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Abstract
Previous authors have produced analytical models which accurately simulate 

tennis impacts. However, currently there are few published studies on the 

simulation of tennis impacts using finite-element (FE) technique. The purpose of 

this study was to produce accurate FE models of tennis impacts, which will 

serve as design tools as well as aid in furthering the understanding of how the 

ball, string-bed and racket behave during play.

An FE model of a pressurised tennis ball was produced in Ansys/LS-DYNA 10.0 

and validated against experimental data. The ball model was updated to 

simulate the extreme playing temperatures of 10 and 40°C and validated 

against experimental data, obtained inside a climate chamber. Following 

validation of the ball model, an FE model of a head-clamped racket was 

produced and validated against experimental data. The validation included a 

range of inbound velocities, angles and spin rates, for impacts at a number of 

nominal locations on the string-bed. Finally, an FE model of a freely suspended 

racket was constructed and validated against experimental data. Impacts were 

simulated at a number of nominal impact locations on the string-bed, with a 

range of ball inbound velocities, angles and spin rates. The impacts were 

recorded using two Phantom v4.2 high-speed cameras and analysed in 3D. The 

FE models were all in good agreement with the experimental data, for the 

individual stages of the validation.

A parametric modelling program was produced to be used in conjunction with 

the model. This program enables the user to adjust a variety of parameters, 

such as the inbound velocity of the ball, impact location and mass of the racket, 

and run simulations without any specialist knowledge of the FE model. This 

program was used to analyse the model against ball to racket impact data 

obtained during player testing. There was relatively good agreement between 

the model and player testing data.

Finally, the model was used to determine the influence of racket structural 

stiffness, mass and the position of the balance point, when performing a typical 

topspin forehand. It was found that using a head-heavy racket, with high 

structural stiffness and mass, will increase the rebound velocity and topspin of 

the ball, for a shot of this type at the centre of the string-bed.

Keywords: tennis ball, tennis racket, high speed cinematography, finite-element modelling.
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1. Introduction
The following chapters contain a three year study into the creation and 

validation of a finite element (FE) model of an impact between a tennis ball and 

racket.

1.1. Motivation for the Research

Over the years, tennis technology has developed, which has had an enormous 

impact on the way the game is played. Racket materials have changed from 

wood to aluminium, to the oversized, more exotic composite ones used today 

(Haake et al., 2007). These advances have allowed players to hit shots faster 

and with greater accuracy (Brody, 1997a), effectively increasing the speed of 

the game (Brody, 1997b). However, this is also believed to have increased the 

dominance of the server and there is growing apprehension that this is resulting 

in a reduction in spectator appeal (Kotze et al., 2000). The International Tennis 

Federation (ITF) is concerned with maintaining public and commercial interest, 

in order to prevent the demise of the sport through lack of financial support. To 

successfully regulate a sport, such as tennis, the governing body needs a full 

understanding of the physical principles and technologies within the game. 

Thus, the ITF set up a Technical Department in 1997 in order to monitor and 

direct scientific advances in the sport (ITF Technical Department, 2009).

As a scientific subject area, tennis is well publicised with advances in 

knowledge and technology coming from within academia and industry. 

Researchers, scientists and engineers have simulated the various aspects of 

the game through conventional laboratory investigations, which can be both 

costly and time consuming. A large number of published studies have been 

concerned with creating analytical models. Discrepancies between publications 

have arisen due to errors and assumptions in both experimental and modelling 

techniques.

The sponsors of this project are Prince whose principal aim is to design and 

manufacture tennis rackets, for use by both amateur and professional players. 

Prince require a tool which can be used to aid the design of their next 

generation of rackets, which must conform to the current rules of the ITF. This 

tool should be straightforward and easy to use to enable it to fit seamlessly into 

their existing design process. FE models have been successfully applied to



increase the physical understanding of other sports and aid in the design of 

equipment. This project is concerned with constructing an accurate FE model to 

form the basis of a tennis racket design tool. The intention of this project is to 

highlight and explain areas of disagreement between previous studies and also 

to evaluate the suitability of FE technique for modelling tennis ball impacts.

1.2. Aim and objectives

The aim of this thesis is to create an FE model which accurately simulates 

tennis ball to racket impacts.

The main objectives are as follows;

1. To review existing literature in the field of tennis ball to court and ball to 

racket impacts.

2. To produce and validate a realistic FE model of a pressurised tennis ball.

3. To produce and validate a realistic FE model of a pressurised tennis ball 

impacting a freely suspended racket.

4. To produce a parametric modelling program which enables key parameters 

of a tennis ball to racket model to be easily adjusted and simulations run 

without the requirement of using an FE interface.

5. To produce a tool that can aid in the design and development of tennis 

rackets.

6. To use an FE model of a ball to racket impact to further the scientific 

understanding of tennis.

1.3. Thesis structure

This project is concerned with the construction of a realistic FE model of a 

tennis ball impacting with a freely suspended racket. This will involve obtaining 

the key physical properties of the ball, strings and racket which will be used in



the model. The first stage will be to construct a realistic FE model of a tennis 

ball impacting on a rigid surface. This ball model will be developed into a ball to 

racket model which can simulate the full range of tennis shots encountered 

during play. A parametric modelling program will also be constructed alongside 

the FE model. This program will enable a wide variety of simulations, 

encompassing different tennis shots, to be undertaken efficiently. Finally the 

applications of the model with regard to the design of tennis rackets will be 

discussed.

It is imperative that an FE model is validated against experimental data to 

assess its accuracy and validity. This thesis is documented in chapters, the 

majority of which are concerned with the detailed validation of each of the main 

parts of the FE model against experimental data.
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2. Literature Review

2.1. Introduction

There is a large amount of literature on the physics of tennis, dating back as far 

as 1877 (Raleigh, 1877). Previous research has sought to find a greater 

scientific understanding of the interaction of the ball with both the court and the 

racket. Work has often been duplicated, which has led to the establishment of 

certain conclusions. However, there have also been areas of contradiction. The 

intention of this literature review is to highlight well established conclusions and 

attempt to explain the reasons for areas of discrepancy and misunderstanding. 

This project is concerned with the creation and experimental validation of a 

finite element (FE) model of an impact between a tennis ball and racket. The 

most logical method of approaching this problem is to separate it into three 

stages, as detailed below;

1. Model the interaction of the ball with a rigid surface.

2. Model the interaction of the ball with a string-bed.

3. Model the interaction of the ball with a complete racket.

This literature review aims to follow the same course.

The sponsors of this project are Prince, who are concerned with the 

manufacture of a wide range of different tennis rackets. The intention of this 

project is to create a tool which can be used to aid the design of their next 

generation of rackets. It is therefore important to provide them with an overview 

of how tennis equipment has changed since the origins of the modern game, as 

well as how these changes have affected play.

This chapter will analyse existing literature on the physics of tennis. The FE 

model will be built and validated in stages to ensure the highest possible 

accuracy. Therefore, the literature review contains separate sections on the 

ball, string-bed and racket. The impacts simulated in the model must be 

representative of actual play; hence a section on player testing has been 

included. The final sections are on previous tennis models and the effects of 

technological advances on the game.
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2.2. The ball

2.2.1. The history of the tennis ball

The modern game of tennis or 'lawn tennis' evolved from real tennis in the 

1870's, partly due to the invention of the lawn mower. Initially, solid vulcanised 

rubber balls were used. Improvements quickly followed, including making the 

ball hollow and pressurising it, as well as stitching a flannel cover around the 

core to prevent wear (ITF Technical Department, 2009). Originally, the hollow 

cores were manufactured from a single clover leaf shaped piece of rubber; this 

procedure was later replaced with the bonding of two compression moulded half 

shells. The flannel cover was also replaced by specialist cloth, which was 

bonded to the cores (ITF Technical Department, 2009). Pressureless or 

unpressurised balls, which had butadiene rubber (synthetic) cores, came into 

existence in the 1960's (Haines, 1993). However, the pressureless balls failed 

to gain popularity and were never widely used. In 1972 the International Tennis 

Federation (ITF) introduced yellow balls to the rules; this was followed by the 

high altitude ball in 1989. In 2002 the original ball was replaced by a faster type 

1 ball, a type 2 ball which was identical to the original and a slower type 3 ball 

(ITF Technical Department, 2009).

2.2.2. Rules of tennis balls as set by the ITF

In order to regulate the game of tennis and ensure consistency, any balls used 

in tournament play must be approved by the ITF. This involves passing a 

number of assessments, which are mass, size, deformation and rebound. Prior 

to these assessments, the ball must be acclimatised for 24 hours, at 20 ± 2°C 

and 60 ± 5% humidity and then compressed. The approval procedures are 

documented in detail by the ITF (ITF Technical Department, 2009).

Downing (2007a) found no correlation between the static and dynamic stiffness 

of tennis balls, concluding that rebound is the most important test with regard to 

the ball's impact characteristics during play. When dropped from a height of 

2.54 m, standard balls (type 1-3), must rebound between 1.35 and 1.47 m. High 

altitude balls must bounce to a height of 1.22 -1.35 m, to compensate for the 

lower pressure at which they are intended to operate. The ITF test limits for
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balls are summarised in Table 2.1. This study will concentrate on type 2 balls as 

they are the most commonly used.

Table 2.1 Test limits for ITF approved balls (ITF Technical Department, 2009)

TYPE 1 (FAST) TYPE 2 (MEDIUM)1 TYPE 3 (SLOW)2 HIGH ALTITUDE3

WEIGHT (MASS) 56.0-59.4 grams 
(1.975-2.095 ounces)

56.0-59.4 grams 
(1.975-2.095 ounces)

56.0-59.4 grams 
(1.975-2.095 ounces)

56.0-59.4 grams 
(1.975-2.095 ounces;

SIZE 6.54-5.86 cm 
(2.57-2.70 inches)

6.5-4-6.86 cm 
(2.57-2.70 inches)

7.00-7.30 cm 
(2 76-2.87 inches)

6.54-6.86 cm 
(2.57-2.70 inches)

REBOUND 135-147 cm 
(53-58 inches;

135-147 cm 
(53-5-8 inches)

135-147 cm 
(53-5-8 inches)

122-135 cm 
(48-53 inches)

FORWARD
DEFORMATION4

0.495-0.600 cm 
(0.195-0.236 inches)

0.560-0.740 cm 
(0.220-0.291 inches)

0.560-0.740 cm 
(0.220-0.291 inches)

0.560-0.740 cm 
(0.220-0.291 inches)

RETURN
DEFORMATION4

0.670-0.915 cm 
(0.264-0.360 inches)

0.800-1.080 cm 
(0.315-0.425 inches)

0.800-1.080 cm 
(0 315-0.425 inches)

0.800-1 080 cm 
(0.315-0.425 inches)

2.2.3. The manufacture of tennis balls and their material properties

This study will focus on pressurised tennis balls as they are much more widely 

used, particularly in tournament play. Detailed descriptions of the current 

manufacturing process of pressurised tennis balls have been undertaken by 

both the ITF Technical Department (2009) and Penn (2008). The first stage is to 

combine natural rubber with additional chemicals and extrude the mixture into 

pellets. Each of these pellets is compression moulded into a half shell with a 

wall thickness of approximately 3 mm; pairs of shells are bonded together to 

form a core. The cores are pressurised to approximately 8.3 * l O ^ N m 2 during 

the bonding process. The cover consists of two dumb-bell shaped pieces of felt, 

which are bonded to the core under elevated temperature and pressure using a 

mould. The white seal is caused by a vulcanised solution, which is applied 

around the edge of each of the separate pieces of felt before they are bonded to 

the core.

There is very little published data on the material properties of tennis balls. 

Although, it is predicted that each manufacturer will use slightly different 

materials and manufacturing procedures, resulting in small variations in impact 

characteristics (Miller and Messner, 2003). A range of balls can have different 

dynamic stiffness values even though they have passed the ITF rebound test. 

This can cause variation in their dynamic properties at high impact velocities 

(>10 m-s'1) (Cross, 1999; Haake et a i, 2003a) (Figure 2.1). The ratio of the 

rebound to inbound velocity of the ball is defined as the coefficient of restitution
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(COR). With regard to play, a higher COR would result in an increased speed 

off the court or racket, whilst dynamic stiffness has been stated to affect the 

ball's rebound angle (Cross, 1999). Miller and Messner (2003) raised concern 

that with the current approval procedures, a ball could be introduced with the 

potential to change the fundamental nature of the game. A possible solution for 

raising consistency between different balls would be to undertake additional 

rebound tests at higher impact speeds, as suggested by Cross (1999) and 

Miller and Messner (2003). Further research would be required to support the 

introduction of a new standard. A representative ball to surface impact model 

could be used to accurately predict a ball's rebound characteristics at a range of 

velocities. Such a model could be used for determining the influence of 

individual parameters on the game.

n
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Figure 2.1 Variation in a) COR and b) contact time, between different balls for perpendicular impacts on 

a rigid surface (Haake et al., 2003a).

A number of authors have found that the rebound characteristics of tennis balls 

change with temperature (Rose et al., 2000; Downing, 2007b). The internal 

pressure of a tennis ball will change with temperature in accordance with the 

combined gas law (P1V1/T1 = P2V2/T2 ). It is predicted that this change in internal 

pressure will affect the structural stiffness and hence rebound characteristics of 

the tennis ball. The variation in dynamic properties with temperature could also 

be partly due to a change in the material properties of the ball, as predicted by 

Downing (2007b). Undertaking the ITF approval tests across a range of

7



temperatures could potentially increase consistency when playing under 

different atmospheric conditions.

Goodwill et al., (2005) performed materials testing on the rubber core and felt 

cover, which is used in the construction of a tennis ball. A Hounsfield 

tensometer was used to obtain the quasi-static stress/strain relationship of the 

rubber in both tension and compression. The maximum load applied to the 

rubber samples was 150 N for tension and 450 N for compression (Figure 2.2a). 

