Motivation for the Research

Over the years, tennis technology has developed, which has had an enormous
impact on the way the game is played. Racket materials have changed from
wood to aluminium, to the oversized, more exotic composite ones used today
(Haake et al., 2007). These advances have allowed players to hit shots faster
and with greater accuracy (Brody, 1997a), effectively increasing the speed of
the game (Brody, 1997b). However, this is also believed to have increased the
dominance of the server and there is growing apprehension that this is resulting
in a reduction in spectator appeal (Kotze et al., 2000). The International Tennis
Federation (ITF) is concerned with maintaining public and commercial interest,
in order to prevent the demise of the sport through lack of financial support. To
successfully regulate a sport, such as tennis, the governing body needs a full
understanding of the physical principles and technologies within the game.
Thus, the ITF set up a Technical Department in 1997 in order to monitor and
direct scientific advances in the sport (ITF Technical Department, 2009).

As a scientific subject area, tennis is well publicised with advances in
knowledge and technology coming from within academia and industry.
Researchers, scientists and engineers have simulated the various aspects of
the game through conventional laboratory investigations, which can be both
costly and time consuming. A large number of published studies have been
concerned with creating analytical models. Discrepancies between publications
have arisen due to errors and assumptions in both experimental and modelling
techniques.

The sponsors of this project are Prince whose principal aim is to design and
manufacture tennis rackets, for use by both amateur and professional players.
Prince require a tool which can be used to aid the design of their next
generation of rackets, which must conform to the current rules of the ITF. This
tool should be straightforward and easy to use to enable it to fit seamlessly into
their existing design process. FE models have been successfully applied to
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increase the physical understanding of other sports and aid in the design of
equipment. This project is concerned with constructing an accurate FE model to
form the basis of a tennis racket design tool. The intention of this project is to
highlight and explain areas of disagreement between previous studies and also
to evaluate the suitability of FE technique for modelling tennis ball impacts.

1.2. Aim and objectives

The aim of this thesis is to create an FE model which accurately simulates

tennis ball to racket impacts.

The main objectives are as follows;

1. To review existing literature in the field of tennis ball to court and ball to

racket impacts.

2. To produce and validate a realistic FE model of a pressurised tennis ball.

3. To produce and validate a realistic FE model of a pressurised tennis ball

impacting a freely suspended racket.

4. To produce a parametric modelling program which enables key parameters
of a tennis ball to racket model to be easily adjusted and simulations run

without the requirement of using an FE interface.

5. To produce a tool that can aid in the design and development of tennis

rackets.

6. To use an FE model of a ball to racket impact to further the scientific

understanding of tennis.

1.3. Thesis structure

This project is concerned with the construction of a realistic FE model of a
tennis ball impacting with a freely suspended racket. This will involve obtaining
the key physical properties of the ball, strings and racket which will be used in

2
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the model. The first stage will be to construct a realistic FE model of a tennis
ball impacting on a rigid surface. This ball model will be developed into a ball to
racket model which can simulate the full range of tennis shots encountered
during play. A parametric modelling program will also be constructed alongside
the FE model. This program will enable a wide variety of simulations,
encompassing different tennis shots, to be undertaken efficiently. Finally the
applications of the model with regard to the design of tennis rackets will be
discussed.

It is imperative that an FE model is validated against experimental data to
assess its accuracy and validity. This thesis is documented in chapters, the
majority of which are concerned with the detailed validation of each of the main

parts of the FE model against experimental data.
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2. Literature Review

2.1. Introduction

There is a large amount of literature on the physics of tennis, dating back as far
as 1877 (Raleigh, 1877). Previous research has sought to find a greater
scientific understanding of the interaction of the ball with both the court and the
racket. Work has often been duplicated, which has led to the establishment of
certain conclusions. However, there have also been areas of contradiction. The
intention of this literature review is to highlight well established conclusions and
attempt to explain the reasons for areas of discrepancy and misunderstanding.

This project is concerned with the creation and experimental validation of a
finite element (FE) model of an impact between a tennis ball and racket. The
most logical method of approaching this problem is to separate it into three

stages, as detailed below;

1. Model the interaction of the ball with a rigid surface.
2. Model the interaction of the ball with a string—bed.
3. Model the interaction of the ball with a complete racket.

This literature review aims to follow the same course.

The sponsors of this project are Prince, who are concerned with the
manufacture of a wide range of different tennis rackets. The intention of this
project is to create a tool which can be used to aid the design of their next
generation of rackets. It is therefore important to provide them with an overview
of how tennis equipment has changed since the origins of the modern game, as
well as how these changes have affected play.

This chapter will analyse existing literature on the physics of tennis. The FE
model will be built and validated in stages to ensure the highest possible
accuracy. Therefore, the literature review contains separate sections on the
ball, string-bed and racket. The impacts simulated in the model must be
representative of actual play; hence a section on player testing has been
included. The final sections are on previous tennis models and the effects of

technological advances on the game.
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2.2. The ball

2.2.1. The history of the tennis ball

The modern game of tennis or 'lawn tennis' evolved from real tennis in the
1870's, partly due to the invention of the lawn mower. Initially, solid vulcanised
rubber balls were used. Improvements quickly followed, including making the
ball hollow and pressurising it, as well as stitching a flannel cover around the
core to prevent wear (ITF Technical Department, 2009). Originally, the hollow
cores were manufactured from a single clover leaf shaped piece of rubber; this
procedure was later replaced with the bonding of two compression moulded half
shells. The flannel cover was also replaced by specialist cloth, which was
bonded to the cores (ITF Technical Department, 2009). Pressureless or
unpressurised balls, which had butadiene rubber (synthetic) cores, came into
existence in the 1960's (Haines, 1993). However, the pressureless balls failed
to gain popularity and were never widely used. In 1972 the International Tennis
Federation (ITF) introduced yellow balls to the rules; this was followed by the
high altitude ball in 1989. In 2002 the original ball was replaced by a faster type
1 ball, a type 2 ball which was identical to the original and a slower type 3 ball
(ITF Technical Department, 2009).

2.2.2. Rules of tennis balls as set by the ITF

In order to regulate the game of tennis and ensure consistency, any balls used
in tournament play must be approved by the ITF. This involves passing a
number of assessments, which are mass, size, deformation and rebound. Prior
to these assessments, the ball must be acclimatised for 24 hours, at 20 + 2°C
and 60 = 5% humidity and then compressed. The approval procedures are
documented in detail by the ITF (ITF Technical Department, 2009).

Downing (2007a) found no correlation between the static and dynamic stiffness
of tennis balls, concluding that rebound is the most important test with regard to
the ball's impact characteristics during play. When dropped from a height of
2.54 m, standard balls (type 1-3), must rebound between 1.35 and 1.47 m. High
altitude balls must bounce to a height of 1.22 -1.35 m, to compensate for the
lower pressure at which they are intended to operate. The ITF test limits for



balls are summarised in Table 2.1. This study will concentrate on type 2 balls as

they are the most commonly used.

Table 2.1 Test limits for ITF approved balls (ITF Technical Department, 2009)

TYPE 1 (FAST)  TYPE 2 (MEDIUM)1  TYPE 3 (SLOW)2  HIGH ALTITUDE3

WEIGHT (MASS) 56.0-59.4 grams 56.0-59.4 grams 56.0-59.4 grams 56.0-59.4 grams

(1.975-2.095 ounces) (1.975-2.095 ounces) (1.975-2.095 ounces) (1.975-2.095 ounces;
SIZE 6.54-5.86 cm 6.5-4-6.86 cm 7.00-7.30 cm 6.54-6.86 cm

(2.57-2.70 inches) (2.57-2.70 inches) (2 76-2.87 inches) (2.57-2.70 inches)
REBOUND 135-147 cm 135-147 cm 135-147 cm 122-135 cm

(53-58 inches; (53-5-8 inches) (53-5-8 inches) (48-53 inches)
FORWARD 0.495-0.600 cm 0.560-0.740 cm 0.560-0.740 cm 0.560-0.740 cm
DEFORMATION4 (0.195-0.236 inches) (0.220-0.291 inches) (0.220-0.291 inches) (0.220-0.291 inches)
RETURN 0.670-0.915 cm 0.800-1.080 cm 0.800-1.080 cm 0.800-1 080 cm
DEFORMATION4 (0.264-0.360 inches) (0.315-0.425 inches) (0 315-0.425 inches) (0.315-0.425 inches)

2.2.3. The manufacture of tennis balls and their material properties

This study will focus on pressurised tennis balls as they are much more widely
used, particularly in tournament play. Detailed descriptions of the current
manufacturing process of pressurised tennis balls have been undertaken by
both the ITF Technical Department (2009) and Penn (2008). The first stage is to
combine natural rubber with additional chemicals and extrude the mixture into
pellets. Each of these pellets is compression moulded into a half shell with a
wall thickness of approximately 3 mm; pairs of shells are bonded together to
form a core. The cores are pressurised to approximately 8.3 * IO*Nm 2 during
the bonding process. The cover consists of two dumb-bell shaped pieces of felt,
which are bonded to the core under elevated temperature and pressure using a
mould. The white seal is caused by a vulcanised solution, which is applied
around the edge of each of the separate pieces of felt before they are bonded to
the core.

There is very little published data on the material properties of tennis balls.
Although, it is predicted that each manufacturer will use slightly different
materials and manufacturing procedures, resulting in small variations in impact
characteristics (Miller and Messner, 2003). A range of balls can have different
dynamic stiffness values even though they have passed the ITF rebound test.
This can cause variation in their dynamic properties at high impact velocities
(>10 m-s'1) (Cross, 1999; Haake et ai, 2003a) (Figure 2.1). The ratio of the
rebound to inbound velocity of the ball is defined as the coefficient of restitution
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(COR). With regard to play, a higher COR would result in an increased speed
off the court or racket, whilst dynamic stiffness has been stated to affect the
ball's rebound angle (Cross, 1999). Miller and Messner (2003) raised concern
that with the current approval procedures, a ball could be introduced with the
potential to change the fundamental nature of the game. A possible solution for
raising consistency between different balls would be to undertake additional
rebound tests at higher impact speeds, as suggested by Cross (1999) and
Miller and Messner (2003). Further research would be required to support the
introduction of a new standard. A representative ball to surface impact model
could be used to accurately predict a ball's rebound characteristics at a range of
velocities. Such a model could be used for determining the influence of

individual parameters on the game.
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Figure 2.1 Variation in a) COR and b) contact time, between different balls for perpendicular impacts on

a rigid surface (Haake er al., 2003a).

A number of authors have found that the rebound characteristics of tennis balls
change with temperature (Rose et al, 2000; Downing, 2007b). The internal
pressure of a tennis ball will change with temperature in accordance with the
combined gas law (p1V1/T1 = p2Vo/T2). It is predicted that this change in internal
pressure will affect the structural stiffness and hence rebound characteristics of
the tennis ball. The variation in dynamic properties with temperature could also
be partly due to a change in the material properties of the ball, as predicted by
Downing (2007b). Undertaking the ITF approval tests across a range of
7



Dbl D T e T R R e T

temperatures could potentially increase consistency when playing under
different atmospheric conditions.

Goodwill et al., (2005) performed materials testing on the rubber core and felt
cover, which is used in the construction of a tennis ball. A Hounsfield
tensometer was used to obtain the quasi-static stress/strain relationship of the
rubber in both tension and compression. The maximum load applied to the
rubber samples was 150 N for tension and 450 N for compression (Figure 2.2a).
The quasi-static stress/strain relationship of the felt cover was obtained for
compression, up to a load of 500 N (Figure 2.2b). Testing the material
properties of the rubber and felt from a range of balls would provide an
indication of the amount of variation between manufacturers. Testing at a range
of temperatures would provide an indication as to how the material properties of
tennis balls change with temperature. Dynamic mechanical analysis (DMA)
could be used to obtain the viscoelastic properties of the rubber core of a tennis
ball (Menard, 2008).
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Figure 2.2 Quasistatic material properties of the a) rubber core and b) felt cover of a tennis ball
(Goodwill et al., 2005).

Rubber is viscoelastic, which means its properties are both time and
temperature dependent. Increasing the strain rate and/or decreasing the
temperature results in an increase in the Young's modulus (Menard, 2008).
Mase and Kersten (2004) undertook stress relaxation testing on samples taken
from the cores of golf balls, in order to obtain their viscoelastic properties.

Stress relaxation testing involves measuring the time dependent stress in a
8



sample held at constant strain, following rapid loading (Menard, 2008). Three
point flexure tests were undertaken using a DMA test machine. As the contact
time of a golf ball is very small a series of tests were undertaken from -90°C to
room temperature. A master curve referenced at room temperature was
constructed by undertaking time-temperature superposition on the data
obtained from the individual tests. Time-temperature superposition assumes
time-temperature equivalence and is used to combine data collected at different
temperatures in order to predict the behaviour at a wider frequency range
(Menard, 2008). The master curve was fitted to a Prony series and implemented
into a model of a golf ball, which was constructed in LS-DYNA. The viscoelastic
properties of a tennis ball core could be obtained by undertaking a series of
stress relaxation tests across a wide temperature range. However, the contact
time of a tennis ball (Goodwill, 2002; Haake et al., 2003a) is approximately 10
times longer than that of a golf ball (Mase and Kersten, 2004). This indicates
that the temperature range would not need to be as wide as used by Mase and
Kersten (2004).

Ismail and Stronge (2008) measured the viscoelastic properties of the mantle
layer (between core and cover) of a golf ball using a DMA technique. Forced
vibration testing was undertaken on a cantilever specimen in a frequency sweep
from 0-20 Hz. The tests were undertaken at different temperatures and time-
temperature superposition was used to extend the frequency range. The results
were fitted to a Prony series and used to create a golf ball model in Abaqus.
Price et al. (2008) used DMA to obtain the viscoelastic properties of the
materials used in two different soccer balls. Forced vibration testing was
undertaken at room temperature (23°C), at a range of frequencies from 0.1-100
Hz. The results were fitted to a Prony series and used to construct soccer ball
models in Abaqus EXPLICIT. It is likely that DMA could be used to obtain the
viscoelastic properties of tennis ball rubber. However, the contact time of a
soccer ball (Price et al. 2008) is longer than that of a tennis ball (Goodwill, 2002;
Haake et al, 2003a). Therefore, assuming a minimum contact time of 3 ms,
(Goodwill, 2002; Haake et al., 2003a) it is likely that the maximum frequency
would have to be around 350 Hz. This could be obtained by using a wide
frequency range or by testing at different temperatures and applying time-

temperature superposition (Menard, 2008).
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2.2.4. Tennis ball properties

Downing (2007a) investigated the relationship between static and dynamic
tennis ball stiffness. The static stiffness was determined as the amount of
forward deformation from an ITF deformation test. The dynamic properties were
obtained by projecting balls onto a force plate at velocities in the range from 15
- 30 m's™. A higher contact time was stated to indicate a lower dynamic
stiffness, as concluded by Dignall and Haake (2000). Downing concluded that
there was no relationship between the contact times of tennis balls during
dynamic impacts and the amount of forward deformation during a static test.
This highlighted that the dynamic properties of tennis balls are more relevant to
actual play.

Miller and Messner (2003) measured the COR of tennis balls impacting
perpendicular to a rigid surface, for inbound velocities in the range from 7 - 45
m-s”. They concluded that COR decreases with inbound velocity. Although, the
decrease in COR, for a set increase in inbound velocity, becomes less
pronounced with increasing inbound velocity. COR was stated to decrease from
0.75 at 7 m-s™, to 0.4 at 45 m-s™. Miller and Messer also analysed the effect of
'simulated' wear on COR. Wear was simulated by impacting balls obliquely onto
a rough block. They concluded that for an inbound velocity of 40 m-'s™, COR
decreased significantly at higher numbers of simulated impacts (2100). One
hundred impacts were stated to be high, but possibly achievable by a single ball
during a match. Measuring additional parameters, such as contact time,
deformation and contact force, would have provided a better indication as to
how the dynamic properties of a tennis ball change with impact velocity and
wear. Other authors have found wear to affect the aerodynamics and hence
flight characteristics of tennis balls (Chadwick and Haake, 2000; Goodwill et al.,
2004). Further research should be undertaken to determine the typical and
maximum amount of wear which a tennis ball will experience when used during
match play.

Goodwill (2002) analysed the perpendicular impact of a tennis ball on both a
rigid surface and a force plate, for a range of inbound velocities up to 30 m-s™.
Goodwill measured a large range of parameters, including rebound velocities,
deformations, centre of mass (COM) displacements, contact times and force
plots. COR was found to decrease with inbound velocity, in agreement with

10



Miller and Messner (2003). Contact time was also found to decrease with
inbound velocity, while contact force increased (Figure 2.3a). The peak in
contact force at approximately 0.2 ms into the impact has been well reported by
numerous authors, and is understood to be due to the walls of the ball buckling
(Cross, 1999; Dignall & Haake, 2000; Goodwill et al., 2005; Haake et al., 2005,
Hubbard & Stronge, 2001; Pratt, 2000). The maximum deformation of the balls
was found to increase with inbound velocity (Figure 2.3b). For an inbound
velocity of 30 m-s'1the maximum deformation is approximately equal to the
radius of the ball. Goodwill also compared contact times measured with a force
plate, with those measured using a high speed video camera. It was difficult to
identify the end of contact using the camera, as the balls were still deformed
when they left the surface. This led to a discrepancy in the two sets of results

and the force plate was stated to be more accurate at measuring contact times.
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Figure 2.3 Ball impact properties for a perpendicular impact on a rigid surface a) Force plot and b) COM

displacement and maximum deformation (Goodwill, 2002).

Rose et al. (2000) analysed the effect of temperature on the properties of tennis
balls. ITF deformation and rebound tests were undertaken in the temperature
range of 0-40°C. The static stiffness of the tennis balls was found to remain
effectively constant with temperature. The COR of the balls used in the rebound
test was found to increase with temperature. They established the same trend
at higher inbound velocities up to 45 m-s'1. The discrepancy between the results

obtained for static deformation and impact testing indicates that the dynamic
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properties of tennis balls cannot be predicted from static tests, in agreement
with Downing (2007a).

Downing (2007b) also analysed the effects of temperature, in the range from
10-40°C, on the dynamic properties of tennis balls. COR was found to increase
with temperature, in agreement with Rose et al. (2000). Downing also measured
contact times, which were found to increase with temperature. This increase in
contact time indicates a reduction in the ball's structural stiffness (Dignall and
Haake, 2000; Brody et al., 2002; Cross and Lindsey, 2005; Goodwill et al.,
2005), which was concluded to be due to a change in the rubber core material
properties. The change in the internal pressure of a tennis ball with temperature
will also have an effect on its rebound characteristics. Testing punctured balls
would remove the effect of the internal pressure. Testing punctured balls and
cores would have provided further insight into how the properties of both the
rubber and felt change with temperature. However, materials testing would
provide the best indication of how the properties of the rubber and felt change
with temperature. The change in the internal pressure of a tennis ball with
temperature can be calculated if the enclosed volume is assumed to remain
constant. Physically measuring the internal pressure at each temperature would
be more accurate as it would account for any changes in the diameter of the
ball; however, this was neglected by both Rose et al. (2000) and Downing
(2007b). Despite using a force plate to measure contact times, Downing did not
publish any results for impact forces.

Bridge (1998) examined the effects of changing internal pressure, in the range
from 17-98 kPa, on the bounce characteristics of a 'play' ball dropped from a
height of 1 m. Contact area and contact time both decreased with increasing
internal pressure, whilst COR increased. Bridge concluded that the increase in
COR was due to more energy being stored in the compression of the air inside
the ball. A similair experiment was undertaken using a squash ball; the change
in pressure was replaced with a change in temperature, in the range from 30-
80°C. The contact area, contact time and COR of the squash ball all increased
with temperature. Bridge stated that the increase in the flexibility of the rubber
with increasing temperature was the dominant factor in determining the rebound
characteristics of the ball, rather than the change in internal pressure. This was

in agreement with the findings of Downing (2007b) for tennis balls.
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During play a tennis ball will impact obliquely to the court surface. When a
tennis ball impacts obliquely on a rigid surface the contacting region deforms
and flattens, allowing the friction force to reverse if the rotational velocity
exceeds the horizontal velocity (Cross, 1999; Haake et al., 2003b). If the
reaction force is large enough, the walls of the ball will buckle shortly into the
impact, resulting in a cap inverting inside (Dignall & Haake, 2000; Goodwill et
al., 2005; Haake et al., 2005, Hubbard & Stronge, 2001; Pratt, 2000), leaving an
annulus-contacting region (Cross, 2002). The annulus slides across the surface
with a decreasing horizontal speed until the sliding and static friction becomes
equal. At this instance the surface tangential velocity of the ball equals its
horizontal velocity. This causes the ball to vibrate horizontally, at a frequency
determined by its stiffness. In turn, this results in the outer perimeter of the
annulus slipping backwards, thus reversing the rotational direction of the ball
and creating a higher spin than allowed by the conditions of rolling (Cross,
2002).

Tennis is played on a variety of surfaces, including clay, acrylic and grass.
These all affect the balls rebound characteristics in different ways. For example,
Clay generates high rebound angles, whilst acrylic courts produce lower angles
(Haake et al., 2000). The coefficient of friction (COF) is the main factor, which
causes the discrepancy in the balls rebound characteristics between individual
court surfaces (Brody, 1988).

Downing (2007c) examined the effect of temperature in the range from 10-40°C
on surface pace rating (SPR), for an acrylic and synthetic carpet surface. SPR
is defined as 100(1- u), where p is the COF of the surface. SPR was found to
decrease with temperature, indicating an increase in COF. A decrease in SPR
equates to the ball losing a higher proportion of its horizontal velocity during the
impact. Player testing may also help to provide an insight into how temperature
affects the speed of the game on different court surfaces.

The other property that distinguishes different court surfaces, besides COF, is
stiffness; clay and grass deform more on impact, in comparison to a hard court
such as acrylic. Holmes & Bell (1986) concluded rebound resilience increased
linearly with court hardness, up to a maximum of approximately 58%. At this
point no further rise in court hardness would affect the deformation of the ball.

Therefore, any errors may be negligible if the impacting surface is at least an
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order of magnitude stiffer than the ball. FE is a suitable tool that could be used
to address this hypothesis, by analysing ball rebound characteristics on

surfaces of varying stiffness, corresponding to clay, grass and acrylic.

2.2.5. Summary of the ball

Tennis balls consist of a pressurised rubber core and felt cover. The
viscoelastic properties of the rubber core result in a decrease in COR and
contact time with increasing inbound velocity. To accurately simulate a tennis
ball using FE the viscoelastic properties of the rubber and the internal pressure
of the core must be included in the model. The internal pressure and the
material properties of the rubber core are dependent on temperature. This
means the rebound characteristics of a tennis ball are also dependent on
temperature. Therefore, the material properties and the internal pressure used
in the model must correspond to the temperature the response of the ball is

intended to simulate.
2.3. The string-bed

2.3.1. The history of tennis strings

In the early days of lawn tennis in the 1870's strings were manufactured from
sheep intestines or serosa. Sheep intestines were replaced by those of cows,
following World War Two (ITF Technical Department, 2009). The relatively high
cost of natural gut combined with its poor durability, led to manufacturers using
synthetic materials from the 1950's (Haines, 1993). There are now a range of
synthetic strings available, including nylon, polyester and Kevlar. The tension at
which strings are strung has also changed. In the 1920's the average string
tension was 196 N (44 Ibs), in comparison to the larger value of 245 N (55 Ibs)
used today. Professional players have been reported to use string tensions of
up to 343 N (77 Ibs) (ITF Technical Department, 2009). The width and length of
racket heads has also increased considerably since the 1870's, resulting in
larger string-beds (Haake et al., 2007). For the same string tension a larger
string-bed will have a lower structural stiffness. Therefore, players may have
increased the tension of their strings in order to counteract the effects of the

larger string-bed.
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2.3.2. Rules
The first rule to be introduced by the ITF concerning the string-bed and

arguable the most important, was in 1978 and is stated below;

"The hitting surface of the racket shall be flat and consist of a pattern of
crossed strings connected to a frame and alternately interlaced or
bonded where they cross.” (ITF Technical Department, 2009)

This rule was introduced following a novel invention labelled the ‘spaghetti
strings’ or ‘spaghetti racket’, where the strings were not interlaced. The
'spaghetti racket' allowed a player to produce very high spin rates due to large
horizontal displacements of the strings during oblique impacts (Goodwill and
Haake, 2002).

2.3.3. The manufacture of tennis strings and their material properties

When manufacturing natural gut strings, the first stage is to remove any
contaminants from the intestines. This is done using a chemical bath. The
strands are then spun, dried and polished to produce a string with the required
diameter. The final stage is to apply a protective polyurethane coating (ITF
Technical Department, 2009). Synthetic strings are usually constructed by
winding hundreds of filaments around a central core (Haines, 1993; ITF
Technical Department, 2009). The filaments are constructed with an extrusion
mould. The core can either be extrusion moulded as a solid section or
constructed by winding together a number of larger diameter filaments. It is
widely accepted that the mechanical properties of tennis strings will be
determined by the process used to construct them and the choice of materials
(Haines, 1993; ITF Technical Department, 2009).

Cross (2000a) used an Instron machine to measure the static properties of
tennis strings. The strings were tensioned at a rate of 100 mm/min
(0.0017 m's™) up to a maximum load of 700 N. The section of the elongation
versus tension curve between 200 and 300 N was stated to be the most
important, as this determines the increase in string plane stiffness during a
typical tennis shot. There was no experimental verification of this range. Natural
gut was found to have the highest elasticity within the range of 200 to 300 N.

15



Dt S — Rt

Although the results obtained are useful for comparing different strings, it is
predicted that an impact between a tennis ball and racket will result in higher
strain rates than those tested by Cross (2000a). Assuming an initial length of
0.3 m, a contact time of 5 ms (Brody et al., 2002; Cross & Lindsey, 2005) and
the perpendicular displacement of the string-bed in the range from 0.015 to
0.030 m (Goodwill, 2002), the time-averaged strain rate will be 0.6-2.4 m-s™.
This is in agreement with the approximate strain rate of 40 000 mm/min (0.67
m-s™") stated by Cross et al. (2000).

Calder et al., (1987) analysed both the static and dynamic properties of a range
of tennis strings. A mid-sized tennis racket was strung at 220 N (50 Ibs), with a
load cell fitted in-line with a central main string. No information regarding the
string type or gauge was provided. When the racket was head-clamped and
subjected to an impact with a tennis ball, the string tension increased by 90 N
and the contact time was approximately 3.5 ms. The inbound velocity of the ball
was not stated, and there was no mention as to how this may influence the
results. The static properties of the strings were obtained using an Instron
machine, with the crosshead speed set to 20 mm/min. A rig was constructed for
the dynamic tests, which was capable of applying a load of 90 N to a tensioned
string, over a period of 3.5 ms. A large amount of hysteresis was observed, for
both the static and dynamic tests, when the strings were loaded to 90 N without
any preload. Hysteresis is observed as a difference between a loading and
unloading stress-strain curve and is due to the sample softening as a result of
stretching (Mullins, 1969). The hysteresis decreased to a negligible amount
when the pre-load was increased to 270 N. The stiffness of the synthetic strings
increased with both the strain rate and the amount of preload, while the stiffness
of the natural gut strings remained virtually constant. The stiffness of all the
strings was found to be linearly elastic, under the conditions which Calder et al.
obtained from impacting a ball onto a head-clamped racket. Synthetic strings
were concluded to be stiffer than natural gut strings under these conditions. The
effect of adjusting the applied load was not analysed.

Cross et al. (2000) used a bespoke impact rig to determine the dynamic
properties of tennis strings (Figure 2.4a). They stated that a typical impact
between a ball and string-bed will have a maximum force of approximately 1500

N and a contact time of around 5 ms. Assuming this load is evenly distributed
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over the ten central strings, the maximum force on each of them will be
approximately 150 N. This is comparable to the value of 90 N found by Calder
et al., (1987). Cross et al. replicated this by impacting a string tensioned to 275
N with a 0.29 kg hammer on a pendulum. The inbound velocity of the hammer
was 2.63 m's” and the string had an initial length of 0.32 m, prior to being
tensioned. The velocity of the hammer changed from 2.63 to -2.5 m-s”,
resulting in a load of 120 - 200 N and a contact time of approximately 30 ms.
This was stated to be equivalent to a number of ball impacts on a string-bed,
each with a duration of 5 ms. Impacting the string at a higher velocity with a
lower mass, would be more representative of the impact between a ball and
string-bed. A dynamic stiffness was calculated for each string, using the change
in tension and elongation during impact. The change in tension for gut, nylon
and polyester strings was in the approximate range of 100 - 250 N. The change
in the length of the string was calculated from its perpendicular displacement,
which was measured using a laser and grid (Figure 2.4a). The change in
tension was measured using an s-type load cell (Figure 2.4a). Figure 2.4b
shows the contact force increases with dynamic stiffness, while contact duration
decreases. The large variation in contact duration for different values of
dynamic stiffness indicates that there may be errors as a result of using an
unrealistically high mass at low velocity. Natural gut strings were found to have
the lowest dynamic stiffness at 20 kN-m™", although only two strings of this type
were tested. There may be errors in the results due to the frequency response
of the s-type load cell, which is more suitable for measuring static loads than

dynamic loads.
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Figure 2.4 a) Dynamic string tester and b) Dynamic stiffness and contact duration results for a selection

of strings (Cross et al. 2000).

Cross (2001a) derived a method for obtaining the dynamic stiffness of tennis
strings within their operational range, using an Instron machine. The first stage
is to load a string with a gauge length of 20 mm to 280 N (63 Ibs), at a rate of 50
mm/min (0.00083 m-s™”) and hold it for 100s. This is intended to replicate
stringing a racket. Following this the string is loaded to 380 N (85.5 Ibs) and
held for a further 10 s. This is intended to replicate 2000 impacts between a ball
and string-bed, each with a contact time of 5 ms. The final stage is to unload the
string at a rate of 100 mm/min (0.0017 m-s™). The unloading step is stated to
produce a curve without any significant creep effects. This is claimed to be the
reason why it is possible to obtain dynamic string properties using an Instron
machine. Figure 2.5 shows the load extension curves obtained for a range of
different strings. The dynamic stiffness is calculated from the unloading curve
by dividing the change in load between 311 and 222 N (70 and 50 Ibs) with the
change in length. The range of 311 - 222 N is used to obtain the dynamic
stiffness as this is stated to be the typical operational range of the strings.
However, Cross loaded the strings to 380 N to replicate an impact between a

ball and string-bed; this indicates inconsistencies in the method.
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Figure 2.5 Typical material curves which are used for obtaining the dynamic stiffness of different strings

(Jenkins, 2003).

The other property besides structural stiffness, which is believed to distinguish
individual tennis strings, is friction. There are currently no published studies on
string to string friction. Cross et al. (2000) measured the COF between tennis
strings and the felt used to cover the ball. He glued tennis ball felt onto a pipe
with a diameter of 60 mm, wrapped a 1 m length of string around twice and
attached a 0.15 kg mass to the end. The force required to lift the mass at a
constant velocity, which was not declared, was recorded with a spring balance.
The COF for most of the strings was 0.15 - 0.18, while the lowest and highest
obtained values were 0.11 and 0.36, respectively. Cross (2000b) analysed the
COF of friction between a ball and string-bed. He experimentally obtained
sliding and rolling COF's for five different strings, which were 0.27 - 0.42 and
0.05, respectively. However, he calculated sliding friction by placing masses up
to 10 kg on a ball and dragging it across the string-bed, a method not
representative of a typical high momentum collision. It is predicted that the ball
will deform around the strings due to the applied load; meaning that Cross was
actually measuring a traction force rather than a friction force. The relationship
between the applied load and coefficient of friction was not investigated. The
deformation of the ball around the strings may explain the discrepancy between
the COF values obtained by Cross ef al. (2000).

2.34. Ball to string-bed impacts

Ball to head-clamped racket impacts are not representative of an actual tennis
shot; however they are commonly used for analysing the effect of string-bed

properties, such as string type and tension. Unlike a court impact, where the
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majority of the energy is assumed to be stored in the deformation of the ball;
when a ball collides with a string-bed the energy is equally divided between
both objects (Cross & Lindsey, 2005). During a collision between a ball and a
string-bed, the ball loses around 45% of its energy and the string-bed loses
around 5% of its energy (Brody ef al., 2002; Cross & Lindsey, 2005). Therefore,
the ball to string-bed collision is more efficient than a rigid surface impact
(Jenkins, 2003; Brody et al., 2002; Cross & Lindsey, 2005). Although there are
no set rules, the COR for a tennis ball dropped onto a head-clamped racket
from a height of 2.54 m is about 0.75 - 0.8, compared to around 0.74 for a rigid
surface (Brody et al.,, 2002). Reducing string-bed stiffness has the effect of
increasing both the rebound velocity of the ball and the contact time, which is
approximately 5 ms (Brody et al., 2002; Cross & Lindsey, 2005). The two main
factors that determine string-bed stiffness are the string material and tension.
The Babolat Racquet Diagnostic Center (RDC) is commonly used as a tool for
measuring the quasi-static stiffness of a string-bed (Babolat, 2009). The RDC
displaces the centre of the string-bed using a small disk and provides a stiffness
value between 0 and 100 in RDC units. The higher the RDC value the stiffer
the string-bed.