The quasi-static stress/strain relationship of the felt cover was obtained for 

compression, up to a load of 500 N (Figure 2.2b). Testing the material 

properties of the rubber and felt from a range of balls would provide an 

indication of the amount of variation between manufacturers. Testing at a range 

of temperatures would provide an indication as to how the material properties of 

tennis balls change with temperature. Dynamic mechanical analysis (DMA) 

could be used to obtain the viscoelastic properties of the rubber core of a tennis 

ball (Menard, 2008).

(a) (b)
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Figure 2.2 Quasistatic material properties o f the a) rubber core and b) felt cover o f a tennis ball 

(Goodwill et al., 2005).

Rubber is viscoelastic, which means its properties are both time and 

temperature dependent. Increasing the strain rate and/or decreasing the 

temperature results in an increase in the Young's modulus (Menard, 2008). 

Mase and Kersten (2004) undertook stress relaxation testing on samples taken 

from the cores of golf balls, in order to obtain their viscoelastic properties. 

Stress relaxation testing involves measuring the time dependent stress in a
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sample held at constant strain, following rapid loading (Menard, 2008). Three 

point flexure tests were undertaken using a DMA test machine. As the contact 

time of a golf ball is very small a series of tests were undertaken from -90°C to 

room temperature. A master curve referenced at room temperature was 

constructed by undertaking time-temperature superposition on the data 

obtained from the individual tests. Time-temperature superposition assumes 

time-temperature equivalence and is used to combine data collected at different 

temperatures in order to predict the behaviour at a wider frequency range 

(Menard, 2008). The master curve was fitted to a Prony series and implemented 

into a model of a golf ball, which was constructed in LS-DYNA. The viscoelastic 

properties of a tennis ball core could be obtained by undertaking a series of 

stress relaxation tests across a wide temperature range. However, the contact 

time of a tennis ball (Goodwill, 2002; Haake et al., 2003a) is approximately 10 

times longer than that of a golf ball (Mase and Kersten, 2004). This indicates 

that the temperature range would not need to be as wide as used by Mase and 

Kersten (2004).

Ismail and Stronge (2008) measured the viscoelastic properties of the mantle 

layer (between core and cover) of a golf ball using a DMA technique. Forced 

vibration testing was undertaken on a cantilever specimen in a frequency sweep 

from 0-20 Hz. The tests were undertaken at different temperatures and time- 

temperature superposition was used to extend the frequency range. The results 

were fitted to a Prony series and used to create a golf ball model in Abaqus. 

Price et al. (2008) used DMA to obtain the viscoelastic properties of the 

materials used in two different soccer balls. Forced vibration testing was 

undertaken at room temperature (23°C), at a range of frequencies from 0.1-100 

Hz. The results were fitted to a Prony series and used to construct soccer ball 

models in Abaqus EXPLICIT. It is likely that DMA could be used to obtain the 

viscoelastic properties of tennis ball rubber. However, the contact time of a 

soccer ball (Price et al. 2008) is longer than that of a tennis ball (Goodwill, 2002; 

Haake et al., 2003a). Therefore, assuming a minimum contact time of 3 ms, 

(Goodwill, 2002; Haake et al., 2003a) it is likely that the maximum frequency 

would have to be around 350 Hz. This could be obtained by using a wide 

frequency range or by testing at different temperatures and applying time- 

temperature superposition (Menard, 2008).



2.2.4. Tennis ball properties

Downing (2007a) investigated the relationship between static and dynamic 

tennis ball stiffness. The static stiffness was determined as the amount of 

forward deformation from an ITF deformation test. The dynamic properties were 

obtained by projecting balls onto a force plate at velocities in the range from 15 

- 30 m-s'1. A higher contact time was stated to indicate a lower dynamic 

stiffness, as concluded by Dignall and Haake (2000). Downing concluded that 

there was no relationship between the contact times of tennis balls during 

dynamic impacts and the amount of forward deformation during a static test. 

This highlighted that the dynamic properties of tennis balls are more relevant to 

actual play.

Miller and Messner (2003) measured the COR of tennis balls impacting 

perpendicular to a rigid surface, for inbound velocities in the range from 7 - 4 5  

m-s'1. They concluded that COR decreases with inbound velocity. Although, the 

decrease in COR, for a set increase in inbound velocity, becomes less 

pronounced with increasing inbound velocity. COR was stated to decrease from 

0.75 at 7 m-s'1, to 0.4 at 45 m-s'1. Miller and Messer also analysed the effect of 

'simulated' wear on COR. Wear was simulated by impacting balls obliquely onto 

a rough block. They concluded that for an inbound velocity of 40 m-s'1, COR 

decreased significantly at higher numbers of simulated impacts (>100). One 

hundred impacts were stated to be high, but possibly achievable by a single ball 

during a match. Measuring additional parameters, such as contact time, 

deformation and contact force, would have provided a better indication as to 

how the dynamic properties of a tennis ball change with impact velocity and 

wear. Other authors have found wear to affect the aerodynamics and hence 

flight characteristics of tennis balls (Chadwick and Haake, 2000; Goodwill et al.,

2004). Further research should be undertaken to determine the typical and 

maximum amount of wear which a tennis ball will experience when used during 

match play.

Goodwill (2002) analysed the perpendicular impact of a tennis ball on both a 

rigid surface and a force plate, for a range of inbound velocities up to 30 m-s'1. 

Goodwill measured a large range of parameters, including rebound velocities, 

deformations, centre of mass (COM) displacements, contact times and force 

plots. COR was found to decrease with inbound velocity, in agreement with
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Miller and Messner (2003). Contact time was also found to decrease with 

inbound velocity, while contact force increased (Figure 2.3a). The peak in 

contact force at approximately 0.2 ms into the impact has been well reported by 

numerous authors, and is understood to be due to the walls of the ball buckling 

(Cross, 1999; Dignall & Haake, 2000; Goodwill et al., 2005; Haake et al., 2005, 

Hubbard & Stronge, 2001; Pratt, 2000). The maximum deformation of the balls 

was found to increase with inbound velocity (Figure 2.3b). For an inbound 

velocity of 30 m-s'1 the maximum deformation is approximately equal to the 

radius of the ball. Goodwill also compared contact times measured with a force 

plate, with those measured using a high speed video camera. It was difficult to 

identify the end of contact using the camera, as the balls were still deformed 

when they left the surface. This led to a discrepancy in the two sets of results 

and the force plate was stated to be more accurate at measuring contact times.

COM
.placement

2 3 4
Time (ms)

o Deformation

e ■ Pressurised 
» » pressureless 
o ♦ Oversee 
o • Punctured

10 20 30
BaB impact velocity (rrVs)

Figure 2.3 Ball impact properties for a perpendicular impact on a rigid surface a) Force plot and b) COM 

displacement and maximum deformation (Goodwill, 2002).

Rose et al. (2000) analysed the effect of temperature on the properties of tennis 

balls. ITF deformation and rebound tests were undertaken in the temperature 

range of 0-40°C. The static stiffness of the tennis balls was found to remain 

effectively constant with temperature. The COR of the balls used in the rebound 

test was found to increase with temperature. They established the same trend 

at higher inbound velocities up to 45 m-s'1. The discrepancy between the results 

obtained for static deformation and impact testing indicates that the dynamic
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properties of tennis balls cannot be predicted from static tests, in agreement 

with Downing (2007a).

Downing (2007b) also analysed the effects of temperature, in the range from 

10-40°C, on the dynamic properties of tennis balls. COR was found to increase 

with temperature, in agreement with Rose et al. (2000). Downing also measured 

contact times, which were found to increase with temperature. This increase in 

contact time indicates a reduction in the ball's structural stiffness (Dignall and 

Haake, 2000; Brody et al., 2002; Cross and Lindsey, 2005; Goodwill et al.,

2005), which was concluded to be due to a change in the rubber core material 

properties. The change in the internal pressure of a tennis ball with temperature 

will also have an effect on its rebound characteristics. Testing punctured balls 

would remove the effect of the internal pressure. Testing punctured balls and 

cores would have provided further insight into how the properties of both the 

rubber and felt change with temperature. However, materials testing would 

provide the best indication of how the properties of the rubber and felt change 

with temperature. The change in the internal pressure of a tennis ball with 

temperature can be calculated if the enclosed volume is assumed to remain 

constant. Physically measuring the internal pressure at each temperature would 

be more accurate as it would account for any changes in the diameter of the 

ball; however, this was neglected by both Rose et al. (2000) and Downing 

(2007b). Despite using a force plate to measure contact times, Downing did not 

publish any results for impact forces.

Bridge (1998) examined the effects of changing internal pressure, in the range 

from 17-98 kPa, on the bounce characteristics of a 'play' ball dropped from a 

height of 1 m. Contact area and contact time both decreased with increasing 

internal pressure, whilst COR increased. Bridge concluded that the increase in 

COR was due to more energy being stored in the compression of the air inside 

the ball. A similair experiment was undertaken using a squash ball; the change 

in pressure was replaced with a change in temperature, in the range from 30- 

80°C. The contact area, contact time and COR of the squash ball all increased 

with temperature. Bridge stated that the increase in the flexibility of the rubber 

with increasing temperature was the dominant factor in determining the rebound 

characteristics of the ball, rather than the change in internal pressure. This was 

in agreement with the findings of Downing (2007b) for tennis balls.
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During play a tennis ball will impact obliquely to the court surface. When a 

tennis ball impacts obliquely on a rigid surface the contacting region deforms 

and flattens, allowing the friction force to reverse if the rotational velocity 

exceeds the horizontal velocity (Cross, 1999; Haake et al., 2003b). If the 

reaction force is large enough, the walls of the ball will buckle shortly into the 

impact, resulting in a cap inverting inside (Dignall & Haake, 2000; Goodwill et 

al., 2005; Haake eta!., 2005, Hubbard & Strange, 2001; Pratt, 2000), leaving an 

annulus-contacting region (Cross, 2002). The annulus slides across the surface 

with a decreasing horizontal speed until the sliding and static friction becomes 

equal. At this instance the surface tangential velocity of the ball equals its 

horizontal velocity. This causes the ball to vibrate horizontally, at a frequency 

determined by its stiffness. In turn, this results in the outer perimeter of the 

annulus slipping backwards, thus reversing the rotational direction of the ball 

and creating a higher spin than allowed by the conditions of rolling (Cross, 

2002).

Tennis is played on a variety of surfaces, including clay, acrylic and grass. 

These all affect the balls rebound characteristics in different ways. For example, 

clay generates high rebound angles, whilst acrylic courts produce lower angles 

(Haake et al., 2000). The coefficient of friction (COF) is the main factor, which 

causes the discrepancy in the balls rebound characteristics between individual 

court surfaces (Brody, 1988).

Downing (2007c) examined the effect of temperature in the range from 10-40°C 

on surface pace rating (SPR), for an acrylic and synthetic carpet surface. SPR 

is defined as 100(1- ju), where fj is the COF of the surface. SPR was found to 

decrease with temperature, indicating an increase in COF. A decrease in SPR 

equates to the ball losing a higher proportion of its horizontal velocity during the 

impact. Player testing may also help to provide an insight into how temperature 

affects the speed of the game on different court surfaces.

The other property that distinguishes different court surfaces, besides COF, is 

stiffness; clay and grass deform more on impact, in comparison to a hard court 

such as acrylic. Holmes & Bell (1986) concluded rebound resilience increased 

linearly with court hardness, up to a maximum of approximately 58%. At this 

point no further rise in court hardness would affect the deformation of the ball. 

Therefore, any errors may be negligible if the impacting surface is at least an
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order of magnitude stiffer than the ball. FE is a suitable tool that could be used 

to address this hypothesis, by analysing ball rebound characteristics on 

surfaces of varying stiffness, corresponding to clay, grass and acrylic.

2.2.5. Summary of the ball

Tennis balls consist of a pressurised rubber core and felt cover. The 

viscoelastic properties of the rubber core result in a decrease in COR and 

contact time with increasing inbound velocity. To accurately simulate a tennis 

ball using FE the viscoelastic properties of the rubber and the internal pressure 

of the core must be included in the model. The internal pressure and the 

material properties of the rubber core are dependent on temperature. This 

means the rebound characteristics of a tennis ball are also dependent on 

temperature. Therefore, the material properties and the internal pressure used 

in the model must correspond to the temperature the response of the ball is 

intended to simulate.

2.3. The string-bed

2.3.1. The history of tennis strings

In the early days of lawn tennis in the 1870's strings were manufactured from 

sheep intestines or serosa. Sheep intestines were replaced by those of cows, 

following World War Two (ITF Technical Department, 2009). The relatively high 

cost of natural gut combined with its poor durability, led to manufacturers using 

synthetic materials from the 1950's (Haines, 1993). There are now a range of 

synthetic strings available, including nylon, polyester and Kevlar. The tension at 

which strings are strung has also changed. In the 1920's the average string 

tension was 196 N (44 lbs), in comparison to the larger value of 245 N (55 lbs) 

used today. Professional players have been reported to use string tensions of 

up to 343 N (77 lbs) (ITF Technical Department, 2009). The width and length of 

racket heads has also increased considerably since the 1870's, resulting in 

larger string-beds (Haake et al., 2007). For the same string tension a larger 

string-bed will have a lower structural stiffness. Therefore, players may have 

increased the tension of their strings in order to counteract the effects of the 

larger string-bed.
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2.3.2. Rules

The first rule to be introduced by the ITF concerning the string-bed and 

arguable the most important, was in 1978 and is stated below;

"The hitting surface of the racket shall be flat and consist o f a pattern of 

crossed strings connected to a frame and alternately interlaced or 

bonded where they cross." (ITF Technical Department, 2009)

This rule was introduced following a novel invention labelled the ‘spaghetti 

strings’ or ‘spaghetti racket’, where the strings were not interlaced. The 

'spaghetti racket1 allowed a player to produce very high spin rates due to large 

horizontal displacements of the strings during oblique impacts (Goodwill and 

Haake, 2002).