Stiffness is considered to be the principal factor that separates the different
string materials. Polyester strings have high stiffness, causing them to lose
tension at an accelerated rate, unlike highly elastic strings, such as natural gut.
Tension increases more during impact with polyester strings, resulting in shorter
contact times and a "controlled feel". Natural gut on the other hand, produces a
more comfortable feel, due to longer contact times (Cross et al., 2000). FE
could be use to analyse the variation in contact times and reaction forces for
different string types.

String tension, which typically ranges from 220 - 310 N (Brody et al., 2002),
affects both rebound velocity (Haake et al., 2003a; Goodwill and Haake, 2004 a;
Cross & Lindsey, 2005; Brody et al., 2002) and angle (Goodwill and Haake,
2004a & b). However, decreasing tension by 44 N only results in approximately
a 2% rise in the rebound velocity of the ball for a ground stroke (Jenkins, 2003;
Brody et al.,, 2002; Cross & Lindsey, 2005). Obtaining an exact string tension

may seem irrelevant, particularly when building an FE model which will have an
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inevitable margin of error, but it will have a large effect on the ball's rebound
angle for oblique impacts.

Cross (2003) experimentally analysed the friction force between a tennis ball
and string-bed for oblique impacts. The friction force was measured using a
piezoelectric accelerometer glued to the side of the racket frame, which was
positioned on two rollers. Balls were thrown by hand onto the centre of the
string-bed at low speed. The time averaged sliding COF between the ball and
string-bed was 0.43 + 0.02 when the inbound angle was 25° to the string plane.
Cross concluded that when the ball impacted on the string-bed with no spin or
backspin, the friction force initially acted in the opposite direction to the
horizontal velocity of the ball (Figure 2.6). Hence, the friction force caused the
horizontal velocity of the ball to decrease and the rotational velocity at the
circumference to increase. When the horizontal velocity equalled the rotational
velocity at the circumference, the ball momentarily gripped the strings. During
this gripping period the ball deformed forward until it lost its grip with the strings
and started over-spinning. It was stated that impacts around the centre of the
string-bed were included in the analysis, although there was no reference as to
how the impact positions were calculated. The velocities and spin rates used
were also lower than those measured during play (Goodwill et al., 2007a; Kelley
et al., 2008; Choppin et al., 2008) and there was noise in the force signals
obtained from the piezoelectric accelerometer, as a result of racket frame
vibrations. It is likely that if the inbound velocity of the balls was increased to
give a better representation of typical playing impacts the racket frame
vibrations and hence the noise in the signal would increase. It is very difficult to
accurately measure and analyse certain parameters, such as the friction force
acting between a ball and surface, using a conventional laboratory experiment.
However, this can be achieved using an FE model, as done by Goodwill et al.

(2005) for an oblique impact between a tennis ball and rigid surface.
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Figure 2.6 Analysis of an impact of a ball on a string-bed with an inbound velocity, angle to the racket

plane and backspin of 3.27 m's™, 58.5° and 34.9 rads™, respectively (Cross, 2003).

Goodwill and Haake (2004a) experimentally analysed the impact of an oblique
spinning tennis ball on a head-clamped racket. They tested inbound velocities
of 23 and 31 m-s™ at an angle of 39° to the normal, with backspin in the range
from 0-420 rad-s'. These conditions were stated to be representative of a
topspin forehand. The balls had backspin prior to impact due to a change in the
Newtonian frame of reference from the court to the racket. A head-clamped
racket was used to isolate the string-bed and eliminate the effect of racket
parameters, such as stiffness and mass. A range of natural gut and synthetic
strings, were tested. Each string was tested at a tension of 40 and 70 Ibs (178
and 311 N). The racket type, which remained constant across all the tests, had
a head size of 632 cm? The balls were fired using a modified BOLA (BOLA,
2009) and the impacts were stated to be at the centre of the string-bed.
However, there was no evidence to suggest that the impact positions were
actually calculated. The impacts were recorded with a high-speed video camera
and manually analysed using the bespoke software Richimas V3. The standard
deviation in inbound velocity and angle for all the impacts was 0.4 m-s" and
0.7°, respectively. The standard deviation obtained from a manual tracking
repeatability study was 0.2 m-s™ for velocity, 0.3° for angle and 25 rad-s™ for
spin. The results showed that the rebound velocity, angle and spin of the ball,
all decreased with increasing inbound backspin. The vertical rebound velocity of
the ball was virtually independent of inbound backspin (Figure 2.7). The

horizontal rebound velocity decreased significantly with inbound backspin
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(Figure 2.7). This decrease in horizontal velocity is the main cause of the
decrease in the resultant rebound velocity and angle with increasing inbound
backspin. Rebound velocity was generally higher for the impacts on the rackets
strung at the lower tension of 40 lbs (178 N), in agreement with other authors
(Jenkins, 2003; Brody et al., 2002; Cross & Lindsey, 2005). The results
indicated that string-bed stiffness does not have an effect on rebound spin. This
was in contradiction to the belief of many players. However, there was a large
amount of scatter in the experimental data making it difficult to justify a solid
conclusion. The horizontal rebound velocity remained effectively constant for
the two string tensions, while vertical rebound velocity increased with string
tension (Figure 2.7). The rebound angle of the balls (relative to the string-bed
normal) was also smaller for the rackets strung at lower tension, in agreement
with Goodwill and Haake (2004b). The stiffness of the string-bed had different
effects on the horizontal and vertical rebound velocity of the ball. Testing at a
range of different inbound angles would provide further insight into the effect of
string-bed stiffness on the rebound characteristics of the ball.
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Figure 2.7 Horizontal and vertical coefficient of restitution of balls incident at 39° on a head-clamped

racket (Goodwill and Haake, 2004a).

Ball to string and string to string friction, are predicted to affect the rebound
velocity, angle and spin of the ball, for oblique impacts. However, there are
currently no published investigations where laboratory experiments have been
used to determine the effect of changing ball to string or string to string friction.
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This is predicted to be due to the difficulty in accurately measuring and
adjusting COF.

2.3.5. Summary of the string-bed

The structural stiffness of a tennis racket string-bed, which is determined by the
string material and tension, affects the rebound velocity and angle of the ball.
Therefore, a method for simulating a tensioned string-bed in an FE model must
be developed. The string-bed must consist of interwoven strings with the correct
material properties. As tennis strings are viscoelastic dynamic materials testing
must be undertaken. However, previous research indicates that tennis strings

have linear material properties within their operational range.
2.4. The racket

2.4.1. The history of the tennis racket

This sub-section will summarise the evolution of the tennis racket, as detailed
by numerous authors (Haines, 1993; Jenkins, 2003; Haake et al., 2007; ITF
Technical Department, 2009). Initially, at the end of the 19" century, lawn tennis
rackets were key hole shaped and manufactured from a single piece of ash.
The ash was boiled to make it pliable and bent into shape whilst still hot. These
early rackets had weak throats and were prone to warping when wet; the issues
were overcome by using additional materials, such as canvas and metal, to
reinforce the problematic areas. As tennis grew in popularity manufacturers
began to mass produce their rackets, using the latest materials and production
techniques. 1931 saw the introduction of the first multi-ply wood racket, the
Dunlop Maxply which was in production for 50 years (Figure 2.8a). Despite its
earlier use in other sports equipment, metal was not seen as a practical
alternative to wood until the 1960's. This was due to the difficulty in stringing a
metal racket, an issue which was overcome by using grommets. In 1974
Howard Head invented the aluminium Prince Oversize racket (Figure 2.8b)
(Head, 1975). The racket had a 50% larger strung area, which increased the
size of the 'sweet' spot and reduced twisting in the hand as a result of off-centre
impacts. Manufacturers also began experimenting with composite materials in
the 1970's, mainly due to their higher stiffness to weight ratio in comparison to
metals. A significant early composite racket was the Dunlop Max 200G, which
24



was introduced in 1980 and remained in production for 10 years. The Max 200G
was manufactured by injection moulding nylon with short carbon fibres (Haines
et al., 1983). Despite its many production advantages, the manufacturers were
unable to use the injection moulding process to produce rackets with the same
mass and head size as those produced using composite lay-ups. Currently, the
majority of rackets are manufactured from composite lay-ups as this allows
materials to be precisely placed for optimum stiffness and weight distribution.
Modern composite rackets are around 30% lighter and three times stiffer than
their state of the art wooden counterparts. A lighter racket can be swung faster,
whilst stiffness increases impact efficiency; both of these factors allow the
player to increase the rebound velocity of the ball (Haake et al, 2007). The
head size of these modern composite rackets is also around 40% larger, which

increases ease of play.

Figure 2.8 A selection of tennis rackets a) 1981 Dunlop Maxply, b) 1977 Prince oversize and ¢) 1980
Dunlop Max 200G.

Haake et al. (2007) measured various properties of 150 tennis racket from the
1870's to 2007. The natural frequency of tennis rackets have increased
dramatically since the 1870's while the mass has decreased, as a result of
improvements in both materials and manufacturing techniques (Figure 2.9). The
largest changes in both the frequency and mass of the rackets have come

about since the 1970's.
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Figure 2.9 Racket properties from 1870 to 2007 a) frequency and b) mass (Haake et al., 2007).

2.4.2. Rules

The Prince Oversize racket resulted in the ITF implementing restrictions on the
size of tennis rackets. The extract from the ITF rules regarding the size of the
tennis racket is given below (ITF Technical Department, 2009);

"The frame of the racket shall not exceed 29.0 inches (73.7 cm) in overall
length, including the handle. The frame of the racket shall not exceed
12.5 inches (31.7 cm) in overall width. The hitting surface shall not
exceed 15.5 inches (39.4 cm) in overall length, and 11.5 inches (29.2

cm) in overall width."

The rules also prohibit the use of a racket with external energy sources or the
ability to change its properties during a point, as detailed below (ITF Technical
Department, 2009);

"The frame, including the handle, and the strings, shall be free of any
device which makes it possible to change materially the shape of the
racket, or to change the weight distribution in the direction of the
longitudinal axis of the racket which would alter the swing moment of
inertia, or to change deliberately any physical property which may affect
the performance of the racket during the playing of a point. No energy
source that in any way changes or affects the playing characteristics of a

racket may be built into or aftached to a racket."
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2.4.3. The manufacture of tennis rackets and their material properties

The current manufacturing process for tennis rackets is described by the ITF
Technical Department (2009) and Jenkins (2003). The majority of modern
tennis rackets are manufactured from thermoset carbon fibre composites, as
they provide a good combination of both strength and manufacturability. The
manufacturing process is labour intensive and is often undertaken in the Far
East. The first stage is to create a lay-up by bonding together sheets of carbon
fibre prepreg on a flat heated bench. The prepreg sheets are placed at different
angles to provide specific bending and torsional stiffness. Once complete the
lay-up is wrapped around a plastic tube and assembled on a template to
produce the basic racket shape (Figure 2.10). Extra prepreg is placed in specific
areas to provide the required strength and mass distribution. The ends of the
racket shape are pressed together and wrapped in prepreg to form the handle.
The throat is assembled separately and placed in a mould along with the main
part of the racket frame. The mould is then heated to around 150°C while the
plastic tube is pressurised to create a hollow racket. Following moulding the
plastic tube is removed and the racket is trimmed to the correct length. The
racket is then sanded, painted in an electrostatic process and any graphics and

transfers are applied.
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Figure 2.10 Typical lay-up for a composite tennis racket (Jenkin, 2003).

Currently there is limited published data on the material properties of tennis
rackets. Gu and Li (2007) used a value of 30.5 GPa in an FE model of a tennis
racket, which was obtained from bending and resonance experiments. Specific
materials testing would be required to obtain the material properties of the

different sections of a tennis racket.

2.4.4. Simulating a player's grip on a tennis racket

Simulating the impact between a tennis ball and racket is a complex task for a
number of reasons. The ball, string and racket material properties are all very
intricate and difficult to simulate. Additionally, it is replicating a typical shot
which escalates the complexity; especially as all players have individual hitting
techniques, incorporating various racket angles and orientations (Choppin et al.,
2007b). However, the single most difficult task can be considered to be in
experimentally or analytically replicating the grip of a human hand.

Brody (1979) undertook an experiment to determine how grip conditions affect
the rebound velocity of a ball from a racket. A ball was dropped from a height of
1 m onto a number of different rackets. The contact time of the impact was in
the range from 4.5 - 6.8 ms, which was less than the time required for the racket

to complete an oscillation of the fundamental mode of vibration, which is the
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dominant mode. This indicates that the player's grip has no influence on the
rebound velocity of the ball.

The handle clamping method is an area of much discussion when simulating
ball to racket impacts. The main debate is concerned with which method best
simulates a players grip. Brody (1987) undertook an investigation to compare
- the frequency response of a tennis racket when the handle was rigidly clamped
and hand held. It was stated that when struck at the geometric string-bed centre
(GSC), a handle-clamped racket will oscillate in a manner resembling a diving
board with a frequency of 25 - 40 Hz (Figure 2.11). The frequency increases to
100 - 175 Hz if the impact is away from the GSC. This is similar to the lowest
frequency of a freely suspended racket (Figure 2.11). A Wilson T2000 racket
was impacted on the string-bed with a tennis ball at both the centre and throat
area, when hand held and handle-clamped. The frequency response of the
racket was significantly lower when the handle was rigidly clamped as opposed
to hand held. Hence, findings from any investigations which use handle

clamped rackets cannot be taken as representative of a typical collision

NOD> ‘ NODE

encountered during play.

WML L V33 S\

NODE

A B C

Figure 2.11 Racket frequency response A & B) low frequency handle clamped and c) freely suspended
(Brody, 1987).
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Cross (1998) undertook an investigation to determine whether a player's grip
affects the impact between a ball and racket. A 1990 vintage Wilson graphite
composite racket, with piezoelectric disks fitted along the frame and handle,
was used to measure the frequency response following a low speed impact with
a ball. The racket was found to have a fundamental mode of vibration of 102 Hz
when hand held and 109 Hz when freely suspended. Adding a 40g mass to the
handle of the freely suspended racket reduced the fundamental frequency to
103 Hz; indicating a better representation of a hand held racket. However,
Cross also found that the node in the handle moved closer to the butt when the
racket was hand held (Figure 2.12). This was stated to be due to the hand
lowering the amplitude of the vibrations in the handle. An 80g mass was
required to shift the node into the required position; although this caused the
fundamental frequency to drop to 100 Hz. The discrepancy in the amount of
mass required to produce the correct fundamental frequency and node position,
indicates that further research needs to be undertaken. Cross also found higher
frequency vibrations reached the handle before the ball left the racket,
indicating that the hand has an influence on the impact. However, the amplitude
of these vibrations was considered to be too low to affect the rebound velocity
of the ball. Haake et al. (2007) found the fundamental frequency of rackets
manufactured in 2007 to be approximately 160 Hz, when freely suspended. The
higher fundamental frequency, in comparison to the value found by Cross,
provides evidence for testing the effect of a player's grip on a variety of rackets

from different eras.
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Figure 2.12 Vibration modes of a free and hand held tennis racket (Cross, 1998).

2.4.5. Ball to racket impacts

Brody (1997a) analysed the effect of changing the impact location along the
longitudinal axis of a freely suspended racket. The racket was a prototype and
had a mass of 0.278 kg, a length of 0.685 m, a balance point 0.372 from the
butt and a moment of inertia of 0.01297 kg-m™. This was representative of a
typical racket from this period (Haake et al., 2007). Brody measured the
apparent coefficient of restitution (ACOR), which is the ratio of the rebound to
inbound velocity of the ball. For an inbound velocity of 20 m's™, ACOR was
found to be dependent on impact location (Figure 2.13). The rebound velocity of
the ball was lowest at the tip and highest in an area near the throat. Testing at a
range of speeds would provide an insight into the relationship between ACOR,
inbound velocity and impact location. Brody stated that for an impact between a
ball and head-clamped racket, COR will decrease with increasing string tension.
However, the string tension of the freely suspended racket used by Brody was

not provided.
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Figure 2.13 Variation of ACOR with impact location for a perpendicular impact between a tennis ball

and freely suspended racket (Modified from Brody, 1997a).

Spurr and Downing (2007) undertook an investigation to determine the
relationship between racket 'power' and fundamental frequency. Power is
measured as the velocity of the ball after impact with a racket. A ball will
rebound at a higher velocity from a more powerful racket. The fundamental
frequencies of 47 rackets manufactured from 2001-2007 were obtained using
an accelerometer. The rackets were hung from a thread and impacted at the
'‘dead spot' using a rubber hammer. The fundamental frequency of all the
rackets was in the range from 130-180 Hz. This was in agreement with values
measured by Haake et al. (2007) for this period. An impact was simulated at
three locations on each of the rackets using the ITF racket power machine.
Goodwill et al. (2007b) successfully validated the racket power machine using a
high-speed video camera, demonstrating that it provides comparable results to
a freely suspended racket. The velocity of the rackets in Spurr and Downing's
(2007) investigation was 35 m's™ and the impact positions were 75 mm (tip),
150 mm (centre) and 225 (throat) mm from the tip. The velocity of the racket is
defined at the location on the string-bed which has a radius 700 mm from the
pivot Goodwill et al. (2007b). Therefore, the resultant velocity between the ball
and racket would have been highest for the impacts at the tip and lowest for
those at the throat. The rebound velocity of the balls was highest for the impacts
at the centre and lowest for those at the tip. This indicates that the higher
resultant pre-impact velocity at the centre of the racket, overcompensates the
greater efficiency of impacts in the throat region (Brody, 1997a; Goodwill and
Haake, 2001), in agreement with Goodwill et al. (2007b). The correlation
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between the fundamental frequency of the rackets and the rebound velocity of
the balls was weak, however it became stronger as the impact positioned
moved closer to the throat. The lower velocity of the impacts at the throat could
be the reason for there being less scatter in the experimental data. Overall, the
results showed that there was no correlation between the rebound velocity of
the ball and the fundamental frequency of the racket. This was in line with
Haake et al.'s (2007) conclusion, that racket stiffness has only a small effect on
serve speed. Haake et al. concluded that the mass and balance point of a
racket have a larger influence on serve speeds. Testing a selection of rackets
with a wider range of natural frequencies may have resulted in a stronger
correlation with ball rebound velocity.

Goodwill and Haake (2001) analysed perpendicular impacts between a ball and
freely suspended Spalding Heat 90 tennis racket, which was strung at 267 N
(60 Ibs). The inbound velocity of the balls was in the range from 14 - 32 m-s™.
Three discrete impact locations on the long axis of the string-bed were used in
the investigation; the GSC and 50 mm above and below the GSC. The rebound
velocity of the balls was highest in the throat region and lowest at the tip, in
agreement with Brody (1997a). Analysing oblique impacts would be more
representative of a typical tennis shot (Choppin ef al., 2007).

Goodwill and Haake (2004b) analysed the obliqgue impact of a tennis ball with
no inbound spin on a freely suspended racket. Two string tensions were used in
the investigation, 178 and 311 N (40 & 70 Ibs). The inbound angle of the balls
was set at 36° to the string-bed normal and the velocity was in the range from
15-40 m-s™. All of the impacts were reported to be at the GSC, as this was
stated to be where players typically hit the ball during play. However, there was
no indication as to whether the precise impact location on the string-bed was
measured. String tension was found to have no effect on the rebound velocity or
spin of the balls. The rebound angle relative to the string-bed normal was found
to increase with string tension, whilst contact distance, contact time and lateral
string displacement all decreased. The reduced distance that the ball will travel
across the string-bed was predicted to be the reason why professional players
choose to string their rackets at high tensions. The conclusion that string
tension has no effect on the rebound velocity of a ball was in contradiction to

the common belief that lower string-bed stiffness provides more "power".
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Goodwill and Haake used a large inbound angle relative to the racket normal;
hence the perpendicular velocity component of the ball would have been
relatively small. It is predicted that if a significantly smaller inbound angle was
used, the lower string tension would have produced a slightly higher rebound
velocity. A smaller inbound angle would also have a similar effect on the
horizontal velocity of the ball and hence may reduce the discrepancy in rebound
angle for the two string tensions. Testing a range of inbound angles would have
provided a better indication of the effects of string tension on the rebound
characteristics of a tennis ball. Player testing has highlighted that the ball can
have spin rates of around 300-550 rad-s™ prior to impact with the racket
(Goodwill et al., 2007a; Kelley et al., 2008). Therefore, the impacts would have
been more representative of a typical tennis shot if the balls had been incident

with initial spin.

2.4.6. Summary of the tennis racket

The majority of tennis rackets are now manufactured from advanced composite
materials, with highly specific lay-ups. The use of advanced materials has
allowed an increase in racket length, width and fundamental frequency, in
combination with a decrease in mass. As rackets become more advanced so
must the scientific methods used in their understanding and design. Currently, a
freely suspended racket is considered to be the best representation of a players
grip. Therefore, any racket simulated in an FE model should be freely
suspended. The rebound velocity of the ball off a racket is dependent on the
impact location. Therefore, the impact location must be recorded when

undertaking experimental work and FE simulations.

2.5. Player testing

When undertaking experiments or producing models of tennis ball impacts, it is
imperative that the conditions are representative of play. Player testing is widely
considered to be a suitable method for determining ball and racket movements
during actual play. This sub-section will summarise existing literature on player
testing.

Bower and Cross (2005) undertook player testing to determine the effect of
string tension. Three identical rackets were used for the testing; strung at 180,

34



230 and 280 N (40 Ib, 51 Ib and 62 Ib). The players returned balls fed to them
from a tennis ball machine. It is difficult to quantify the extent to which this
actually replicates competitive play. The mean rebound velocity of the ball
which was measured using a radar gun was 110.1£10.3 and 103.6+8.6 km-h™’
(30.1+2.9 and 28.9+2.4 m's™) for males and females, respectively. The rebound
velocity of the balls was slightly lower for the rackets strung at higher tension.
This was in agreement with the findings of other authors for laboratory based
experiments (Haake et al, 2003a; Goodwill and Haake, 2004a; Cross &
Lindsey, 2005; Brody et al., 2002). Using a static racket at lower tension, under
experimental conditions, also causes the ball to rebound at a smaller angle
relative to the racket normal (Cross & Lindsey, 2005; Goodwill & Haake, 2004Db;
Haake et al., 2003). Bower and Cross predicted that during play, the ball will
leave a racket strung at lower tension at a greater angle, travelling further and
giving the impression of increased power. Their player testing results
highlighted that the greater velocities and angles resulting from lower tension
strings increased the number of shots landing beyond the base line of the court.
The opposite was found for high tension, where there were more cases of the
ball failing to clear the net (Bower & Cross, 2005). Therefore, it is imperative to
accurately simulate string tension when producing an FE model for oblique
impacts.

Knudson and Blackwell (2005) analysed the forehand topspin shots of seven
players; all ranked 5.0 or above on the United States Tennis Association
National Tennis Ranking Program. The players rallied to simulate play and their
shots were recorded with a high-speed camera recording at 180 Hz. The mean
racket velocity before impact was 24.3 + 1.5 m-s™, at an angle of 27.5 + 3.5°
above horizontal. The players were also tilting their racket heads forward of
vertical by a mean value of 4.2 + 2.8°. The mean rebound velocity of the balls
was 29.7 + 1.7 m's™, at 6.6 + 1.4° above horizontal. Unfortunately, Knudson
and Blackwell (2005) did not record ball spin rates.

Choppin et al. (2007a & 2007b) developed a method for using a pair of
synchronised high-speed video cameras for capturing tennis ball and racket
movements in 3D. The method was used to obtain data for the ball and racket
movements during practice play at the 2006 Wimbledon Qualifying Tournament.
19 players were tested. Ball and racket movements were recorded within a 2 x
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2 x 2 m calibration volume located at the centre of the baseline. The 3D
calibration was undertaken using a checker board (Zhang, 1999). To achieve an
accurate calibration at least 15 images should be obtained, with a checkerboard
at orientations approximately 20-50° to the image plane (Zhang, 1999). Choppin
et al. (2007a & 2007b) calibrated the 3D space from the checkerboard images
using a readily available Matlab Toolbox, produced by Bouguet (2008).
Unfortunately the method developed by Choppin et al. required markers to be
attached to racket; hence it could not be directly applied to match play. The
ideal point of impact was defined as the location on the string-bed that results in
the highest rebound ball velocity, whilst the efficiency of a shot was expressed
as the ratio of the useful energy out to energy in. Efficiency was found to
increase as the impact location moved closer to the ideal point. Slow shots with
low spin were found to have the highest efficiency. This was concluded to be
due to the large amount of energy which goes into the generation of spin. These
results were only obtained for practice at a single tournament which is played
on grass. Testing at different tournaments would allow comparisons to be made
between different surfaces and players.

Choppin et al. (2008) undertook further analysis of the player testing data
collected at the 2006 Wimbledon Qualifying Tournament. The mean resultant
velocities of the balls before and after impact for males were 9.4 + 3.4 m's™ and
33.6 + 6.6 m's”, respectively. The higher rebound velocity of the ball in
comparison to Knudson and Blackwell (2005) is predicted to be due to the
players being a superior standard in conjunction with lower errors in Choppin et‘
al.'s method. Choppin ef al. (2008) also concluded that the players aimed to hit
the ball on the rise, although the vertical velocity at the point of impact was very
low in comparison to the horizontal velocity. The mean racket COM and angular
velocity before impact for males was 17.7 m-s™ and 31.3 rad-s™, respectively.
The mean rebound topspin was 1125 + 1122 rev-s™ (118 + 117 rad-s™) for
males and 1036 + 812 rev-s™ (108 * 85 rad-s™) for females.

Goodwill et al. (2007a) used a pair of non-synchronised high-speed video
cameras to measure ball spin rates during practise and match play at a Davis
Cup match, which was played on Taraflex carpet. The cameras were positioned
to film opposite ends of the court and hence capture different shots. The ball

spin off the bounce was similar for both match play and practise with a mean
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value of 3344 rpm (350 rad-s™) and a maximum of 5200 rpm (545 rad-s™). The
mean topspin for forehand shots was 2300 rpm (241 rad-s™') during match play
in comparison to 1700 rpm (178 rad-s™) during practise. This highlights the
importance of obtaining data during match play, which indicates limitations in
the results obtained by Knudson and Blackwell (2005) and Choppin et al.
(2007a, 2007b & 2008). The maximum recorded topspin off the racket was
3800 rpm (398 rad-s™). As with Choppin et al. (2007a), further testing is
required to determine the effect of playing on different surfaces. The importance
of testing at different tournaments was stated in the paper.

Kelley et al. (2008) used the same method as Goodwill et al. (2007a) to
measure ball spin rates during match play at the 2007 Wimbledon Qualifying
Tournament. The investigation was focused on female players. The measured
spin rates were comparable to those found by Goodwill et al. (2007a). The
mean spin off the ground was 3104 + 1208 rpm (325 + 127 rad's™) for males
and 3024 + 721 rpm (316 + 76 rad-s™") for females. The mean topspin for female
forehand shots was 1552 + 431 rpm (163 + 45 rad-s™) and the maximum was
2727 rpm (286 rad-s™). The results for ball spin rates from the different

publications are summarised in Table 2.2.

Table 2.2 Comparison of ball spin rates from different publications (mean + D).

Mean spin off Maximum spin off Mean spin off Maximum spin off racket
bounce (rad-s™") bounce (rad-s™") racket (rad-s™) (rad-s™)
Choppin et al., (2008) - _ ]
practise male : 118117
Choppin et al., (2008) - _ )
practise female 108 £ 85
Goodwili et al., (2007a) - _ )
practise 350 178
Goodwill et al., (2007a) - -
match play 350 545 241 308
Kelley et al., (2008) -
match play male 8252127 524
Kelley et al., (2008) - 316 + 76 483 163+ 45 286+ 117

match play female

2.5.1. Summary of player testing

Player testing can be used to obtain ball and racket movements during
simulated, practice and competitive play. At present, the most accurate method
is to use two synchronised high-speed video cameras to obtain results in 3D.
The results obtained from player testing are required for ensuring realistic

conditions when conducting experiments and producing models. In order to
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obtain the most realistic range of ball and racket movements the testing should

be undertaking during match play.

2.6. Modelling

A number of studies have focused on producing models of tennis ball impacts.
These models vary in both accuracy and complexity. This literature review will

cover ball to surface, ball to string-bed and ball to racket models.

2.6.1. Ball modelling

Brody (1984) attempted to model an oblique impact on a tennis surface, based
on Newtonian mechanics, which assumed that the COR was constant and the
ball was rigid. This assumption was based on a typical shot having a drop
height of approximately 1 m, with a resultant deformation of less than 10% of
the ball's diameter. He concluded that at low incident angles (relative to the
horizontal) the ball will slide with a decreasing horizontal velocity; whilst at high
incident angles the ball will still slide with a decreasing horizontal velocity but
then roll at a constant speed. The COF that initiates rolling decreases with the
increasing angle of incidence, at constant values of COR. Neglecting the balls
deformation means the model would decrease in accuracy for impact velocities
above that of a 1 m drop height.

Capel-Davies (2007) examined how the SPR of different court surfaces, was
influenced by inbound horizontal velocity. Brody's (1984) model was used to
calculate SPR, which was found to be independent of both inbound horizontal
velocity and angle of incidence, in the range from 11-31 m-s” and 11-25°,
respectively. This indicates that, assuming the COF to remain constant in an FE
model which is used to simulate a range of ball-surface impacts is a realistic
representation of reality (Goodwill et al., 2005). Capel-Davies found the
horizontal COR to remain proportional to the angle of incidence for the entire
range of impacts tested. This demonstrates that a tennis ball does not go into a
rolling phase for angles of incidence up to 25°. This was in contradiction to
Brody (1984) and was stated to be due to the deformation of the ball during
impact (Capel-Davies, 2007). Capel-Davies concluded, that testing at larger

angles of incidence should be undertaken to determine if it is possible to cause
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a tennis ball with no inbound spin to roll during an oblique impact. It may be
possible to answer this uncertainty using an FE model.

Dignall and Haake (2000) incorporated deformation into a model by simulating a
ball to rigid surface impact as a spring damper system. The spring stiffness and
damping coefficient, which are assumed constant throughout the impact, are
calculated from experimentally obtained contact times and COR's. Including this
deformation of the ball into the computational analysis increased its rebound
spin, thus improving the models agreement with experimental results (Dignall &
Haake, 2000; Pratt, 2000). However, this type of model produces an unrealistic
force-time curve as the constant damping led to a negative force at the end of
the impact.

Haake et al. (2003b) improved the model, incorporating the viscoelastic
properties of the rubber core, by making the spring damper system non-linear.
They also included non-symmetrical impulsive forces as well as allowing the
friction between the ball and surface to reverse direction during the impact.
Haake et al. (2005) enhanced how the model simulated the buckling of the walls
of the ball by assuming the felt to have very low stiffness. Thus, the COM of the
ball was allowed to displace 2 mm before the stiffness of the rubber was
incorporated into the calculation. A momentum flux term was also included to
account for the energy loss in the ball as it deforms. They concluded that the
ball's deformation during impact was proportional to its stiffness, while the
contact area was a function of the damping coefficient. Conversely, the model
assumed the deformation of the ball to be symmetrical throughout an oblique
impact, which didn't agree with their high-speed video cinematography.
Excluding this non-symmetrical deformation, caused the model to
underestimate the horizontal COM displacement of the ball by around 5%. They
suggested that an FE model might lead to a better understanding of how the
ball deforms during impact.

Hubbard and Stronge (2001) produced an FE model of the impact of a table
tennis ball on a rigid surface, obtaining deformations which were comparable
with high-speed video footage. Goodwill et al. (2005) applied FEA to tennis,
producing a realistic model of a ball using Ansys/LS-DYNA 8.0. The model
consisted of separate parts for the rubber core and felt cover. The quasi-static

material properties of the rubber and felt where obtained experimentally
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(Figure 2.2, page 8). The viscoelastic or rate dependent material properties of
rubber where estimated in an interactive process. This technique has been
used by numerous other authors when creating FE models for simulating sports
ball impacts (Calder and Sandmeyer, 1997; Price ef al., 2006 & 2007; Biesen
and Smith, 2007; Smith and Singh, 2008). The internal pressure of a selection
of tennis balls was measured as 76 kPa, using a bespoke pressure gauge. The
internal pressure to volume relationship of the ball was assumed to be
isentropic and was simulated in the model using an air-bag, which was
assigned to the internal surface of the core. The pressurised ball model was
validated against experimental data for both quasi-static compression and
dynamic impacts. A punctured ball model was also produced and validated
against experimental data for quasi-static compression. This was to provide a
separate validation of the method used to simulate the internal pressure of the
ball. The punctured and pressurised ball models were both in good agreement
with the experimental data for quasi-static compression. Pressurised core and
ball models were both validated against experimental data for perpendicular
impacts. This was to provide an independent validation of both the rubber core
and felt cover. Extending the experimental validation to include punctured balls
and cores, would have provided further insight into the accuracy of the air-bag.
The rubber core model was in good agreement with the experimental data for
the entire range of inbound velocities used in the investigation. The complete
ball model over-predicted rebound velocity at inbound velocities greater than 15
m-s™. This over-prediction was attributed to errors in the felt model. The force
plots for the pressurised ball model were in good agreement with those
obtained experimentally using a force plate. In particular the model accurately
simulated a peak in force close to the start of the impact, which has been noted
by numerous other authors (Cross, 1999; Dignall and Haake 2000; Goodwill,
2002). Measuring more parameters such as contact time and ball deformation
would provide a more rigorous validation of the model. Experimental data
showed that the vertical COR of oblique impacts was higher than for normal
impacts. The FE model was used to conclude that friction in the contact region
produced an unbalanced horizontal force during an oblique impact, causing the
ball to deform forwards. This caused a 10% decrease in the volume of the ball

in relation to a normal impact, resulting in a higher internal pressure and
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elevated rebound velocity. Experimental data also indicated that tennis balls
incident at an oblique angle to a rigid surface with no inbound spin were
rebounding with a spin rate greater than associated with rolling. The FE model
was used to show that high spin is due to a lag occurring before the friction
force acting on the ball changes direction, as a result of shearing of the felt in
the contact region (Figure 2.14). Goodwill et al. stated that it would be difficult to
come to these conclusions using conventional laboratory experiments.
Extending the validation to include oblique spinning impacts would provide a
better representation of a typical impact between a ball and court during play.
The effects of temperature could also be analysed to determine the influence of

different ambient conditions in relation to play.

(a) (b)
tme *3ms hme » 4 ms
Resultant Friction - 100 N Resultant F'telor = 10 N

Figure 2.14 Shearing ofthe felt during an oblique impact on a rigid surface at 15 m-s'land 30° with no

initial spin (Goodwill et al., 2005).

The buckling of the ball during impact indicates the importance of applying a
nonlinear FE model (Becker, 2004; Kurowski, 2004; Goodwill et al., 2005). This
gives a totally independent investigation, separating FE from analytical models,
which rely on experimental results. Therefore, allowing full analysis of the ball's
structural stiffness and deformation during an impact. An accurate FE model
can be easily modified to simulate different materials, which is particularly useful
for manufacturers. FE has been found to underestimate the energy lost in the

ball during impacts (Goodwill et al., 2005; Hubbard & Stronge, 2001). However,
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this should be easily rectified by enhancing the accuracy of the material models.
The principal advantage of an FE model, over conventional experiments, is the
ability to make fine adjustments to parameters, such as the COF, in order to
determine their effect on the motion of the ball throughout impact and rebound.
This can be undertaken whilst keeping all other variables constant; effectively
eliminating any inaccuracy of the data that occurs as a result of natural
experimental errors, such as variations in impact velocity and angle. Modelling
the rebound characteristics of a range of balls on different surfaces can be
undertaken efficiently, once the corresponding values of COF have been

obtained experimentally.

2.6.2. String-bed modelling

Goodwill and Haake (2004a) produced a rigid body and a flexible body
mathematical model of an impact between a tennis ball and head-clamped
racket. An impact with an inbound velocity of 31 m's™, angle of 39° and
backspin of 200 rad-s™ was analysed. It was concluded that a rigid body
mathematical model under-predicted the rebound spin of the ball, which was
found to be higher than that associated with rolling. A flexible body
mathematical model was used to show that the ball starts to over-spin at the
mid-point of the impact. Over-spinning results in the friction force reversing
direction, which causes an increase in the horizontal velocity of the ball. This
reversal of the friction force acting on the ball was in agreement with the
findings of numerous authors for oblique impacts on a rigid surface (Cross,
2002; Haake et al., 2003b; Haake et al., 2005; Goodwill et al., 2005). However,
Goodwill and Haake's (2004a) flexible body model did not have the capacity to
calculate the rebound spin of the ball. Further testing including higher spin rates
and a range of angles is required to gain further insight into the ball's
characteristics when impacting with a string-bed.

Cross (2000b) produced a model of a ball impacting on a string-bed at 10 m-s™,
to analyse the effect of the sliding friction between the ball and the strings. A
resultant velocity of 10 m-s™ is considerably lower than values measured during
play (Choppin et al. 2008). The critical value of sliding friction coefficient
between the ball and string-bed was found to be 0.3; below this it was stated

that the balls rebound angle and range drops significantly, which would result in
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a detrimental effect on the player's performance. As well as not validating the
model against experimental data, Cross made a number of assumptions and
simplifications. His results were based on the assumption that the ball impacts
at the centre of the string-bed, which is not representative of a shot during play
(Choppin et al. 2007b). He also did not consider the effects of friction between
strings and their movements. Currently there are no publications on the subject
of string-to-string fiction. An FE model, incorporating the correct, ball-to-string
and string-to-string friction, could be used to analyse the full effects of varying
these parameters on the entire range of impacts encountered during play.

A number of authors have attempted to include a string-bed in an FE model of a
tennis racket with varying success (Widing and Moeinzadeh, 1989; Widing and
Moeinzadeh, 1990; Kanda et al., 2002). Widing and Moeinzadeh (1989 & 1990)
used a static FE model to examine the effect of string tension on the frame
stiffness, of a wooden racket clamped at the handle. The ball was simulated by
applying a static force of 88.96 N over an area with a radius of 2 cm, at the
centre of the string-bed. This is useful for determining the static stiffness of a
tennis racket, but it is limited in terms of predicting how a racket will perform
during an impact with a ball. They used string tensions of 222.4 and 311.3 N,
concluding that the latter reduced the magnitude of frame deformation, hence
increasing its stiffness. This was in contradiction to Cross (2001b) who found
the fundamental frequency of a racket to decrease by 8.5% when strung.
However, as previously mentioned they ignored the sliding of the strings by
fixing them at their intercepts. Also, as the handle clamping method was not
representative of a player's grip (Brody, 1987), their results do not characterize
how string tension may affect frame stiffness during playing conditions. No
experimental validation of the model was undertaken, making it difficult to
determine the reliability of their findings. An experimentally validated, FE model
of a composite racket, could be used to analyse the full effect of string tension,
material and geometry on ball rebound and frame stiffness.

A dynamic FE model that incorporates the movement of the strings will allow
the racket vibrations and response over time to be examined. Calder et al.,
(1987) found tennis strings to have relatively linear properties within their
operational range. Hence, when building a FE model of a tennis racket it should

be possible to use a linear material model for the strings. A range of strings can
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be simulated once their corresponding material properties have been obtained
experimentally. Perhaps the main advantage of using an FE model would be to
allow manufacturers to design strings to an exact specification, as parameters
such as COF and string-bed stiffness can be easily adjusted until the results

correlate with required targets (Becker, 2004; Kurowski, 2004).

2.6.3. Racket modelling

Brody (1997a) produced a mathematical model of an impact between a tennis
ball and freely suspended racket. The model was based on the conservation of
linear and angular momentum and the racket was assumed to be rigid. Brody
used a value of 0.85 in the model for COR, which was stated to be typical for an
impact at the centre of a head-clamped racket. The model was validated
against experimental data for perpendicular impacts at 20 m-s”. The rebound
velocity of the ball was slightly over-predicted for impacts at the throat and tip,
but the model showed good agreement with the experimental data for impacts
at the centre of the string-bed. This is because the centre of the string-bed
corresponds to one of the node points and is not affected by the stiffness of the
racket. The errors at the throat and tip were because the rigid body model was
unable to account for energy losses as a result of racket deformations. It is
predicted that the errors would be larger if the resultant inbound velocity was
increased. Despite its limitations Brody's model can be used to simulate a range
of rackets of known mass and moment of inertia.

Goodwill and Haake (2001) created a ball to racket impact model based on a
spring damper system, which was validated against experimental data. The ball
stiffness and damping coefficients were assumed to be constant throughout the
impact; a linear spring was used to model the string-bed and the racket was
assumed to be rigid. Head-clamped and freely suspended racket models were
both validated experimentally for impacts at the GSC. The freely suspended
racket was also impacted at other locations along the longitudinal axis. The
models produced realistic results, concluding that a 50% change in string-bed
stiffness only correlated to a 3.3% difference in ball rebound velocity, which
agreed with other publications (Jenkins, 2003; Brody et al, 2002; Cross &

Lindsey, 2005). However, as the racket was assumed to be rigid the model
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underestimated its rebound velocity; this error was more pronounced for
impacts away from the string-bed centre.

Cross (2000c) created an analytical model of a tennis ball impacting on a
flexible freely suspended racket, based on a spring damper system. Initially the
impact of a tennis ball on a constant cross section aluminium beam was
modelled and validated against experimental data. Cross found that for a freely
suspended beam the ACOR remains virtually constant with impact position,
although it is lower for impacts close to the tip and throat. The same results
were found when the model was applied to a freely suspended tennis racket,
although there was no experimental validation. In order to gain a better
representation of reality a model of a racket with a pivot at the handle was
constructed. This updated model showed very similar results to those described
previously for impacts at the throat and centre, whilst ACOR increased at the
tip. Cross concluded that ACOR decreases with increasing string tension but
the effects were stated to be negligible. The stiffness of the racket frame was
found to have a larger effect on ACOR. An increase in frame stiffness was
found to raise the ACOR for impacts at the tip, whilst having no effect for
impacts at the vibration node. Cross's model assumed the material properties of
the racket to remain constant along its length. In reality a tennis racket will have
varying stiffness along its length which may affect Cross's conclusions.
Validating the racket model against experimental data would also provide a
better indication of the reliability of the findings.

Goodwill and Haake (2003) improved the spring damper model published by
Goodwill and Haake (2001), by replacing the rigid racket with a flexible one. The
racket was modelled as a one dimensional beam consisting of N segments. The
mass of each of the segments was adjusted until the mass and balance point of
the beam corresponded to an actual tennis racket. The required stiffness of the
beam was determined from the natural frequency of the racket. The individual
segments of the beam all had the same flexural rigidity. The flexible beam
model showed stronger agreement with the experimental data in comparison to
a rigid body model! in terms of ball rebound velocity, for impacts offset from the
geometric centre of the string-bed along the longitudinal axis (Figure 2.15). A
model that can simulate impacts which are offset from the longitudinal axis of

the string-bed would provide a better representation of an actual tennis shot
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(Choppin et al., 2008). The vibration response of the racket was in good
agreement with the experimental data. However, the model failed to account for
the large vibrations experienced by the racket when the ball impacted near the
tip. This error is believed to be a consequence of the model assuming the

stiffness of the racket to be constant along the entire length.

Ball rebound velocity

Rigid beam
model Ball rebound
velocity (m/s)
Flexible
beam model
4
* Experimental data
2
: : : -—--QJ :
-80 -60 -40 -20 0 20 40 60 80
Ball impact position (relative to GSC) (mm) Tip —»

Figure 2.15 Comparison of a flexible and rigid body model for simulating impacts between a tennis ball

and freely suspended racket (Goodwill and Haake, 2003).

The material properties of a racket determine its stiffness, and hence bending
characteristics. Therefore, the material model is vital when undertaking a
dynamic FE simulation. Calder and Sandmeyer (1997) produced FE models of
the impact between softball and baseball bats and their corresponding balls. It
was possible to model the aluminium bats using readily available material
properties, due to their homogeneous nature. The balls were assumed to be
isotropic, homogeneous and viscoelastic, to simplify the model. Their
viscoelastic properties were adjusted until the COR, deformation and contact
time correlated with expected results, for an impact with a bat. A more versatile
method would have been to obtain the material properties experimentally. The
ball models could then have been validated by simulating an impact with a rigid
plate, as done by Goodwill et al. (2005). This would eliminate any discrepancy
as a result of errors in the bat. Although they claimed the results to reliable, this
was based on expected results from published data as opposed to experimental

validation using the exact conditions within their model.
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Jenkins and Calder (1990) produced an FE model of a tennis racket. The tennis
strings were not modelled as it was stated that they would have made the
problem size too large. As the racket was symmetrical only half of it was
modelled. The bending stiffness and fundamental frequency of the racket were
found to be in good agreement with experimental data when handle-clamped.
Brody (1987) found that a handle-clamped racket has an unrealistically low
fundamental frequency in comparison to a hand held racket. Therefore, the
method used by Jenkins and Calder (1990) to simulate the racket is not
representative of how a player will hold a racket. This makes it difficult to
determine how their results relate to match play.

Gu and Li (2007) produced an FE model of tennis racket using ANSYS 10.0.
The geometry was created in Solidworks 2005. The material properties of the
racket frame were obtained using bending and resonance experiments. The
Young's modulus of the racket was 30.5 GPa and the density was 2150 kg-m™.
There was no explanation as to how the material properties of the strings were
obtained. The Young's modulus of the strings was 2.5 GPa and the density was
1140 kg'm™. This is within the expected range of 2-4 GPa for the quasi-static
Young's modulus of nylon. The dominant fundamental frequency of the racket
was obtained when it was rigidly clamped at the handle. The authors justified
clamping the handle because during an impact the ball will have left the string-
bed before the racket has completed an oscillation. This was in agreement with
Brody (1979). The dominant frequency was 80 Hz in bending. It was stated that
this is less than values of over 100 Hz found by other authors for freely
suspended rackets, so is likely to be incorrect.

Kanda et al. (2002) produced an FE model of a tennis ball impacting
perpendicular to a freely suspended strung tennis racket. The ball was modelled
as a pressurized rubber core, with linear material properties. There was no
reference to the material properties of the ball or how they were obtained. The
felt cover, which has been found to influence rebound spin for impacts on a rigid
surface (Goodwill et al., 2005), was not included in the model. The ball had only
a single element through the thickness, which is predicted to have resulted in
low accuracy. It is not possible to determine the accuracy of the ball model as it
was not independently validated, as done by Goodwill ef al. (2005). As with the

ball, the material properties of the racket frame or the method used to obtain

47



—errrETr =

them were not provided. A number of impacts were simulated at different
locations on the string-bed. The inbound velocity for the ball was 27.8 m-s™ for
all of the impacts. ACOR was found to decrease with increasing string tension
and to be highest between the GSC and the throat, in agreement with other
authors (Brody et al., 2002; Goodwill and Haake, 2001 & 2003). ACOR was
also found to decrease as the impact position moved away from the GSC
towards the side of the racket. The results were shown to be in agreement with
experimental data. However, there was no explanation of the uncertainty in the
experimental values or how they were obtained. The results showed that
increasing the stiffness of the frame resulted in an increase in ACOR for the
impacts at the throat and tip, while having no noticeable effect on those at the
node (approx. GSC), in agreement with Goodwill and Haake (2003). The
variation in ACOR with racket stiffness was more pronounced for impacts at the
throat, which was also in agreement with Goodwill and Haake (2003). As with
previous publications (Widing and Moeinzadeh, 1989; Widing and Moeinzadeh,
1990), the strings were assumed to be fixed at their intercepts, effectively
ignoring the effect of string to string friction. Goodwill and Haake (2004b)
measured horizontal string displacement of up to 12 mm for an oblique impact
on a freely suspended tennis racket. Hence, Kanda et al.'s model is clearly not
a realistic representation of reality and subsequent errors would become
apparent if simulating an oblique impact. This investigation has shown that FE
can be used to ac\curately simulate impacts between a tennis ball and racket.
However, full details of any material properties and experimental validation
should be included to enhance the value of the model.

A composite tennis racket is non-homogenous, resulting in anisotropic material
properties. Consequently, to produce an accurate FE model of a non-rigid
racket, the material properties must be obtained experimentally. These must
then be built into a full material model incorporating both layer position and
orientation. However, as the deformation of the racket is relatively small it
should be possible to use linear material properties for the individual layers
(Becker, 2004; Kurowski, 2004;' Widing & Moeinzadeh, 1989; Widing &
Moeinzadeh, 1990). It is also essential that the model be validated against
experimental results. Once the FE model has been successfully validated the

effect of altering dimensions and material properties can be analysed without
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the cost and time associated with producing numerous prototypes. It would also
be possible to simulate oblique spinning impacts. Such a tool would have the

potential to be very beneficial to racket manufacturers.

2.6.4. Summary of modelling

A number of different analytical models have been applied to tennis ball-rigid
surface impacts. Rigid body models are unrealistic as they don't account for the
deformation of the ball observed in high speed video footage. Similarly at
present, deformable spring-damper models don’t account for the deformation of
the ball in the horizontal plane during an oblique impact. FE is an effective tool
for simulating the 3D deformation of a ball throughout an impact with a rigid
surface. The ability to simulate 3D deformation results in better agreement with
experimental data, in comparison to analytical models. At present, there are no
dynamic FE models of a tennis racket with a realistic interwoven tensioned
string-bed. An FE model should be produced which can accurately simulate the
3D deformation of the ball, string-bed and frame during an oblique spinning
impact. Such a model should be extensively validated against experimental
data.

2.7. The influence of technological advances on tennis

Advances in both material and manufacturing techniques have led to an
increase in racket performance, allowing players to serve at ever increasing
velocities (Brody et al., 2002; Haake et al., 2007; Miller, 2007). A number of
authors have stated that advances in racket technology have resulted in the
server developing a significant advantage over their opponent, identified by an
increase in the number of tie breaks (Brody, 1990; Haake et al., 2000).
However, Miller (2007) indicated this not to be the case. He published results
from Grand Slam tournaments, which showed that the number of aces in the
men's game peaked around the year 2000 and have since dropped. This
suggests that the players' ability to return serve has improved, compensating for
the advantage of the faster serve (Miller, 2007). As the governing body, the ITF
are concerned with ensuring fair play, whilst keeping spectator appeal and
commercial interest at a maximum. Implementing rule changes or applying
regulations on the court surface or racket properties is expensive and could be
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damaging to the game if they do not have the desired effect. Therefore, it is
imperative that research is undertaken to ensure the highest accuracy when
predicting how advances in equipment impact the game, before implementing
rule changes.

A large amount of research is undertaken on the physics of tennis. Studies are
predominantly involved with impact and aerodynamic analysis and often result
in predictive models. In order for these models to be used to analyse the effects
of different parameters relative to play, they can be combined into a single
trajectory model. Dignall ef al. (2004) produced a program, labelled Tennis
GUT, for simulating different tennis shots. Tennis GUT was produced by
combining ball to racket and ball to rigid surface impact models with a trajectory
model. The individual models were considered to be state of the art at the time
of publication. However, the ball to racket impact model was only capable of
simulating perpendicular non-spinning impacts.

Haake et al. (2007) used the bespoke analysis software Tennis GUT to
determine how the evolution of the tennis racket has affected serve speeds.
They composed data from around 150 rackets, dating from the 1870's to 2007,
from the Wimbledon Museum and the ITF collection. It was suggested that a
player from the current era could serve 17.5% faster using equipment from
2007 in comparison to what was available in the 1870's. The lower mass of a
2007 racket was concluded to be the main contributing factor to the increased
serve speeds, followed by the balance point moving closer to the tip. Racket
stiffness was concluded to have only a minor effect on serve velocity. However,
as the ball to racket model used in Tennis GUT was based on the one
published by Goodwill and Haake (2003), it has the same limitations and errors.
An accurate FE model would provide a better understanding of the impact
between a tennis ball and racket.

Haake et al. (2000) investigated the effect of using a 6.5% larger and 3%
heavier ball to decrease the speed of the game. Standard and oversized balls
were projected onto head-clamped and freely suspended tennis rackets, at the
centre of the string-bed. The impacts were perpendicular and the balls were
projected with no spin at a range of velocities from 15-60 m's™. The ACOR was
the same for both sized balls on the freely suspended rackets. However, the

COR was slightly higher for the impacts between the larger balls and head-
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clamped racket. Haake et al. (2000) used Brody's (1997a) model, in which the
racket is assumed to be rigid, to predict the rebound velocity of both balls when
simulating a serve. It was concluded that the oversized ball will rebound slightly
faster from the racket. This was in contradiction to the experimental data where
both balls rebounded from the freely suspended racket with effectively the same
velocity. The discrepancy is predicted to be due to the model using the COR
from the head-clamped racket impacts. Haake et al. (2000) undertook
experiments and found that the drag coefficient at 0.55 and the rebound velocity
off the court were effectively identical for both sized balls. Due to its increased
frontal area the larger ball was subject to a greater drag force. The results from
the three investigations were combined into a single trajectory model. It was
found that although the larger ball would leave the player's racket at a higher
velocity it would have an increased flight time, hence impacting the court later.
This corresponds to a 10 and 16 ms increase in the time to reach the base line
for the 1% and 2™ serve, respectively. Although this provides evidence that the
larger ball has the ability to reduce the dominance of the serve, the calculated
times are based on a mathematical model. Player testing with the two ball sizes
could prove an effective method for validating the results. A fully validated FE
model could be used to accurately assess the effect of ball mass and size for
impacts on both a freely suspended racket and court surface. This would not
require balls to be specially manufacturéd as in Haake et al's (2000)
investigation.

A realistic FE model, of a ball to freely suspended racket impact, could be used
to enhance the understanding of the collision and the effect of individual
parameters, such as ball or racket mass, size and structural stiffness. The
results obtained can then be applied to the different aspects of the game,
including the serve. However, as with any other experiment, the results must be
applied to a model encompassing other factors, such as aerodynamics, to
determine the full effect on the tennis game (Haake et al., 2007).

2.7.1. Summary of technological advances

Advances in racket technology over the last century have led to increased
service speeds and reduced receiver reaction times. Advances in technology

are likely to continue, hence the ITF must be able to monitor and predict how
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they will affect the game. An FE model which can accurately simulate a range of
tennis shots could be used to predict the effect of changing different ball and
racket parameters. Such a model could also function as an effective design tool

for racket manufactures.

2.8. Overview of Ansys/LS-DYNA

There are essentially two types of FE solver; implicit and explicit. Implicit solvers
are used for analysing static structural problems (£F = 0). Explicit solvers are
used for analysing dynamic impact problems (£F = ma). Both types of solver
can also be applied to quasistatic problems (ZF = 0), such as metal forming. As
the aim of this project is to create an FE model of a dynamic impact between a
tennis ball and racket, an explicit solver is required. Ansys/LS-DYNA is an
explicit FE solver which can be applied to a variety of different impact scenarios,
including sporting applications (Mase and Kersten, 2004; Goodwill et al., 2005;
Biesen and Smith, 2007, Peterson and McPhee, 2008). Ansys/LS-DYNA was
selected for this project following an evaluation exercise with other FE solvers,
ABAQUS and MSC Nastran. The main reason for selecting Ansys/LS-DYNA
was because it has already been successfully applied to tennis ball impacts, by
Goodwill et al. (2005). The following subsection will highlight some of the key
features of Ansys/LS-DYNA, which are required for modelling the impact

between a tennis ball and racket.

Elements

The two types of elements in Ansys/LS-DYNA which could be required for this
project are, solid and shell. Goodwill et al. (2005) used SOLID164 elements with
single point integration to model a tennis ball. Fully integrated solid elements do
not experience hourglassing but they are approximately four times more
computationally expensive in terms of CPU time. Hourglassing modes are zero-
energy modes of deformation, which are not physically possible. Shell elements
are designed for modelling thin walled structures, such as the frame of a
composite tennis racket. There are twelve different formulations of shell

elements, for all of which the number of integration points can be specified.
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Material models

There are over forty material models in Ansys/LS-DYNA. Models used
previously by Goodwill et al, (2005) were MAT_RIGID, MAT_LOW-
DENSITY_FOAM and MAT_OGDEN_RUBBER. MAT_RIGID was used by
Goodwill et al., to simulate an impact between a tennis ball and rigid surface.
MAT _RIGID materials are computationally efficient and can be used to simulate
the properties of infinitely stiff parts. Realistic values of Young's modulus should
be used when simulating rigid parts to ensure the correct contact behaviour.
MAT_LOW-DENSITY_FOAM was used by Goodwill et al. to simulate the felt
cover of the ball because it is capable of simulating large deformations. Non-
linear behaviour is modelled using a quasi-static stress-strain curve.
MAT_OGDEN_RUBBER was the material model used by Goodwill et al. for the
rubber core. This model is based on the Ogden (1984) material model, which is
designed for simulating rubbers. The model is capable of simulating non-linear
rubber like properties through the use of a quasi-static stress/strain curve.
Linear viscoelasticity can also be simulated using a stress relaxation curve. The
simplest and most computationally efficient non-rigid material model is
MAT_ELASTIC. It is capable of simulating linear material properties at a single
temperature through the use of a Young's modulus, Poisson's ratio and density.

Contact

In order to model impacts, contact must be defined between any interacting
parts. There are a range of different contact types in Ansys/LS-DYNA. It is
possible to define coefficients of static and sliding friction and birth and death
times for all types of contact. Goodwill et al. (2005) used
CONTACT_AUTOMATIC_SURFACE_TO_SURFACE to define contact
between the felt cover of a tennis ball and a rigid surface. Surface to surface
contact is very efficient for defining contact between parts which experience a
larger amount of relative sliding. TIED_CONTACT can be used to glue two
surfaces together. Slave nodes are forced to follow the deformation of the

master surface.
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All loads in Ansys/LS-DYNA are time dependent. This means they must have a
pair of parameters, corresponding to the time and the load. All load definitions
can be assigned a birth and death time within the analysis. Special types of
loads include constraints and initial velocities. The INTIAL_VELOCITY
command can be used to apply an initial velocity to an object, such as a tennis
ball (Goodwill et al.,, 2005). Ansys/LS-DYNA is normally used to run dynamic
simulations, within the transient phase of the analysis. However, dynamic
relaxation can be used to apply static preloads to a body, e.g. internal air
pressure, before the transient phase of the analysis which starts at time zero.
The solver will apply damping and monitor the kinetic energy until it is
dissipated. The dynamic relaxation phase ends when the current distortional
kinetic energy is less than the maximum distortional kinetic energy multiplied by
the convergence tolerance. Goodwill et al. (2005) simulated the internal
pressure of a tennis ball, using an AIRBAG_SIMPLE_PRESSURE_VOLUME
command. This involved defining a pressure-volume relationship for the ball and
assigning it to a segment created from the interior surface of the rubber core.
The airbag command had to be assigned during the dynamic relaxation phase
to prevent excessive oscillations of the ball at the start of transient phase of the

analysis.

2.8.1. Summary of Ansys/LS-DYNA
Ansys/LS-DYNA is an explicit FE solver which can be applied to tennis ball

impacts. A wide range of features such as, solid and shell elements, contact,
advanced material models, initial velocity and dynamic relaxation, are likely to

be required for this project.

2.9. Discussion

Previous investigations have highlighted discrepancies in the results obtained
by different researchers. This is mainly due to the inherent errors that occur
when simulating and modelling the dynamic properties of tennis ball impacts,
combined with a lack of detailed visual representation. FEA allows
investigations to be undertaken in a very controlled environment, allowing for

fine adjustments to be made to each researched variable, whilst keeping the
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others set at a predetermined value, eliminating unpredictability in the results.
The exact details and specifications of the simulation can then be obtained and
stored electronically, making them easily accessible for follow-up work. This
effectively allows for academic knowledge to be shared, passed on and
implemented into further scientific development of tennis or other sports.

A complete visual image can be obtained from a dynamic FE model. This
provides the researcher with a superior tool, in comparison to high-speed video,
for understanding, presenting and explaining the motion of the ball, strings and
racket during impact. High-speed video, whilst excellent for validation work, is
effectively only captured in two dimensions, whereas an FE model can be
completely revolved and viewed in all planes. In addition, unlike high-speed
video footage, sections of an FE model can be blanked, allowing hidden areas
to be seen. Perhaps the main advantage of an FE model, over high-speed
video, is that the required results can be obtained almost immediately, once the
simulation has finished, without the requirements for interpolation. Thus,
effectively making FE a more effective and efficient tool for both academia and
industry.

A fully validated FE model of a ball to court impact will provide the researcher
with a better understanding of how the ball deforms throughout the collision.
This can then be used to comprehend and describe how high spin is obtained
from oblique impacts. Variables, such as the COF between the ball and court
surface, can be adjusted relatively easily in an FE model to determine their
effect on an impact. Analysing the effect of a COF is not easily accomplished
using conventional experimental methods. An FE model could also be used to
evaluate how alterations to parameters of the ball, such as mass and size,
would affect the speed of the game. This could be undertaken without the
requirement for producing numerous prototypes. A more in depth understanding
of the effect of temperature on a tennis ball could also be obtained using an FE
model. The additional understanding obtained from an FE model could then be
used by the ITF, to implement changes to the rules in order to improve
uniformity between different balls.

Previous research has indicated that the structural stiffness of a string-bed
affects both the rebound velocity and angle of the ball but not its spin. An
accurate FE model of an impact between a ball and string-bed could be used to
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analyse the precise effects of varying parameters, such as the structural
stiffness of the string-bed. However, accurately modelling a string-bed using FE
is a very difficult task, for a number of reasons. First of all the stiffness of a
string-bed is dependent on the string tension. Therefore, an efficient and
reliable method for modelling tension must be developed. In order for the strings
to behave realistically when the required tension is applied to them, they must
have the correct material properties and coefficients of static and sliding fiction.
As an accurate method for obtaining string friction is not yet available, a
procedure for obtaining this would need to be developed. The most difficult task
is likely to be physically modelling an interwoven string-bed, with strings that
move independently at their intercepts. There are currently no published studies
where this has been achieved. Once an accurate model has been produced
and validated it will be possible to analyse the ball and string-bed deformations
and movements, for a variety of different impacts. The model could potentially
be used to enhance the understanding of how ball spin is generated during an
oblique impact.

There are two main issues when creating a realistic FE model of a ball to racket
impact. These issues are how to simulate a player's grip on the racket and
model the different materials. Previous research has shown that a freely
suspended racket is a good representation of a player's grip. A model of a freely
suspended racket can also be more easily validated than one with a 'simulated’
grip. Previous research has shown that a rigid body model of a freely
suspended racket over-predicts the rebound velocity of the ball for impacts
offset from the GSC and hence node point. Although mathematical models are
now incorporating ball and string-bed deformations, the issue that the tennis
racket deforms during impact, remains a fairly understudied area. A dynamic FE
model of a freely suspended racket, with realistic material properties, will aid the
researcher to understand its displacement and vibration response, when
colliding with a tennis ball. It will also be possible to obtain an accurate force-
time plot for the impact, which would be very difficult using conventional
experimental techniques. There are not currently any published analytical or FE
models which are capable of simulating an oblique spinning impact, at any
location on the string-bed of a tennis racket. This means that there are not

currently any models available which can be used to replicate and analyse
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realistic tennis shots. An FE model should be developed which can accurately
simulate oblique spinning impacts at any location on the string-bed of a tennis
racket. Such a model could be used to determine the racket's response to
altering different parameters such as the momentum of the collision or impact
location. It may also be possible to determine the range of clamping forces
exerted on the racket handle by a player's grip, by analysing an FE model
against player testing data. An accurate racket model could be extremely
beneficial to manufacturers. It would allow manufacturers to gain further insight
into the physics of a tennis shot and allow them to produce rackets to exact
specifications. This would reduce costs, in both terms of time and capital,
associated with producing numerous prototypes. It may also be possible for
manufacturers to improve customisation by designing rackets specifically for
individual players.

Producing accurate models to represent all the different materials is predicted to
be one of the most difficult processes when simulating a ball to racket impact
with FE. The ball will require a non-linear material model to simulate its rubber
like properties. It is predicted that it will be possible to simulate the strings with a
linear material model, as their deformation during impact is fairly small. It should
be possible to produce a model for the strings relatively easily once the material
properties have been obtained experimentally. Due to the anisotropic nature of
the composite materials used in a racket frame, modelling this will be a far more
in-depth task. The properties of the individual layers and their orientations must
be simulated accurately. Although it may be possible to use linear material
models, which reduce computation time, as the racket deformation during
impact is relatively low. Full material testing will need to be undertaken, followed
by the production of a complex material model.

It is vital that any FE models which simulate different tennis impacts are
rigorously validated against experimental data. Previous studies have shown
that high-speed video cameras are very effective for measuring ball movements
during experiments. Therefore, high-speed video cameras will be used to obtain
the experimental data which will be used to validate the FE model. However,
analysis using high speed video cameras is subjected to repeatability errors
when undertaken manually. The repeatability error in the experimental resuits

must be stated. The validation of the model will be one of the most important
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stages of the project. In order for this validation to be fully valid and enable the
model to be used to design equipment and monitor the game, it must be
undertaken for impacts which are representative of match play. If testing with an
initially stationary racket the inbound trajectory of the ball must be converted to
the racket's frame of reference. At present, player testing during match
simulations (Goodwill et al., 2007a) is the most appropriate method for obtaining

the correct pre and post impact velocities, angles and spin rates.