2.3.3. The manufacture of tennis strings and their material properties

When manufacturing natural gut strings, the first stage is to remove any 

contaminants from the intestines. This is done using a chemical bath. The 

strands are then spun, dried and polished to produce a string with the required 

diameter. The final stage is to apply a protective polyurethane coating (ITF 

Technical Department, 2009). Synthetic strings are usually constructed by 

winding hundreds of filaments around a central core (Haines, 1993; ITF 

Technical Department, 2009). The filaments are constructed with an extrusion 

mould. The core can either be extrusion moulded as a solid section or 

constructed by winding together a number of larger diameter filaments. It is 

widely accepted that the mechanical properties of tennis strings will be 

determined by the process used to construct them and the choice of materials 

(Haines, 1993; ITF Technical Department, 2009).

Cross (2000a) used an Instron machine to measure the static properties of 

tennis strings. The strings were tensioned at a rate of 100 mm/min 

(0.0017 m-s'1) up to a maximum load of 700 N. The section of the elongation 

versus tension curve between 200 and 300 N was stated to be the most 

important, as this determines the increase in string plane stiffness during a 

typical tennis shot. There was no experimental verification of this range. Natural 

gut was found to have the highest elasticity within the range of 200 to 300 N.
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Although the results obtained are useful for comparing different strings, it is 

predicted that an impact between a tennis ball and racket will result in higher 

strain rates than those tested by Cross (2000a). Assuming an initial length of 

0.3 m, a contact time of 5 ms (Brody et al., 2002; Cross & Lindsey, 2005) and 

the perpendicular displacement of the string-bed in the range from 0.015 to 

0.030 m (Goodwill, 2002), the time-averaged strain rate will be 0.6-2.4 m-s"1. 

This is in agreement with the approximate strain rate of 40 000 mm/min (0.67 

m-s"1) stated by Cross et al. (2000).

Calder et al., (1987) analysed both the static and dynamic properties of a range 

of tennis strings. A mid-sized tennis racket was strung at 220 N (50 lbs), with a 

load cell fitted in-line with a central main string. No information regarding the 

string type or gauge was provided. When the racket was head-clamped and 

subjected to an impact with a tennis ball, the string tension increased by 90 N 

and the contact time was approximately 3.5 ms. The inbound velocity of the ball 

was not stated, and there was no mention as to how this may influence the 

results. The static properties of the strings were obtained using an Instron 

machine, with the crosshead speed set to 20 mm/min. A rig was constructed for 

the dynamic tests, which was capable of applying a load of 90 N to a tensioned 

string, over a period of 3.5 ms. A large amount of hysteresis was observed, for 

both the static and dynamic tests, when the strings were loaded to 90 N without 

any preload. Hysteresis is observed as a difference between a loading and 

unloading stress-strain curve and is due to the sample softening as a result of 

stretching (Mullins, 1969). The hysteresis decreased to a negligible amount 

when the pre-load was increased to 270 N. The stiffness of the synthetic strings 

increased with both the strain rate and the amount of preload, while the stiffness 

of the natural gut strings remained virtually constant. The stiffness of all the 

strings was found to be linearly elastic, under the conditions which Calder et al. 

obtained from impacting a ball onto a head-clamped racket. Synthetic strings 

were concluded to be stiffer than natural gut strings under these conditions. The 

effect of adjusting the applied load was not analysed.

Cross et al. (2000) used a bespoke impact rig to determine the dynamic 

properties of tennis strings (Figure 2.4a). They stated that a typical impact 

between a ball and string-bed will have a maximum force of approximately 1500 

N and a contact time of around 5 ms. Assuming this load is evenly distributed
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over the ten central strings, the maximum force on each of them will be 

approximately 150 N. This is comparable to the value of 90 N found by Calder 

et al., (1987). Cross et al. replicated this by impacting a string tensioned to 275 

N with a 0.29 kg hammer on a pendulum. The inbound velocity of the hammer 

was 2.63 m-s'1 and the string had an initial length of 0.32 m, prior to being 

tensioned. The velocity of the hammer changed from 2.63 to -2.5 m-s'1, 

resulting in a load of 120 - 200 N and a contact time of approximately 30 ms. 

This was stated to be equivalent to a number of ball impacts on a string-bed, 

each with a duration of 5 ms. Impacting the string at a higher velocity with a 

lower mass, would be more representative of the impact between a ball and 

string-bed. A dynamic stiffness was calculated for each string, using the change 

in tension and elongation during impact. The change in tension for gut, nylon 

and polyester strings was in the approximate range of 100 - 250 N. The change 

in the length of the string was calculated from its perpendicular displacement, 

which was measured using a laser and grid (Figure 2.4a). The change in 

tension was measured using an s-type load cell (Figure 2.4a). Figure 2.4b 

shows the contact force increases with dynamic stiffness, while contact duration 

decreases. The large variation in contact duration for different values of 

dynamic stiffness indicates that there may be errors as a result of using an 

unrealistically high mass at low velocity. Natural gut strings were found to have 

the lowest dynamic stiffness at 20 kN-m'1, although only two strings of this type 

were tested. There may be errors in the results due to the frequency response 

of the s-type load cell, which is more suitable for measuring static loads than 

dynamic loads.
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Figure 2.4 a) Dynamic string tester and b) Dynamic stiffness and contact duration results for a selection 

o f strings (Cross et al. 2000).

Cross (2001a) derived a method for obtaining the dynamic stiffness of tennis 

strings within their operational range, using an Instron machine. The first stage 

is to load a string with a gauge length of 20 mm to 280 N (63 lbs), at a rate of 50 

mm/min (0.00083 m-s-1) and hold it for 100s. This is intended to replicate 

stringing a racket. Following this the string is loaded to 380 N (85.5 lbs) and 

held for a further 10 s. This is intended to replicate 2000 impacts between a ball 

and string-bed, each with a contact time of 5 ms. The final stage is to unload the 

string at a rate of 100 mm/min (0.0017 m-s‘1). The unloading step is stated to 

produce a curve without any significant creep effects. This is claimed to be the 

reason why it is possible to obtain dynamic string properties using an Instron 

machine. Figure 2.5 shows the load extension curves obtained for a range of 

different strings. The dynamic stiffness is calculated from the unloading curve 

by dividing the change in load between 311 and 222 N (70 and 50 lbs) with the 

change in length. The range of 311 - 222 N is used to obtain the dynamic 

stiffness as this is stated to be the typical operational range of the strings. 

However, Cross loaded the strings to 380 N to replicate an impact between a 

ball and string-bed; this indicates inconsistencies in the method.
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Figure 2.5 Typical material curves which are used for obtaining the dynamic stiffness o f different strings 

(Jenkins, 2003).

The other property besides structural stiffness, which is believed to distinguish 

individual tennis strings, is friction. There are currently no published studies on 

string to string friction. Cross et al. (2000) measured the COF between tennis 

strings and the felt used to cover the ball. He glued tennis ball felt onto a pipe 

with a diameter of 60 mm, wrapped a i m  length of string around twice and 

attached a 0.15 kg mass to the end. The force required to lift the mass at a 

constant velocity, which was not declared, was recorded with a spring balance. 

The COF for most of the strings was 0.15-0.18, while the lowest and highest 

obtained values were 0.11 and 0.36, respectively. Cross (2000b) analysed the 

COF of friction between a ball and string-bed. He experimentally obtained 

sliding and rolling COF's for five different strings, which were 0.27 - 0.42 and 

0.05, respectively. However, he calculated sliding friction by placing masses up 

to 10 kg on a ball and dragging it across the string-bed, a method not 

representative of a typical high momentum collision. It is predicted that the ball 

will deform around the strings due to the applied load; meaning that Cross was 

actually measuring a traction force rather than a friction force. The relationship 

between the applied load and coefficient of friction was not investigated. The 

deformation of the ball around the strings may explain the discrepancy between 

the COF values obtained by Cross et al. (2000).

2.3.4. Ball to string-bed impacts

Ball to head-clamped racket impacts are not representative of an actual tennis 

shot; however they are commonly used for analysing the effect of string-bed 

properties, such as string type and tension. Unlike a court impact, where the
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majority of the energy is assumed to be stored in the deformation of the ball; 

when a ball collides with a string-bed the energy is equally divided between 

both objects (Cross & Lindsey, 2005). During a collision between a ball and a 

string-bed, the ball loses around 45% of its energy and the string-bed loses 

around 5% of its energy (Brody et al., 2002; Cross & Lindsey, 2005). Therefore, 

the ball to string-bed collision is more efficient than a rigid surface impact 

(Jenkins, 2003; Brody et al., 2002; Cross & Lindsey, 2005). Although there are 

no set rules, the COR for a tennis ball dropped onto a head-clamped racket 

from a height of 2.54 m is about 0.75 - 0.8, compared to around 0.74 for a rigid 

surface (Brody et al., 2002). Reducing string-bed stiffness has the effect of 

increasing both the rebound velocity of the ball and the contact time, which is 

approximately 5 ms (Brody et al., 2002; Cross & Lindsey, 2005). The two main 

factors that determine string-bed stiffness are the string material and tension. 

The Babolat Racquet Diagnostic Center (RDC) is commonly used as a tool for 

measuring the quasi-static stiffness of a string-bed (Babolat, 2009). The RDC 

displaces the centre of the string-bed using a small disk and provides a stiffness 

value between 0 and 100 in RDC units. The higher the RDC value the stiffer 

the string-bed.

Stiffness is considered to be the principal factor that separates the different 

string materials. Polyester strings have high stiffness, causing them to lose 

tension at an accelerated rate, unlike highly elastic strings, such as natural gut. 

Tension increases more during impact with polyester strings, resulting in shorter 

contact times and a "controlled feel". Natural gut on the other hand, produces a 

more comfortable feel, due to longer contact times (Cross et al., 2000). FE 

could be use to analyse the variation in contact times and reaction forces for 

different string types.

String tension, which typically ranges from 220 - 310 N (Brody et al., 2002), 

affects both rebound velocity (Haake et al., 2003a; Goodwill and Haake, 2004a; 

Cross & Lindsey, 2005; Brody et al., 2002) and angle (Goodwill and Haake, 

2004a & b). However, decreasing tension by 44 N only results in approximately 

a 2% rise in the rebound velocity of the ball for a ground stroke (Jenkins, 2003; 

Brody et al., 2002; Cross & Lindsey, 2005). Obtaining an exact string tension 

may seem irrelevant, particularly when building an FE model which will have an
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inevitable margin of error, but it will have a large effect on the ball's rebound 

angle for oblique impacts.

Cross (2003) experimentally analysed the friction force between a tennis ball 

and string-bed for oblique impacts. The friction force was measured using a 

piezoelectric accelerometer glued to the side of the racket frame, which was 

positioned on two rollers. Balls were thrown by hand onto the centre of the 

string-bed at low speed. The time averaged sliding COF between the ball and 

string-bed was 0.43 ± 0.02 when the inbound angle was 25° to the string plane. 

Cross concluded that when the ball impacted on the string-bed with no spin or 

backspin, the friction force initially acted in the opposite direction to the 

horizontal velocity of the ball (Figure 2.6). Hence, the friction force caused the 

horizontal velocity of the ball to decrease and the rotational velocity at the 

circumference to increase. When the horizontal velocity equalled the rotational 

velocity at the circumference, the ball momentarily gripped the strings. During 

this gripping period the ball deformed forward until it lost its grip with the strings 

and started over-spinning. It was stated that impacts around the centre of the 

string-bed were included in the analysis, although there was no reference as to 

how the impact positions were calculated. The velocities and spin rates used 

were also lower than those measured during play (Goodwill et al., 2007a; Kelley 

et al., 2008; Choppin et al., 2008) and there was noise in the force signals 

obtained from the piezoelectric accelerometer, as a result of racket frame 

vibrations. It is likely that if the inbound velocity of the balls was increased to 

give a better representation of typical playing impacts the racket frame 

vibrations and hence the noise in the signal would increase. It is very difficult to 

accurately measure and analyse certain parameters, such as the friction force 

acting between a ball and surface, using a conventional laboratory experiment. 

However, this can be achieved using an FE model, as done by Goodwill et al. 

(2005) for an oblique impact between a tennis ball and rigid surface.
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Figure 2.6 Analysis o f an impact o f a ball on a string-bed with an inbound velocity, angle to the racket 

plane and backspin o f 3.27 m-s'1, 58.5° and 34.9 rad-s'1, respectively (Cross, 2003).

Goodwill and Haake (2004a) experimentally analysed the impact of an oblique

spinning tennis ball on a head-clamped racket. They tested inbound velocities

of 23 and 31 m-s'1 at an angle of 39° to the normal, with backspin in the range

from 0-420 rad-s'1. These conditions were stated to be representative of a

topspin forehand. The balls had backspin prior to impact due to a change in the

Newtonian frame of reference from the court to the racket. A head-clamped

racket was used to isolate the string-bed and eliminate the effect of racket

parameters, such as stiffness and mass. A range of natural gut and synthetic

strings, were tested. Each string was tested at a tension of 40 and 70 lbs (178

and 311 N). The racket type, which remained constant across all the tests, had

a head size of 632 cm2. The balls were fired using a modified BOLA (BOLA,

2009) and the impacts were stated to be at the centre of the string-bed.