2.10. Chapter summary

In conclusion, an accurate FE model will not only allow manufacturers to
produce rackets to exact specifications with reduced prototype costs and
timelines, but it will also give the ITF a better understanding of different
technologies; thus providing them with a better means by which to regulate
them. Researchers will also be able to use FE to aid their understanding of the

physical principles which determine the ball's behaviour in the game of tennis.
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3. Tennis ball model

3.1. Introduction

The aim of this project is to build and experimentally validate an FE model of a
tennis ball to racket impact. The first stage of this process is to construct and
independently validate an FE model of an impact between a tennis ball and rigid
surface. In order to construct an FE model of a tennis ball, certain properties
must be obtained such as the dimensions, material properties and internal
pressure. As the properties of a tennis ball change with impact speed, the
model will be validated for a range of inbound velocities. A tennis ball consists
of three separate parts; a felt cover, a rubber core and an enclosed pressurised
volume. In order to provide a rigorous validation, the separate parts of the
model will all be independently validated. Following validation at ambient
conditions the model will be updated to simulate a range of temperatures. The

main objectives of this chapter are:

1. To obtain the properties which are required to construct an FE model of a

tennis ball.

2. To build an FE model of a tennis ball.

3. To validate an FE model of a tennis ball against experimental data for

room temperature.

4. To validate an FE model of a tennis ball against experimental data for a

range of temperatures.

The model which is to be constructed and validated in this chapter will be based

on a Prince Tour ball.
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3.2. Pressurised tennis ball properties

3.2.1. Internal pressure

The internal gauge pressure of seven balls and eight cores was measured
using a bespoke pressure gauge. The mean internal gauge pressure of all the
samples was 85 * 103 N-m"2and the standard deviation (SD) was 3.6 * 103
N-m'2.

3.2.2. Rubber core properties

MAT_OGDEN_RUBBER is the material model which will be used to simulate
the core in Ansys/LS-DYNA 10.0 (Goodwill et al., 2005). The requirements for
the Ogden model are density, shear modulus, Poisson's ratio, a stress-strain
curve for both tension and compression and a stress relaxation curve. Eight
hemispherical rubber cores were provided by the manufacturer as material
samples (Figure 3.1). The dimensions of these cores were measured using
digital vernier callipers. The mean internal and external diameters of the cores
were 0.05254 m (SD 3.49 x 104 m) and 0.05942 m (SD 1.55 x icr4 m),
respectively. The mean density of the cores was measured as 1254 kg m'3(SD

68 kg m'3).

Figure 3.1 Hemispherical rubber cores provided for material testing.

The stress-strain properties of the rubber were measured using an Instron
machine (Figure 3.2). Tensile data was obtained using dog-bone test pieces
with the strain recorded using a clip-on extensometer (Figure 3.2a & b). Ideally
a non-contacting extensometer would have been used as they have no
influence on the test piece; however, there was not one available for this

project. In order to achieve a state of simple tensile strain the test pieces were
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at least ten times longer than their width (Miller, 2006). Ideally the compression
testing would have been undertaken using a biaxial test machine as they
produce a state of simple compression (Miller, 2006). However, a biaxial tester
was not available for this project. Therefore, compression testing was
undertaken using cylindrical buttons compressed between a pair of plates
(Figure 3.2c). Cylindrical test pieces were used to produce the smallest possible
contact area and the plates were lubricated, both these factors help to lower the
overall frictional forces and hence reduce the impact of shear stresses (Miller,

20086).

(a) (b)

Figure 3.2 (a) Tensile test piece (b) Extensometer (c) Positioning of compression test piece.

All the test pieces were displaced at a rate of 8.33 * 104 m-s"1, with an initial
preload of 5 N and 20 N for tensile and compression, respectively. The
relatively large preload of 20 N was required to remove the "slack" from the
compression samples, as a result of them being cut from curved cores.
Ensuring the samples were completely flat was necessary to prevent errors
when measuring their displacement. The alternative would have to been to
manufacture cylindrical samples specifically for the compression tests. It is
predicted that using a different manufacturing process would result in larger
errors than those which may be caused by using a 20 N preload. The tensile
and compression test pieces were each cyclically loaded four times to stabilise
the material, with the results obtained from a 5th cycle (Mullins, 1969). There
was no measurable change in any of the tensile dog-bones or compression

button dimensions after the 4th cycle, so the initial values were kept for the 5th
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cycle. All of the test pieces settled into a relatively consistent stress-strain curve

after the first two loadings (Figure 3.3), in accordance with Mullins (1969).
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Load 3 Load 3
.45 Load 4 Load 4
Load 5 Load 5
-04 03 -02 005 015 02
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Figure 3.3 Example of cyclic loading ofrubber taken from cores used in the construction oftennis balls a)

compression, b) tension

The 5th and final loading of each sample is shown in Figure 3.4. Test B was
identified as the median for compression and test 4 was selected for tension.
Although there is strong agreement between the results for the individual tests,
there may still be errors related to the experimental procedure. The main
sources of error within both the tension and compression tests will most likely
have arisen from measuring the sample dimensions. However, these errors
should still be relatively low, as mean dimensions were calculated by
undertaking all measurements three times. The most evident issue for the
compression tests is the use of a relatively large preload of 20 N. It should also
be noted that this preload only represents approximately 3% of the total applied
load. The other, major source of error in the compression tests is the inevitable
shear forces in the buttons as a result of friction from the compression plates.
However, this was kept to a minimum, for this type of test, by using lubricant.
There will also be errors in the tensile results due to the use of the clip-on
extensometer. Any variation between tests may also be due to slight differences

in the materials between the individual cores.
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Figure 3.4 Results oftennis ball rubber material testing a) 5thcycle from each compression test, b) 5th

cycle from each tensile test.

The results for tension and compression were combined and the number of
data points reduced to simplify material model construction in Anys/LS-DYNA
10.0 (Figure 3.5). The shear modulus of the rubber was calculated as 2.39 *
106 N-m"2, using the Young's modulus and Poisson's ratio. As the tensile stress-
strain curve is relatively linear (Figure 3.5) the Young's modulus of 7.13 * 106
N-m'2was calculated from the maximum strain. A Poisson's ratio of 0.49 was
assumed, as this value is recommended for use in the MAT_OGDEN_RUBBER
material model (LSTC, 2003).

X 10

04 -02 0.2
Strain

Figure 3.5 Combined tension and compression results for the tennis ball rubber material testing.

In order to model the time dependent nature of rubber the

MAT_OGDEN_RUBBER material model requires stress relaxation data (LSTC,



Dl pfh T W0 W ASWAIE W W e

2003). Stress relaxation data is obtained by holding a material sample at a
constant strain, whilst measuring the time-dependent stress in the test piece,
following rapid loading (Menard, 2008). Specialist equipment, which was not
available for this project, is required to undertake this type of testing. Therefore,
the estimated stress relaxation curve used by Goodwill et al. (2005) will be used

in the material model.

3.2.3. Felt cover properties

The felt material properties are difficult to measure using tensile and
compressive testing. Ideally, they should be obtained using a biaxial tester, but
there was not one available for this project. Therefore, the MAT_LOW-
DENSITY_FOAM material model, which will be used for the felt cover, will be
identical to the one in Goodwill et al. (2005).

3.2.4. Summary

In this section the majority of the properties of tennis balls which are required to
produce an FE model were measured. Material testing was undertaken for
tennis ball rubber taken from sample cores, to measure the density, stress-
strain properties and enable the shear modulus to be calculated. It was not
possible to experimentally measure the stress relaxation properties of the
rubber because of the unavailability of specialist test facilities. The density and
shear modulus were measured as 1254 kg'm™ and 2.39 x 10° N-m¥
respectively. Due to slight errors in the test procedures the material properties
may need to be slightly adjusted to provide an optimum fit with the experimental
data which will be used to validate the model. The stress relaxation curve which
will be used in the MAT_OGDEN_RUBBER material model will be identical to
the one used by Goodwill et al. (2005). It was also not possible to
experimentally obtain the material properties of the felt. The material model
used to simulate the felt will be identical to the one in Goodwill et al. (2005).

3.3. Finite element model of a pressurised tennis ball

3.3.1. Details of the FE model

An FE model of a pressurised tennis ball consisting of two parts, a rubber core
and felt cover, was produced in Ansys/LS-DYNA 10.0 (Figure 3.6). The internal
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and external diameters of the core were 0.05254 m and 0.05942 m and the felt
was given a uniform thickness of 0.003 m. The rubber core and felt cover were
both made up of 21600 3D solid elements, with four elements through the
thickness. This mesh density was selected following a convergence study

(Appendix A.1, page 242).

Feltcover

Rubbercore

am

Figure 3.6 Ball model with a quarter section removed.

The internal pressure of the ball was simulated in the model as an airbag, by
creating a node set from the elements on the interior surface of the rubber core
and assigning an AIRBAG_SIMPLE_PRESSURE_VOLUME command to it
(Goodwill et al., 2005). The internal pressure (P) and volume (V) relationship is
assumed to be adiabatic during impact and defined by PV 14 equal to a constant
(Figure 3.7). The relative volume of the ball is defined as the actual volume
divided by the original volume (Figure 3.7). The adiabatic assumption, of no
heat transfer between the enclosed volume and its surroundings is based on
the short time frame of the impact (~5 ms) and the insulating properties of the
rubber core and felt cover. The internal pressure of the balls which was
measured experimentally was the gauge pressure (Figure 3.8); the atmospheric
pressure of 101.325 x 103 N-m'2was added to this value to give the absolute
pressure. The absolute pressure was then calculated for the required range of
volumes. As there is no atmospheric pressure in the FE model (Figure 3.8) the
absolute pressure at each volume was converted back into the gauge pressure.

Hence, the curve in Figure 3.7 is the gauge pressure versus relative volume.
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The internal pressure was applied in both the dynamic relaxation and transient
phases of the simulations, and the convergence tolerance was 1 x 10°. The
initial pressure of 85 x 10° N-m™ was found to increase the initial volume of the
ball by approximately 5% during the dynamic relaxation phase. Therefore, the
initial pressure of 85 x 10° N-m? was assigned to a relative volume of 1.05
(Goodwill et al., 2005). The external diameter of the ball at the start of the
transient phase of the analysis was 0.066 m, which is within the limits of
0.06541 to 0.06858 m set by the International Tennis Federation (ITF).
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Figure 3.7 Pressure-volume curve used to simulate the internal pressure of the ball.

Reality FE Model

Atmospheric pressure No atmospheric pressure

Absolute pressure = i
Atmospheric pressure : Gauge pressure

+ Gauge pressure

Figure 3.8 Pressure in reality and in the FE model.

MAT_OGDEN_RUBBER was the material model used for the rubber core, as
used by Goodwill et al. (2005). The density of 1254 kg-m™ resulted in the rubber
core having a mass 0.0427 kg. Inspection of the stress-strain curve shows that

the highest tensile strain reached during testing was approximately 0.2
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(Figure 3.5, page 63), as this was the maximum achievable using the clip-on
extensometer. Preliminary investigations, using the material properties from
Goodwill et al. (2005), have highlighted that the maximum strain in the tennis
ball rubber core is around 0.3, when impacted at 30 m-s'1 (Figure 3.9). Hence, if
the current data was used to construct the material model simulations at high
impact speeds would rely on values predicted by Ansys/LS-DYNA 10.0. It is
predicted that a more accurate and reliable alternative is to manually estimate
the shape of the tensile stress-strain curve beyond the current maximum strain,
before it is input into Ansys/LS-DYNA 10.0. This hypothesis will be analysed
when the model is experimentally validated.

min* 0.1&&B33. at clcm f 6SB4B6
«n**-0 ?7?(107. atetom f 662052 ? 72%e 01 I

1.444e-01
fi.S8Sr 0?7 _
-1 176e 0?
'f.908c-0?

1669c 01
Maximum
strain

Figure 3.9 State of maximum strain (red region) in the rubber core for a perpendicular tennis ball impact

at 30 m-s’lon a rigid surface.

It is assumed that the Young’s modulus of the rubber will remain relatively
constant between a strain of approximately 0.2 and 0.4 (Goodwill et al., 2005;
Smith, 1993) (Figure 3.10). The material curve in Figure 3.10 was input into a
MAT_OGDEN_RUBBER material model to produce Ogden shear modulus
coefficients of -0.01487, 1.552 and 2.149 and alpha constant coefficients of
-7.424,-1.664 and 3.280.
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Figure 3.10 Modified quasistatic stress-strain curve for the tennis ball rubber.

As mentioned in the previous section, the estimated relaxation data used by
Goodwill et al. (2005) was used in the model (Figure 3.11). The relaxation
modulus is defined as stress at a set time divided by the applied strain. The
relaxation curve in Figure 3.11 resulted in Maxwell shear modulus coefficients
of 1.9750 x 10, 1.4491 x 10, 2.0240 and 8.2093 x 10" and decay constant
coefficients of 2.5675 x 10", 2.5957x 107, 2.6242 x 10° and 2.6531 x 10*.
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Figure 3.11 Estimated stress relaxation curve for tennis ball rubber.

As described in the previous section, the felt cover was simulated using the
MAT_LOW-DENSITY_FOAM material model from Goodwill et al. (2005). The
mass of the felt cover was 1.67 x 102 kg. This resulted in a total mass for the
ball of 5.92 x 102 kg, which is within the limits of 5.60 x 102 to 5.94 x 10?2 kg
set by the ITF.
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In order to validate the FE model, an impact between the ball and a rigid
surface was to be simulated. The material model used for the rigid surface was
MAT_RIGID. The rigid surface had 18000 brick elements; this mesh density
was selected to produce elements of a similar size to those in the ball and
eliminate contact instabilities. CONTACT_AUTOMATIC_SURFACE_TO_SURF-
ACE was used to define contact between the ball and rigid surface. As the rigid
surface is considerably stiffer than the felt, the contact option SOFT = 1 was
used (LSTC, 2003; Goodwill et al., 2005) and the time step scale factor was
changed from the default of 0.9 to 0.5 in order to improve contact behaviour.
CONTROL_HOURGLASS, with an hourglass coefficient of 0.15, was also used
to prevent zero-energy modes of deformation occurring in the model. The
coefficient of friction between the ball and rigid surface was 0.62; this value
corresponds to a smooth rebound ace court (hard court) (Brody et al., 2002).
The initial velocity of the ball was applied using INITIAL_VELOCITY_GENERA-
TION.

3.3.2. Summary

In the above section, an FE model of a pressurised tennis ball was constructed
in Ansys/LS-DYNA 10.0. The model consisted of a felt cover and rubber core,
with an airbag replicating the internal pressure. MAT_OGDEN_RUBBER was
the material model used for the rubber core, whilst MAT_LOW-
DENSITY_FOAM was used for the felt cover. The internal pressure was applied
to the interior surface of the core using an AIRBAG_SIMPLE_PRESSURE_VO-
LUME command. The next section describes the validation of the model against

experimental data.
3.4. Validation of the pressurised tennis ball model

3.4.1. Experimental methods

The dynamic properties of punctured and pressurised balls and cores were

obtained for inbound velocities in the range from approximately 5 to 30 m-s™,

using an impact rig (Figure 3.12). Punctured and pressurised balls and cores

were used to independently validate the three separate parts of the model,

which are the internal pressure, rubber core and felt cover. The punctured core

was used to validate the rubber core, whilst the punctured ball was used for the
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felt cover. The results for the pressurised cores and balls were used to provide
an indication of the accuracy of the internal pressure, which was used in the
model. The balls and cores were punctured using a pressure gauge and it was
assumed that the small hole which was created would 'reseal’, preventing air
from leaving the balls during the impacts. The impact rig was used to
experimentally obtain the dynamic properties of the tennis balls and cores
(Figure 3.12), as it is more efficient than manually tracking images from a high-
speed video camera. The rig consisted of an air-cannon for projecting the balls,
a set of light gates for measuring inbound and rebound velocities and a force
plate for obtaining contact times and force plots. The experimental validation of

the impact rig can be found in Appendix A.2 (Page 244).

(a) (b) (©

Figure 3.12 Tennis ball impact rig a) Complete rig, b) Light gates and force plate ¢) Air-cannon

In order to obtain the deformation of the balls/cores, impacts at approximately 5,
15 and 25 m-s'1 were recorded separately using a Phantom v4.2 high-speed
video camera, recording at 6000 fps (Figure 3.13a). The camera was positioned
parallel to the force plate, as this allowed the maximum deformation of the
balls/cores to be calculated by comparing them against an image of a non-
deformed ball/core (Figure 3.13b). The inbound velocity and deformation
measurements were undertaken manually using Richimas. A repeatability study
was undertaken for the pressurised and punctured, balls and cores to assess

the magnitude of the manual sampling method using Richimas. A single impact
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for each type of ball was selected at low, medium and high inbound velocity.
The inbound velocity and deformation of each of these impacts was measured
ten times using Richimas and is shown in Table 3.1. The SD obtained for

deformation are similar to those measured by Goodwill (2002).

(a) (b)
' Air-cannon
!
—g_Ught gates DeformationI
frmescssssissinsssestessesnesnssen s e e nas = '
i Camera
Force plate

Figure 3.13 a) Set up for impact rig validation and measuring ball/core deformation and b) Method for

calculating maximum ball/core deformation.

Table 3.1 Richimas tracking repeatability for ball and core impacts on a rigid surface. (value;/ value;) =

SD/ SD as a percentage of the mean.

Low inbound Medium inbound High inbound

Velocity (m's™) Velocity (m's™) Velocity (m-s™)
Ball Mean inbound velocity (m's™) 6.7 (0.4/ 5.8%) 9.7(0.4/4.1%) 26.1(0.5/1.9%)
Mean deformation (mm) 11.5(0.4/3.6%) 15.3(0.2/1.4%) 31.9(0.2/0.6%)

Punctured . . “
Ball Mean inbound velocity (m's™) 5.4 (0.2/3.9%) 15.6 (0.4/2.6%) 23.3(0.5/2.3%)
Mean deformation (mm) 9.8 (0.2/ 1.6%) 23.9 (0.3/1.4%) 29.1(0.2/0.7%)
Core Mean inbound velocity (m-s™) 6.7 (0.4/5.7%) 15.1(0.6/4.1%) 25.1(0.4/1.7%)
Mean deformation (mm) 15.4 (0.5/3.3%) 25.5(0.3/1.3%) 33.0(0.4/1.2%)

Punctured . . 4

Core Mean inbound velocity (m-s™) 4.8 (0.9/18.4%) 13.5(0.9/6.6%) -

Mean deformation (mm)

9.3(0.9/9.1%)

20.5(0.3/1.5%)

The laboratory investigation was replicated in the FE model by simulating
impacts of punctured and pressurised cores and balls on a rigid surface with
inbound velocities from 5 to 30 m's™, at 5 m-s™ increments. The rubber core
model was produced by removing the felt cover from the ball. Although not
initially pressurised, the punctured core and ball were assigned airbags, with an
initial pressure of 0 at a relative volume of 1, as it was assumed that no air will

enter or exit during the collision (Figure 3.14). The pressure volume curve
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shown in Figure 3.14 was calculated in the same way as for the pressurised ball

model (Page 66).
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Figure 3.14 Pressure volume curve for the punctured balls and cores.

The MAT_OGDEN-RUBBER model used for the rubber core is based on
extended tensile material data (Figure 3.10, page 68), due to limitations with the
available equipment. In order to ensure the highest possible accuracy a ball
model was constructed using the measured rubber material properties
(Figure 3.5, page 63) and analysed against the model based on the extended
material data. The shear modulus coefficients from the measured model are
-1.375, 5.646 and 7.75 and the alpha constant coefficients are -2.624, -1.424
and 3.28. The ball models based on the measured and extended tensile rubber

properties were analysed for rebound velocity.

3.4.2. Results
Figure 3.15 shows that the rebound speeds of the punctured and pressurised
core models are in good agreement with the experiment for inbound velocities
above approximately 15 and 20 m-s™, respectively. For lower inbound speeds
both models slightly under-calculate the rebound velocity of the cores. The
punctured and pressurised ball models show very strong agreement with the
experimental data at low speeds, only marginally underestimating the rebound
velocity (Figure 3.15). At velocities above 15 m-s™ for the punctured ball and 25

m-s™! for the pressurised ball, the rebound speed was marginally overestimated.
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Figure 3.15 Rebound velocity against inbound velocity for perpendicular impacts on a rigid surface a)

Punctured core, b) Core, ¢) Punctured ball, d) Ball (Experimental results obtained using light gates).

A 2" order polynomial trend line was fitted to each set of results from the four
FE models. The equation of this line was used to compare the FE model results
with the experimental data, for each calculated inbound velocity. Table 3.2
shows the root mean squared error (RMSE) between the FE models and
experimental data was less than 0.8 m-s™ for all four sets of impacts. The same
method was used to statistically compare maximum deformations and contact

times.

Table 3.2 RMSE between the model and experiment for rebound velocity

Punctured core Core  Punctured Ball  Ball
RMSE for rebound velocity (m-s™) 0.79 0.62 0.70 0.39
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Table 3.3 shows a comparison between the results obtained for rebound
velocities of the pressurised ball models based on the measured (Figure 3.5,
page 63) and extended (Figure 3.1, page 68) rubber material properties. The
RMSE between the rebound velocities obtained from the two models is less
than 0.05 m-s™. However, it is predicted that the model based on the extended
material data will be more reliable for simulating impacts with additional
complexity. If the measured material data was used, the FE model would have
to predict the characteristics of the rubber if the maximum strain was greater
than 0.2. Therefore, using the extended material data should result in a more

stable model.

Table 3.3 Rebound velocity comparison for the pressurised ball models based on the measured and

extended tensile rubber material data.

Inbound velocity Extended tension Measured tension Difference
(m-s™) rebound velocity (m's™) rebound velocity (m's™) (m-s™)

5 3.87 3.87 -1.3x 107

10 7.33 7.33 22x 10"

15 10.35 10.36 4.6 x10°

20 12.86 12.88 2.0 x 10

25 14.69 14.74 -5.7 x 10

30 15.99 16.07 -8.4 x 10°

RMSE 4.2x 107

Figure 3.16 shows that the core models both show strong agreement with the
experimental data for maximum deformation for the full range of velocities under
investigation. It should be noted that the model does tend to appear to slightly
under-calculate the deformation of the pressurised core, indicating that the
structural stiffness is too high. The pressurised ball model is in excellent
agreement with the experiment, as with the results for rebound velocity.
However, the punctured ball model slightly over calculates the deformation,
suggesting that the structural stiffness is too low. The RMSE for maximum
deformation, between the FE models and experimental data, is less than 3 mm

for all four sets of impacts (Table 3.4).
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Figure 3.16 Deformation against inbound velocity for a perpendicular impact on a rigid surface a)
Punctured core, b) Core, c) Punctured ball, d) Ball (Experimental results obtained a high speed video

camera (Figure 3.13, page 71).

Table 3.4 RMSE between the model and experimental data for maximum deformation.

Punctured core Core  Punctured Ball Bali
RMSE for maximum deformation (mm) 1.07 2.60 242 0.99

Figure 3.17 shows that the core models have good agreement with the
experimental data for contact duration at high impact speeds. At lower
velocities, below approximately 7 and 15 m-s” for the punctured and
pressurised model, the contact time is marginally overestimated. Both ball
models show excellent agreement with the experiment, except for a slight
overestimation of contact duration at slower velocities. This implies that the ball

models dissipate too much energy during low speed collisions, which is in
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agreement with the results for deformation and rebound velocity. Table 3.5
shows the RMSE between the FE models and experimental data was less than
0.4 ms for all four sets of impacts.
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Figure 3.17 Contact time against inbound velocity for perpendicular impacts on a rigid surface a)

Punctured core, b) Core, c) Punctured ball, d) Ball (Experimental results obtained a force plate).

Table 3.5 RMSE between the model and experimental data for contact time.

Punctured core  Core  Punctured Ball Ball
RMSE for contact time (ms) 0.27 0.23 0.35 0.36

Figure 3.18 shows a comparison of force plots from the FE with force plots
obtained experimentally, using a force plate. As vibrations were observed on all
of the experimental force plots they were analysed to determine the
fundamental frequency. The data was analysed by converting it into the

frequency domain in Matlab using a Fast Fourier transform (FFT). The
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fundamental

frequency was calculated as

& we R R R

ball, and more likely to be a mode of vibration of the force plate.

Figure 3.18 shows that the force plots for the 5 m's™ (experiment correct to 0.6
m-s™") impacts are all in good agreement with the experimental results. This is
particularly true for the peak force and the drop in force near the start of the
impact, due to the wall buckling. However, the model predicts that the buckling

occurs approximately 0.15 ms later than the experiment and the overall contact
time is over calculated by around 0.5 ms.
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(Appendix A.3, page 244). This high frequency is unlikely to be a mode of the
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Figure 3.18 Force plot of a 5 m's™ perpendicular impact for a a) Punctured core, b) Core, c) Punctured

ball. d) Ball (Experimental results obtained using a force plate).

Figure 3.19 shows that at an inbound velocity of 15 m-s™ (experiment correct to
0.1 m-s”) all the models, except the punctured core, have relatively good
agreement with the experimental data for both the peak force and curve shape.

The accurate estimates of contact time, for all the models, indicate that they

have the correct structural stiffness (Brody et al., 2002).

77



Expaftment

. ;— Experiment
Punctured Core FE Model Pressurised Core

FE Model

Time (ms) Time (ms)

Punctured Ball

Time (ms) Time (ms)
Figure 3.19 Force plot ofa 15 m s'lperpendicular impact for a a) Punctured core, b) Core, ¢) Punctured

ball and d) Ball.

Figure 3.20 shows that at an inbound velocity of 25 m-s'1(experiment correct to
0.1 m-s']) there is a very strong agreement with contact times between the core
and punctured and pressurised ball models and the experimental data. There is
also good agreement, between model and experimental data, for the time at
which buckling of the walls initiates. However, the models under-predict the
buckling force, indicating their structural stiffness is too low. No experimental

force plots were obtained for the punctured core at 25 m-s'1.
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Figure 3.20 Force plot of a 25 m's™ perpendicular impact for a a) Core, b) Punctured ball, c) Ball.

3.4.3. Discussion

An FE model of a pressurised tennis ball has been validated for perpendicular
impacts ranging from 5 to 30 m-s™, on a rigid surface. These impacts give
typical ball deformations which are encountered during play. The resuits show
that the punctured core model marginally over predicts the rebound velocity,
indicating that the energy losses are insufficient. Any errors within the rubber
material model are likely to be as a result of the method used for obtaining the
compression data, which does have the ability to produce shear stresses within
the test piece. A more accurate method would be to use a biaxial tester as this
creates a condition of simple compression.

The purpose of the pressurised core simulations was to test the airbag model.
As the punctured and pressurised core models have a very similar agreement
with the experimental data it is concluded that the current airbag can be
considered to be an accurate representation of the internal pressure within a
tennis ball. The punctured ball model is used to assess the accuracy of the felt
cover and the results show strong agreement with the experimental data for
velocities below approximately 20 m's™. The models overestimation of rebound
velocity, above 20 m-s™, is believed to be as a result of the high impact that
forces air to escape from the punctured balls during the experiment. The
stronger agreement with the experimental results for the pressurised ball model
at high impact velocities provided evidence for this prediction. However, the
pressurised ball model over predicts the rebound velocity at high impact speeds
indicating that the energy losses are insufficient. This is likely to be due to errors
within the felt model, as found by Goodwill et al. (2005). The felt material model
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could be improved by replacing the input properties with those obtained from a

biaxial test machine.

3.4.4. Summary

An FE model of a normal impact between a pressurised tennis ball and a rigid
surface has been produced and validated at room temperature. Analysis
against experimental data has been undertaken on the complete pressurised
ball model, along with separate investigations of its individual components. The
model has been validated for impact speeds between 5 and 30 m-s™ and can
be used to obtain a range of results including rebound velocities, contact times,
impact forces and deformations. This will aid in furthering the understanding of
the ball impact and the model can now be extended to simulate the full range of

collisions that are encountered during a game of tennis.

3.5. Validation of the tennis ball model for different

temperatures

3.5.1. Modifications to the FE model

In this section the FE model of a tennis ball is modified to simulate temperatures
of 283.15 and 313.15 K. The temperature, at which the original FE model's
material testing or validation was undertaken, was not recorded. For the
purpose of this investigation both of these temperatures were considered to
have been 295.15 K (22°C); assuming this to be a realistic estimation of room
temperature. Figure 3.21 shows the relationship between the internal pressure
and relative volume of the ball, for temperatures of 283.15, 295.15 and 313.15
K. For simplicity the initial volume was assumed to remain constant between

temperatures.

80



x10°

~—283.15 Kelvin
----- 295.15 Kelvin
===313.15 Kelvin

w

5
o

g
[

Pressure (N-m2)
N

8.5 06 07 08 09 1 11 42 13 14 15
Relative volume

Figure 3.21 Tennis ball internal pressure against relative volume, for temperatures in the range from

283.15t0 313.15K.

The mechanical properties of the rubber core of a tennis ball also change with
temperature. The effect of altering the static stiffness of the rubber core was
achieved by adjusting the stress-strain data in the MAT_OGDEN_RUBBER
material model (Figure 3.22a). To produce models, which simulated the full
effects of adjusting temperature, both the internal pressure (Figure 3.21) and
static and dynamic material properties of the rubber were modified. The static
modulus of the rubber was increased by 10% for the model at 283.15 and
decreased by 10% for the model at 313.15 K (Figure 3.22a). The stress
relaxation modulus of the rubber in the model was increased by 75% to
simulate a temperature of 283.15 K and it was decreased by 20% for 313.15 K
(Figure 3.22b). The results of the fit to the material model and relaxation curve
are shown in Table 3.6. The material properties of the felt were not modified
with temperature, as any changes were assumed to have an insignificant effect
on the rebound characteristics of the ball. The apparatus required to obtain the
material properties of the rubber at different temperatures was not available for
this project. Therefore, the material properties of the rubber were changed in an
iterative process until the models were in good agreement with the experimental

data, in terms of both COR and contact time.
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Figure 3.22 a) Static rubber core material properties, a) Dynamic rubber core material properties

Table 3.6 Fit to MAT OGDEN_RUBBER for temperatures of 283.15 and 313.15 K.

Temperature (K) 283.15 313.15
Ogden shear -0.1636 x 10", 0.1707 x 10° -0.1338 x 10™", 0.139 x 10’
modulus coefficients 0.2363 x 10" 0.1934 x 10"
Ogden alpha -0.7424 x 10", -0.1664 x 10’ -0.7424 x 10", -0.1664 x 10’
constant coefficients 0.3280 x 10' 0.3280 x 10"
Maxwell shear -3.4562 x 10, -2.5360 x 10" 1.5800 x 10, 1.1593 x 10™
modulus coefficients 3.5419, 1.4366 1.6192, 6.5675 x 10
Decay constant 2.5675 x 10", -2.5957 x 10° 2.5675 x 10", 2.5957 x 10°
coefficients 2.6242 x 10°, 2.6531 x 10* 2.6242 x 10°, 2.6531 x 10*

The FE models were validated by comparing COR and contact times, for
perpendicular impacts with a rigid surface, with the experimental results
published by Downing (2007a). Details of the experimental procedures can be
found in Downing (2007a). The first stage of this investigation was to analyse
the effect of only adjusting the internal pressure of the model for temperatures
of 283.15 and 313.15 K. Following this, an analysis was undertaken to identify
the effect of increasing and decreasing the static stiffness of the rubber by 10%,
whilst keeping the original internal pressure. Finally, the internal pressure and
static and dynamic material properties of the rubber were all updated to

simulate the two temperatures under investigation.
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3.5.2. Results
The results from Downing (2007a) at 298.15 K were initially compared to the FE

model and experimental data from the previous section. This was necessary
due to different balls being used in each experiment, in addition to
discrepancies in the test temperatures. Figure 3.23 shows that COR and
contact times were found to be in good agreement between the two sets of
experimental data and the original FE model. However, contact times were
marginally higher at inbound velocities below 20 m-s™ for the validation data
and the FE model in comparison to Downing (2007a).
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Figure 3.23 a) COR and b) contact time, comparison between the experimental data from the original
validation data (295.15 K) and Downing (2007a) (298.15 K) and the original FE model.

Figure 3.24 shows that when only the internal pressure was adjusted, the model
over-predicted COR when the temperature was 283.15 K. At 313.15 K the
model is in good agreement with the experimental data, although it marginally
under-predicted COR for inbound velocities below 20 m's™. The FE model and

experimental data both show increasing COR with temperature.
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Figure 3.24 COR for adjusted internal pressure at temperatures of a) 283.15 K and b) 313.15 K.

Figure 3.25 shows that that when only the internal pressure was adjusted, the
FE model was in relatively good agreement with the experimental data at both
temperatures, for contact time. However, the experimental data shows
increasing contact time with temperature, whilst the FE model has the opposite

trend.
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Figure 3.25 Contact time for adjusted internal pressure at temperatures of a) 283.15 K and b) 313.15 K.
Experimental data from Downing (2007a).