However, there was no evidence to suggest that the impact positions were

actually calculated. The impacts were recorded with a high-speed video camera

and manually analysed using the bespoke software Richimas V3. The standard

deviation in inbound velocity and angle for all the impacts was 0.4 m-s'1 and

0.7°, respectively. The standard deviation obtained from a manual tracking

repeatability study was 0.2 m-s'1 for velocity, 0.3° for angle and 25 rad-s'1 for

spin. The results showed that the rebound velocity, angle and spin of the ball,

all decreased with increasing inbound backspin. The vertical rebound velocity of

the ball was virtually independent of inbound backspin (Figure 2.7). The

horizontal rebound velocity decreased significantly with inbound backspin
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(Figure 2.7). This decrease in horizontal velocity is the main cause of the 

decrease in the resultant rebound velocity and angle with increasing inbound 

backspin. Rebound velocity was generally higher for the impacts on the rackets 

strung at the lower tension of 40 lbs (178 N), in agreement with other authors 

(Jenkins, 2003; Brody et al., 2002; Cross & Lindsey, 2005). The results 

indicated that string-bed stiffness does not have an effect on rebound spin. This 

was in contradiction to the belief of many players. However, there was a large 

amount of scatter in the experimental data making it difficult to justify a solid 

conclusion. The horizontal rebound velocity remained effectively constant for 

the two string tensions, while vertical rebound velocity increased with string 

tension (Figure 2.7). The rebound angle of the balls (relative to the string-bed 

normal) was also smaller for the rackets strung at lower tension, in agreement 

with Goodwill and Haake (2004b). The stiffness of the string-bed had different 

effects on the horizontal and vertical rebound velocity of the ball. Testing at a 

range of different inbound angles would provide further insight into the effect of 

string-bed stiffness on the rebound characteristics of the ball.
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Figure 2.7 Horizontal and vertical coefficient o f restitution o f balls incident at 39° on a head-clamped 

racket (Goodwill and Haake, 2004a).

Ball to string and string to string friction, are predicted to affect the rebound 

velocity, angle and spin of the ball, for oblique impacts. However, there are 

currently no published investigations where laboratory experiments have been 

used to determine the effect of changing ball to string or string to string friction.
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This is predicted to be due to the difficulty in accurately measuring and 

adjusting COF.

2.3.5. Summary of the string-bed

The structural stiffness of a tennis racket string-bed, which is determined by the 

string material and tension, affects the rebound velocity and angle of the ball. 

Therefore, a method for simulating a tensioned string-bed in an FE model must 

be developed. The string-bed must consist of interwoven strings with the correct 

material properties. As tennis strings are viscoelastic dynamic materials testing 

must be undertaken. However, previous research indicates that tennis strings 

have linear material properties within their operational range.

2.4. The racket

2.4.1. The history of the tennis racket

This sub-section will summarise the evolution of the tennis racket, as detailed 

by numerous authors (Haines, 1993; Jenkins, 2003; Haake et al., 2007; ITF 

Technical Department, 2009). Initially, at the end of the 19th century, lawn tennis 

rackets were key hole shaped and manufactured from a single piece of ash. 

The ash was boiled to make it pliable and bent into shape whilst still hot. These 

early rackets had weak throats and were prone to warping when wet; the issues 

were overcome by using additional materials, such as canvas and metal, to 

reinforce the problematic areas. As tennis grew in popularity manufacturers 

began to mass produce their rackets, using the latest materials and production 

techniques. 1931 saw the introduction of the first multi-ply wood racket, the 

Dunlop Maxply which was in production for 50 years (Figure 2.8a). Despite its 

earlier use in other sports equipment, metal was not seen as a practical 

alternative to wood until the 1960's. This was due to the difficulty in stringing a 

metal racket, an issue which was overcome by using grommets. In 1974 

Howard Head invented the aluminium Prince Oversize racket (Figure 2.8b) 

(Head, 1975). The racket had a 50% larger strung area, which increased the 

size of the 'sweet' spot and reduced twisting in the hand as a result of off-centre 

impacts. Manufacturers also began experimenting with composite materials in 

the 1970's, mainly due to their higher stiffness to weight ratio in comparison to 

metals. A significant early composite racket was the Dunlop Max 200G, which
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was introduced in 1980 and remained in production for 10 years. The Max 200G 

was manufactured by injection moulding nylon with short carbon fibres (Haines 

et al., 1983). Despite its many production advantages, the manufacturers were 

unable to use the injection moulding process to produce rackets with the same 

mass and head size as those produced using composite lay-ups. Currently, the 

majority of rackets are manufactured from composite lay-ups as this allows 

materials to be precisely placed for optimum stiffness and weight distribution. 

Modern composite rackets are around 30% lighter and three times stiffer than 

their state of the art wooden counterparts. A lighter racket can be swung faster, 

whilst stiffness increases impact efficiency; both of these factors allow the 

player to increase the rebound velocity of the ball (Haake et al., 2007). The 

head size of these modern composite rackets is also around 40% larger, which 

increases ease of play.

Figure 2.8 A selection of tennis rackets a) 1981 Dunlop Maxply, b) 1977 Prince oversize and c) 1980 

Dunlop Max 200G.

Haake et al. (2007) measured various properties of 150 tennis racket from the 

1870's to 2007. The natural frequency of tennis rackets have increased 

dramatically since the 1870's while the mass has decreased, as a result of 

improvements in both materials and manufacturing techniques (Figure 2.9). The 

largest changes in both the frequency and mass of the rackets have come 

about since the 1970's.
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Figure 2.9 Racket properties from 1870 to 2007 a) frequency and b) mass (Haake et al., 2007).

2.4.2. Rules

The Prince Oversize racket resulted in the ITF implementing restrictions on the 

size of tennis rackets. The extract from the ITF rules regarding the size of the 

tennis racket is given below (ITF Technical Department, 2009);

"The frame of the racket shall not exceed 29.0 inches (73.7 cm) in overall 

length, including the handle. The frame of the racket shall not exceed

12.5 inches (31.7 cm) in overall width. The hitting surface shall not

exceed 15.5 inches (39.4 cm) in overall length, and 11.5 inches (29.2

cm) in overall width."

The rules also prohibit the use of a racket with external energy sources or the 

ability to change its properties during a point, as detailed below (ITF Technical 

Department, 2009);

"The frame, including the handle, and the strings, shall be free of any

device which makes it possible to change materially the shape of the

racket, or to change the weight distribution in the direction of the

longitudinal axis of the racket which would alter the swing moment of

inertia, or to change deliberately any physical property which may affect

the performance of the racket during the playing of a point. No energy

source that in any way changes or affects the playing characteristics of a

racket may be built into or attached to a racket."
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2.4.3. The manufacture o f tennis rackets and their material properties

The current manufacturing process for tennis rackets is described by the ITF 

Technical Department (2009) and Jenkins (2003). The majority of modern 

tennis rackets are manufactured from thermoset carbon fibre composites, as 

they provide a good combination of both strength and manufacturability. The 

manufacturing process is labour intensive and is often undertaken in the Far 

East. The first stage is to create a lay-up by bonding together sheets of carbon 

fibre prepreg on a flat heated bench. The prepreg sheets are placed at different 

angles to provide specific bending and torsional stiffness. Once complete the 

lay-up is wrapped around a plastic tube and assembled on a template to 

produce the basic racket shape (Figure 2.10). Extra prepreg is placed in specific 

areas to provide the required strength and mass distribution. The ends of the 

racket shape are pressed together and wrapped in prepreg to form the handle. 

The throat is assembled separately and placed in a mould along with the main 

part of the racket frame. The mould is then heated to around 150°C while the 

plastic tube is pressurised to create a hollow racket. Following moulding the 

plastic tube is removed and the racket is trimmed to the correct length. The 

racket is then sanded, painted in an electrostatic process and any graphics and 

transfers are applied.
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Figure 2.10 Typical lay-up for a composite tennis racket (Jenkin, 2003).

Currently there is limited published data on the material properties of tennis 

rackets. Gu and Li (2007) used a value of 30.5 GPa in an FE model of a tennis 

racket, which was obtained from bending and resonance experiments. Specific 

materials testing would be required to obtain the material properties of the 

different sections of a tennis racket.

2.4.4. Simulating a player's grip on a tennis racket

Simulating the impact between a tennis ball and racket is a complex task for a

number of reasons. The ball, string and racket material properties are all very

intricate and difficult to simulate. Additionally, it is replicating a typical shot

which escalates the complexity; especially as all players have individual hitting

techniques, incorporating various racket angles and orientations (Choppin et al.,

2007b). However, the single most difficult task can be considered to be in

experimentally or analytically replicating the grip of a human hand.

Brody (1979) undertook an experiment to determine how grip conditions affect

the rebound velocity of a ball from a racket. A ball was dropped from a height of

1 m onto a number of different rackets. The contact time of the impact was in

the range from 4.5 - 6.8 ms, which was less than the time required for the racket

to complete an oscillation of the fundamental mode of vibration, which is the
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dominant mode. This indicates that the player's grip has no influence on the 

rebound velocity of the ball.

The handle clamping method is an area of much discussion when simulating 

ball to racket impacts. The main debate is concerned with which method best 

simulates a players grip. Brody (1987) undertook an investigation to compare 

the frequency response of a tennis racket when the handle was rigidly clamped 

and hand held. It was stated that when struck at the geometric string-bed centre 

(GSC), a handle-clamped racket will oscillate in a manner resembling a diving 

board with a frequency of 25 - 40 Hz (Figure 2.11). The frequency increases to 

100 - 175 Hz if the impact is away from the GSC. This is similar to the lowest 

frequency of a freely suspended racket (Figure 2.11). A Wilson T2000 racket 

was impacted on the string-bed with a tennis ball at both the centre and throat 

area, when hand held and handle-clamped. The frequency response of the 

racket was significantly lower when the handle was rigidly clamped as opposed 

to hand held. Hence, findings from any investigations which use handle 

clamped rackets cannot be taken as representative of a typical collision 

encountered during play.

Figure 2.11 Racket frequency response A & B) low frequency handle clamped and c) freely suspended 

(Brody, 1987).

NODENODE

NODE
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Cross (1998) undertook an investigation to determine whether a player's grip 

affects the impact between a ball and racket. A 1990 vintage Wilson graphite 

composite racket, with piezoelectric disks fitted along the frame and handle, 

was used to measure the frequency response following a low speed impact with 

a ball. The racket was found to have a fundamental mode of vibration of 102 Hz 

when hand held and 109 Hz when freely suspended. Adding a 40g mass to the 

handle of the freely suspended racket reduced the fundamental frequency to 

103 Hz; indicating a better representation of a hand held racket. However, 

Cross also found that the node in the handle moved closer to the butt when the 

racket was hand held (Figure 2.12). This was stated to be due to the hand 

lowering the amplitude of the vibrations in the handle. An 80g mass was 

required to shift the node into the required position; although this caused the 

fundamental frequency to drop to 100 Hz. The discrepancy in the amount of 

mass required to produce the correct fundamental frequency and node position, 

indicates that further research needs to be undertaken. Cross also found higher 

frequency vibrations reached the handle before the ball left the racket, 

indicating that the hand has an influence on the impact. However, the amplitude 

of these vibrations was considered to be too low to affect the rebound velocity 

of the ball. Haake et al. (2007) found the fundamental frequency of rackets 

manufactured in 2007 to be approximately 160 Hz, when freely suspended. The 

higher fundamental frequency, in comparison to the value found by Cross, 

provides evidence for testing the effect of a player's grip on a variety of rackets 

from different eras.
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Figure 2.12 Vibration modes o f a free and hand held tennis racket (Cross, 1998).

2.4.5. Ball to racket impacts

Brody (1997a) analysed the effect of changing the impact location along the 

longitudinal axis of a freely suspended racket. The racket was a prototype and 

had a mass of 0.278 kg, a length of 0.685 m, a balance point 0.372 from the 

butt and a moment of inertia of 0.01297 kg-m'2. This was representative of a 

typical racket from this period (Haake et a i, 2007). Brody measured the 

apparent coefficient of restitution (ACOR), which is the ratio of the rebound to 

inbound velocity of the ball. For an inbound velocity of 20 rrvs-1, ACOR was 

found to be dependent on impact location (Figure 2.13). The rebound velocity of 

the ball was lowest at the tip and highest in an area near the throat. Testing at a 

range of speeds would provide an insight into the relationship between ACOR, 

inbound velocity and impact location. Brody stated that for an impact between a 

ball and head-clamped racket, COR will decrease with increasing string tension. 

However, the string tension of the freely suspended racket used by Brody was 

not provided.
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Figure 2.13 Variation o f ACOR with impact location for a perpendicular impact between a tennis ball 

and freely suspended racket (Modified from Brody, 1997a).

Spurr and Downing (2007) undertook an investigation to determine the 

relationship between racket 'power' and fundamental frequency. Power is 

measured as the velocity of the ball after impact with a racket. A ball will 

rebound at a higher velocity from a more powerful racket. The fundamental 

frequencies of 47 rackets manufactured from 2001-2007 were obtained using 

an accelerometer. The rackets were hung from a thread and impacted at the 

'dead spot' using a rubber hammer. The fundamental frequency of all the 

rackets was in the range from 130-180 Hz. This was in agreement with values 

measured by Haake et al. (2007) for this period. An impact was simulated at 

three locations on each of the rackets using the ITF racket power machine. 

Goodwill et al. (2007b) successfully validated the racket power machine using a 

high-speed video camera, demonstrating that it provides comparable results to 

a freely suspended racket. The velocity of the rackets in Spurr and Downing's 

(2007) investigation was 35 m-s'1 and the impact positions were 75 mm (tip), 

150 mm (centre) and 225 (throat) mm from the tip. The velocity of the racket is 

defined at the location on the string-bed which has a radius 700 mm from the 

pivot Goodwill et al. (2007b). Therefore, the resultant velocity between the ball 

and racket would have been highest for the impacts at the tip and lowest for 

those at the throat. The rebound velocity of the balls was highest for the impacts 

at the centre and lowest for those at the tip. This indicates that the higher 

resultant pre-impact velocity at the centre of the racket, overcompensates the 

greater efficiency of impacts in the throat region (Brody, 1997a; Goodwill and 

Haake, 2001), in agreement with Goodwill et al. (2007b). The correlation
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between the fundamental frequency of the rackets and the rebound velocity of 

the balls was weak, however it became stronger as the impact positioned 

moved closer to the throat. The lower velocity of the impacts at the throat could 

be the reason for there being less scatter in the experimental data. Overall, the 

results showed that there was no correlation between the rebound velocity of 

the ball and the fundamental frequency of the racket. This was in line with 

Haake et al.'s (2007) conclusion, that racket stiffness has only a small effect on 

serve speed. Haake et al. concluded that the mass and balance point of a 

racket have a larger influence on serve speeds. Testing a selection of rackets 

with a wider range of natural frequencies may have resulted in a stronger 

correlation with ball rebound velocity.

Goodwill and Haake (2001) analysed perpendicular impacts between a ball and 

freely suspended Spalding Heat 90 tennis racket, which was strung at 267 N 

(60 lbs). The inbound velocity of the balls was in the range from 1 4 -32  m-s'1. 

Three discrete impact locations on the long axis of the string-bed were used in 

the investigation; the GSC and 50 mm above and below the GSC. The rebound 

velocity of the balls was highest in the throat region and lowest at the tip, in 

agreement with Brody (1997a). Analysing oblique impacts would be more 

representative of a typical tennis shot (Choppin et al., 2007).

Goodwill and Haake (2004b) analysed the oblique impact of a tennis ball with 

no inbound spin on a freely suspended racket. Two string tensions were used in 

the investigation, 178 and 311 N (40 & 70 lbs). The inbound angle of the balls 

was set at 36° to the string-bed normal and the velocity was in the range from 

15-40 m-s"1. All of the impacts were reported to be at the GSC, as this was 

stated to be where players typically hit the ball during play. However, there was 

no indication as to whether the precise impact location on the string-bed was 

measured. String tension was found to have no effect on the rebound velocity or 

spin of the balls. The rebound angle relative to the string-bed normal was found 

to increase with string tension, whilst contact distance, contact time and lateral 

string displacement all decreased. The reduced distance that the ball will travel 

across the string-bed was predicted to be the reason why professional players 

choose to string their rackets at high tensions. The conclusion that string 

tension has no effect on the rebound velocity of a ball was in contradiction to 

the common belief that lower string-bed stiffness provides more "power".

33



Goodwill and Haake used a large inbound angle relative to the racket normal; 

hence the perpendicular velocity component of the ball would have been 

relatively small. It is predicted that if a significantly smaller inbound angle was 

used, the lower string tension would have produced a slightly higher rebound 

velocity. A smaller inbound angle would also have a similar effect on the 

horizontal velocity of the ball and hence may reduce the discrepancy in rebound 

angle for the two string tensions. Testing a range of inbound angles would have 

provided a better indication of the effects of string tension on the rebound 

characteristics of a tennis ball. Player testing has highlighted that the ball can 

have spin rates of around 300-550 rad-s'1 prior to impact with the racket 

(Goodwill et al., 2007a; Kelley et al., 2008). Therefore, the impacts would have 

been more representative of a typical tennis shot if the balls had been incident 

with initial spin.

2.4.6. Summary o f the tennis racket

The majority of tennis rackets are now manufactured from advanced composite 

materials, with highly specific lay-ups. The use of advanced materials has 

allowed an increase in racket length, width and fundamental frequency, in 

combination with a decrease in mass. As rackets become more advanced so 

must the scientific methods used in their understanding and design. Currently, a 

freely suspended racket is considered to be the best representation of a players 

grip. Therefore, any racket simulated in an FE model should be freely 

suspended. The rebound velocity of the ball off a racket is dependent on the 

impact location. Therefore, the impact location must be recorded when 

undertaking experimental work and FE simulations.

2.5. Player testing

When undertaking experiments or producing models of tennis ball impacts, it is 

imperative that the conditions are representative of play. Player testing is widely 

considered to be a suitable method for determining ball and racket movements 

during actual play. This sub-section will summarise existing literature on player 

testing.

Bower and Cross (2005) undertook player testing to determine the effect of 

string tension. Three identical rackets were used for the testing; strung at 180,
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230 and 280 N (40 lb, 51 lb and 62 lb). The players returned balls fed to them 

from a tennis ball machine. It is difficult to quantify the extent to which this 

actually replicates competitive play. The mean rebound velocity of the ball 

which was measured using a radar gun was 110.1 ±10.3 and 103.6±8.6 km-h'1 

(30.1 ±2.9 and 28.9±2.4 m-s'1) for males and females, respectively. The rebound 

velocity of the balls was slightly lower for the rackets strung at higher tension. 

This was in agreement with the findings of other authors for laboratory based 

experiments (Haake et al., 2003a; Goodwill and Haake, 2004a; Cross & 

Lindsey, 2005; Brody et al., 2002). Using a static racket at lower tension, under 

experimental conditions, also causes the ball to rebound at a smaller angle 

relative to the racket normal (Cross & Lindsey, 2005; Goodwill & Haake, 2004b; 

Haake et al., 2003). Bower and Cross predicted that during play, the ball will 

leave a racket strung at lower tension at a greater angle, travelling further and 

giving the impression of increased power. Their player testing results 

highlighted that the greater velocities and angles resulting from lower tension 

strings increased the number of shots landing beyond the base line of the court. 

The opposite was found for high tension, where there were more cases of the 

ball failing to clear the net (Bower & Cross, 2005). Therefore, it is imperative to 

accurately simulate string tension when producing an FE model for oblique 

impacts.

Knudson and Blackwell (2005) analysed the forehand topspin shots of seven 

players; all ranked 5.0 or above on the United States Tennis Association 

National Tennis Ranking Program. The players rallied to simulate play and their 

shots were recorded with a high-speed camera recording at 180 Hz. The mean 

racket velocity before impact was 24.3 ±1.5 m-s'1, at an angle of 27.5 ± 3.5° 

above horizontal. The players were also tilting their racket heads forward of 

vertical by a mean value of 4.2 ± 2.8°. The mean rebound velocity of the balls 

was 29.7 ±1 .7 m-s'1, at 6.6 ± 1.4° above horizontal. Unfortunately, Knudson 

and Blackwell (2005) did not record ball spin rates.

Choppin et al. (2007a & 2007b) developed a method for using a pair of 

synchronised high-speed video cameras for capturing tennis ball and racket 

movements in 3D. The method was used to obtain data for the ball and racket 

movements during practice play at the 2006 Wimbledon Qualifying Tournament. 

19 players were tested. Ball and racket movements were recorded within a 2 *
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2 x 2 m calibration volume located at the centre of the baseline. The 3D 

calibration was undertaken using a checker board (Zhang, 1999). To achieve an 

accurate calibration at least 15 images should be obtained, with a checkerboard 

at orientations approximately 20-50° to the image plane (Zhang, 1999). Choppin 

et al. (2007a & 2007b) calibrated the 3D space from the checkerboard images 

using a readily available Matlab Toolbox, produced by Bouguet (2008). 

Unfortunately the method developed by Ghoppin et al. required markers to be 

attached to racket; hence it could not be directly applied to match play. The 

ideal point of impact was defined as the location on the string-bed that results in 

the highest rebound ball velocity, whilst the efficiency of a shot was expressed 

as the ratio of the useful energy out to energy in. Efficiency was found to 

increase as the impact location moved closer to the ideal point. Slow shots with 

low spin were found to have the highest efficiency. This was concluded to be 

due to the large amount of energy which goes into the generation of spin. These 

results were only obtained for practice at a single tournament which is played 

on grass. Testing at different tournaments would allow comparisons to be made 

between different surfaces and players.

Choppin et al. (2008) undertook further analysis of the player testing data 

collected at the 2006 Wimbledon Qualifying Tournament. The mean resultant 

velocities of the balls before and after impact for males were 9.4 ± 3.4 m-s"1 and

33.6 ± 6.6 m-s"1, respectively. The higher rebound velocity of the ball in 

comparison to Knudson and Blackwell (2005) is predicted to be due to the 

players being a superior standard in conjunction with lower errors in Choppin et 

al.’s method. Choppin et al. (2008) also concluded that the players aimed to hit 

the ball on the rise, although the vertical velocity at the point of impact was very 

low in comparison to the horizontal velocity. The mean racket COM and angular 

velocity before impact for males was 17.7 m-s'1 and 31.3 rad-s'1, respectively. 

The mean rebound topspin was 1125 ± 1122 rev-s'1 (118 ±1 1 7  rad-s'1) for 

males and 1036 ±812 rev-s'1 (108 ± 85 rad-s'1) for females.

Goodwill et al. (2007a) used a pair of non-synchronised high-speed video 

cameras to measure ball spin rates during practise and match play at a Davis 

Cup match, which was played on Taraflex carpet. The cameras were positioned 

to film opposite ends of the court and hence capture different shots. The ball 

spin off the bounce was similar for both match play and practise with a mean
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value of 3344 rpm (350 rad-s'1) and a maximum of 5200 rpm (545 rad-s'1). The 

mean topspin for forehand shots was 2300 rpm (241 rad-s'1) during match play 

in comparison to 1700 rpm (178 rad-s'1) during practise. This highlights the 

importance of obtaining data during match play, which indicates limitations in 

the results obtained by Knudson and Blackwell (2005) and Choppin et al. 

(2007a, 2007b & 2008). The maximum recorded topspin off the racket was 

3800 rpm (398 rad-s'1). As with Choppin et al. (2007a), further testing is 

required to determine the effect of playing on different surfaces. The importance 

of testing at different tournaments was stated in the paper.

Kelley et al. (2008) used the same method as Goodwill et al. (2007a) to 

measure ball spin rates during match play at the 2007 Wimbledon Qualifying 

Tournament. The investigation was focused on female players. The measured 

spin rates were comparable to those found by Goodwill et al. (2007a). The 

mean spin off the ground was 3104 ± 1208 rpm (325 ± 127 rad-s'1) for males 

and 3024 ± 721 rpm (316 ± 76 rad-s'1) for females. The mean topspin for female 

forehand shots was 1552 ± 431 rpm (163 ± 45 rad-s"1) and the maximum was 

2727 rpm (286 rad-s'1). The results for ball spin rates from the different 

publications are summarised in Table 2.2.

Table 2.2 Comparison o f ball spin rates from different publications (mean ±SD).

Mean spin off Maximum spin off Mean spin off Maximum spin off racket
bounce (rad-s'1) bounce (rad-s'1) racket (rad-s'1) (rad-s'1)

Choppin et al., (2008) - 118 ± 117practise male
Choppin et al., (2008) - 108 ± 8 5practise female

Goodwill et al., (2007a) - -350 178
practise

Goodwill et al., (2007a) - 
match play -350 545 241 398

Kelley et al., (2008) - 3 2 5 ± 127 524match play male
Kelley eta/., (2008) - 316 ± 7 6 483 163 ± 4 5 2 8 6 ± 117

match play female

2.5.1. Summary of player testing

Player testing can be used to obtain ball and racket movements during 

simulated, practice and competitive play. At present, the most accurate method 

is to use two synchronised high-speed video cameras to obtain results in 3D. 

The results obtained from player testing are required for ensuring realistic 

conditions when conducting experiments and producing models. In order to
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obtain the most realistic range of ball and racket movements the testing should 

be undertaking during match play.

2.6. Modelling

A number of studies have focused on producing models of tennis ball impacts. 

These models vary in both accuracy and complexity. This literature review will 

cover ball to surface, ball to string-bed and ball to racket models.

2.6.1. Ball modelling

Brody (1984) attempted to model an oblique impact on a tennis surface, based 

on Newtonian mechanics, which assumed that the COR was constant and the 

ball was rigid. This assumption was based on a typical shot having a drop 

height of approximately 1 m, with a resultant deformation of less than 10% of 

the ball's diameter. He concluded that at low incident angles (relative to the 

horizontal) the ball will slide with a decreasing horizontal velocity; whilst at high 

incident angles the ball will still slide with a decreasing horizontal velocity but 

then roll at a constant speed. The COF that initiates rolling decreases with the 

increasing angle of incidence, at constant values of COR. Neglecting the balls 

deformation means the model would decrease in accuracy for impact velocities 

above that of a 1 m drop height.

Capel-Davies (2007) examined how the SPR of different court surfaces, was 

influenced by inbound horizontal velocity. Brody's (1984) model was used to 

calculate SPR, which was found to be independent of both inbound horizontal 

velocity and angle of incidence, in the range from 11-31 m-s'1 and 11-25°, 

respectively. This indicates that, assuming the COF to remain constant in an FE 

model which is used to simulate a range of ball-surface impacts is a realistic 

representation of reality (Goodwill et al., 2005). Capel-Davies found the 

horizontal COR to remain proportional to the angle of incidence for the entire 

range of impacts tested. This demonstrates that a tennis ball does not go into a 

rolling phase for angles of incidence up to 25°. This was in contradiction to 

Brody (1984) and was stated to be due to the deformation of the ball during 

impact (Capel-Davies, 2007). Capel-Davies concluded, that testing at larger 

angles of incidence should be undertaken to determine if it is possible to cause

38



a tennis ball with no inbound spin to roll during an oblique impact. It may be 

possible to answer this uncertainty using an FE model.

Dignall and Haake (2000) incorporated deformation into a model by simulating a 

ball to rigid surface impact as a spring damper system. The spring stiffness and 

damping coefficient, which are assumed constant throughout the impact, are 

calculated from experimentally obtained contact times and COR's. Including this 

deformation of the ball into the computational analysis increased its rebound 

spin, thus improving the models agreement with experimental results (Dignall & 

Haake, 2000; Pratt, 2000). However, this type of model produces an unrealistic 

force-time curve as the constant damping led to a negative force at the end of 

the impact.

Haake et al. (2003b) improved the model, incorporating the viscoelastic 

properties of the rubber core, by making the spring damper system non-linear. 