Figure 3.26a shows that increasing the static stiffness of the rubber in the FE
model by 10% results in a marginal increase in the COR (dynamic stiffness kept
constant). The opposite was the case for a 10% reduction in static stiffness.
Figure 3.26b shows that reducing the static material stiffness by 10% results in
a significant increase in contact time. Again, the opposite was the case for a
10% increase in stiffness. The range in both COR and contact time between
both FE models (20% change in rubber material stiffness) is approximately
equal to the range of scatter in the experimental data, for a specific inbound
velocity.
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Figure 3.26 Effect ofthe quasistatic rubber material stiffness on a) COR and b) contact time.

Experimental data from Downing (2007a).

Figure 3.27 shows that the FE model, with the updated internal pressure and
static and dynamic rubber material properties, is in good agreement with the
experiment for COR at 283.15 K (static and dynamic rubber modulus 10 and
75% higher respectively) and 313.15 K (static and dynamic rubber modulus 10
and 20% lower respectively). The model and experiment both show increasing

COR with temperature.

o Experiment Experiment
— FE Model FE Model

Inbound Velocity (m s'1) Inbound Velocity (m s'1)
Figure 3.27 COR results for the complete ball model updated to simulate temperatures of a) 283.15 K
and b) 313.15 K. Experimental data from Downing (2007a).

Figure 3.28 shows that the complete model is also in good agreement with the

experimental data for contact time at both temperatures. Both the model and

experiment show increasing contact times with temperature.
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Figure 3.28 Contact time results for the complete ball model updated to simulate temperatures of a)

283.15 K and b) 313.15 K. Experimental data from Downing (2007a).

Figure 3.29 shows that the maximum impact force is marginally higher at
283.15 K in comparison to 313.15 K for all the inbound velocities under
investigation. It can also be observed that the maximum force occurs earlier into
the impact for the model at 283.15 K for inbound velocities of 15 and 20 m-s™.
At inbound velocities of 25 and 30 m-s™ the maximum impact force at 283.15 K
lags that of the model at 313.15 K.
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Figure 3.29 Force plots for the complete ball models a) 15 m's™, b) 20 ms?, ¢) 25 ms™, b) 30 m's™.
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3.5.3. Discussion

Increasing the internal pressure of a tennis ball, in isolation, raises its structural
stiffness, thus reducing its contact time. Hence, when only the internal pressure
of the tennis ball was adjusted, contact times were found to decrease with
temperature. This was in contradiction to the experimental data, where contact
times increased with temperature. When the effect of changing the material
properties with temperature is added into the model, contact time and COR are
in good agreement with the experimental data. Therefore, in accord with
Downing (2007a), it is concluded that the change in a ball's material properties
with temperature, have a greater influence on its rebound characteristics than
the alteration in internal pressure. In this paper it was found that a greater
change in the dynamic material properties of the rubber was required to
simulate a temperature of 283.15 K (75% increase), in comparison to 313.15 K
(20% decrease). This was also found by Downing (2007a), who demonstrated
that for normal impacts there is a greater difference in both COR and contact
times between 298.15 and 283.15 K, in comparison to 298.15 and 313.15 K.
Independently adjusting the static material properties of the rubber resulted in
an increase in COR and a reduction in contact time, with increasing stiffness. A
tennis ball's static structural stiffness is predicted to be affected by temperature
in two ways; 1) the material and hence structural stiffness of the ball is reduced
with increasing temperature and 2) the lower static stiffness of the rubber at
higher temperatures results in the ball expanding more from the applied internal
pressure, which in turn increases its volume lowering its initial internal pressure.
The diameter of the ball in the FE model was found to increase from 0.066004
to 0.066204 m when the simulated temperature was increased from 283.15 to
313.15 K. This equated to a 0.62% increase in the frontal area or drag force
acting on the ball during flight. Further research is required to determine
whether temperature has a significant effect on a tennis ball's cross sectional
area and hence flight characteristics.

The results show that when just the internal pressure of the ball was updated to
simulate a temperature of 283.15 K, the model over-predicted COR. It was also
found that increasing the static stiffness of the rubber, to simulate a drop in
temperature, resulted in an increase in the COR, making the model over-predict
the COR even more. Therefore, if only the internal pressure and static stiffness
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of the rubber were adjusted the model would over-predict COR at 283.15 K,
whilst the opposite would be the case at 313.15 K. An increase in damping
results in a decrease in COR (Dignall and Haake, 2000); hence including the
change in the dynamic material properties of the rubber resulted in strong
agreement with the experimental data.

This investigation has provided an indication as to how the static and dynamic
material properties of a tennis ball rubber core change with temperature.
However, the intention of this study was only to provide a gauge of the extent to
which the material properties of a tennis ball change with temperature. In this
investigation the static material properties were assumed to adjust with
temperature, whilst following the trend of the original data. In reality it is very
unlikely that this would be the case, especially in the range from 298.15-283.15
K, which experienced the largest change in rebound characteristics. In addition,
more precise material testing would be required to determine how the static
properties of rubber cores change with temperature. Relaxation testing at a
range of temperatures could be used to determine the stress relaxation
properties of the rubber.

The change in felt material properties with ‘temperature may also have an
influence on the rebound characteristics of a tennis ball. If the stiffness of the
felt were to decrease with increasing temperature, then the ball would stretch
more from the internal pressure. This would in turn increase the initial volume of
the ball, reducing its internal pressure and hence structural stiffness. However,
it is predicted that the stiffness of the felt would change by a very marginal
amount within the temperature range used in this investigation. In-depth
material testing would be required to quantify how the felt properties change

with temperature.

3.5.4. Summary

An FE model of a tennis ball, validated at room temperature, has been updated
to simulate temperatures of 283.15 and 313.15 K for inbound velocities in the
range from 15 to 30 m-s™". This was achieved by modifying the internal pressure
in accordance with the laws of thermodynamics, whilst simultaneously
estimating the change in the rubber core material properties. The model was

found to be in good agreement with the experimental data for the entire range of
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velocities under investigation, at both temperatures. Overall, the change in
rubber properties with temperature was found to have a more significant effect
on the rebound characteristics of a tennis ball than the change in internal
pressure (Downing, 2007a). In-depth material testing would be required to
determine precisely how the rubber core and felt cover properties change with

temperature.

3.6. Chapter summary

In this chapter the properties of tennis balls were obtained and used to produce
an FE model in Ansys/LS-DYNA 10.0. The rubber core was simulated with a
MAT_OGDEN_RUBBER material model, whilst MAT_LOW-DENSITY_FOAM
was used for the felt cover. An AIRBAG_SIMPLE_PRESSURE_VOLUME
command was used to replicate the internal pressure of the ball. The complete
model and the separate parts were all validated against experimental data
obtained at room temperature for perpendicular impacts. There was good
agreement between the model and experimental data for the full range of
impact velocities (5-30 m-s‘1) under investigation. The model was subsequently
updated to simulate temperatures of 283.15 and 313.15 K for inbound velocities
in the range from 15 to 30 m-s™. This was achieved by modifying the internal
pressure in accordance with laws of thermodynamics, whilst simultaneously
estimating the change in the rubber core material properties. The model was
found to be in good agreement with the experimental data for the entire range of
velocities under investigation, at both temperatures. The next stage of the

project is to build and validate an FE model of a head-clamped tennis racket.

3.7. Practical applications

Tennis balls rebound slower from a rigid surface when they are punctured. The
internal pressure of a tennis ball will decrease over time, once it has been
removed from its pressurised container. Therefore, it is predicted that using old
tennis balls will decrease the speed of the game.

Tennis balls rebound slower from a rigid surface when the temperature is 10°C
in comparison to 40°C. Therefore, it is predicted that the speed of the game will
be increased when played at 40°C in comparison to 10°C.
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4. Head-clamped racket model

4.1. Introduction

Following the work detailed in Chapter 3, the next logical step was to obtain the
required properties of tennis strings and construct an FE model of a string-bed.
It would be very difficult and computationally inefficient to simulate the entire
process of stringing a tennis racket in an FE model. Therefore, the string-bed
geometry will be constructed as an interwoven lattice of individual main and
cross strings prior to any loads, which represent string tension being applied.
The string-bed model will be validated against experimental data, obtained by
projecting balls onto a head-clamped racket. To provide a rigorous validation a
range of inbound velocities, angles and spin rates will be used. Following this, a
model of a head-clamped tennis racket will be constructed and validated
against experimental data. This model will be validated for four different impact
locations on the string-bed. This will enable a large area of the string-bed to be
validated, as opposed to just a single location. The results obtained from the
head-clamped racket model will also be analysed against those from the string-

bed model. The main objectives of this chapter are;
1. To obtain the required properties of tennis strings.
2. To build an FE model of a tennis racket string-bed.

3. To validate an FE model of a tennis racket string-bed against

experimental data.
4. To build an FE model of a head-clamped tennis racket.

5. To validate an FE model of a head-clamped tennis racket against

experimental data.
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The strings simulated in the model are Prince Premier Softflex 16 (nylon) and

the dimensions of the string-bed are based on those of a Prince TX151 racket.
4.2. String properties

4.2.1. Introduction

Tennis strings with a diameter of 1.32 x 10°+ 0.02 x 10° m and a density of
1100 kg'm™ were provided by the manufacturer for testing. The diameter and
density of the strings were also provided by the manufacturer. As previously
mentioned the string-bed geometry is to be constructed as an interwoven
lattice, prior to any loads which represent string tension being applied. This
means the geometry of the non-tensioned string-bed in the model will be
representative of the geometry of an actual tensioned string-bed. Therefore,
only the string properties above the stringing tension are required.
MAT_ELASTIC was the linear material model selected for the strings. This
material model was selected as it has low computational requirements and
tennis strings are believed to have relatively linear properties in their operational
range (Calder et al., 1987), as detailed in the literature review (Section 2.3.3,
Page 15). Cross (2001a) proposed two methods for determining the dynamic
stiffness of tennis strings in their operational range. In method 1, the Instron
method, the change in length between 311 and 222 N (70 and 50 Ibs) is
obtained from the unloading curve of a specific Instron test. Method 2, the
Hammer method, involves striking a string tensioned to 275 N with a hammer
and measuring the change in tension and perpendicular displacement. The
change in length of the string is calculated from its perpendicular displacement.
In both methods the dynamic stiffness is defined as the ratio of the change in
force to change in length. The Young's modulus of the string can be calculated
by multiplying the dynamic stiffness by the length and dividing by the cross
sectional area. In this section the two methods of obtaining dynamic stiffness
will be used to calculate the Young's modulus of the string. The two methods for
obtaining the dynamic stiffness of tennis strings are detailed in full in the

literature review (Section 2.3.3, Page 15).
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4.2.2. Results

The Instron method was used to obtain tensile force-displacement curves for
the string (Figure 4.1). The test was repeated ten times (Figure 4.2) and the
mean dynamic stiffness was calculated as 33.3 kN-m"1, with a SD of 0.46
kKN-m'1. The stiffness obtained from the Instron machine is considered to be
dynamic because it is obtained from an unloading curve of a specific test, as
detailed in the literature review (Section 2.3.3, Page 15). The slight variation,
which can be observed between the repeats, could be due to marginal material
or geometric variations between the individual lengths of string tested. Material
variations could be a result of the manufacturing process, whilst geometric
variations could be due to slight differences in the cross sectional area or gauge
length.

Two separate values of dynamic stiffness were used to calculate a Young's
modulus for the strings using the Hammer method. A value of 26.1 kN-m'1, with
a standard deviation of 0.11 kN-m'1was provided by the manufacturer and a
value of 30.8 kN-m"1was taken from Lindsey (2006). The marginal discrepancy
in the values of dynamic modulus obtained from the two sources is expected

due to experimental inconsistency between the different operators.

Figure 4.1 Setup for tennis string materials testing using the Instron method.
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Figure 4.2 Instron force extension plots for tennis strings.

The calculated values of Young's modulus for the different tests are shown in
Table 4.1. The values of Young's modulus obtained from the Hammer strike
method are 17% (manufacturer) and 23% (Lindsey, 2007) higher than the value

obtained from the Instron method.

Table 4.1 Young's modulus values obtained for the tennis string.

Method Young's Modulus (GN-m")
Instron 5.85 £ 0.09
Hammer - Dynamic modulus from manufacturer 6.8
Hammer - Dynamic modulus from Lindsey (2006) 7.2
4.2.3. Summary

The dynamic properties of Prince Softflex strings have been obtained using the
Instron and Hammer method. There was a relatively large difference in the
values of Young's modulus obtained using the two experimental methods. The
material properties, from both methods, will now be incorporated into separate
FE models of tennis racket string-beds. Further work will be undertaken to
determine which method of dynamic string testing results in the optimum value

of Young's modulus.
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4.3. Finite element model of a tennis racket string-bed

4.3.1. FE model of a tennis racket string-bed

An explicit FE model of a tennis racket string-bed, consisting of 16 main and 19
cross strings, was created in Ansys/LS-Dyna 10.0 (Figure 4.3). The overall
dimensions of the string-bed were 0.331 * 0.253 m, with the strings having a
diameter of 1.32 * 10'3 m. The string-bed pattern was based on dimensions
provided by the racket manufacturer. As explained in the previous section two
different methods were used for measuring the Young's modulus of the strings
within their operational range, the Instron (5.85 GN-m"2) and the Hammer (7.2
GN-m'2) method (Section 4.2, page 9190). The operational range of strings is
defined as the region between the stringing tension and the maximum load
applied during a tennis shot. As the two methods produced different values of
Young's modulus two separate MAT_ELASTIC material models were
constructed for the strings and independently validated. The density was 1100
kg-m"3 and the Poisson's ratio was assumed to be 0.3. SOLID164 3-D 8 node
bricks (identical to the ball), with single point integration or constant stress, were
used to mesh the main and cross strings, which consisted of 19,624 and 17,712
elements, respectively. This mesh density was selected as it produced
elements of a similar size to those in the ball and hence prevented contact

instabilities.

(@) (b)

Rigid
cylinder

Figure 4.3 a) String-bed model and b) Close-up of string-bed model showing the rigid cylinders on the ends of

every string.
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Contact between the ball and string-bed was defined as
CONTACT_AUTOMATIC_SURFACE_TO_SURFACE with a COF of 04
(Cross, 2000b). The same procedure was used for string to string contact,
except the COF was set to 0.1. As with the ball to rigid surface model the
contact option SOFT = 1 was used for the ball to string-bed contact. When the
option SOFT = 1 is used, the contact stiffness is based on the nodal mass and
global time step size. This option was used by Goodwill et al., (2005) when
simulating an impact between a ball and a rigid surface and is generally better
when modelling contact between materials with a large difference in stiffness
(LSTC, 2003) i.e. the strings and felt. The hourglass coefficient was set to 0.15,
as in the ball model (Section 3.3, Page 64), to prevent zero-energy modes of
deformation. Unlike the ball model the time step scale factor was set at the
default of 0.9. Reducing the time step scale factor to improve contact behaviour
was not required as the strings had a significantly lower stiffness that the rigid
surface, which was used in the ball model validation (Section 3.3, page 64). A
rigid cylinder 1 x 10 m in length and 1.32 x 10 m in diameter was attached to
both ends of every string (Figure 4.3b). A load of 150 N was applied to each of
these rigid volumes, in the required direction during the dynamic relaxation
phase, to produce a total tension on every string of 150 N. These rigid volumes
were then fully constrained during the transient phase of the simulation,
effectively resulting in the string-bed of a head-clamped racket. Applying
constraints to rigid cylinders as opposed to directly to the ends of the nylon
strings, prevented element distortion, hence resulting in a more stable model.
The convergence tolerance for dynamic relaxation was 0.01 (Figure 4.4). This
increase in convergence tolerance, in comparison to the ball model (Chapter 3),
was required to reduce the elevated convergence time as a result of the extra
complexities of the string-bed model. The stated tolerance was necessary to
ensure that the simulations would actually converge within a realistic time

frame.

95



-

4
©

ot
o

~
H T H

o o o
o

(L)
T H

Convergence tolerance
(=]
£

4
w

o
N

o
-

62 04 06 0.

>

o

8 1 12 14 16 18 2
Time (s) x10°?

Figure 4.4 Convergence of string-bed model.

The string-bed model was validated by simulating an impact with the tennis ball
model (Chapter 3, Page 59). The ball's initial velocity and spin were assigned
using INITIAL_VELOCITY_GENERATION. In order to ensure the impact
occurred at the correct location, the string-bed's position in the horizontal plane
was adjusted according to the distance the ball would travel up to the point of
contact. This was achieved using a piece of bespoke software, developed in MS
Visual Basic 2005, which modifies the LS-DYNA .k text file by selecting the
nodes corresponding to the string-bed and updating their locations. This
programme, Tennis Design Tool (TDT), is the basis of a tennis racket design
tool. The TDT is described in detail in Chapter 6 (Page 159). The initial position
of the geometric centre of the ball remained at the origin of the world coordinate

system as this allows the simplest application of spin.

4.3.2. Summary

A string-bed model consisting of 16 main and 19 cross strings was constructed
in Ansys/LS-Dyna 10.0. Solid elements were used to mesh the strings and
contact between them was defined using CONTACT_AUTOMATIC_SURFACE-
_TO_SURFACE. String-bed tension was replicated by applying a load of 150 N
to a rigid cylinder on both ends of every string in the dynamic relaxation phase.
The model will now be validated against experimental data.
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4.4. Validation of the string-bed model

4.4.1. Experimental methods

Tennis balls were projected against a head-clamped racket using a modified
BOLA device (Figure 4.5). An aluminium tube was fitted to the BOLA to provide
greater consistency for the balls inbound angle. An International Tennis
Federation (ITF) Carbon Fibre tennis racket with a head size of 0.063 m? (98
in?) was used for all tests. Two groups of four rackets were used in the
investigation, strung at 200 and 289 N (45 & 65 Ibs), respectively. To ensure
consistent and accurate results the string-bed deflection of the rackets was
measured directly before and after testing using a Babolat RDC machine
(Section 2.3.4, Page 19), the mean of these two values are quoted in this
section as opposed to the stringing tension. Ball inbound angles and velocities
in the range from 20 to 60° and 20 to 30 m's™ were analysed. A range of
velocities and angles were used to provide a rigorous validation of the string-
bed. This will ensure that the final user will have confidence in the ability of the
complete racket model to accurately simulate a wide range of different tennis
shots. The inbound angle was adjusted by tilting the racket as opposed to
adjusting the cannon and flight path of the ball. To account for the horizontal
distance travelled by the ball whilst in contact with the string-bed the impacts
were offset from the long axis of the racket. Changing the frame of reference
from the court to the laboratory, where the racket is initially stationary, means
that the ball should have backspin prior to impact to represent a topspin shot
(Goodwill et al., 2004a). Around twenty impacts were undertaken for every
racket at each angle; the inbound backspin was varied from 0 to 600 rad-s™.
This range of inbound spin was considered to be representative of the majority
of groundstrokes during match play. Two rackets were used for each string

tension at 40° and the mean RDC values are quoted in the results section.
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Figure 4.5 Experimental setup for the head-clamped racket testing.

The flight of the balls was recorded as a series of bitmap files, using a Phantom
v4.1 high-speed video camera, positioned 8 m from the racket in the direction of
its longitudinal axis and recording at 1000 fps (Figure 4.6). The string-bed axis
definitions shown in Figure 4.6 will be used throughout this thesis. Inbound and
rebound velocities, angles and spins were measured from the recorded images

using Richimas v3. Details of the use of Richimas can be found in Goodwill and

Haake (2004a).

Long axis

Camera

Short axis

Figure 4.6 Camera position for recording the head-clamped racket impacts.

The mean inbound angles were found to be different from those predicted from
the experimental set-up; the calculated values are shown in Table 4.2. For
simplicity the inbound conditions will be referred to by their nominal values. The
impact locations had to be calculated as they were offset from the centre of the
string-bed. The mean horizontal distances from the ball impact location to the
geometric string-bed centre (GSC), were calculated for each set of impacts.
This was achieved by estimating each ball's impact position relative to the

string-bed centre, from its initial location upon exiting the tube fitted to the BOLA
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and the calculated mean angle corresponding to the experimental set-up.
Figure 4.7 shows how the impact locations were calculated when the nominal
inbound angle was 40°. The initial location of the ball was used to obtain its
horizontal and vertical distance from the centre of the string-bed, labelled Xi
and Y in Figure 4.7, respectively. The distance Y and the inbound angle (0)
where then used to calculate the horizontal displacement of the ball up until the
point of impact (X2). The impact distance from the centre of the string-bed (X3)
was obtained by subtracting X2from Xi. Full details of how the impact locations
were calculated for the other inbound angles can be found in (Appendix B.1,
Page 247). The calculated impact locations are shown in Table 4.2. FE
simulations were undertaken with inbound velocities, angles and impact
locations identical to those in the laboratory experiment. For each angle and
velocity pair, simulations were undertaken with backspin ranging from 0 to 600

rad s'1, at 200 rad s'1increments.

BOLA

String-bed centre

String-bed - -

Figure 4.7 Obtaining impact position on the string-bed for a nominal inbound angle of40°.

99



Table 4.2 Inbound angles, velocities and impact locations relative to the centre of the string-bed (mean + SD)

Nominal inbound
60 60 40 40 20 20
angle (°)

Nominal inbound
i 4 30 20 30 20 25 20
velocity (m's™)

Calculated inbound
574+11 576+09 377+ 08 377112 179+ 1 18.3+09
angle (°)
Calculated inbound
. " 297+09 204105 29907 204105 249+05 204104
velocity (m's™)
Mean horizontal impact distance 0.070 0.069 0.055 0.052 0.045 0.042

from the string-bed centre (m) t+ 0.007 1 0.004 1 0.007 +0.010 +0.007 +0.010

A repeatability study was undertaken to assess the level of human error in the
Richimas method. An impact at low, medium and high inbound spin was
selected and analysed ten times (Table 4.3). The SD are similar to those found
by Goodwill and Haake (2004a). All of the other impacts were analysed once
and are assumed to have SD similar to those in Table 4.3.

Table 4.3 Standard deviations for the manual tracking method for ball impacts on a head-clamped racket.

(value) = SD as a percentage of the mean.

Low inbound spin Medium inbound spin High inbound spin

(-6 rad-s™) (331 rads™) (610 rad-s™)
Inbound velocity (m-s™) 0.2 (0.5%) 0.1 (0.4%) 0.2 (0.7%)
Rebound velocity (m-s™) 0.1 (0.4%) 0.1 (0.6%) 0.1 (0.6%)
Inbound angles (°) 0.3 (0.8%) 0.4 (0.9%) 0.5 (1.2%)
Rebound angles (°) 0.3 (71.0%) 0.4 (2.0%) 0.2 (2.8%)
Inbound spin (rad-s™) 6.3 (819.5%) 12.2 (3.7%) 10.0 (71.6%)
Rebound spin (rad's™) 12.5 (56.1%) 7.2 (3.8%) 3.8 (2.4%)
Impact distance from long axis (m) 0.001 (1.8%) 0.001 (2.1%) 0.001 (2.3%)

4.4.2, Results

Figure 4.8a-f shows that the model results for rebound velocity are in good
agreement with the experimental data. Although the model marginally under-
estimated the rebound velocity of the ball at 20° and 20 m-s™, for a backspin of
200 rad-s™ (Figure 4.8a). The model also appears to slightly over-calculate
rebound velocity at 60° and 30 m-s™ (Figure 4.8f). Overall, the results from both
the model and experiment show that rebound velocity decreases as the inbound
angle, relative to the racket normal, increases. Rebound velocity can also be
seen to decrease with increasing inbound backspin; with the decrease
becoming more pronounced as the inbound angle increases. Although, at an
100



angle of 60° the rate of decrease in rebound velocity drops significantly for
inbound backspins greater than around 400 rad-s™ (Figure 4.8e & f). This non-
linear relationship of the data appears to be evident in both the model and
experiment. The rebound velocities are higher for the rackets strung at lower
tension. The rebound velocities are also very slightly higher for the model in
which the strings had a Young's modulus of 5.85 GN-m? (Instron), in
comparison to the model were the Young's modulus was 7.2 GN-m™2 (Hammer).
The discrepancy between the rackets strung at different tensions and the FE
models with different materials properties becomes less pronounced as the
inbound angle relative to the normal increases. It should be noted that the
difference in the results obtained from the two FE models is less than the

scatter in the experimental data.
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Figure 4.9 shows that the model results for rebound angle are in good
agreement with the experimental data. However, the rebound angles for the 20°
simulations are slightly higher than the experimental values (Figure 4.9a and b).
The general trend is that the rebound angle of the ball increases with the
inbound angle. The results also show that rebound angle decreases as inbound
backspin increases. However, Figure 4.9e and f show that the reduction in
rebound angle with increasing inbound backspin appears to become less
pronounced in the experimental data, for backspins greater than approximately
350 rad-s™. This non-linearity, which is in agreement with the results for
rebound velocity, can be observed in the FE model with a nominal inbound
angle of 60° at 20 m-s™ but not at 30 m's™. The difference in the rebound angle
between the two FE models is very small and less than the scatter within the
experimental results. Rebound angle doesn't appear to be affected by string-
bed stiffness in either the experimental data or FE model. In the experiment
string-bed stiffness was determined by string tension, while in the FE model it

was determined by the Young's modulus of the strings.
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Figure 4.9 : Rebound angle against inbound spin for ball impacts on a head-clamped racket at a) 20°, 20 m's”, b)

20°,25 m's™, ¢) 40°, 20 m's™, d) 40°, 30 m's™, €) 60 °, 20 m's™, f) 60°, 30 m-s™.

Figure 4.10 shows that all the model results for rebound spin are in good

agreement with the experimental data. The results show that rebound spin
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decreases with increasing backspin, whilst it increases with the inbound angle.
Again, a non-linearity can be observed, for both model and experiment, in the
rebound characteristics of the ball for inbound backspins above approximately
350 rad-s™ at a nominal inbound angle of 60° (Figure 4.10e and f). As with the
results for rebound velocity and angle, the difference between the two FE
models is very small. String-bed stiffness does not appear to have an influence

on rebound spin.
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Figure 4.10 : Rebound spin against inbound spin for ball impacts on a head-clamped racket at a) 20°, 20 m's™, b)

20°,25 m's™, ¢) 40°, 20 m's™, ) 40°, 30 m's™, ¢) 60 °, 20 m's™, £) 60°, 30 m's™.

Two different FE models were used in this investigation. One had a material

model for the strings based on properties obtained using the Hammer method
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with a string stiffness of 7.2 GN-m?% whilst the other was based on properties
obtained using the Instron method with a string stiffness of 5.85 GN-m”
(Section 4.2, page 91). There is very little difference between the ball rebound
results obtained from the different FE models. The Young's modulus of 7.2
GN-m obtained using the Hammer method will be used for the remainder of
the project, as the Hammer method is used by the manufacturer.

The FE model was used to analyse the horizontal velocity and spin of the ball
throughout an impact. The impact selected for analysis had an inbound velocity
of 30 m-s™, an angle of 40° and a backspin of 200 rad-s™. Figure 4.11a shows
that the horizontal force acting on the ball, comprising of friction and a string-
bed horizontal reaction force, switches direction just after the midpoint (2.85 ms)
of the impact. The initial horizontal force is negative which means that the force
is acting in the opposite direction to the ball motion. At a time of approximately
2.85 ms the horizontal force becomes positive, implying that it is in the same
direction as the ball motion. This causes an increase in the horizontal velocity
and a decrease in the angular velocity (spin) of the ball (Fig.6b and c). The
horizontal force switches direction again at around 4.2 ms, resulting in a very
slight decrease in the horizontal velocity and an increase in spin. As the
horizontal force acting on the ball switches direction during impact there will be
an instance at which the ratio of the vertical to horizontal loads will equal zero.
This illustrates that any analytical model that assumes a simple, linear

relationship between a friction and vertical reaction force is invalid.
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Figure 4.11 Results obtained from an FE model of a string-bed for an impact with an inbound velocity of
30 m's”, angle of 40° and backspin of 200 ms™ a) Vertical and horizontal force, b) Horizontal velocity
and ¢) Spin(E=7.2 GN-m’ obtained using the Hammer method).
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Figure 4.12 shows the results obtained when the COF between the ball and
string-bed was adjusted for the FE model with the material properties obtained
using the Hammer method (E = 7.2 GN'm?). It can be observed that increasing
the COF from 0.4 to 0.6 has only a minor effect on the rebound properties of the
ball, with both models in good agreement with the experimental data. Reducing
the COF from 0.4 to 0.2 has a more pronounced effect on the rebound
characteristics of the ball. The model with the COF of 0.2 over-predicts the
rebound spin of the ball (Figure 4.12).
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Figure 4.12 Effect of ball to string friction in the string-bed model for an impact with an inbound velocity
of 30 ms™ and an angle of 40° a) velocity, b) angle and c) spin (E = 7.2 GN-m” obtained using the

Hammer method).

The FE model was used to determine why reducing the COF between the ball
and string-bed resulted in an increase in rebound spin. The impact selected for
analysis had an inbound velocity of 30 m-s™, an angle of 40° and a backspin of
200 rad-s™. Figure 4.13a shows that the horizontal force acting between the ball
and string-bed was larger for the model with the higher COF. The larger
horizontal force acting on the ball, in the model with the higher COF, caused its

spin to increase at a faster rate (decrease in backspin) (Figure 4.13b). This
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resulted in the ball in this model having a higher spin rate for the first half of the
impact. However, the horizontal force acting on the ball changed direction at
around the midpoint of the impact, as previously determined (Figure 4.13a).
When the horizontal force changed direction it caused the spin of the ball to
decrease (Figure 4.13b). As the horizontal force acting on the ball was larger for
the model with the higher COF, the decrease in spin was greater. This resulted
in the spin of the ball in this model dropping below that of the other ball at
around 3.5 ms and leaving the string-bed with a lower spin rate. Hence, it is the
over-spinning of the ball in the FE model that causes the higher COF to result in
a lower rebound spin rate. These results indicate that there is an optimum value

of ball to string friction for obtaining maximum rebound spin.
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Figure 4.13 Effect of ball to string coefficient of friction for an impact on the FE model of a string-bed
with an inbound velocity of 30 m's™, angle of 40° and backspin of 200 rad-s™ a) the horizontal force

acting between the ball and string-bed and b) the spin of the ball throughout the impact.

A separate investigation was also undertaken to determine the effect of string to
string friction. Impacts at the GSC, with an inbound velocity of 30 m*s™ and an
inbound angle of 40° were simulated using the string-bed model. The inbound
backspin was in the range from 0 to 600 rad-s™. Adjusting the string to string
friction in the range of 0.01-0.3 had no significant effect on the rebound
characteristics of the ball (Figure 4.14). Therefore, the string to string COF used
in the model will remain at 0.1.
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Figure 4.14 Effect of string to string friction for an impact on the FE model of a string-bed with an

inbound velocity of 30 m-s™ and angle 40° a) velocity, b) angle and c) spin.

4.4.3. Discussion

The FE model has been found to be in good agreement with the experimental
data for rebound velocity, angle and spin, albeit with a few small discrepancies.
It was found that the horizontal force acting on the ball, switches direction at
approximately the mid-point of the impact when the inbound velocity, angle and
backspin were 30 m-s™, 40° and 200 rad's™, respectively. This implies that the
ball spin rate has exceeded that associated with rolling and is hence over-
spinning, as found by Goodwill and Haake (2004a). The fact that the friction
force becomes negative again indicates that a tennis ball impacting obliquely to
a string-bed converges towards a rolling state. Further research would be
required to quantify this hypothesis.

The results indicate that reducing the COF between the ball and string-bed
below 0.4 decreases the accuracy of the FE model, whilst increasing the COF
has little effect on the rebound properties of the ball. Therefore, the COF
between the ball and string-bed will remain at 0.4. A COF of 0.4 is within the
range of 0.27 - 0.42 found by Cross (2000b). String to string friction in the range
from 0.01 to 0.3 was found to have only a very small effect on the rebound
characteristics of the ball. However, further research should be undertaken in
order to determine a more precise value for both ball to string and string to
string friction.

This investigation has shown that the current FE model is capable of replicating
a single impact location on a string-bed for different inbound velocities, angles

and spins. In reality, a ball will impact at a variety of locations on a string-bed
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during play (Choppin et al., 2007). Therefore, to ensure that the model
accurately represents reality it must be validated for different impact positions
on the string-bed. These impact positions should be extremes in the longitudinal
and lateral directions, to allow the largest possible area of the string-bed to be

validated.