They also included non-symmetrical impulsive forces as well as allowing the 

friction between the ball and surface to reverse direction during the impact. 

Haake et al. (2005) enhanced how the model simulated the buckling of the walls 

of the ball by assuming the felt to have very low stiffness. Thus, the COM of the 

ball was allowed to displace 2 mm before the stiffness of the rubber was 

incorporated into the calculation. A momentum flux term was also included to 

account for the energy loss in the ball as it deforms. They concluded that the 

ball's deformation during impact was proportional to its stiffness, while the 

contact area was a function of the damping coefficient. Conversely, the model 

assumed the deformation of the ball to be symmetrical throughout an oblique 

impact, which didn't agree with their high-speed video cinematography. 

Excluding this non-symmetrical deformation, caused the model to 

underestimate the horizontal COM displacement of the ball by around 5%. They 

suggested that an FE model might lead to a better understanding of how the 

ball deforms during impact.

Hubbard and Stronge (2001) produced an FE model of the impact of a table 

tennis ball on a rigid surface, obtaining deformations which were comparable 

with high-speed video footage. Goodwill et al. (2005) applied FEA to tennis, 

producing a realistic model of a ball using Ansys/LS-DYNA 8.0. The model 

consisted of separate parts for the rubber core and felt cover. The quasi-static 

material properties of the rubber and felt where obtained experimentally
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(Figure 2.2, page 8). The viscoelastic or rate dependent material properties of 

rubber where estimated in an interactive process. This technique has been 

used by numerous other authors when creating FE models for simulating sports 

ball impacts (Calder and Sandmeyer, 1997; Price et al., 2006 & 2007; Biesen 

and Smith, 2007; Smith and Singh, 2008). The internal pressure of a selection 

of tennis balls was measured as 76 kPa, using a bespoke pressure gauge. The 

internal pressure to volume relationship of the ball was assumed to be 

isentropic and was simulated in the model using an air-bag, which was 

assigned to the internal surface of the core. The pressurised ball model was 

validated against experimental data for both quasi-static compression and 

dynamic impacts. A punctured ball model was also produced and validated 

against experimental data for quasi-static compression. This was to provide a 

separate validation of the method used to simulate the internal pressure of the 

ball. The punctured and pressurised ball models were both in good agreement 

with the experimental data for quasi-static compression. Pressurised core and 

ball models were both validated against experimental data for perpendicular 

impacts. This was to provide an independent validation of both the rubber core 

and felt cover. Extending the experimental validation to include punctured balls 

and cores, would have provided further insight into the accuracy of the air-bag. 

The rubber core model was in good agreement with the experimental data for 

the entire range of inbound velocities used in the investigation. The complete 

ball model over-predicted rebound velocity at inbound velocities greater than 15 

m-s'1. This over-prediction was attributed to errors in the felt model. The force 

plots for the pressurised ball model were in good agreement with those 

obtained experimentally using a force plate. In particular the model accurately 

simulated a peak in force close to the start of the impact, which has been noted 

by numerous other authors (Cross, 1999; Dignall and Haake 2000; Goodwill,

2002). Measuring more parameters such as contact time and ball deformation 

would provide a more rigorous validation of the model. Experimental data 

showed that the vertical COR of oblique impacts was higher than for normal 

impacts. The FE model was used to conclude that friction in the contact region 

produced an unbalanced horizontal force during an oblique impact, causing the 

ball to deform forwards. This caused a 10% decrease in the volume of the ball 

in relation to a normal impact, resulting in a higher internal pressure and
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elevated rebound velocity. Experimental data also indicated that tennis balls 

incident at an oblique angle to a rigid surface with no inbound spin were 

rebounding with a spin rate greater than associated with rolling. The FE model 

was used to show that high spin is due to a lag occurring before the friction 

force acting on the ball changes direction, as a result of shearing of the felt in 

the contact region (Figure 2.14). Goodwill et al. stated that it would be difficult to 

come to these conclusions using conventional laboratory experiments. 

Extending the validation to include oblique spinning impacts would provide a 

better representation of a typical impact between a ball and court during play. 

The effects of temperature could also be analysed to determine the influence of 

different ambient conditions in relation to play.

(a)

tme * 3 m s

Resultant Friction -  100 N

Figure 2.14 Shearing of the felt during an oblique impact on a rigid surface at 15 m-s'1 and 30° with no 

initial spin (Goodwill et al., 2005).

The buckling of the ball during impact indicates the importance of applying a 

nonlinear FE model (Becker, 2004; Kurowski, 2004; Goodwill et al., 2005). This 

gives a totally independent investigation, separating FE from analytical models, 

which rely on experimental results. Therefore, allowing full analysis of the ball's 

structural stiffness and deformation during an impact. An accurate FE model 

can be easily modified to simulate different materials, which is particularly useful 

for manufacturers. FE has been found to underestimate the energy lost in the 

ball during impacts (Goodwill et al., 2005; Hubbard & Stronge, 2001). However,

(b)
hme » 4 ms

Resultant F'telor = 10 N
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this should be easily rectified by enhancing the accuracy of the material models. 

The principal advantage of an FE model, over conventional experiments, is the 

ability to make fine adjustments to parameters, such as the COF, in order to 

determine their effect on the motion of the ball throughout impact and rebound. 

This can be undertaken whilst keeping all other variables constant; effectively 

eliminating any inaccuracy of the data that occurs as a result of natural 

experimental errors, such as variations in impact velocity and angle. Modelling 

the rebound characteristics of a range of balls on different surfaces can be 

undertaken efficiently, once the corresponding values of COF have been 

obtained experimentally.

2.6.2. String-bed modelling

Goodwill and Haake (2004a) produced a rigid body and a flexible body 

mathematical model of an impact between a tennis ball and head-clamped 

racket. An impact with an inbound velocity of 31 m-s"1, angle of 39° and 

backspin of 200 rad-s'1 was analysed. It was concluded that a rigid body 

mathematical model under-predicted the rebound spin of the ball, which was 

found to be higher than that associated with rolling. A flexible body 

mathematical model was used to show that the ball starts to over-spin at the 

mid-point of the impact. Over-spinning results in the friction force reversing 

direction, which causes an increase in the horizontal velocity of the ball. This 

reversal of the friction force acting on the ball was in agreement with the 

findings of numerous authors for oblique impacts on a rigid surface (Cross, 

2002; Haake et al., 2003b; Haake et al., 2005; Goodwill et al., 2005). However, 

Goodwill and Haake's (2004a) flexible body model did not have the capacity to 

calculate the rebound spin of the ball. Further testing including higher spin rates 

and a range of angles is required to gain further insight into the ball's 

characteristics when impacting with a string-bed.

Cross (2000b) produced a model of a ball impacting on a string-bed at 10 m-s'1, 

to analyse the effect of the sliding friction between the ball and the strings. A 

resultant velocity of 10 m-s'1 is considerably lower than values measured during 

play (Choppin et al. 2008). The critical value of sliding friction coefficient 

between the ball and string-bed was found to be 0.3; below this it was stated 

that the balls rebound angle and range drops significantly, which would result in
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a detrimental effect on the player's performance. As well as not validating the 

model against experimental data, Cross made a number of assumptions and 

simplifications. His results were based on the assumption that the ball impacts 

at the centre of the string-bed, which is not representative of a shot during play 

(Choppin et al. 2007b). He also did not consider the effects of friction between 

strings and their movements. Currently there are no publications on the subject 

of string-to-string fiction. An FE model, incorporating the correct, ball-to-string 

and string-to-string friction, could be used to analyse the full effects of varying 

these parameters on the entire range of impacts encountered during play.

A number of authors have attempted to include a string-bed in an FE model of a 

tennis racket with varying success (Widing and Moeinzadeh, 1989; Widing and 

Moeinzadeh, 1990; Kanda et al., 2002). Widing and Moeinzadeh (1989 & 1990) 

used a static FE model to examine the effect of string tension on the frame 

stiffness, of a wooden racket clamped at the handle. The ball was simulated by 

applying a static force of 88.96 N over an area with a radius of 2 cm, at the 

centre of the string-bed. This is useful for determining the static stiffness of a 

tennis racket, but it is limited in terms of predicting how a racket will perform 

during an impact with a ball. They used string tensions of 222.4 and 311.3 N, 

concluding that the latter reduced the magnitude of frame deformation, hence 

increasing its stiffness. This was in contradiction to Cross (2001b) who found 

the fundamental frequency of a racket to decrease by 8.5% when strung. 

However, as previously mentioned they ignored the sliding of the strings by 

fixing them at their intercepts. Also, as the handle clamping method was not 

representative of a player's grip (Brody, 1987), their results do not characterize 

how string tension may affect frame stiffness during playing conditions. No 

experimental validation of the model was undertaken, making it difficult to 

determine the reliability of their findings. An experimentally validated, FE model 

of a composite racket, could be used to analyse the full effect of string tension, 

material and geometry on ball rebound and frame stiffness.

A dynamic FE model that incorporates the movement of the strings will allow 

the racket vibrations and response over time to be examined. Calder et a l, 

(1987) found tennis strings to have relatively linear properties within their 

operational range. Hence, when building a FE model of a tennis racket it should 

be possible to use a linear material model for the strings. A range of strings can
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be simulated once their corresponding material properties have been obtained 

experimentally. Perhaps the main advantage of using an FE model would be to 

allow manufacturers to design strings to an exact specification, as parameters 

such as COF and string-bed stiffness can be easily adjusted until the results 

correlate with required targets (Becker, 2004; Kurowski, 2004).

2.6.3. Racket modelling

Brody (1997a) produced a mathematical model of an impact between a tennis 

ball and freely suspended racket. The model was based on the conservation of 

linear and angular momentum and the racket was assumed to be rigid. Brody 

used a value of 0.85 in the model for COR, which was stated to be typical for an 

impact at the centre of a head-clamped racket. The model was validated 

against experimental data for perpendicular impacts at 20 m-s'1. The rebound 

velocity of the ball was slightly over-predicted for impacts at the throat and tip, 

but the model showed good agreement with the experimental data for impacts 

at the centre of the string-bed. This is because the centre of the string-bed 

corresponds to one of the node points and is not affected by the stiffness of the 

racket. The errors at the throat and tip were because the rigid body model was 

unable to account for energy losses as a result of racket deformations. It is 

predicted that the errors would be larger if the resultant inbound velocity was 

increased. Despite its limitations Brody's model can be used to simulate a range 

of rackets of known mass and moment of inertia.

Goodwill and Haake (2001) created a ball to racket impact model based on a 

spring damper system, which was validated against experimental data. The ball 

stiffness and damping coefficients were assumed to be constant throughout the 

impact; a linear spring was used to model the string-bed and the racket was 

assumed to be rigid. Head-clamped and freely suspended racket models were 

both validated experimentally for impacts at the GSC. The freely suspended 

racket was also impacted at other locations along the longitudinal axis. The 

models produced realistic results, concluding that a 50% change in string-bed 

stiffness only correlated to a 3.3% difference in ball rebound velocity, which 

agreed with other publications (Jenkins, 2003; Brody et al., 2002; Cross & 

Lindsey, 2005). However, as the racket was assumed to be rigid the model
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underestimated its rebound velocity; this error was more pronounced for 

impacts away from the string-bed centre.

Cross (2000c) created an analytical model of a tennis ball impacting on a 

flexible freely suspended racket, based on a spring damper system. Initially the 

impact of a tennis ball on a constant cross section aluminium beam was 

modelled and validated against experimental data. Cross found that for a freely 

suspended beam the ACOR remains virtually constant with impact position, 

although it is lower for impacts close to the tip and throat. The same results 

were found when the model was applied to a freely suspended tennis racket, 

although there was no experimental validation. In order to gain a better 

representation of reality a model of a racket with a pivot at the handle was 

constructed. This updated model showed very similar results to those described 

previously for impacts at the throat and centre, whilst ACOR increased at the 

tip. Cross concluded that ACOR decreases with increasing string tension but 

the effects were stated to be negligible. The stiffness of the racket frame was 

found to have a larger effect on ACOR. An increase in frame stiffness was 

found to raise the ACOR for impacts at the tip, whilst having no effect for 

impacts at the vibration node. Cross's model assumed the material properties of 

the racket to remain constant along its length. In reality a tennis racket will have 

varying stiffness along its length which may affect Cross's conclusions. 

Validating the racket model against experimental data would also provide a 

better indication of the reliability of the findings.

Goodwill and Haake (2003) improved the spring damper model published by 

Goodwill and Haake (2001), by replacing the rigid racket with a flexible one. The 

racket was modelled as a one dimensional beam consisting of N segments. The 

mass of each of the segments was adjusted until the mass and balance point of 

the beam corresponded to an actual tennis racket. The required stiffness of the 

beam was determined from the natural frequency of the racket. The individual 

segments of the beam all had the same flexural rigidity. The flexible beam 

model showed stronger agreement with the experimental data in comparison to 

a rigid body model in terms of ball rebound velocity, for impacts offset from the 

geometric centre of the string-bed along the longitudinal axis (Figure 2.15). A 

model that can simulate impacts which are offset from the longitudinal axis of 

the string-bed would provide a better representation of an actual tennis shot

45



(Choppin et al., 2008). The vibration response of the racket was in good 

agreement with the experimental data. However, the model failed to account for 

the large vibrations experienced by the racket when the ball impacted near the 

tip. This error is believed to be a consequence of the model assuming the 

stiffness of the racket to be constant along the entire length.

Ball rebound velocity
Rigid beam 
model Ball rebound 

velocity (m/s)

Flexible 
beam model

4
•  Experimental data

2 |
, , ,--------------- .-----O-J--------------- ---------------- ---------------- ---------------- ,
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Ball impact position (relative to GSC) (mm) T ip  —►

Figure 2.15 Comparison of a flexible and rigid body model for simulating impacts between a tennis ball 

and freely suspended racket (Goodwill and Haake, 2003).

The material properties of a racket determine its stiffness, and hence bending 

characteristics. Therefore, the material model is vital when undertaking a 

dynamic FE simulation. Calder and Sandmeyer (1997) produced FE models of 

the impact between softball and baseball bats and their corresponding balls. It 

was possible to model the aluminium bats using readily available material 

properties, due to their homogeneous nature. The balls were assumed to be 

isotropic, homogeneous and viscoelastic, to simplify the model. Their 

viscoelastic properties were adjusted until the COR, deformation and contact 

time correlated with expected results, for an impact with a bat. A more versatile 

method would have been to obtain the material properties experimentally. The 

ball models could then have been validated by simulating an impact with a rigid 

plate, as done by Goodwill et al. (2005). This would eliminate any discrepancy 

as a result of errors in the bat. Although they claimed the results to reliable, this 

was based on expected results from published data as opposed to experimental 

validation using the exact conditions within their model.
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Jenkins and Calder (1990) produced an FE model of a tennis racket. The tennis 

strings were not modelled as it was stated that they would have made the 

problem size too large. As the racket was symmetrical only half of it was 

modelled. The bending stiffness and fundamental frequency of the racket were 

found to be in good agreement with experimental data when handle-clamped. 

Brody (1987) found that a handle-clamped racket has an unrealistically low 

fundamental frequency in comparison to a hand held racket. Therefore, the 

method used by Jenkins and Calder (1990) to simulate the racket is not 

representative of how a player will hold a racket. This makes it difficult to 

determine how their results relate to match play.

Gu and Li (2007) produced an FE model of tennis racket using ANSYS 10.0. 

The geometry was created in Solidworks 2005. The material properties of the 

racket frame were obtained using bending and resonance experiments. The 

Young's modulus of the racket was 30.5 GPa and the density was 2150 kg-m'3. 

There was no explanation as to how the material properties of the strings were 

obtained. The Young's modulus of the strings was 2.5 GPa and the density was 

1140 kg-m'3. This is within the expected range of 2-4 GPa for the quasi-static 

Young's modulus of nylon. The dominant fundamental frequency of the racket 

was obtained when it was rigidly clamped at the handle. The authors justified 

clamping the handle because during an impact the ball will have left the string- 

bed before the racket has completed an oscillation. This was in agreement with 

Brody (1979). The dominant frequency was 80 Hz in bending. It was stated that 

this is less than values of over 100 Hz found by other authors for freely 

suspended rackets, so is likely to be incorrect.

Kanda et al. (2002) produced an FE model of a tennis ball impacting 

perpendicular to a freely suspended strung tennis racket. The ball was modelled 

as a pressurized rubber core, with linear material properties. There was no 

reference to the material properties of the ball or how they were obtained. The 

felt cover, which has been found to influence rebound spin for impacts on a rigid 

surface (Goodwill et al., 2005), was not included in the model. The ball had only 

a single element through the thickness, which is predicted to have resulted in 

low accuracy. It is not possible to determine the accuracy of the ball model as it 

was not independently validated, as done by Goodwill et al. (2005). As with the 

ball, the material properties of the racket frame or the method used to obtain
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them were not provided. A number of impacts were simulated at different 

locations on the string-bed. The inbound velocity for the ball was 27.8 m-s'1 for 

all of the impacts. ACOR was found to decrease with increasing string tension 

and to be highest between the GSC and the throat, in agreement with other 

authors (Brody et al., 2002; Goodwill and Haake, 2001 & 2003). ACOR was 

also found to decrease as the impact position moved away from the GSC 

towards the side of the racket. The results were shown to be in agreement with 

experimental data. However, there was no explanation of the uncertainty in the 

experimental values or how they were obtained. The results showed that 

increasing the stiffness of the frame resulted in an increase in ACOR for the 

impacts at the throat and tip, while having no noticeable effect on those at the 

node (approx. GSC), in agreement with Goodwill and Haake (2003). The 

variation in ACOR with racket stiffness was more pronounced for impacts at the 

throat, which was also in agreement with Goodwill and Haake (2003). As with 

previous publications (Widing and Moeinzadeh, 1989; Widing and Moeinzadeh, 

1990), the strings were assumed to be fixed at their intercepts, effectively 

ignoring the effect of string to string friction. Goodwill and Haake (2004b) 

measured horizontal string displacement of up to 12 mm for an oblique impact 

on a freely suspended tennis racket. Hence, Kanda et al.'s model is clearly not 

a realistic representation of reality and subsequent errors would become 

apparent if simulating an oblique impact. This investigation has shown that FE 

can be used to accurately simulate impacts between a tennis ball and racket. 

However, full details of any material properties and experimental validation 

should be included to enhance the value of the model.

A composite tennis racket is non-homogenous, resulting in anisotropic material 

properties. Consequently, to produce an accurate FE model of a non-rigid 

racket, the material properties must be obtained experimentally. These must 

then be built into a full material model incorporating both layer position and 

orientation. However, as the deformation of the racket is relatively small it 

should be possible to use linear material properties for the individual layers 

(Becker, 2004; Kurowski, 2004; Widing & Moeinzadeh, 1989; Widing & 

Moeinzadeh, 1990). It is also essential that the model be validated against 

experimental results. Once the FE model has been successfully validated the 

effect of altering dimensions and material properties can be analysed without
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the cost and time associated with producing numerous prototypes. It would also 

be possible to simulate oblique spinning impacts. Such a tool would have the 

potential to be very beneficial to racket manufacturers.

2.6.4. Summary of modelling

A number of different analytical models have been applied to tennis ball-rigid 

surface impacts. Rigid body models are unrealistic as they don't account for the 

deformation of the ball observed in high speed video footage. Similarly at 

present, deformable spring-damper models don’t account for the deformation of 

the ball in the horizontal plane during an oblique impact. FE is an effective tool 

for simulating the 3D deformation of a ball throughout an impact with a rigid 

surface. The ability to simulate 3D deformation results in better agreement with 

experimental data, in comparison to analytical models. At present, there are no 

dynamic FE models of a tennis racket with a realistic interwoven tensioned 

string-bed. An FE model should be produced which can accurately simulate the 

3D deformation of the ball, string-bed and frame during an oblique spinning 

impact. Such a model should be extensively validated against experimental 

data.

2.7. The influence of technological advances on tennis

Advances in both material and manufacturing techniques have led to an 

increase in racket performance, allowing players to serve at ever increasing 

velocities (Brody et al., 2002; Haake et al., 2007; Miller, 2007). A number of 

authors have stated that advances in racket technology have resulted in the 

server developing a significant advantage over their opponent, identified by an 

increase in the number of tie breaks (Brody, 1990; Haake et al., 2000). 

However, Miller (2007) indicated this not to be the case. He published results 

from Grand Slam tournaments, which showed that the number of aces in the 

men's game peaked around the year 2000 and have since dropped. This 

suggests that the players' ability to return serve has improved, compensating for 

the advantage of the faster serve (Miller, 2007). As the governing body, the ITF 

are concerned with ensuring fair play, whilst keeping spectator appeal and 

commercial interest at a maximum. Implementing rule changes or applying 

regulations on the court surface or racket properties is expensive and could be
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damaging to the game if they do not have the desired effect. Therefore, it is 

imperative that research is undertaken to ensure the highest accuracy when 

predicting how advances in equipment impact the game, before implementing 

rule changes.

A large amount of research is undertaken on the physics of tennis. Studies are 

predominantly involved with impact and aerodynamic analysis and often result 

in predictive models. In order for these models to be used to analyse the effects 

of different parameters relative to play, they can be combined into a single 

trajectory model. Dignall et al. (2004) produced a program, labelled Tennis 

GUT; for simulating different tennis shots. Tennis GUT was produced by 

combining ball to racket and ball to rigid surface impact models with a trajectory 

model. The individual models were considered to be state of the art at the time 

of publication. However, the ball to racket impact model was only capable of 

simulating perpendicular non-spinning impacts.

Haake et al. (2007) used the bespoke analysis software Tennis GUT to 

determine how the evolution of the tennis racket has affected serve speeds. 

They composed data from around 150 rackets, dating from the 1870's to 2007, 

from the Wimbledon Museum and the ITF collection. It was suggested that a 

player from the current era could serve 17.5% faster using equipment from 

2007 in comparison to what was available in the 1870's. The lower mass of a 

2007 racket was concluded to be the main contributing factor to the increased 

serve speeds, followed by the balance point moving closer to the tip. Racket 

stiffness was concluded to have only a minor effect on serve velocity. However, 

as the ball to racket model used in Tennis GUT was based on the one 

published by Goodwill and Haake (2003), it has the same limitations and errors. 

An accurate FE model would provide a better understanding of the impact 

between a tennis ball and racket.

Haake et al. (2000) investigated the effect of using a 6.5% larger and 3% 

heavier ball to decrease the speed of the game. Standard and oversized balls 

were projected onto head-clamped and freely suspended tennis rackets, at the 

centre of the string-bed. The impacts were perpendicular and the balls were 

projected with no spin at a range of velocities from 15-60 m-s’1. The ACOR was 

the same for both sized balls on the freely suspended rackets. However, the 

COR was slightly higher for the impacts between the larger balls and head-
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clamped racket. Haake et al. (2000) used Brody's (1997a) model, in which the 

racket is assumed to be rigid, to predict the rebound velocity of both balls when 

simulating a serve. It was concluded that the oversized ball will rebound slightly 

faster from the racket. This was in contradiction to the experimental data where 

both balls rebounded from the freely suspended racket with effectively the same 

velocity. The discrepancy is predicted to be due to the model using the COR 

from the head-clamped racket impacts. Haake et al. (2000) undertook 

experiments and found that the drag coefficient at 0.55 and the rebound velocity 

off the court were effectively identical for both sized balls. Due to its increased 

frontal area the larger ball was subject to a greater drag force. The results from 

the three investigations were combined into a single trajectory model. It was 

found that although the larger ball would leave the player's racket at a higher 

velocity it would have an increased flight time, hence impacting the court later. 

This corresponds to a 10 and 16 ms increase in the time to reach the base line 

for the 1st and 2nd serve, respectively. Although this provides evidence that the 

larger ball has the ability to reduce the dominance of the serve, the calculated 

times are based on a mathematical model. Player testing with the two ball sizes 

could prove an effective method for validating the results. A fully validated FE 

model could be used to accurately assess the effect of ball mass and size for 

impacts on both a freely suspended racket and court surface. This would not 

require balls to be specially manufactured as in Haake et al.'s (2000) 

investigation.

A realistic FE model, of a ball to freely suspended racket impact, could be used 

to enhance the understanding of the collision and the effect of individual 

parameters, such as ball or racket mass, size and structural stiffness. The 

results obtained can then be applied to the different aspects of the game, 

including the serve. However, as with any other experiment, the results must be 

applied to a model encompassing other factors, such as aerodynamics, to 

determine the full effect on the tennis game (Haake et al., 2007).

2.7.1. Summary of technological advances

Advances in racket technology over the last century have led to increased 

service speeds and reduced receiver reaction times. Advances in technology 

are likely to continue, hence the ITF must be able to monitor and predict how
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they will affect the game. An FE model which can accurately simulate a range of 

tennis shots could be used to predict the effect of changing different ball and 

racket parameters. Such a model could also function as an effective design tool 

for racket manufactures.

2.8. Overview of Ansys/LS-DYNA

There are essentially two types of FE solver; implicit and explicit. Implicit solvers 

are used for analysing static structural problems (IF  = 0). Explicit solvers are 

used for analysing dynamic impact problems (IF  = ma). Both types of solver 

can also be applied to quasistatic problems (IF  ~ 0), such as metal forming. As 

the aim of this project is to create an FE model of a dynamic impact between a 

tennis ball and racket, an explicit solver is required. Ansys/LS-DYNA is an 

explicit FE solver which can be applied to a variety of different impact scenarios, 

including sporting applications (Mase and Kersten, 2004; Goodwill et al., 2005; 

Biesen and Smith, 2007, Peterson and McPhee, 2008). Ansys/LS-DYNA was 

selected for this project following an evaluation exercise with other FE solvers, 

ABAQUS and MSC Nastran. The main reason for selecting Ansys/LS-DYNA 

was because it has already been successfully applied to tennis ball impacts, by 

Goodwill et al. (2005). The following subsection will highlight some of the key 

features of Ansys/LS-DYNA, which are required for modelling the impact 

between a tennis ball and racket.

Elements

The two types of elements in Ansys/LS-DYNA which could be required for this 

project are, solid and shell. Goodwill etal. (2005) used SOLID164 elements with 

single point integration to model a tennis ball. Fully integrated solid elements do 

not experience hourglassing but they are approximately four times more 

computationally expensive in terms of CPU time. Hourglassing modes are zero- 

energy modes of deformation, which are not physically possible. Shell elements 

are designed for modelling thin walled structures, such as the frame of a 

composite tennis racket. There are twelve different formulations of shell 

elements, for all of which the number of integration points can be specified.
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Material models

There are over forty material models in Ansys/LS-DYNA. Models used 

previously by Goodwill et a!., (2005) were MAT_RIGID, MAT_LOW- 

DENSITY_FOAM and MAT_OGDEN_RUBBER. MAT_RIGID was used by 

Goodwill et al., to simulate an impact between a tennis ball and rigid surface. 

MAT_RIGID materials are computationally efficient and can be used to simulate 

the properties of infinitely stiff parts. Realistic values of Young's modulus should 

be used when simulating rigid parts to ensure the correct contact behaviour. 

MAT_LOW-DENSITY_FOAM was used by Goodwill et al. to simulate the felt 

cover of the ball because it is capable of simulating large deformations. Non­

linear behaviour is modelled using a quasi-static stress-strain curve. 