4.4.4. Summary

An FE model of a tennis racket string-bed has been produced and successfully
validated against experimental data for different impacts. These impacts had
inbound backspins in the range from 0-600 rad-s™, with nominal velocities from
20-30 m's” and angles from 20-60°. The experimental validation was
undertaken using a BOLA to project balls onto a head-clamped tennis racket. It
was found that a ball will enter into an over-spinning stage during the impact,
except when there is a combination of a high inbound angle (60°) and backspin
(>400 rad-s™). Extending the validation to include different impact positions on

the string-bed would increase its applicability.
4.5. Head-clamped racket model

4.5.1. FE model of a head-clamped racket

An FE model of a head-clamped tennis racket was constructed using Ansys/LS-
DYNA 10.0. The string-bed was based on the model described previously
(Section 4.3, Page 94) with slight modifications to the geometry to encompass
the racket frame. The geometry for the strings, in conjunction with the racket,
was constructed in Pro Engineer Wildfire 2.0. The Pro Engineer parts
representing the strings and racket were brought together as an assembly and
imported directly into Ansys/LS-DYNA 10.0 using the ANSYS Connection for
Pro Engineer. This is a feature which allows a Pro Engineer part or assembly to
be launched into ANSYS directly from Pro Engineer. The modified main and
cross strings consisted of 27,395 and 24,960 SOLID164 3-D 8 node brick
elements (same as previously validated string-bed model), respectively. The
racket geometry had an overall length of 0.68 m and a head size of 0.35 x 0.27
m, respectively (Figure 4.15). These dimensions are representative of a modern
tennis racket (Haake et al., 2007).
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Figure 4.15 Racket geometry used in the FE model.

The racket was assigned a fully constrained MAT_RIGID material model
(Table 4.4) consisting of 27,410 SHELL163 elements, 2 x 10'3m in thickness.
Shell elements were used as they are designed for modelling thin walled
structures, such as the frame of a composite tennis racket. Shell elements are
also computationally more efficient that solid elements. As with the string-bed
model, a load of 150 N was applied to a small rigid cylinder attached to both
ends of each string in the dynamic relaxation phase of the analysis, to represent
the tension applied during stringing (Section 4.3.1, page 94). However, unlike
the string-bed model these rigid cylinders were only fully constrained in the
transient phase until a simulation time of 0.0013 s; at which point the ends of
the strings were tied to the racket using
CONTACT_TIED_SURFACE_TO_SURFACE. The simulations were set up so
that the ball would contact with the string-bed at a simulation time of 0.0015 s;
0.0002 s after the strings had been tied to the racket frame. The birth time for
the ball to string-bed contact was also set to 0.0013 s to reduce the
computational requirements of the model. As CONTACT_TIED cannot be used
for MAT RIGID elements (LSTC, 2003) the sections of the frame tied to the
ends of the strings were meshed with a MAT_ELASTIC material model. This
separate part referred to as 'Racket holes' in Table 4.4 consisted of 4,477
elements. When defining contact with shell elements, it is possible to specify a
contact thickness which overrides the geometric thickness. The contact
thickness of the shell elements in this part was set to 0.5 mm to prevent

distortion of the strings due to overlapping geometry.
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Contact between the strings and racket was defined as
CONTACT_AUTOMATIC_SURFACE_TO_SURFACE with a COF of 0. A COF
of 0 was used to allow the most even possible distribution of stress throughout
the strings during the dynamic relaxation phase of the simulations. The contact

thickness of the shell elements in the racket was set to 0.2 mm.

Table 4.4 Part material properties for the head-clamped racket model.

Part Material model Young's Modulus (GN'm™) Density (kg'm™~) Poisson's ratio
Strings MAT_ELASTIC 7.2 1100 0.3
Racket MAT_RIGID 2000 1600 0.3

Racketholes =~ MAT_ELASTIC 70 1600 0.3

INITIAL_VELOCITY_GENERATION was used to apply the required initial
velocity and spin to the ball. The TDT (Visual Basic programme, Chapter 6
Page 159), was used to set the impact location on the string-bed. However, the
programme was updated for the head-clamped racket model to ensure the ball
impacted at a time of 0.0015 s. The convergence tolerance for dynamic
relaxation was 0.1 (Figure 4.16). This increase in convergence tolerance, in
comparison to the string-bed model (Section 4.3.1, page 94), was required to
reduce the elevated convergence time. The stated tolerance was necessary to
ensure that the simulations would actually converge within a realistic time

frame.

<

o o o
N

14
PR

o
w

Convergence tolerance

o
[

o
by

5 G 7

1 2 ER
Time (s) x10*

L

Figure 4.16 Convergence of head-clamped racket model.

4.5.2. Summary

An FE model of a head-clamped racket was constructed in Ansys/LS-DYNA

10.0. The racket frame was meshed with shell elements and the material model
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was MAT_RIGID. The strings were tied to the racket frame using
CONTACT_TIED_SURFACE_TO_SURFACE. The model will be validated
against experimental data for a range of impact locations on the string-bed.
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4.6. Validation of the head-clamped racket model

4.6.1. Experimental methods

In the laboratory experiment tennis balls were projected from a modified BOLA
onto a head-clamped ITF carbon fibre test racket (Figure 4.5, page 98). The
balls were projected with backspin in the range from 0 to 600 rad-s™ at a
nominal inbound velocity and angle (relative to the racket normal) of 20 m-s™
and 40°, respectively. A pair of rackets both strung at 289 N (65 Ibs) were used
for testing and each were impacted at two locations on the string-bed. This
resulted in a total of four separate impact locations labelled; centre, off-centre,
throat and tip. The reason for using four different impact locations was to
validate a large area of the string-bed, as opposed to just a single position. This
is the main difference between the experimental work undertaken in this
subsection and the validation of the string-bed model (Section 4.4, page 97).
The centre, throat and tip impacts were all slightly offset (~0.03 m) from the long
axis of the racket towards the BOLA, to account for the horizontal displacement
of the ball whilst it remained in contact with the string-bed during impact. The
experimental method used previously was developed to enable the impact
location on the string-bed to be measured more accurately. The flights of the
balls were recorded as a series of bitmap images using two synchronised
Phantom v4.2 high-speed video cameras, recording at 1000 fps (Figure 4.17a).
A still bitmap image of a ball resting on the string-bed was also captured from
camera 1. This image was used as a reference of the vertical location of the ball
upon impact with the string-bed. Four sphere shaped markers were attached to
the frame along the two axes of the string-bed (Figure 4.17b). This allowed the
horizontal location of the ball to be calculated upon impact with the string-bed,
relative to the frame markers. Camera 1 was used to obtain the ball's velocity,
angle, spin and the impact distance from the long axis of the string-bed. The
impact distance from the short axis of the string-bed was measured using

Camera 2.
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Figure 4.17 a) Camera set up for the head-clamped racket model, b) Racket markers used as a reference

for obtaining the impact location on the string-bed.

The bitmap images obtained from the two cameras were manually analysed
using Richimas v3. Two methods were used to obtain the impact distance from
the long axis of the string-bed; the Angle method and the Vertical location
method. The Angle method involved estimating the impact location of the ball
from its initial position on exiting the tube attached to the BOLA and its
calculated inbound angle (Figure 4.18a). This was the same as the method
used for the validation of the string-bed model, except frame markers were used
to increase accuracy (Figure 4.7, page 99).

For the Vertical location method the position of the centre of the ball was
measured for the frames around the point of impact with the string-bed. The
start of contact was assumed to be when the measured vertical location was
closest to the centre of the ball resting on the string-bed. The RMSE between
the vertical locations of the impacting and resting ball was 5 mm. The RMSE
between the horizontal distances obtained from the two methods of measuring
impact location was 4 mm. The impact distance from the short axis of the string-
bed was obtained by measuring the location of the ball, in the images from

camera 2, just before impact (Figure 4.18b).
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Figure 4.18 Calculating the impact distance from a) the long axis ofthe string-bed (view from camera 1)

and b) the short axis of the string-bed (view from camera 2)

Table 4.5 shows the calculated inbound velocities, angles and impact positions.
The relatively large SD for both inbound angle and impact distance from the
long axis of the string-bed are predicted to be due to the varying lift force acting
on the ball due to the applied backspin. The effect of inbound spin on inbound
velocity, angle and impact position is shown in Figure 4.19. A separate
investigation indicated that accounting for the difference in inbound properties
with increasing backspin, in the FE simulations, had little effect on the rebound
properties of the ball (-0.05 m-s'1, -0.6°, -5 rad-s'1) (Appendix 0, Page 253).
Therefore, FE simulations were undertaken using the average inbound

velocities and angles from the laboratory experiment (Table 4.5).

Table 4.5 Actual experimental inbound velocities and angles (mean £ SD)

Inbound Impact distance from long Impact distance from short
Inbound
Impact Velocity axis (m) axis (m)
Angle (°)
(ms1) (+ = towards BOLA) (+ = towards tip)
Centre 21.0 £0.3 38.0 £ 1.0 0.029 % 0.009 -0.017 £0.005
Off-centre 21.4£0.4 37.4£0.6 0.058 £ 0.007 -0.025 + 0.004
Throat 21.3 0.4 37.4+0.5 0.033 + 0.005 -0.070 + 0.003
Tip 21.5 0.4 37.3 0.5 0.035 + 0.005 0.007 £ 0.004
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Figure 4.19 Effect of inbound spin on the experimental data for the head-clamped racket model a)

inbound velocity, b) inbound angle and ¢) impact distance from the long axis of the racket.

As the images were manually analysed they were subject to human error, thus
three of the centre impacts, with distinctly different inbound backspin, were
analysed 10 times to quantify this error. Table 4.6 shows the obtained SD for
the inbound and rebound properties of the ball and the impact positions. The
SD for velocity, angle and spin are similar to those measured by Goodwill and
Haake (2004a). All the other impacts in this section were analysed once and are

assumed to have a SD similar to those in Table 4.6.

Table 4.6 Standard deviations for the manual tracking method for the head-clamped racket, (value) = SD

as a percentage of the mean.

Low inbound spin Medium inbound spin High inbound spin

(-3 rad-s™) (235 rad-s™) (472 rad-s™)
Inbound velocity (m's™) 0.1 (0.4%) 0.1 (0.5%) 0.2 (0.9%)
Rebound velocity (m-s™) 0.2 (0.9%) 0.1 (0.7%) 0.1 (0.6%)
Inbound angle (°) 0.3 (0.9%) 0.4 (1.1%) 0.3 (0.9%)
Rebound angle (°) 0.4 (1.6%) 0.3 (2.1%) 0.3 (3.8%)
Inbound Spin (rad-s™) 4.3 (136.0%) 4.6 (1.9%) 5.7 (1.2%)
Rebound spin (rad-s™) 4.7 (2.5%) 2.9(2.1%) 2.9(2.7%)

Impact distance from long axis (m) 0.001 (4.0%) 0.002 (5.8%) 0.001 (4.6%)

Impact distance from short axis (m) 0.001 (5.1%) 0.002 (7.2%) 0.001 (18.1%)

4.6.2. Results
Figure 4.20 shows the results obtained for horizontal and vertical coefficient of
restitution (COR). In this thesis, horizontal COR is defined as the ratio of the
horizontal component of the rebound and inbound velocities (Figure 4.21). The
results obtained from the FE model for both horizontal and vertical COR are in

good agreement with the experimental data for all four impact positions. The
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vertical COR decreased by a very marginal amount with increasing backspin, in
agreement with Goodwill and Haake (2004a). The horizontal COR, which is
much lower than the vertical COR, decreased considerably with increasing
backspin, this was also in agreement with Goodwill and Haake (2004a). A
Oneway ANOVA was performed on the experimental data to determine if
impact location had a significant effect on either horizontal or vertical COR.
There was a significant effect of impact location on vertical COR, F(3, 48) =
16.356, p < 0.05, w = 0.71, but not horizontal COR. A Tukey HSD Post Hoc
analysis was undertaken to determine which impact locations were significantly
different, in terms of vertical COR. The vertical COR for the off-centre impacts
was found to be significantly different to the other three locations. The lower
vertical COR for the off-centre impacts can be clearly observed in Figure 4.20. It
is predicted that the structural stiffness of a tennis racket string-bed will not be
constant across the entire area. The structural stiffness is expected to lowest at
the GSC and highest in the region close to the racket frame. It is predicted that
the off-centre impacts had the lowest vertical COR because the string-bed had
the highest structural stiffness in this location. There is very good agreement
between the two FE models for vertical COR. The head-clamped racket model
has slightly lower horizontal COR than the string-bed model, although the
difference is less than the scatter in the experimental data. A separate study
was undertaken to determine the cause of the discrepancy between the results
obtained from the two models (Appendix B.3, Page 254). The exact reason for
the discrepancy was not found. However, it was predicted that the difference is
likely to be due to convergence as well as slight differences in the geometry and

mesh of the models.
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Figure 4.21 Definition of horizontal COR.

Figure 4.22 shows that the FE model results for rebound spin are in relatively

good agreement with the experimental data; however, the model does appear

to slightly under-estimate the rebound spin of the ball for higher inbound
backspins (>300 rad-s™'). A Oneway ANOVA was undertaken using the

experimental data to determine if impact location had a significant effect on the

rebound spin of the ball. As with horizontal COR, rebound spin does not change

significantly with impact location. There is good agreement between the string-
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bed and head-clamped racket models. However, the head-clamped racket

model has slightly lower rebound spin (~10 rad-s™") than the string-bed model.
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Figure 4.22 Rebound topspin for oblique spinning impacts on a head-clamped racket a) centre, b) off-

centre, c) tip and d) throat.

Figure 4.23a shows that for the centre impact with zero inbound spin the
horizontal force acting between the ball and string-bed is initially negative.
Therefore, the force acts in the opposite direction to which the ball is travelling,
resulting in a decrease in its horizontal velocity (Figure 4.23b) and an increase
in spin (Figure 4.23c). The horizontal force (Figure 4.23a) becomes positive at
approximately the mid-point of the impact, which subsequently increases the
balls horizontal velocity (Figure 4.23b), whilst decreasing its spin (Figure 4.23c).
The horizontal force then drops to around zero and there appears to be no
further change in the horizontal velocity or spin of the ball. Figure 4.23d-i show
that similar results are observed as the inbound backspin of the ball is
increased. However, the results indicate that the horizontal force acting on the

ball, and the time at which it drops to zero at the end of the impact, both
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increase with inbound backspin. It is this increase in horizontal force which
causes the decrease in horizontal rebound velocity with increasing inbound
backspin. The small oscillations in the horizontal force plot are predicted to be

due to the movements of strings (Cross, 2003).
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Figure 4.23 Results for a centre impact on the head-clamped racket model at 21 m-s™ and 38° with a-c)
no spin, d-f) 200 rad-s™ backspin, g-i) 400 rads™ backspin, j-1) 600 rad-s™ backspin.

122



il pufief 1 W witkAllIipgY S T VIR T

1

The FE model was been validated against experimental data for different impact
locations. However, unlike the FE model it is not possible to precisely control
the impact location when projecting balls onto a head-clamped racket. A
separate investigation was undertaken using the string-bed model to determine
the effect of impact location on the rebound properties of the ball. The impact
locations used in this follow-up investigation are shown in Table 4.7 and
Figure 4.24. These impact locations were used as they are within the validated
region of the string-bed. The inbound backspin for all of the simulations used in
this investigation was 200 rad-s™. The inbound velocity was 20 m-s™ and the

inbound angle was 40°.

Table 4.7 Impact positions for the FE model investigation.

Simulation Impact distance from the long axis (mm) Impact distance from the short axis (mm)

1 30 0
2 45 0
3 60 0
4 30 -35
5 45 -35
6 60 -35
7 30 -70
8 45 -70
9 60 -70
Long axis

Short axis

Figure 4.24 Impact positions on the string-bed.

Figure 4.25a shows that the rebound velocity of the ball remains relatively
constant across the entire range of impact positions used in this investigation.

Although, the rebound velocity of the ball is lowest for the impact at the
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maximum offset towards both the throat and away from the long axis of the
string-bed (Position 9 in Figure 4.24). This is predicted to be due to the string-
bed having a higher structural stiffness in the region close to frame of the
racket, as previously mentioned. Figure 4.25b shows that the rebound angle of
the ball increases considerably as the impact position moves away from the
long axis of string-bed in a direction parallel to the short axis. The larger
rebound angle is predicted to be due to the vertical velocity of the ball being
lower as a result of higher string-bed stiffness in the region closer to the frame
of the racket. The rebound angle remains virtually constant as the impact
position moves away from the short axis of the string-bed in a direction parallel
to its long axis. Figure 4.25¢c shows that the rebound spin of the ball remains
relatively constant for all the impacts positions used in this investigation.
However, the rebound spin is considerably lower for the impact 30 and -70 mm

offset from the long and short axis, respectively (Position 7 in Figure 4.24).
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Figure 4.25 Results obtained from the head-clamped racket model for impacts with an inbound velocity
0f20 m-s'l, an angle 0f40° and backspin of 200 rad-s'lat a range of locations on the string-bed a) velocity,

b) angle, ¢) spin.

The results suggest that for a head-clamped racket, offsetting the impact
position from the short axis of the string-bed has little effect on the rebound
characteristics of the ball. Offsetting the impact from the long axis of the string-
bed had a larger effect on the rebound characteristics of the ball. This is
believed to be due to the more asymmetrical shape of the string-bed (relative to
a plane parallel to its short axis) throughout the impact, as shown in

Figure 4.26.
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Figure 4.26 Effect of impact position on the deformation ofthe string-bed ofa tennis racket.

4.6.3. Discussion

In this investigation, an explicit FE model of a head-clamped tennis racket was
validated against experimental data for a nominal inbound angle of 40°, relative
to the string-bed normal. The results show that the horizontal COR decreases
considerably with increasing inbound backspin, whilst the vertical COR
decreases by only a very marginal amount, which agrees with Goodwill and
Haake (2004a) (Figure 2.7, page 23). Analysis of the horizontal force acting on
the ball throughout the impact showed that it increased with inbound backspin.
The horizontal force initially acts to decrease the horizontal velocity of the ball;
therefore, as the horizontal force increases with inbound backspin the horizontal
velocity of the ball decreases by a larger amount and hence causes the
reduction in horizontal COR. It was also found that the ball over-spins at around
the mid-point of the impact, resulting in a subsequent increase in its horizontal
velocity and decrease in spin, in agreement with other studies (Cross, 2003;
Goodwill and Haake, 2004a). However, it is not clear from the results as to
whether the ball momentarily grips the strings before over-spinning, as found by
Cross (2003).

An FE model of a head-clamped racket has been validated for four different
impact positions on the string-bed. The good agreement with the experimental
data for both horizontal and vertical COR also indicates that the model
accurately predicts the rebound angle of the ball. The results show that for a
head-clamped racket the rebound characteristics of the ball remain virtually
constant as the impact position changes in a direction parallel to the long axis of
the string-bed. The rebound characteristics of the ball do change slightly more
as the impact position changes in a direction parallel to the short axis. Overall,

the effect of changing the impact position is very small compared to varying the
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inbound velocity or angle of the ball. Unlike a hand-held racket a head-clamped
racket is unable to rotate during impact. The rotations of a hand-held racket are
likely to enhance the effect of different impact positions on the string-bed.
However, it is difficult to undertake reliable laboratory investigations using a
hand-held racket. Brody (1987) concluded that a freely suspended racket is a
good laboratory representation of a hand-held racket, as detailed in the
literature review (Section 2.4.4, page 28). Goodwill and Haake (2001)
experimentally analysed the effect of impact position along the long axis of a
freely suspended tennis racket. They projected balls perpendicular to the racket
at a range of velocities. It was concluded that the impact location has a large
effect on the rebound velocity of both the ball and racket. Future work will
involve the validation of an FE model of a freely suspended racket against
experimental data. The reasons for using a freely suspended racket are detailed
in the literature review (Section 2.4.4, page 28). This model will be used to
determine the true effect of different impact positions on the string-bed relative
to play. The freely suspended racket model will be created by changing the
material model whilst removing the displacement constraints applied to the

frame.

4.6.4. Summary

An explicit FE model of a head-clamped tennis racket has been successfully
validated against experimental data. It was found that the impact position on the
string-bed does not have a large effect on the rebound properties of the ball.
The results from the FE model also indicate that the ball over-spins in the latter
part of the impact. It would have been difficult to use the experimental data, in
isolation, to determine if the ball was over-spinning during the impacts. Hence,
this investigation demonstrates how a validated FE model can be used to
enhance academic knowledge. In order to further the scientific understanding of
the game of tennis, a freely suspended racket model should be validated

against experimental data.
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4.7. Chapter summary

In this chapter an FE model of a head-clamped tennis racket was constructed
and validated against experimental data. The process of building the model was
broken down into three separate stages. The initial stage was to obtain the
required properties of the tennis strings. The second stage was to build and
validate an FE model of a string-bed. The final stage constructed and validated
an FE model of a head-clamped racket. It was found that the inbound velocity
and angle had a large effect on the rebound properties of the ball. Impact
location was found to have only a minor effect on the rebound properties of the
ball.
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5. Freely suspended racket model

5.1. Introduction

The aim of this project is to build an accurate FE model for simulating impacts
between a tennis ball and racket. In the previous chapter an FE model of a
head-clamped tennis racket was validated against experimental data, for a wide
range of different impacts (Chapter 1, Page 90). The purpose of this was to
validate the string-bed model and in particular, the method used to attach the
strings to the racket frame. This chapter will include the creation and
experimental validation of an FE model which simulates impacts between a
tennis ball and a freely suspended racket. There are two main reasons for using

a freely suspended racket;

1) A freely suspended racket will enable the simplest validation of the racket
frame, without the additional variable of human grip. This will allow the accurate
validation of racket frame parameters, such as stiffness and mass distribution.

2) A freely suspended racket is currently considered to be the best
representation of a human grip, as detailed in the literature review
(Section 2.4.4, Page 28).

The freely suspended racket model will be created by removing the
displacement constraints applied to the frame in the head-clamped racket
model. Previous studies have shown that a model which assumes the racket to
be rigid is not suitable for predicting the rebound velocity of the ball, for impacts
away from the Geometric String-bed Centre (GSC) (Brody, 1997; Goodwill and
Haake, 2001 & 2003). Therefore, the MAT_RIGID material model, which was
used for the head-clamped racket, will be changed to one which is capable of
simulating deformation. The model will be validated against experimental data
obtained by projecting balls onto a freely suspended racket. The experimental
impacts will be captured using two synchronised high-speed video cameras and
reconstructed into 3D for analysis. Only the movements of the ball will be

analysed, as it will be too computationally expensive to run FE simulations for
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sufficiently long duration to obtain the mean rebound velocity of the racket.
Perpendicular impacts will be simulated at different locations on the string-bed
to provide a thorough validation of the model. However, in order to develop an
effective design tool, which can simulate realistic tennis shots, the model will
also be validated for oblique spinning impacts. The mass and balance point of
the racket have been found to have a large effect on the rebound velocity of the
ball (Haake et al., 2007). Therefore, the mass and balance point of the racket in
the FE model must match those of the ITF Carbon Fibre racket, which will be
used for the laboratory based experiments. The swingweight and twistweight of
the racket in the model will also correspond to those of an ITF Carbon Fibre

racket. The main objectives of this chapter are;

1. To build an FE model of a freely suspended tennis racket.

2. To experimentally validate an FE model of a freely suspended racket, for
perpendicular impacts at different locations on the string-bed.

3. To experimentally validate an FE model of a freely suspended racket for
oblique spinning impacts, at the centre of the string-bed.

5.2. FE Model of a freely suspended tennis racket

5.2.1. FE Model of a freely suspended tennis racket

The freely suspended racket model was based on the head-clamped racket
model (Section 4.5, Page 111), with a few modifications. The MAT_RIGID
material model was changed to MAT_ELASTIC, to provide a better
representation of reality and enable racket deformation to be simulated.
MAT_ELASTIC was used as a starting point, as it is the simplest material model
in Ansys/LS-DYNA 10.0 with the capacity to simulate deformation. A linear
material model was considered to be adequate due to the relatively small
deformations of a racket during an impact with a ball. The racket geometry was
also separated into three parts, i.e. the handle, throat and head (Figure 5.1).
The three parts of the frame were assigned separate shell sections to allow
them to each have an individual wall thickness. With this model the mass
distribution of the racket can be adjusted by changing the shell thickness and

density of the handle, throat and head sections.
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Figure 5.1 FE model racket geometry with three separate sections.

As previously mentioned, ITF Carbon Fibre rackets were used for the laboratory
experiments. The ITF Carbon Fibre racket was selected as it is designed for
laboratory testing and hence is likely to have a relatively simple composite lay-
up. This should make the racket relatively straightforward to simulate in an FE
model. In order to provide an accurate validation, the mass and mass
distribution of the racket in the FE model were set to correspond to the ITF
Carbon Fibre racket. The majority of the properties of the ITF racket were taken
from Goodwill (2002) (Table 5.1).

Table 5.1 Properties of the ITF Carbon Fibre tennis racket (Goodwill, 2002).

Mass Overall Width Handle Balance point Mass moment of inertia
(kg) length (m) (m) length (m) from butt (m) from butt (mkgz)
0.348 0.683 0.265 0.228 0.325 0.05337

The polar moment of inertia () (Twistweight) of the ITF racket was not
measured by Goodwill (2002) and was hence obtained experimentally using
Bifilar Suspension theory (Walker, 1991) (Figure 5.2). To do this, the racket was
hung vertically from two tennis strings of equal length, as shown in Figure 5.2,
and set to oscillate about its central axis. The time for a set number of
oscillations was measured using a stopwatch. The experiment was undertaken
three times with the period of torsion vibration (T) obtained from 10, 20 and 30
oscillations. For each number of oscillations the experiment was repeated five

times.
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Figure 5.2 Bifilar Suspension used to obtain the polar moment of inertia of a tennis racket.

Table 5.2 shows the mean polar moment of inertia and standard deviation (SD)
both decreased with the number of oscillations. The lower SD is predicted to be
due to a reduced human error in the timing of the oscillations. In this report the

polar moment of inertia of the racket is assumed to be 15.5 + 0.5 x 10 kgm?.

Table 5.2 Measured polar moment of inertia for the ITF Carbon Fibre tennis racket.

Number of oscillations  Mean polar moment of inertia (kgm?)

10 0.001585 + 0.000045
20 0.001552 + 0.000028
30 0.001516 + 0.000023

The density and shell thickness of the head, handle and throat sections were
adjusted until the mass and mass distribution of the racket in the model
corresponded to an ITF Carbon Fibre racket (Table 5.3). In order to do this
successfully the mass of the whole racket in the FE model was firstly set to
equal that of the experimental racket. Secondly, the mass of the individual parts
of the racket (handle, throat and head) were adjusted in order to then fit the
balance point, mass moment of inertia and polar moment of inertia of the
experimental racket. The mass and polar moment of inertia of the individual
parts of the racket were obtained directly from the FE model. The polar moment
of inertia of the complete racket was calculated from summing the values for the
individual parts. In order to calculate the balance point and mass moment of
inertia of the racket about the butt, the distances from the centre of mass (COM)
of the three parts to the butt were required. The distance of the COM of the
three parts, from the string-bed centre along the length of the racket, was

obtained directly from the FE model. The mass moment of inertia of the
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individual parts of the racket about an axis through their COM and parallel to the
short axis of the string-bed was obtained directly from the FE model. Parallel
axis theory was used to obtain the mass moment of inertia about the butt of the
racket (Table 5.3).

Table 5.3 Racket mass distribution in the FE model.

Density 'Shell Mass Distance to COM B'alance M'ass n.mment of Polar
Part (kg-m™) thickness (ke) from butt (m) point from inertia about moment of
(m) butt (m) butt (kgm?) inertia (kgm?)
Handle 1900 0.003 0.0980 0.084 0.0082 0.00098 0.000021
Throat 2100 0.002 0.0895 0.257 0.0232 0.00622 0.000125
Head 1350 0.002 0.1618 0.505 0.0813 0.04331 0.001446
Complete 0.3483 - 0.3236 0.05111 0.001592
racket
Required 0.3480 - 0.3250 0.05337 0.001550
value
Difference
between.FE ) - 0.1 - -0.4 -4.4 2.7
and reality

(%)

The geometry and materials used in the construction of a tennis racket
determine its stiffness, which in turn affects the rebound characteristic of the
ball (Cross, 2000c; Kanda et al.,, 2002; Goodwill and Haake 2001 & 2003;
Haake et al., 2007). Experimentally obtaining the mechanical properties of
composites is difficult, requiring access to both specialist equipment and
material samples. Material samples were not available for this project.
Therefore, the material properties of the racket were estimated from published
data. The material properties of a composite depend on the ratio of the separate
components and their individual properties. Jenkins (2003) published tensile
modulus values for carbon filaments, as 517 GPa for very high modulus and
350 GPa for high modulus. John (2003) states 4 GPa as a Young's modulus for
epoxy resin. Assuming the carbon fibre composite to be around 30 to 50% resin
and the Young's modulus to be a third of the maximum in any direction (John,
2003); the Young's modulus of a typical carbon fibre lay-up used in the
construction of a modern tennis racket is predicted to fall between 10 and 140
GPa. The natural frequency (f,) of a 2D beam is determined by its structural

stiffness (k) and mass (m) (Equation 1).

fo =30 (1)
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As the mass of the racket in the FE model was set to correspond to an ITF
Carbon Fibre racket, it was possible to obtain the correct natural frequency by
adjusting the Young's modulus. The natural frequencies of tennis rackets dating
from the 1870's to 2007 are within the range of 70-190 Hz (Haake et al., 2007).
The natural frequency of the ITF Carbon Fibre racket is 134 Hz (Goodwill,
2002). Modal analysis was undertaken on the racket model using ANSYS
Mechanical 10.0, for a range of values of Young's modulus (Figure 5.3). The
Young's modulus was set to the same value in the three parts of the racket. An
apparent Young's modulus of 20 GN-m?resulted in a natural frequency of 135
Hz, which is very close to the value of 134 Hz found by Goodwill (2002) for the
ITF Carbon Fibre racket.
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Figure 5.3 The relationship between apparent Young's modulus and natural frequency for the racket in

the FE model.

Two FE models were created to encompass the large range of values of racket
stiffness typically found (Table 5.4). The model with an apparent Young's
modulus of 10 GN-m™ will represent a composite tennis racket with a low
structural stiffness. This model should produce lower rebound velocities than
obtained from the experimental data, when simulating perpendicular impacts
away from the GSC (node point) (Kanda et al., 2002; Goodwill and Haake,
2003). The racket with the apparent Young's modulus of 70 GN-m¥ is
representative of a very stiff racket, this should produce higher rebound

velocities than the experimental data, when simulating perpendicular impacts
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away from the GSC (node point) (Kanda et al., 2002; Goodwill and Haake,
2003). The stiffer racket had a natural frequency of 253 Hz, that was higher
than the upper bound of 190 Hz as proposed by Haake et al. (2007). However,
it is predicted from the trend in Haake et al.'s data that rackets will be developed

with higher natural frequencies than the maximum values measured in 2007.

Table 5.4 Natural frequencies of the two racket models with different Young's modulus.

Racket Young's Modulus (GPa) Natural Frequency (Hz)
Low structural stiffness 10 96
High structural stiffness 70 . 253

The convergence tolerance for dynamic relaxation was changed from the value
of 0.1 used in the head-clamped racket model, to 0.06 and should increase the
accuracy of the model (Figure 5.4). This is because the total kinetic energy of
the model and string-bed will be lower, causing the stress distribution in the
strings to be closer to those which have been subjected to quasistatic loading
i.e. a string-bed tensioned using a stringing machine. To account for the slightly
longer convergence time, the tied contact between the strings and racket and
the contact between the ball and string-bed was set to initiate at a simulation
time of 0.00135 s, rather than 0.0013 s in the head-clamped racket model. The
rigid cylinders at the ends of the strings were also released from their
constraints at 0.00135 s. The use of rigid cylinders to apply tension to the string-
bed is described in section 4.3.1, on page 94. When defining contact with shell
elements it is possible to override the geometric thickness of the elements with
a contact thickness. The contact thickness of the shell elements which were
used to tie the strings to the racket frame were set to the actual thickness of the
frame (2 mm). The contact thickness of the shell elements used in the contact

between the racket and strings was 0.4 mm.
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Figure 5.4 Convergence of the freely suspended racket model.

5.2.2. Summary

An FE model of a freely suspended tennis racket was created in Ansys/LS-
DYNA 10.0. The racket frame geometry was separated into three separate
parts to allow the mass distribution of the frame to be adjusted. The mass and
mass distributions of the racket were set to correspond to that of an ITF Carbon
Fibre racket. MAT_ELASTIC material models were used for the separate parts
of the racket frame as they are capable of simulating deformation. The natural
frequencies of racket models with different values of Young's modulus were
determined using modal analysis. FE models with natural frequencies of 96 and
253 Hz will now be analysed against the experimental data. The purpose of this
is to determine the effect of tennis racket stiffness. The racket was not strung
during the frequency analysis, as a method for tensioning the string-bed was
not available. Cross et al. (2001b) found the fundamental frequency of a tennis

racket to drop by 8.5% when strung.
5.3. Validation of the freely suspended racket model

5.3.1. Experimental methods

Tennis balls were projected from a modified pitching machine (BOLA) onto a

freely suspended ITF Carbon Fibre racket, using the impact rig detailed in
| Choppin (2008) (Figure 5.5a). The racket was hung vertically from a pin with its
butt at the lower end. The pin was located underneath the tip of the frame
between the two central main strings. Using a pin to simulate a freely
suspended racket is a technique which had been used by numerous authors

(Goodwill and Haake, 2001 & 2003; 2002; Goodwill, 2002; Choppin 2008). The
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impacts were captured using two synchronised Phantom V4.3 high-speed video
cameras, recording at 1,900 fps. This frame rate allowed enough images to be
obtained to accurately track the ball for the full range of velocities under
investigation. The impacts were recorded using two cameras positioned on
separate sides of the impact rig to provide 3D coordinates of the ball and racket,

as detailed by Choppin (2008) (Figure 5.5b).

1.65501

Figure 5.5 a) Impact rig used for simulating impacts on a freely suspended tennis racket (Modified from
Choppin, 2008) b) Optimum camera positions for measuring the trajectory ofa tennis ball in 3D

(Modified from Choppin, 2008).

As previously mentioned, the model was validated against experimental data for
both perpendicular and oblique impacts. Three rackets were used for the
experimental testing, all strung at 289 N (65 Ibs). Perpendicular impacts were
simulated on two of the rackets at four different impact positions on the string-
bed, labelled: centre, off-centre, tip and throat (Figure 5.6). The inbound velocity

of the balls in the perpendicular impacts was in the range from 10 to 40 m s'1.
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Figure 5.6 Impact positions on the string-bed for the validation of the freely suspended racket model for

perpendicular impacts.

Oblique spinning impacts were simulated at nominal inbound velocities of 20
and 30 m-s™ and a nominal angle of 25° to the z axis, on a plane parallel to the
x and z axes (Reference to axes on Figure 5.5). The inbound backspin of the
oblique impacts was in the range from -100 to 500 rad-s”. Oblique impacts
were obtained by tilting the racket about its vertical axis (y) (Figure 5.7). The
racket was positioned against a triangular wedge, located beneath the pin, to
enable a consistent racket angle of 25° to be obtained for all of the impacts. All
three rackets were used for the oblique impacts. The two rackets used
previously for the perpendicular impacts were subjected to impacts at a single
nominal velocity; the third racket was used for both nominal velocities,
effectively acting as a control. Choppin et al. (2008) found that male and female
players typically impact the ball 0.55 + 0.032 m and 0.55 + 0.031 m from the
butt of the racket, respectively. Goodwill and Haake (2004b) found that for an
oblique impact on a freely suspended racket at 30 m-s™ and 36° (relative to
racket normal) the ball will travel approximately 0.035 m (+0.005) horizontally
(parallel to short axis) whilst it remains in contact with the string-bed. The
nominal impact location of the oblique impacts was 0.55 m from the butt of the
racket (0.0295 m above GSC) and 0.02 m offset from the long axis. The offset
from the long axis was to compensate for the horizontal displacement of the ball

whilst it remains in contact with the string-bed during the impact.
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Figure 5.7 Racket positioning for perpendicular and oblique impacts on a freely suspended racket (View

from above).

The impacts were recorded as bitmap images and analysed using Richimas v3.
The intrinsic 2D positions of the ball were obtained manually from each camera
using Richimas image analysis software. The pairs of 2D coordinates obtained
using Richimas were converted into extrinsic global 3D coordinates (camera
frame of reference) using a readily available MATLAB R2006b Toolbox which
was developed by Bouguet (2008). The 3D calibration was undertaken using a
checkerboard, as developed by Zhang (1999) and applied to tennis impact
testing by Choppin (2008). To ensure high accuracy, over 15 pairs of calibration
images were obtained (Zhang, 1999). To measure the impact position on the
string-bed, the 3D coordinates of the ball were converted into the racket frame
of reference, with the GSC at the origin (Figure 5.8). The GSC was located at
the origin by obtaining the global 3D coordinates of three white markers at
known locations on the racket frame. A transformation matrix was used to
convert the global 3D coordinates of the ball into local 3D coordinates in the
racket’s frame of reference. To ensure the highest possible accuracy when
calculating the velocity of the ball, its position (x, y and z coordinates) was
obtained at four discrete locations before and after impact. The velocity of the
ball was calculated separately in the x, y and z directions using the gradient of
the distance-time data. The resultant velocity was resolved from the x, y and z
velocities. Assuming the velocity of the ball to be linear in each plane, it was
possible to predict the position of the ball at any possible time point (d = v.t).
The time step (ti)) was chosen as 0.13 ms (0.25 frames), in order to be

sufficiently small enough to accurately estimate the impact position of the ball
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on the string-bed. Impact was assumed to initiate at the first instance when the
ball's perpendicular distance (Z) from the string-bed (XY plane at Z = 0) was
less than its radius (33 mm). The horizontal (x) and vertical (y) impact distances
from the GSC were obtained from the position of the ball at the first point of
contact with the string-bed. The global 3D coordinates of the racket markers,
used in the calculations, were the mean values obtained for each set of
impacts. For full details of the method used to validate tennis ball to racket

impacts in 3D using two high-speed video cameras, refer to Choppin (2008).

Figure 5.8 Racket position showing throat and side markers and axis coordinate system.

Ball spin from the oblique impacts was calculated using markers, which were
drawn on the felt (Figure 5.8). The process involved using Richimas to obtain
the coordinates of the geometric ball centre (GBC) (A) and a marker (intercept
of lines on the ball) (B) (Figure 5.9). The radius of the ball and the distance (X)
were then used to obtain the angle 0. The process was repeated to obtain four
angles before and after impact. The top/back spin about the y axis, relative to
the racket, was calculated from the gradient of the angle time data. The

sidespin about the x axis was also calculated using this technique.
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Figure 5.9 Method used for calculating the top/back spin of a tennis ball, by calculating the change in 0

over time.

There will be errors in the method used for calculating spin, due to the angle
between the flight path of the ball and the cameras, as shown in Figure 5.10. If
the ball is incident with no spin, the view from both cameras will perceive it to be
spinning in the direction in which it is travelling (Figure 5.10). In this
investigation the ball was defined as having positive inbound backspin when it
was spinning in the same direction as its flight path, relative to the right camera.
Therefore, using this orientation the right and left camera will over and under
predict the inbound backspin, respectively. Theoretically, if the angle of the left
camera relative to the flight path of the ball is the same as that of the right
camera, the error in each camera will be equal and opposite. Hence, the mean
of the inbound spin rates obtained from the two cameras should be
approximately equal to the correct value. The actual rebound path of the ball is
currently unknown, which makes it difficult to predict the error in the spin
calculation. To ensure the highest possible accuracy with this method, the spin
was calculated independently from both cameras and the mean value was used
to validate the model. It may have been possible to calculate the spin of the ball
in 3D, by positioning the cameras so they could both track the movement of a
single marker. However, this would have meant changing the camera positions
from the optimum ones found by Choppin (2008), which would have led to

subsequent errors.
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Figure 5.10 Spin error in the experimental data as a result of camera positions.

5.3.2. Impact parameters - Perpendicular impacts

Table 5.5 and Figure 5.11 show the calculated impact locations for the
perpendicular impacts. FE simulations were undertaken with the same mean
impact locations as the laboratory experiment. The root mean squared error
(RMSE) between the resultant and z velocities (perpendicular to string-bed) for
all the perpendicular impacts in the experiment was 0.008 m-s'1for inbound and
0.04 m s'1for rebound. As the RMSE is very low the impacts were considered to
be perpendicular to the racket and the resultant velocities were analysed
against the FE models. The FE simulations of the perpendicular impacts had
inbound velocities of 10, 20, 30 and 40 m-s'l. Two sets of simulations were
undertaken with values of Young's modulus of 10 GPa and 70 GPa, whilst the

Poisson's ratio remained constant at 0.3.

Table 5.5 Impact locations for the perpendicular impacts on a freely suspended racket (mean +SD).

Horizontal distance from the Vertical distance from the string-bed
Impact location

string-bed centre (mm) centre (mm) (+ = towards tip)
Centre 1327 8+7
Off-centre 31+ 10 4+7
Throat 18+8 -55 + 16
Tip 13+ 1 49 =7
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Figure 5.11 Diagram showing the standard deviations in impact locations for the perpendicular impacts

on the freely suspended racket.

5.3.3. Impact parameters - Oblique impacts

Table 5.6 shows the calculated inbound velocities, inbound angles and impact
locations on the string-bed for the oblique impacts. The inbound side spin of the
balls (relative to the racket) was found to be negligible, therefore, only the
top/back spin was used to validate the FE models. Figure 5.12 shows the
top/back spin measured from the two cameras was in good agreement. The
RMSE between the spin measured from the left and right camera was, 20.6
rad-s™ for inbound and 11.1 rad-s™ for rebound. Assuming both cameras were
positioned in equal and opposite locations relative to the inbound path of the
ball; the error in inbound spin from each camera is predicted to be
approximately 10 rad-s™. The rebound path of the balls was in the direction of
the left camera and approximately parallel to the lens of the right camera. This
is predicted to be the reason for the lower discrepancies between the two
cameras for rebound spin. As a comparison another method was used to

measure the spin of the balls (Appendix C).
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Table 5.6 Inbound velocities, angles and impact locations for the oblique impacts on a freely suspended

racket (mean + SD).

Nominal inbound velocity (m-s™) 20 30
Nominal inbound angle (°) 25 25
Calculated inbound velocity (m's™) 18.0x05 28.0+04
Calculated inbound angle (°) 23.7+13 229109
Horizontal distance from the string-bed centre (mm) 9116 15+ 10
Vertical distance from the string-bed centre (mm) (+ = towards tip) 9+12 8+ 11
(@) (b)
600 200

| © Data | o Data

= — Perfect fit o — Perfect fit

B S0 Inb | 3 150 s

= npounc = o

e n o s Rebouna o

@ 400 o [ @ [ 3L

= 300 o, = o o

2 € 5 o

.g 200 Q .2 <

= o - [ee]

g 2 &2 E o o}

£ 100 : £

o, Q.

£ a8

L& ok---- g -5

“1%%0 ] 100 200 300 400 500 600 - 0 50 100 150 200
Backspin from the left camera (rad/s) Topspin from the left camera (rad/s)

Figure 5.12 Comparison of spin calculated from the left and right camera a) inbound and b) rebound.

A repeatability study was undertaken to assess the level of human error in the
manual tracking method. An impact with low, medium and high inbound spin
was selected and analysed ten times (Table 5.7). The spin rate was the
average obtained from both cameras as described previously. The impacts had
a nominal inbound velocity of 20 m's™. All of the other impacts in this
investigation were analysed once and are assumed to have a SD similar to
those in Table 5.7. The uncertainties in the measured values are similar to
those reported by Goodwill and Haake (2004b).
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Table 5.7 Results of a repeatability test for impacts with low medium and high inbound spin. (value) =

SD as a percentage of the mean.

Low spin Medium spin High spin
(49rads”)  (251.6rads”)  (529.9 rads™)

Resultant inbound velocity (m-s™) 0.1 (0.4%) 0.1 (0.6%) 0.1 (0.5%)
Resultant rebound velocity (m-s™) 0.1 (1.0%) 0.1 (0.8%) 0.1 (1.5%)
Inbound angle (degrees) 0.3 (1.4%) 0.5 (2.0%) 0.4 (1.4%)
Rebound angle (degrees) 0.3 (0.9%) 0.5 (3.1%) 0.9 (18.1%)
Inbound spin (rad-s™) 8.6 (176.3%) 8.0 (3.2%) 20.6 (3.9%)
Rebound spin (rad-s™) 9.4 (9.2%) 4.4 (38.5%) 8.4 (18.9%)
Impact distance from long axis (mm) 1(56.2%) 2(17.4%) 2 (13.0%)
Impact distance from short axis (mm) 1(8.8%) 1 (19.8%) 1(2.7%)

The FE simulations of the oblique impacts had inbound velocities, inbound
angles and impact locations, identical to those measured in the laboratory
experiment. In the FE simulations, the inbound backspin was in the range of 0
to 400 rad-s™', at 200 rad-s™ increments. As with the perpendicular impacts, FE
models with natural frequencies of 96 and 253 Hz were analysed against the

experimental data.

5.3.4. Summary of experimental conditions

Tennis balls were projected onto a freely suspended tennis racket using a
modified BOLA. Perpendicular impacts were simulated at four discrete locations
on the string-bed, with inbound velocities in the range from 10 to 40 m-s™.
Oblique spinning impacts were simulated at approximately the centre of the
string-bed, with nominal inbound velocities of 20 and 30 m-s”'. The nominal
inbound angle was 25° and the backspin was in the range from -100 to 500
rad-s™. The impacts were captured using two synchronised Phantom V4.3 high-
speed video cameras and analysed in 3D. The uncertainties in the measured
values was in the range of 0.1 m-s™ for velocity, 0.9° for angle, 21 rad-s™ for

spin and 2 mm for impact position.

FE simulations with the initial conditions shown in Table 5.8 were undertaken to

correspond to the experimental data.
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Table 5.8 Initial conditions used in the FE model to simulate an impact between a tennis ball and freely

suspended racket.

Inbound velocity  Inbound angle (°) Inbound backspin Number of impact

(m's™) (rad-s™) locations
Perpendicular impacts 10, 20,30 & 40 0 0 4
Low velocity oblique impacts 18 23.7 0, 200 & 400 1
High velocity oblique impacts 28 229 0, 200 & 400 1
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5.4. Results and discussion of the freely suspended racket

model validation

5.4.1. Results of perpendicular impacts

Figure 5.13 shows a comparison of the FE model with the experimental data in
terms of the rebound velocity of the ball, for the perpendicular impacts at the
four locations on the string-bed. There are two sets of data from the FE model
corresponding to different racket stiffnesses. The rebound velocity of the ball is
slightly lower for the off-centre impacts, in comparison to those at the centre.
The rebound velocity is lowest for the tip impacts and highest for those at the
throat, in agreement with Goodwill and Haake (2001 & 2003) and Kanda et al.
(2002). Figure 5.13c shows that four of the tip impacts, which had low inbound
velocity (<20 m-s™), had a larger rebound velocity than expected from the trend
of the rest of the data (See highlighted data points). Three of these four impacts
were closer to the GSC in comparison to the mean impact location, in both the
vertical and horizontal directions. The remaining impact had an offset distance
from the long axis of the string-bed which was less than the mean value.

Raising the Young's modulus of the racket in the FE model, increased the
rebound velocity of the ball for the throat impacts whilst having a negligible
effect on those at the other locations, in agreement with Goodwill and Haake
(2003). The FE model of the racket with the Young's modulus of 10 GPa, was in
relatively good agreement with the experimental data for all four of the impact
locations on the string-bed. The model with the higher Young's modulus of 70
GPa slightly over-predicted the rebound velocity of the ball for the impacts at

the throat. This over-prediction increased with inbound velocity.
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Figure 5.13 Ball rebound velocity for perpendicular impacts on a freely suspended racket a) Centre, b)

Off-centre, ¢) Tip and a) Throat.

Second order polynomial trend lines were fitted to the results obtained from
each of the FE models. The equation of each of these lines was used to obtain
a rebound velocity for each of the calculated experimental inbound velocities.
The RMSE's between both racket models and the experimental data was then
obtained for each impact location on the string-bed (Table 5.9). The results
show that, overall, the FE model with the Young's modulus of 10 GPa was in

better agreement with the experimental data.

Table 5.9 RMSE between the FE models and experimental data for rebound velocity, for perpendicular

impacts on a freely suspended racket.

Impact location Centre Centre  Off-centre  Off-centre  Tip Tip Throat Throat
Young's modulus (GPa) 10 70 10 70 10 70 10 70
RMSE for (r;t_’g.%‘)“d velocity 55 067 0.48 085 091 104 057  1.02
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Figure 5.14 shows resultant force plots obtained from the FE model for the
perpendicular impacts with an inbound velocity of 40 m-s™. The results indicate
that the structural stiffness of the racket does not have a large effect on the
impact force between the ball and string-bed; although the results do indicate
that the impact location has a large influence on the contact force throughout
the impact. The impacts at the centre had the highest peak forces, whilst the
impacts at the tip had the lowest. The difference in the maximum force between
the centre and tip impacts was approximately 400 N. The highest impact force
was experienced for the centre impacts, as these were closest to one of the
rackets two node points. The plots for the off-centre, tip and throat impacts all
show a dip in force around the mid-point of the impact. This dip is due to the
racket deforming as the ball and string-bed reach the point of maximum
displacement during the impact. The impact forces are slightly larger for the
stiffer racket because it deformed less during the impacts. There is no dip in the
force plot for the centre as this impact location was close to a node point and

the racket had very little deformation.
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Figure 5.14 Ball to racket resultant force plots for perpendicular impacts at 40 m's™, a) Centre, b) Off-
centre, c¢) Tip and d) Throat.

5.4.2. Discussion of perpendicular impacts

The FE model was in relatively good agreement with the experimental data in
terms of the rebound velocity of the ball, for all four of the impact locations used
in this investigation. However, there was a large amount of scatter in the
experimental data. This is predicted to be due to the relatively high variation in
the actual impact positions, for each of the four nominal impact locations on the
string-bed. The scatter in the experimental data highlights the complexities in
accurately validating an FE model, whilst also providing evidence for its
requirement. Goodwill and Haake (2004b) also had a large amount of scatter in
their experimental data when analysing oblique impacts on a freely suspended
racket. They stated the scatter in their data to be due to; 1) uncertainty in their

experimental measurements and 2) the rebound characteristics of the ball being
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highly dependent on the impact position, as a result of the non-uniformity of the
string-bed. The FE model was in better agreement with the experimental data
when the Young's modulus of the racket was 10 GPa in comparison to 70 GPa.
Increasing the stiffness of the racket resulted in an increase in the rebound
velocity of the ball for impacts at the throat, in agreement with Goodwill and
Haake (2003) and Kanda et al. (2002). Modal analysis showed that a Young's
modulus of 20 GPa would result in a natural frequency of 135 Hz, which is
effectively equal to the natural frequency of the ITF Carbon Fibre racket
(Goodwill, 2002). Therefore, it is predicted that using a Young's modulus of 20
GPa would result in better agreement with the experimental data for impacts at
the throats. Changing the Young's modulus of the racket to 20 GPa would have
only a very marginal effect on the rebound velocity of the ball at the other

impact locations.

5.4.3. Results of oblique impacts

Figure 5.15 shows a comparison of the FE model with the experimental data,
for the oblique impacts at the two inbound velocities. As with the perpendicular
impacts there are two sets of data for the FE model corresponding to different
racket stiffnesses. The rebound velocity of the ball decreased with increasing
inbound backspin and was lower for the impacts at 18 m-s™ in comparison to
those at 28 m-'s™. The resultant rebound velocities obtained from the two FE
models were in very good agreement with the experimental data, for both
inbound velocities. There was only a very small difference in the rebound
velocities obtained from the two FE models of different racket stiffness. This
was in agreement with the results obtained for the perpendicular impacts at the

centre of the string-bed.
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Figure 5.15 Ball rebound velocity for oblique impacts on a freely suspended racket a) 18 m's™ and 24° b)
28 m's™ and 23°.

Figure 5.16 shows that the rebound angle of the balls (relative to the racket
normal) decreased with increasing inbound backspin. The rebound angles were
virtually identical for both inbound velocities when the balls were incident with a
negligible amount of inbound spin. However, the rebound angle decreased
more with increasing inbound backspin when the inbound velocity of the balls
was 18 m-s™, in comparison to 28 m-s™'. Therefore, when the balls were incident
with high inbound backspin (>100 rad-s™) the rebound angle of the balls was
lower for the inbound velocity of 18 m-s™.

As with rebound velocity, there was very little difference in the results obtained
from the two FE models. The FE models were both in relatively good agreement
with the experimental data, although the models slightly under-predicted the

rebound angle of the ball by a few degrees, for both inbound velocities.
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Figure 5.16 Ball rebound angle for oblique impacts on a freely suspended racket a) 18 m-s™ and 24° b) 28

ms” and 23°.

Figure 5.17 shows that the rebound spin of the balls decreased with increasing
inbound backspin. The rebound spin was lower for the inbound velocity of 18
m-s™ and it decreased more with inbound backspin. As with rebound velocity
and angle there was very little difference in the results obtained from the two FE
models. The FE models were in good agreement with the experimental data for
inbound backspins which were lower than approximately 200 rad-s™. At higher
inbound backspins the models slightly under-predicted the rebound spin of the
balls. It is difficult to precisely assess the accuracy of the FE model for high
inbound backspins, due to the low number of experimental data points and the
relatively large uncertainty in the measurement of inbound and rebound spin

(approx.20 rad-s™).
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Figure 5.17 Ball rebound spin for oblique impacts on a freely suspended racket a) 18 m's™” and 24° b) 28

m-s” and 23°.

5.4.4. Explaining the effects of inbound spin on the rebound properties of
the ball

An investigation was undertaken to ascertain how and why the rebound
properties of the ball changed with inbound spin. An impact at 28 m-s™ and 23°,
with 200 rad-s™ of backspin was selected for analysis. These values of inbound
velocity and backspin were used as they are considered to be representative of
those employed in play (Choppin et al., 2008); these impacts were also in good
agreement with the experimental data.

Figure 5.18 shows how the horizontal and vertical forces acting on the ball and
its horizontal velocity and spin change throughout the impact. The horizontal
and vertical planes are defined as being parallel and perpendicular to the string-
bed, respectively. The horizontal force acting on the ball was initially negative.
This means that the force was initially acting in the opposite direction to the
horizontal motion and spin of the ball. This caused a decrease in the horizontal
velocity of the ball and an increase in its spin (decrease in backspin). At
approximately the mid-point of the impact the horizontal force acting on the ball
switched direction. This caused an increase in the horizontal velocity of the ball
and a decrease in its topspin. The horizontal force acting on the ball then
converged towards zero. Once the horizontal force equalled zero, there was no
further change in the horizontal velocity or spin of the ball. This implies that the
ball was rolling off the string-bed. These results are in agreement with those
found for the head-clamped racket model (Figure 4.23, page 122).
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5.4.5. Discussion of oblique impacts

In this investigation, racket models with natural frequencies of 96 and 253 Hz
were analysed against experimental data, for oblique spinning impacts. As with
the perpendicular impacts, there was a large amount of scatter in the
experimental data. This was due to slight variations in the inbound properties of
the ball and the impact location on the string-bed. The FE models were both in
very good agreement with the experimental data, in terms of the rebound
velocity of the ball. The models were also in relatively good agreement with the
experimental data for rebound angle and spin; although, they did slightly under-
predict the rebound angle of the ball for the entire range of inbound backspins.
The models also under-predicted the rebound spin of the ball for inbound
backspins greater than approximately 200 rad-s™. However, it was difficult to
precisely determine the accuracy of the FE model due to the uncertainty in
experimentally measuring both inbound and rebound spin (~20 rad's™). The
stiffness of the racket frame had very little influence on the rebound
characteristics of the ball. The difference between the two models was much
lower than the scatter in the experimental data. This agreed with the results
obtained for perpendicular impacts close to the GSC. The GSC corresponds to
a node point of the racket and hence has very low vibrations. It is likely that
racket stiffness will have a greater influence on the rebound characteristics of
the ball for impacts away from the GSC, particularly in the throat region, as
found with the perpendicular impacts. Currently the material model for the
racket is MAT_ELASTIC. Changing the material model to
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MAT_ORTHOTROPIC_ELASTIC may provide a better representation of a
carbon fibre composite tennis racket.

The FE model's under-prediction of rebound angle is not due to the racket being
of an incorrect structural stiffness. This is known because a wide range of
values of racket stiffness had no notable effect on the rebound characteristics of
the ball. The under-prediction of rebound angle is also unlikely to be due to
errors in the mass and mass distribution of the racket, as these were set to
correspond to the ITF Carbon Fibre racket, which was used in the laboratory
experiment. However, the model could be improved by splitting the racket
geometry into more parts to allow further control over its mass distribution.
Therefore, the under-prediction of rebound angle could more likely be due to
errors in the structural stiffness of the string-bed. Goodwill and Haake (2004b)
found string tension to have no effect on rebound velocity or spin, for an oblique
impact with no inbound spin on a freely suspended racket (Section 2.4.5, page
31). However, in Goodwill and Haake’s investigation the rebound angle of the
balls was approximately 5° larger for the rackets strung at 70 Ibs, in comparison
to those strung at 40 Ibs. This indicates that the FE models under-prediction of
rebound angle may have been because the structural stiffness of the string-bed
was lower than that of the racket in the experiment. The model is predicted to
correspond to that of a racket strung at around 40 Ibs, as opposed to 65 Ibs in
the experiment. Further testing is required to quantify this hypothesis.

The results indicate that the ball was over-spinning at around the mid-point of
the impact. This was in agreement with the results obtained for the head-
clamped racket model. It would have been very difficult to come to these
findings using a conventional laboratory based experiment. However, it is
difficult to rely on these results whilst there is still uncertainty in the structural

stiffness of the string-bed.

5.4.6. Summary

An FE model of freely suspended tennis racket was validated against
experimental data for both perpendicular and oblique impacts. Two FE models
were validated with Young's modulus values for the racket of 10 and 70 GPa
(96 and 253 Hz). The reason for this was to determine the effect of racket

stiffnress on the rebound characteristics of the ball. When simulating
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perpendicular impacts, the FE model with the Young’s modulus of 10 GPa had
the best agreement with the experimental data, and this is a similar stiffness to
the ITF Carbon Fibre racket used in the laboratory experiment. The results from
the FE model showed that the stiffness of the racket had no notable effect on
the rebound characteristics of the ball for oblique impacts at the GSC. This is
predicted to be because the GSC corresponds to a node point of the racket.
There was a large amount of scatter in the experimental data, which was
concluded to be due to; 1) uncertainty in measurement and 2) deviation in the
inbound properties of the ball and impact location on the string-bed. The FE
model was in relatively good agreement with the experimental data for both

perpendicular and oblique impacts.

5.5. Chapter summary

An FE model of an impact between a tennis ball and freely suspended racket
was constructed in Ansys/LS-DYNA 10.0 and validated against experimental
data. A MAT_ELASTIC material model was used to simulate the racket frame.
The model was validated against laboratory based experimental data for
perpendicular and oblique impacts. There was a large amount of scatter in the
experimental data due to slight variations in the inbound characteristics of the
ball and the impact location on the string-bed. Two values of Young's modulus
were used for the racket when validating the model; 10 and 70 GPa. The model
with the value of 10 GPa was in better agreement with the experimental data
when simulating perpendicular impacts. There was no notable difference in the
results obtained from the two FE models when simulating oblique spinning
impacts at the GSC. For the oblique impacts, the model was in very good
agreement with the experimental data for rebound velocity and in relatively
good agreement for rebound angle and spin. The next stage of the project is to
analyse the model against data obtained from match play. The model will also
be used to analyze the effect of racket parameters such as structural stiffness
and mass, for different impact locations on the string-bed.

The main outcomes of this chapter were;

1. An FE model of a freely suspended tennis racket was constructed in
Ansys/LS-DYNA 10.0.
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2. The FE model was validated against experimental data for perpendicular
impacts at four different locations on the string-bed.

3. The FE model was validated against experimental data for oblique
spinning impacts at the centre of the string-bed.

5.6. Practical applications

For perpendicular impacts away from the GSC, the rebound velocity of the ball
increases with racket stiffness. Perpendicular impacts are considered to be a
good representation of a serve. The tip of the racket has the highest velocity
during a serve and hence is where players aim to impact the ball. The rebound
velocity of the ball also decreases as the impact location moves away from the
long axis of the racket. Therefore, a player should do the following to achieve

the highest rebound velocity for the ball when performing a serve;

1. Use a racket with a high structural stiffness

2. Impact the ball on the long axis of the racket

For oblique impacts at the centre of the string-bed, the rebound characteristics
of the ball are not affected by the stiffness of the racket. Oblique spinning
impacts are considered to be representative of a topspin forehand. Players
typically impact topspin forehands in a region close to the centre of the string-
bed. Therefore, it is predicted that the stiffness of the racket will have only a
very small effect on the rebound velocity of the ball when performing a typical

topspin forehand.

For obligue impacts rebound topspin decreases with increasing inbound
backspin (racket frame of reference). Therefore, it will be easier for a player to
perform a forehand shot with high topspin, when the ball rebounds from the

court with little or no topspin (court frame of reference).
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6. Parametric modelling program

6.1. Introduction

For an FE model of a tennis racket to function as an effective design tool, it
must be possible to easily adjust the input parameters. The adjustment of these
parameters should be both straightforward and efficient, thus enabling design
engineers to concentrate on the meaning of the results, rather than the
intricacies of the FE model. A parametric modelling program was produced
using Visual Basic 2005. This program serves as a Graphical User Interface
(GUI), which can be used to adjust parameters in the FE model and run
simulations. The objective of this chapter is to describe this parametric

modelling program.

6.2. Description of the parametric modelling program

A program was created, using Visual Basic 2005, to enable properties of the FE
models, such as the inbound trajectory of the ball, to be easily and quickly
adjusted. The program is called the Tennis Design Tool (TDT). The TDT
enables users who are not familiar with Ansys/LS-DYNA 10.0, to run a variety of
simulations, including all the models detailed in this thesis. The TDT is
structured on a template system; the templates are the Ansys/LS-DYNA 10.0 .k
files (text file containing keyword commands) and there is a separate template
for each of the models detailed in this thesis. The user selects the
corresponding template for the type of simulation they require, the TDT thus
edits selected values in the template and writes a new .k file to a specified
location. The TDT consists of four sections representing individual models of
the ball (Rigid Surface), string-bed, head-clamped racket (Clamped Racket) and
freely-suspended racket (Racket). Figure 6.1a shows the start up screen for the
TDT and the initial step would be to select the type of impact from the drop
down list (Figure 6.1b).
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Insuuctxxm 3? Tennis Design Tool

Instructions

Rigid Surface
String bed
Clamped Racket
Racket

Figure 6.1 a) Start up screen for the parametric modelling program and b) The four impact types

available in the parametric modelling program.

The four impact types will now be explained in detail starting with the 'Rigid
Surface' (Figure 6.1b) or 'ball to rigid surface' impact. Figure 6.2 shows the view
when Rigid Surface is selected as the impact type. The ball parameters
available for editing are the inbound velocity, angle and spin (Figure 6.2a). The
simulation controls include the simulation time and dynamic relaxation
tolerance, as well as the template and output locations. Once the 'Write file'
button has been selected, a .k file with the input parameters will be created in
the specified location and the calculated x and y velocities of the ball will be
displayed. Once the .k file has been created there are two options; run the
simulation, or add it to the scheduler list. The scheduler list can be copied into a
batch file, enabling a batch of simulations to be sent to the solver. Following
this, there is the option of using the last created file as a template, selecting a
new one or keeping the original (as per the default). In addition, there is the
option of creating multiple files with different spin rates (Figure 6.2b).
Deselecting an adjust box results in the corresponding parameter remaining

unchanged from how it appears in the template (Figure 6.2a).
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Figure 6.2 a) Ball parameters in the parametric modelling program and b) The display in the parametric

modelling program when creating multiple files.

Figure 6.3a shows the view when Stringbed is selected as the impact type.
There are the additional options of changing the ball’'s impact location and the
string-bed parameters. The TDT alters the impact location of the ball by editing
the coordinates of the nodes, which correspond to the string-bed. By default,
the location of the string-bed is adjusted with the inbound angle of the ball to
ensure the impact initiates at the Geometric String-bed Centre (GSC). The
impact location can be moved from the GSC by inputting x and z offset
distances (Figure 6.3a and b). If the location of the string-bed is moved and the
template is updated to the last created file, the option to change the impact
location will again be removed. This is to ensure that the string-bed is always in
the same position before being moved. The adjustable string-bed parameters
are the string tension, string-to-string friction and Young’s modulus. The
Young’s modulus is calculated from the strings diameter and dynamic stiffness,
using the Hammer method (Section 4.2, page 91). There is also the option of
selecting preset strings from a drop-down list. When Clamped Racket is
selected as the impact type the same options are available as for the Stringbed;
however, the distance of the ball from the string-bed is automatically updated to

ensure the impact initiates at 0.0015 s (Section 4.5, page 111).
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Figure 6.3 a) String-bed parameters in the parametric modelling program and b) Impact orientation in the

Figure 6.4 shows the view when Racket is selected as the impact type. The
adjustable racket parameters are the density and Young’s modulus of the head,
throat and handle. When the .k file is created, the racket mass, balance point,
twistweight and swingweight are displayed. The balance point is displayed as
the distance from the butt in meters and the percentage of the racket length

(Figure 6.4).
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Figure 6.4 Racket parameters in the parametric modelling program.

A separate program was produced to decrease the total time required to
analyse the results obtained from the FE simulations (Figure 6.5). This program
can be used to obtain contact times, maximum forces and force plots for all
impact types detailed within this thesis. In addition, maximum ball deformation
and ball deformation plots can be obtained for perpendicular, non-spinning

impacts.
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2 Results

Analysis type Deformation

2400

Inbound velocity (m/s) 40 2000

Output location Browse

C sD and $ 3\Desk*op

Template location { Browse

EAReaills WMM

Ball deformation

Contact time (ms) 4.2250
Max. Force (N) 2527.9 Write file

Ball diameter (mm) 65.420
Max. deformation (mm) 32.3

Time (ms)

Figure 6.5 Results programme, showing results for a 40 m-s'lperpendicular impact at the GSC ofa

freely-suspended racket.

A text file containing the contact force between the ball and rigid surface /
string-bed can be obtained from LS-Prepost. However, the ball is not in contact
with the rigid surface / string-bed for the entirety of the simulation. Figure 6.6a
shows a plot of contact force, for a ball impacting with a freely suspended
racket, which was obtained directly from a text file created using LS-Prepost.
Figure 6.6b shows a force plot of the same impact, where the text file has been
edited using the program. The superfluous contact force has been removed i.e.,
when it equals to zero before and after impact, and the time data has been
changed from seconds to milliseconds. The start of contact is defined as the
last instance of when the force is equal to zero, prior to any nonzero force being
recorded. The opposite is the case for the end of contact. The updated text file
containing the results will be created in the specified location using the ‘Write
file’ button. The modified force-time plot is displayed along with the contact time

and maximum force (Figure 6.5).
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Figure 6.6 Force plot for a 40 m's™ perpendicular impact at the GSC of a freely suspended racket a)
Original force plot from ANSYS/LS-Dyna and b) Force plot updated in the results program.

The deformation of the ball is obtained by measuring its changing vertical
diameter (Figure 6.7a) using LS-Prepost (perpendicular impact only). The
definition for the deformation of the ball is shown in Figure 3.13b on page 71.
The program edits the text file, corresponding to the plot shown in Figure 6.7a,
to obtain the deformation of the ball throughout the impact (Figure 6.7b). The
deformation of the ball is obtained automatically by subtracting its diameter at
each time step from its original diameter. The start of contact is defined as the
last instance of when the current diameter is greater than or equal to the
original. The contact time is taken from the previous analysis of the
corresponding contact force data. As with the contact force data, the time is
converted from seconds to milliseconds and a deformation plot is displayed
along with the maximum deformation. The modified text file containing the
deformation-time data for the ball will be created in the specified location.
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Figure 6.7 Ball diameter for a 40 m's™ perpendicular impact at the GSC of a freely suspended racket a)
Ball diameter from ANSYS/LS-Dyna and b) Ball deformation calculated in the results program.

6.3. Discussion

The first program described in this chapter, the TDT , has proven efficient for
setting up large numbers of different simulations. It has the ability to easily
create a model with a specific ball impact location on a string-bed, with the
required inbound properties. The alternative, of using the Ansys/LS-DYNA 10.0
interface to change all the required parameters and inherently having to
manually undertake the calculations, would be very inefficient. The separate
results program has also proven effective for obtaining contact times and
forces, as well as ball deformation properties. A robust design tool could
potentially be produced, by combing the two programs into a single interface,
with the additional ability to automatically read-in and analyse the results. A
design engineer would be able to send a batch of simulations to the solver and
return to the completed simulations, with the results displayed in a standard
format.

The material properties of a large number of strings could be added to the
program, allowing their performance with different rackets to be assessed.
Using a drop-down list, similar to that of the strings, material properties of
various composite lay-ups could also be added to the program. In the current
version this would allow different composite lay-ups to be assigned to the head,
throat and handle of the racket. However, the geometry could be separated into
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a larger number of individual parts, enabling the composite lay-ups to be more
realistic. The design engineer could then analyse the effect of adjusting the

material properties of the racket.

6.4. Chapter summary

A program has been produced to allow certain parameters of the existing FE
models to be easily adjusted. This is more efficient and less prone to human
error than using the Ansys/LS-DYNA 10.0 interface. The program has been
designed to be developed alongside the FE model. In addition, a separate
program has been produced to aid in the analysis of the results obtained from
the FE simulations. Combing the two programs into a single interface, with the
additional ability to automatically read-in and analyse the results, could

potentially result in a very effective design tool.

6.5. Practical applications

A program has been produced which can be used to asses the effect of various
racket parameters, such as mass and structural stiffness, on a wide range of
different impacts. This has vast practical applications for manufacturers to

assess the effect of changing different components of the racket.
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7. Comparison of the FE model with simulated play

7.1. Introduction

The preceding chapters of this thesis have been concerned with building an FE
model of a freely suspended tennis racket. The model has been extensively
validated against laboratory based experimental data. The next logical step is to
compare the results obtained using the FE model with tennis ball to racket
impact data for actual tennis shots. In this chapter, the ball to racket impact data
collected by Choppin et al. (2007a & b) at the 2006 Wimbledon Qualifying
Tournament will be used. The main objective of this chapter is;

¢ To compare the FE model of a freely suspended racket with impact data
from the 2006 Wimbledon Qualifying Tournament (Choppin et al. 2007a
& b).

7.2. Method

In this section the FE model of a freely suspended tennis racket will be
compared with impact data obtained from players practicing at the 2006
Wimbledon Qualifying Tournament (Choppin et al., 2007a & b).

7.2.1. Analysis of ball to racket impact data obtained from testing elite
players

Choppin et al. (2007a, 2007b and 2008) undertook testing on nineteen elite

players at the 2006 Wimbledon Qualifying Tournament, as detailed in the

literature review (Section 2.5, page 34). The raw data from the player testing

was obtained from Simon Choppin, with his permission to use in this

investigation. The results obtained for each tennis shot were;

1. The inbound and rebound velocity and spin of the ball;
2. The inbound velocity of the racket;

3. The resultant inbound angle (relative to racket normal) between the ball
and racket;

4. The impact location on the string-bed.
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5. The length, width, mass and balance point of the racket.

Haake et al. (2007) demonstrated that the mass, balance point and structural
stiffness of a tennis racket all influence serve velocity. Therefore, ideally, all the
different players' rackets should be modelled and compared against the
experimental data. For practicality, a threshold for inclusion was used to reduce
the required number of simulations. The threshold relative to the ITF Carbon
Fibre racket was within 0.5% for length, 3.5% for width, 2.5% for balance point
and 3% for mass. Cross (2001b) stated that the swingweight of a tennis racket
is primarily determined by its length, mass and balance point. The racket used
in the FE model and the ITF Carbon Fibre racket used to experimentally
validate the model, were both compared against each of the 19 player's rackets
(Figure 7.1). Rackets 4, 7, 9, 10, 18 and 19 were considered to have similar
properties to the racket in the FE model. Therefore, the results from the players
who used these rackets were selected for analysis against the FE model. The

results from the other players were discarded.
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Figure 7.1 Comparison ofthe racket in the FE model and the ITF Carbon Fibre racket with each ofthe

19 players' rackets, a) length, b) width, ¢) mass and d) balance point.

Figure 7.2 shows a comparison of the six selected players' rackets, the ITF
Carbon Fibre racket (experimental) and the racket in the FE model. All of the
players were right handed except the player using racket 9. Therefore, to
ensure consistency these results were discarded. There are small differences
between the properties of the selected players' rackets and the racket in the
model. However, these differences are unlikely to have a significant effect on

the rebound characteristics of the ball.
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Figure 7.2 Comparison ofthe racket in the FE model and the ITF test racket with a selection of the

players' rackets, a) length, b) width, c) mass and d) balance point.

It is doubtful that the players will have all used a racket with the same structural
stiffness. However, the structural stiffness of a tennis racket does not have a
significant influence on the rebound characteristics of the ball, for impacts close
to the geometric string-bed centre (GSC) (Figure 5.15, Figure 5.16 &
Figure 5.17, page 152-154). Therefore, 18 shots with impact positions close to

the GSC were selected from the player testing data for analysis against the FE



model (Figure 7.3a). The ball in the freely suspended racket model travelled
approximately 25 mm horizontally whilst in contact with the string-bed when the
inbound velocity was 28 m-s™, the angle was 23° and the backspin was 400
rad-s™. This was in agreement with the amount of horizontal displacement of
the ball measured by Goodwill and -Haake (2004b), for an oblique impact on a
freely suspended tennis racket. Choppin et al. (2007a) obtained the impact
position on the string-bed when the centre of the ball was equal to a plane
through markers on the racket frame. In this investigation the position measured
by Choppin et al. was assumed to be the mid-point of the impact. Therefore, the
impacts were all offset horizontally by an additional 12.5 mm, to account for the
horizontal displacement of the ball while it remains in contact with the string-bed
(Figure 7.3b).
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Figure 7.3 Impact positions a) player testing and b) FE simulations.

Table 7.1 shows the pre-impact conditions obtained from the selected ball to
racket impact data. The resultant pre-impact velocity between the ball and
racket was calculated in 3D. The spin axis of the ball was assumed to be
parallel to the long axis of the racket (fop/back spin relative to racket). The
resultant inbound angle between the ball and racket was calculated in 2D, as
done by Choppin et al. (2007a). However, the inaccuracy as a result of using
the 2D angle was expected to be small, as the root mean squared error (RMSE)
between the resultant 2D and 3D resultant pre-impact velocities was only 1.53
m-s™.
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Eighteen FE simulations were undertaken, using the freely suspended racket
model, with inbound ball velocities, angles, spin rates and impact positions
identical to the player testing data shown in Table 7.1. In the FE simulations the
adjusted x-offset from the long axis was used (Figure 7.3b). The model was
validated against the ball to racket impact data in the racket's frame of
reference. This meant that the vertical velocity of the ball was perpendicular to
the string-bed, whilst the horizontal velocity was parallel to the string-bed. The
comparison was undertaken in the racket's frame of reference to allow an
initially stationary racket to be used in the simulations. Cross and Lindsey
(2005) provide a detailed description of how to convert the Newtonian frame of

reference from the court to the racket.

Table 7.1 Pre-impact conditions from the player testing results (+ x offset = towards inbound path of the

ball) (+ y offset = towards tip) (Player data from Choppin e? al. (2007a & b))

Racket Inbound Resultant inbound inbound x-offset Adjusted y-offset from
Shot tilt spin velocity angle from long x-offset from short axis
) (rad-s?) (m-s?) () axis (mm) long axis (mm) (mm)
1 -0.5 273.3 28.9 18.1 -1.9 10.6 32.9
2 0.0 120.4 30.1 17.8 -16.1 -3.6 31.2
3 0.4 392.7 341 16.0 -17.4 -4.9 9.1
4 3.2 314 37.0 19.4 -7.0 55 15.3
5 8.4 369.7 39.1 20.5 -20.6 -8.1 16.2
6 8.1 392.7 38.6 243 10.2 22.7 37.6
7 5.2 90.1 36.2 244 18.0 30.5 -2.1
8 3.1 314.2 36.7 233 -0.1 12,5 -5.8
9 7.1 314.2 34.0 24.8 -34.0 -21.5 26.4
10 24 299.5 35.6 25.5 -19.6 -7.1 36.9
11 0.6 136.1 37.4 239 28.9 41.4 21.2
12 5.7 285.9 36.9 22.6 -2.4 10.2 0.5
13 8.7 369.7 39.0 23.5 16.8 29.3 28.2
14 4.9 152.9 37.2 20.9 -7.2 53 18.3
15 7.7 314.2 29.7 19.8 23.4 35.9 0.8
16 1.0 299.5 30.9 21.3 3.8 16.3 13.9
17 23 299.5 324 20.3 7.6 20.1 12.7
18 5.0 330.9 34.0 14.3 15.1 27.6 20.6
Average 4.1 265.3 34.9 21.1 -0.1 12.4 17.4
SD 3.1 109.9 3.3 3.2 17.2 17.2 13.4

The Young's modulus of the racket in all of the FE simulations was 20 GPa.

This Young's modulus was used as it resulted in the racket having a natural
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frequency of 135 Hz (Figure 5.3, page 134), which is effectively the same as the
ITF Carbon Fibre racket. However, the structural stiffness of the racket frame
was not expected to have a large influence on the rebound trajectory of the ball,
as all of the impacts were close to the GSC (approx. node).

7.3. Results

Figure 7.4a shows that the FE model was in relatively good agreement with the
player testing data for horizontal rebound velocity. The RMSE between the
model and player testing data was 1.9 m-s™. Figure 7.4b shows that the model
was in better agreement with the player testing data for vertical rebound
velocity. The RMSE between the model and player testing data was 1.0 m-s™.
As both the horizontal and vertical rebound velocities were in good agreement
with the player testing data, the model was also in good agreement with the
player testing data in terms of the resultant rebound velocity (Figure 7.4c). The
RMSE for resultant rebound velocity was 0.9 m-s™.
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Perfect fit Perfect fit

RMSE = 1.9 m/s: RMSE = 1.Q m/s
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Player - Horizontal velocity (m/s) Player - Vertical velocity (m/s)

©

Perfect fit

RMSE 0.9 m/s

Player - Resultant velocity (m/s)

Figure 7.4 Comparison ofrebound velocity from the player testing and FE model a) Horizontal, b)

Vertical {perpendicular to string-bed) and c¢) Resultant (Player data from Choppin et a/ (2007a & b)).

Figure 7.5 shows that the FE model was in relatively good agreement with the
player testing data for rebound angle, although the RMSE between the two was
relatively large at 9.1°. This discrepancy, in the angles, may be as a result of
slight errors in both the horizontal and vertical rebound velocity of the ball

(Figure 7.4a & b) becoming exaggerated in the rebound angle calculation.

177



Perfect fit !

RMS$E =;9.1 degrees

a> 30

Player - Angle (degrees)
Figure 7.5 Comparison ofrebound angle from the player testing and FE model (relative to racket normal)

(Choppin et al., 2007a & b).

Figure 7.6 shows that the FE model consistently under-estimated the rebound
spin of the ball, in comparison to the player testing data. The RMSE between
the two sets of data was 61.3 rad-s'1. However, this is approximately equal to

the uncertainty in the player testing data.

250
| Perfect fit [

iRMSE =161.3 rad/'s

200

3

W

0 50 100 150 200 250
Player - Topspin (rad/s)

Figure 7.6 Comparison ofrebound topspin from the player testing and FE model (Player data from
Choppin et al,, 2007a & b).

7.4. Discussion of player testing

An FE model of a freely suspended tennis racket has been analysed against

experimental data taken from elite players, obtained by Choppin et al. (2007a &
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b). The model was in very good agreement with the player testing data for
rebound velocity and in relatively good agreement for rebound angle. The
model consistently under-predicted the rebound spin of the ball, in comparison
to the player testing data.

The model was in very good agreement with laboratory based experimental
data, for the rebound velocity of the ball (Figure 5.15, page 152). Therefore, the
model was expected to be in good agreement with the player testing data in
terms of rebound velocity. The main racket parameters which influence the
rebound velocity of the ball are mass, mass distribution, structural stiffness
(Haake et al., 2007a) and string-bed stiffness (Haake et al., 2003; Goodwill and
Haake, 2004b; Cross and Lindsey, 2005; Brody et al., 2002). Only data from
players who used rackets with a similar length, width, mass and balance point
to the racket simulated in the FE model were selected for analysis. Therefore,
the main variables between the FE model and player testing data, were the
structural stiffness of the racket and the string-bed. Only impacts close to the
GSC were selected for analysis, to limit the influence of the structural stiffness
of the racket on the rebound characteristics of the ball. Therefore, the marginal
discrepancy between the model and player testing data is likely to be due to
differences in string-bed stiffness.

The FE model slightly under-predicted the rebound angle of the ball, in
comparison to laboratory obtained experimental data (Figure 5.16, page 153).
Therefore, the model was also expected to under-predict the player testing
data, in terms of the rebound angle of the ball. The slight discrepancy between
the model and player testing data was predicted to be partly due to differences
in both string-bed stiffness and ball to string friction. However, the discrepancy
could also have been due to differences in the twistweight of the rackets or
because the players were applying a torque to the handle. Applying a resistive
torque to the handle, in the range of 7-15 Nm, has been found to reduce the
rebound angle of the ball by approximately 2°, for perpendicular impacts at 30
m-s™ (Choppin, 2008). Applying a resistive torque to the handle of the racket in
the FE model may reduce the rebound angle of the ball and hence increase

agreement with the player testing data.
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The FE model consistently under-predicted the rebound spin of the ball in
comparison to the player testing data. However, the model was in relatively
good agreement with experimental data obtained by projecting balls onto a
freely suspended tennis racket (Figure 5.17, page 154). This also indicates that
the player's grip may be influencing the impact. The players could have been
applying a torque to the handle, causing the ball to rebound with a higher spin
rate than an identical impact on a freely suspended racket. It is likely that a
racket with a resistive torque applied to the handle would produce higher
rebound spin than a freely suspended racket. This has implications for
experimentalists using the freely suspended racket as an approximation of a
hand-held racket.

Discrepancies between the FE model and player testing data could be due to
the impact location on the string-bed. In the FE simulations the impacts were
offset horizontally by an additional 12.5 mm to account for the horizontal
displacement of the ball, whilst it remains in contact with the string-bed. This
was based on the assumption that the location obtained from the player testing
data corresponded to the mid-point of the impact. In the next section the FE
model will be used to determine the effect of changing the impact location on
the string-bed, for oblique spinning impacts.

The discrepancies between the two sets of data could also be due to the
uncertainty in measured velocities, spin rates and impact positions, during the
player testing. The inbound velocities and spin rates and the impact locations
on the string-bed were based on the values obtained from the player testing
data. Therefore, errors in the inbound conditions could have resulted in

incorrect ball rebound properties.

7.5. Summary of player testing analysis

The model was in relatively good agreement with elite player testing data
obtained in 3D, in terms of the rebound characteristics of the ball. The results
indicate that the model can predict rebound velocities to within 1 m-s™, angles
to within 10° and spin rates to within 65 rad-s™. These values are for an impact
close to the GSC of a racket, which is similar in size and mass to the one in the

FE model. Discrepancies between the model and player testing data are
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predicted to be due to differences in the structural stiffness of the string-bed,
torque applied to the handle of the racket and uncertainty in the player testing
data. Validating the model against data obtained from players using a ball
(Prince Tour), strings (Prince Premier Softflex 16) and racket (/TF Carbon Fibre)
identical to those in the model would provide a better indication of its accuracy.
Reducing the uncertainty in the player testing data would also provide a better

indication of the accuracy of the model.

7.6. Chapter summary

In this chapter an FE model of a freely suspended tennis racket was analysed
against data obtained from elite players, at the 2006 Wimbledon Qualifying
Tournament. The model was in very good agreement with the player testing
data for the rebound velocity of the ball and in relatively good agreement for
rebound angle. The discrepancy for angle was considered to be partly due to
the combination of errors in the vertical and horizontal rebound velocity of the
ball. The model consistently underestimated the rebound spin of the ball. This
was concluded to be because the player was applying a torque to the handle of

the racket, which was not accounted for by the model.
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8. Applications of the model

8.1. Introduction

The FE model will be used to determine the effect of the structural stiffness,
mass and balance point of a tennis racket, for an oblique spinning impact at a
variety of locations on the string-bed. The results will then be analysed to
determine the influence that each of the individual racket parameters may have
on a typical forehand shot. Finally, the implications to tennis racket design will

be discussed. The main objectives of this chapter are;

1. To determine the influence of racket stiffness, mass and balance point
on a typical forehand tennis shot.

2. To determine how this would be perceived by players on the court.
3. To outline guidelines for tennis racket design.

8.2. Method

An investigation was undertaken using the freely suspended racket model to
determine the effect of racket structural stiffness, mass and balance point on a
forehand shot. In order to determine the overall effect of each of the racket
parameters, impacts were simulated at six locations on the string-bed
(Table 8.1, Figure 8.1). The FE simulations had an inbound velocity of 35 m-s™,
an angle of 20° (relative to racket normal) and a backspin of 300 rad-s™. These
inbound conditions were found to be representative of a tennis shot for an elite
player, in the previous section (Table 7.1, page 175). Two sets of simulations
were undertaken for each of the three racket parameters under investigation
(Stiffness, mass and balance point). This gave six different impact locations and

six different racket parameter configurations, which required 36 simulations.
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Table 8.1 Impact locations on the string-bed used to determine the effect of different racket parameters.

Simulation Impact distance from the long axis (mm) Impact distance from the short axis (mm)

1 0 60
2 0 0
3 0 -60
4 60 60
5 60 0
6 60 -60
Flight direction
Long axis

1=0,60

2=0,0

3=0,-60

4 =60, 60

5=60,0

6 =60, -60

Figure 8.1 Impact locations on the string-bed used to determine the effect of different racket parameters.

The structural stiffness of the racket was adjusted by changing the Young's
modulus. The first set of six simulations had an apparent Young's modulus of 10
GPa and a natural frequency of 96 Hz. The second set of simulations had an
apparent Young's modulus of 70 GPa and a natural frequency of 253 Hz. Refer
to Figure 5.3, on page 134, for the relationship between Young's modulus and
natural frequency of the racket. The mass and balance point of the racket
remained identical to the original model (Table 5.1, page 131).

Table 8.2 Two sets of FE simulations used to determine the effect of racket structural stiffness.

Simulation set  Young's Modulus (GPa)  Natural frequency (Hz)
1 10 96
2 70 253

The mass of the racket was adjusted by changing the density. The densities of
the three parts were all changed by the same percentage to ensure the balance
point of the racket remained constant. Haake et al. (2007) found the mass of
150 tennis rackets, from the 1870's to 2007, to be in a range of 0.24-0.44 kg
(Figure 2.9, page 26). The mass of the racket in the FE model was increased
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and decreased by 20% (0.07 kg) (Table 8.3). Table 8.4 shows the density and
mass of the separate parts of the racket. Changing the mass of the racket also
alters the natural frequency, swingweight and twistweight, as shown in
Table 8.3 and Figure 8.2. Natural frequency would increase as the mass of the
racket decreased (Figure 8.2a). The swingweight and twistweight of the racket

would both increase with racket mass (Figure 8.2b).

Table 8.3 Two sets of FE simulations used to determine the effect of racket mass. The mass moment of

inertia, the polar moment of inertia and natural frequency of the racket in the FE model are also displayed.

Simulation Racket Mass moment of inertia Polar moment of inertia Natural
set mass (kg) (swingweight) (kgm?) (twistweight) (kgm?) frequency (Hz)
1 0.279 0.0406 0.0013 151
2 0.418 0.0605 0.0019 123

Table 8.4 Density and mass of the separate parts of the racket in the two FE models used to determine the

effect of racket mass.

. . Handle Handle Throat Throat Head Racket
Slm;lleattlon densiy mass densi? mass densig Hea(c'l(;;ass mass
(kg'm™) (kg) (kgm~) (kg) (kg'm~) (kg)
1 1520 0.078 1680 0.072 1080 0.127 0.279
2 2280 0.118 2520 0.107 1620 0.190 0.418
(a) (b)
170 T T T ooz T . T T
; senas Tuistweight : :
160 LSRRI JUTO i ool © ?ﬁginalraclfet ------ ---------- - D .
N “g’ 005 beemememenbenememee e e J
> 150}-- - =
5 g 0.04 f--mreneesidenennn®l
<R Y] SURURRUR SUUHPRRR . PRI SO SRR SO 4 e
o -
= © DBO3f---eenen- deeconenane Jecencecnen jeececanead Seccssencs Reevencecs .
© F=
[ R k1] TESRRURIUURRRIN USRI S LI SR 4 [N
K Eom
=
12 L1 S RLCLLTCTIE SRPTTPPE -
“ ; ; ; ; 0 ; I'lél.'.'.o‘llllll{lll i
%.2 025 03 035 04 0.45 05 02 025 03 035 04 045 0.
Racket mass (kg) Racket mass (kg)

Figure 8.2 Relationship between the mass of the racket in the FE model and a) its natural frequency, b)

its moment of inertia.

The balance point of the racket was adjusted by changing the density of the
handle and head. Haake et al. (2007) found the balance point of 150 rackets,
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from the 1870's to 2007, to be between 0.30 and 0.39 m from the butt of the
racket. The balance point was set to 0.299 m from the butt by adding 0.02 kg to
the handle and removing 0.02 kg from the head (Table 8.5). The balance point
was set to 0.396 m from the butt by removing 0.06 kg from the handle and
adding 0.06 kg to the head (Table 8.5). The density and mass of the handle and
head of both rackets are shown in Table 8.6. Changing the balance point of the
racket also alters the natural frequency, swingweight and twistweight, as shown
in Table 8.5 and Figure 8.3. In relation to the racket in the original model, the
natural frequency increased when the balance point was moved closer to both
the butt and the tip (Figure 8.3a). The swingweight and twistweight of the racket
both increased as the balance point moved closer to the tip of the racket
(Figure 8.3b). The twistweight increased because, in the model, mass is added
to the entire racket head. In reality, mass could be added at the tip of a racket to

increase its swing weight, whilst keeping the twistweight virtually constant.

Table 8.5 Two sets of FE simulations used to determine the effect of the balance point of the racket. The
mass moment of inertia, the polar moment of inertia and natural frequency of the racket in the FE model

are also displayed.

Simulation Balance point Mass moment of inertia Polar moment of inertia Natural
set from Butt (m) (swingweight) (kgm?) (twistweight) (kgm?) frequency (Hz)
1 0.299 0.0454 0.0014 137
2 0.396 0.066 0.0021 143

Table 8.6 Density and mass of the separate parts of the racket in the two FE models used to determine the

effect of the position of the balance point.

Simulation Handle density Handle mass Head density Head mass Balance point from
set (kg'm®) (kg) (kg'm®) (kg) Butt (m)
1 2288 0.118 1180 0.139 0.299
2 737 0.038 1859 0.218 0.396
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Figure 8.3 Relationship between the position of the balance point of the racket in the FE model and a)

natural frequency, b) moment of inertia.

8.3. Results

8.3.1.

Racket structural stiffness

Figure 8.4 shows that the rebound velocity increased with the structural

stiffness of the racket, for all six impact positions. Rebound velocity decreased
as the impact position moved closer to the tip (0, 60) of the racket, along the
long axis. Rebound velocity also decreased as the impact position moved away
from the long axis. The structural stiffness of the racket had the largest effect on

rebound velocity for the impacts in the throat region (0, -60 & 60, -60).
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m High structural stiffness

o Low structural stiffness

0d0 00 Qa0 a0 @00 -
Impact position relative to the geometric string-bed centre

Long axis

0(60 Flight directior

Short axis -

Figure 8.4 Effect ofthe structural stiffness of a tennis racket on the rebound velocity ofthe ball, for an

impact at 35 m-s'land 20° with 300 rad s'lofbackspin.

The longitudinal rebound angle was very small for the impacts in the central
region of the string-bed (0, 0 & 60, 0) (Figure 8.5). The two rackets also had
relatively similar rebound angles for the impacts at the throat and tip which were
offset from the long axis (60, -60 & 60, 60). However, the rebound angles were
approximately 9-12° larger than at the GSC. The structural stiffness of the
racket had a larger influence on the longitudinal rebound angle of the ball for the
impact at the throat and tip on the long axis (0, -60 & 0, 60). At these locations
the longitudinal angle was larger for the racket with low structural stiffness. This
is likely to be due to the racket with low structural stiffness deforming more
throughout the impact. A large longitudinal angle may cause the ball to deviate

horizontally from its intended path and hence reduce 'control'.
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High structural stiffness

o Low structural stiffness

0,60 0,0 0,-60 60,60 60,0 60,-60

Impact position relative to the geometric string-bed centre
Long axis —

Longitudinal

Short axi
i rebound angle

Figure 8.5 Effect of the structural stiffness of a tennis racket on the longitudinal rebound angle ofthe ball,

for an impact at 35 m-s'land 20° with 300 rad-s'lofbackspin.

Figure 8.6 shows that the horizontal rebound angle increased for all three
impact locations on the long axis (0, -60, 0 & 0, 0, 60), when the structural
stiffness of the racket was decreased. For both rackets, the rebound angle
increased as the impact position moved from the throat (0, -60) to the tip (0, 60)
along the long axis. The rebound angles also increased as the impact positions
moved away from the long axis of the racket. This is likely to be due to a
decrease in the vertical rebound velocity of the ball, as a result of the racket
rotating about its long axis. The largest rebound angle for both rackets was at
the tip location offset from the long axis of the string-bed (60, 60). At this
location and the throat impact offset from the long axis (60, -60) the rebound
velocity of the ball was effectively independent of the structural stiffness of the
racket. A larger rebound angle could be regarded as being equivalent to the ball
rebounding closer to the racket normal in the court's frame of reference. This

may give the impression of reduced 'power' (Bower and Cross, 2005).
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Figure 8.6 Effect of'the structural stiffness of a tennis racket on the horizontal rebound angle ofthe ball,

for an impact at 35 m-s'land 20° with 300 rad-s'lofbackspin.

Figure 8.7 shows that the sidespin was slightly higher for the structurally stiff
racket at the GSC (0, 0) and throat (0, 60), in comparison to the racket with low
structural stiffness. However, the sidespin was over 20 rad-s'1larger at the tip of
the racket (0, 60) with low structural stiffness. For the structurally stiff racket the
highest sidespin was for the impact at the throat (0, -60). Sidespin will result in a
horizontal force acting on the ball during flight. If large enough, this horizontal

force could potentially cause the ball to deviate from its intended trajectory.
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Figure 8.7 Effect ofthe structural stiffness of a tennis racket on the rebound sidespin ofthe ball, for an

impact at 35 m-s'land 20° with 300 rad-s'lofbackspin.

Increasing the structural stiffness of the racket resulted in a very slight increase
in topspin for impacts at the GSC (0, 0) (Figure 8.8). For both rackets, the
rebound topspin of the ball increased as the impact position moved away from
the GSC (0, 0), along the long axis of the string-bed towards both the tip (0, 60)
and throat (0, -60). The rebound topspin was approximately 11 rad-s'1higher at
the throat (0, -60) for the racket with low structural stiffness. The rebound
topspin at the tip (0, 60) was virtually identical for both rackets. Offsetting the
impact from the long axis of the string-bed resulted in a considerable decrease
in rebound topspin for both rackets. The decrease in topspin was slightly less

pronounced for both rackets in the impact offset from the GSC (60, 0).
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Figure 8.8 Effect ofthe structural stiffness of a tennis racket on the rebound topspin of'the ball, for an

impact at 35 m-s'land 20° with 300 rad-s'lofbackspin.

8.3.2. Summary of racket structural stiffness

The results indicate that the structural stiffness of a tennis racket influences the
rebound velocity, angle and spin of the ball. A stiffer racket will cause the ball to
rebound slightly faster and with a larger angle in the court frame of reference,
as shown in Figure 8.9. This indicates that a stiffer racket will provide a player
with more ’power’. A racket with low structural stiffness will cause the ball to
rebound at a larger longitudinal angle and with considerably more sidespin, for
impacts in the tip region. A large longitudinal angle and high sidespin may
cause the ball to deviate horizontally from its intended trajectory and hence
reduce ’‘control’. The magnitude of topspin for a ball rebounding off a racket with
high structural stiffness is much less dependent on the impact location. This
also indicates that a stiffer racket may increase ’control’ and improve
consistency. Elite players typically impact the ball close to the GSC, when

performing a topspin forehand (Choppin et al., 2008). A ball impacting at the
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GSC of a racket with high structural stiffness, will rebound very slightly faster
and higher (court frame of reference) and with a little more topspin and

sidespin.

Stiff racket

Flexible racket

Figure 8.9 Diagram to illustrate the difference between using a stiff and flexible racket when performing

a forehand shot.

8.3.3. Racket mass

Figure 8.10 shows that rebound velocity increased considerably with the mass
of the racket, for all six impact positions. For both rackets, rebound velocity
decreased as the impact position moved closer to the tip of the racket (0, 60),
along the long axis. Rebound velocity also decreased as the impact position
moved away from the long axis. The difference in rebound velocity for the two
rackets was approximately 3.5 m-s'1, for all the impact positions on the string-
bed.
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Figure 8.10 Effect of the mass ofa tennis racket on the rebound velocity of the ball, for an impact at 35

m-s'land 20° with 300 rad-s'lofbackspin.

Figure 8.11 shows that the longitudinal rebound angle was approximately zero
in both rackets for the impacts in the central region of the string-bed (0, 0 & 60,
0). The impacts with the lighter racket produced larger longitudinal rebound
angles for all of the other positions on the string-bed. The largest rebound angle
for both rackets was for the impact at the tip offset from the long axis (60, 60).
The discrepancy between the rebound angles of the two rackets was also
largest at this location, with a difference of approximately 10°. As mentioned
previously, a large longitudinal angle may cause the ball to deviate horizontally

from its intended path, thus reducing 'control'.
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Figure 8.11 Effect ofthe mass of a tennis racket on the longitudinal rebound angle of'the ball, for an

im