MAT_OGDEN_RUBBER was the material model used by Goodwill et al. for the 

rubber core. This model is based on the Ogden (1984) material model, which is 

designed for simulating rubbers. The model is capable of simulating non-linear 

rubber like properties through the use of a quasi-static stress/strain curve. 

Linear viscoelasticity can also be simulated using a stress relaxation curve. The 

simplest and most computationally efficient non-rigid material model is 

MAT_ELASTIC. It is capable of simulating linear material properties at a single 

temperature through the use of a Young's modulus, Poisson's ratio and density.

Contact

In order to model impacts, contact must be defined between any interacting 

parts. There are a range of different contact types in Ansys/LS-DYNA. It is 

possible to define coefficients of static and sliding friction and birth and death 

times for all types of contact. Goodwill et al. (2005) used 

CO NTACT_AUT O MAT I C_S U RFAC E_T 0_S U RFAC E to define contact 

between the felt cover of a tennis ball and a rigid surface. Surface to surface 

contact is very efficient for defining contact between parts which experience a 

larger amount of relative sliding. TIED_CONTACT can be used to glue two 

surfaces together. Slave nodes are forced to follow the deformation of the 

master surface.
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Loads

All loads in Ansys/LS-DYNA are time dependent. This means they must have a 

pair of parameters, corresponding to the time and the load. All load definitions 

can be assigned a birth and death time within the analysis. Special types of 

loads include constraints and initial velocities. The INTIAL_VELOCITY 

command can be used to apply an initial velocity to an object, such as a tennis 

ball (Goodwill et a l, 2005). Ansys/LS-DYNA is normally used to run dynamic 

simulations, within the transient phase of the analysis. However, dynamic 

relaxation can be used to apply static preloads to a body, e.g. internal air 

pressure, before the transient phase of the analysis which starts at time zero. 

The solver will apply damping and monitor the kinetic energy until it is 

dissipated. The dynamic relaxation phase ends when the current distortional 

kinetic energy is less than the maximum distortional kinetic energy multiplied by 

the convergence tolerance. Goodwill et al. (2005) simulated the internal 

pressure of a tennis ball, using an AIRBAG_SIMPLE_PRESSURE_VOLUME 

command. This involved defining a pressure-volume relationship for the ball and 

assigning it to a segment created from the interior surface of the rubber core. 

The airbag command had to be assigned during the dynamic relaxation phase 

to prevent excessive oscillations of the ball at the start of transient phase of the 

analysis.

2.8.1. Summary ofAnsys/LS-D YNA

Ansys/LS-DYNA is an explicit FE solver which can be applied to tennis ball 

impacts. A wide range of features such as, solid and shell elements, contact, 

advanced material models, initial velocity and dynamic relaxation, are likely to 

be required for this project.

2.9. Discussion

Previous investigations have highlighted discrepancies in the results obtained 

by different researchers. This is mainly due to the inherent errors that occur 

when simulating and modelling the dynamic properties of tennis ball impacts, 

combined with a lack of detailed visual representation. FEA allows 

investigations to be undertaken in a very controlled environment, allowing for 

fine adjustments to be made to each researched variable, whilst keeping the
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others set at a predetermined value, eliminating unpredictability in the results. 

The exact details and specifications of the simulation can then be obtained and 

stored electronically, making them easily accessible for follow-up work. This 

effectively allows for academic knowledge to be shared, passed on and 

implemented into further scientific development of tennis or other sports.

A complete visual image can be obtained from a dynamic FE model. This 

provides the researcher with a superior tool, in comparison to high-speed video, 

for understanding, presenting and explaining the motion of the ball, strings and 

racket during impact. High-speed video, whilst excellent for validation work, is 

effectively only captured in two dimensions, whereas an FE model can be 

completely revolved and viewed in all planes. In addition, unlike high-speed 

video footage, sections of an FE model can be blanked, allowing hidden areas 

to be seen. Perhaps the main advantage of an FE model, over high-speed 

video, is that the required results can be obtained almost immediately, once the 

simulation has finished, without the requirements for interpolation. Thus, 

effectively making FE a more effective and efficient tool for both academia and 

industry.

A fully validated FE model of a ball to court impact will provide the researcher 

with a better understanding of how the ball deforms throughout the collision. 

This can then be used to comprehend and describe how high spin is obtained 

from oblique impacts. Variables, such as the COF between the ball and court 

surface, can be adjusted relatively easily in an FE model to determine their 

effect on an impact. Analysing the effect of a COF is not easily accomplished 

using conventional experimental methods. An FE model could also be used to 

evaluate how alterations to parameters of the ball, such as mass and size, 

would affect the speed of the game. This could be undertaken without the 

requirement for producing numerous prototypes. A more in depth understanding 

of the effect of temperature on a tennis ball could also be obtained using an FE 

model. The additional understanding obtained from an FE model could then be 

used by the ITF, to implement changes to the rules in order to improve 

uniformity between different balls.

Previous research has indicated that the structural stiffness of a string-bed 

affects both the rebound velocity and angle of the ball but not its spin. An 

accurate FE model of an impact between a ball and string-bed could be used to
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analyse the precise effects of varying parameters, such as the structural 

stiffness of the string-bed. However, accurately modelling a string-bed using FE 

is a very difficult task, for a number of reasons. First of all the stiffness of a 

string-bed is dependent on the string tension. Therefore, an efficient and 

reliable method for modelling tension must be developed. In order for the strings 

to behave realistically when the required tension is applied to them, they must 

have the correct material properties and coefficients of static and sliding fiction. 

As an accurate method for obtaining string friction is not yet available, a 

procedure for obtaining this would need to be developed. The most difficult task 

is likely to be physically modelling an interwoven string-bed, with strings that 

move independently at their intercepts. There are currently no published studies 

where this has been achieved. Once an accurate model has been produced 

and validated it will be possible to analyse the ball and string-bed deformations 

and movements, for a variety of different impacts. The model could potentially 

be used to enhance the understanding of how ball spin is generated during an 

oblique impact.

There are two main issues when creating a realistic FE model of a ball to racket 

impact. These issues are how to simulate a player's grip on the racket and 

model the different materials. Previous research has shown that a freely 

suspended racket is a good representation of a player's grip. A model of a freely 

suspended racket can also be more easily validated than one with a 'simulated' 

grip. Previous research has shown that a rigid body model of a freely 

suspended racket over-predicts the rebound velocity of the ball for impacts 

offset from the GSC and hence node point. Although mathematical models are 

now incorporating ball and string-bed deformations, the issue that the tennis 

racket deforms during impact, remains a fairly understudied area. A dynamic FE 

model of a freely suspended racket, with realistic material properties, will aid the 

researcher to understand its displacement and vibration response, when 

colliding with a tennis ball. It will also be possible to obtain an accurate force­

time plot for the impact, which would be very difficult using conventional 

experimental techniques. There are not currently any published analytical or FE 

models which are capable of simulating an oblique spinning impact, at any 

location on the string-bed of a tennis racket. This means that there are not 

currently any models available which can be used to replicate and analyse
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realistic tennis shots. An FE model should be developed which can accurately 

simulate oblique spinning impacts at any location on the string-bed of a tennis 

racket. Such a model could be used to determine the racket's response to 

altering different parameters such as the momentum of the collision or impact 

location. It may also be possible to determine the range of clamping forces 

exerted on the racket handle by a player's grip, by analysing an FE model 

against player testing data. An accurate racket model could be extremely 

beneficial to manufacturers. It would allow manufacturers to gain further insight 

into the physics of a tennis shot and allow them to produce rackets to exact 

specifications. This would reduce costs, in both terms of time and capital, 

associated with producing numerous prototypes. It may also be possible for 

manufacturers to improve customisation by designing rackets specifically for 

individual players.

Producing accurate models to represent all the different materials is predicted to 

be one of the most difficult processes when simulating a ball to racket impact 

with FE. The ball will require a non-linear material model to simulate its rubber 

like properties. It is predicted that it will be possible to simulate the strings with a 

linear material model, as their deformation during impact is fairly small. It should 

be possible to produce a model for the strings relatively easily once the material 

properties have been obtained experimentally. Due to the anisotropic nature of 

the composite materials used in a racket frame, modelling this will be a far more 

in-depth task. The properties of the individual layers and their orientations must 

be simulated accurately. Although it may be possible to use linear material 

models, which reduce computation time, as the racket deformation during 

impact is relatively low. Full material testing will need to be undertaken, followed 

by the production of a complex material model.

It is vital that any FE models which simulate different tennis impacts are 

rigorously validated against experimental data. Previous studies have shown 

that high-speed video cameras are very effective for measuring ball movements 

during experiments. Therefore, high-speed video cameras will be used to obtain 

the experimental data which will be used to validate the FE model. However, 

analysis using high speed video cameras is subjected to repeatability errors 

when undertaken manually. The repeatability error in the experimental results 

must be stated. The validation of the model will be one of the most important
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stages of the project. In order for this validation to be fully valid and enable the 

model to be used to design equipment and monitor the game, it must be 

undertaken for impacts which are representative of match play. If testing with an 

initially stationary racket the inbound trajectory of the ball must be converted to 

the racket's frame of reference. At present, player testing during match 

simulations (Goodwill et al., 2007a) is the most appropriate method for obtaining 

the correct pre and post impact velocities, angles and spin rates.

2.10. Chapter summary

In conclusion, an accurate FE model will not only allow manufacturers to 

produce rackets to exact specifications with reduced prototype costs and 

timelines, but it will also give the ITF a better understanding of different 

technologies; thus providing them with a better means by which to regulate 

them. Researchers will also be able to use FE to aid their understanding of the 

physical principles which determine the ball's behaviour in the game of tennis.
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3. Tennis ball model

3.1. Introduction

The aim of this project is to build and experimentally validate an FE model of a 

tennis ball to racket impact. The first stage of this process is to construct and 

independently validate an FE model of an impact between a tennis ball and rigid 

surface. In order to construct an FE model of a tennis ball, certain properties 

must be obtained such as the dimensions, material properties and internal 

pressure. As the properties of a tennis ball change with impact speed, the 

model will be validated for a range of inbound velocities. A tennis ball consists 

of three separate parts; a felt cover, a rubber core and an enclosed pressurised 

volume. In order to provide a rigorous validation, the separate parts of the 

model will all be independently validated. Following validation at ambient 

conditions the model will be updated to simulate a range of temperatures. The 

main objectives of this chapter are:

1. To obtain the properties which are required to construct an FE model of a 

tennis ball.

2. To build an FE model of a tennis ball.

3. To validate an FE model of a tennis ball against experimental data for 

room temperature.

4. To validate an FE model of a tennis ball against experimental data for a 

range of temperatures.

The model which is to be constructed and validated in this chapter will be based 

on a Prince Tour ball.
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3.2. Pressurised tennis ball properties

3.2.1. Internal pressure

The internal gauge pressure of seven balls and eight cores was measured 

using a bespoke pressure gauge. The mean internal gauge pressure of all the 

samples was 85 * 103 N-m"2 and the standard deviation (SD) was 3.6 * 103 

N-m'2.

3.2.2. Rubber core properties

MAT_OGDEN_RUBBER is the material model which will be used to simulate 

the core in Ansys/LS-DYNA 10.0 (Goodwill et al., 2005). The requirements for 

the Ogden model are density, shear modulus, Poisson's ratio, a stress-strain 

curve for both tension and compression and a stress relaxation curve. Eight 

hemispherical rubber cores were provided by the manufacturer as material 

samples (Figure 3.1). The dimensions of these cores were measured using 

digital vernier callipers. The mean internal and external diameters of the cores 

were 0.05254 m (SD 3.49 x 10'4 m) and 0.05942 m (SD 1.55 x ic r4 m), 

respectively. The mean density of the cores was measured as 1254 kg m'3 (SD 

68 kg m'3).

Figure 3.1 Hemispherical rubber cores provided for material testing.

The stress-strain properties of the rubber were measured using an Instron 

machine (Figure 3.2). Tensile data was obtained using dog-bone test pieces 

with the strain recorded using a clip-on extensometer (Figure 3.2a & b). Ideally 

a non-contacting extensometer would have been used as they have no 

influence on the test piece; however, there was not one available for this 

project. In order to achieve a state of simple tensile strain the test pieces were
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at least ten times longer than their width (Miller, 2006). Ideally the compression 

testing would have been undertaken using a biaxial test machine as they 

produce a state of simple compression (Miller, 2006). However, a biaxial tester 

was not available for this project. Therefore, compression testing was 

undertaken using cylindrical buttons compressed between a pair of plates 

(Figure 3.2c). Cylindrical test pieces were used to produce the smallest possible 

contact area and the plates were lubricated, both these factors help to lower the 

overall frictional forces and hence reduce the impact of shear stresses (Miller, 

2006).

(a) (b)

Figure 3.2 (a) Tensile test piece (b) Extensometer (c) Positioning of compression test piece.

All the test pieces were displaced at a rate of 8.33 * 10'4 m-s"1, with an initial 

preload of 5 N and 20 N for tensile and compression, respectively. The 

relatively large preload of 20 N was required to remove the "slack" from the 

compression samples, as a result of them being cut from curved cores. 

Ensuring the samples were completely flat was necessary to prevent errors 

when measuring their displacement. The alternative would have to been to 

manufacture cylindrical samples specifically for the compression tests. It is 

predicted that using a different manufacturing process would result in larger 

errors than those which may be caused by using a 20 N preload. The tensile 

and compression test pieces were each cyclically loaded four times to stabilise 

the material, with the results obtained from a 5th cycle (Mullins, 1969). There 

was no measurable change in any of the tensile dog-bones or compression 

button dimensions after the 4th cycle, so the initial values were kept for the 5th
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cycle. All of the test pieces settled into a relatively consistent stress-strain curve 

after the first two loadings (Figure 3.3), in accordance with Mullins (1969).
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Figure 3.3 Example of cyclic loading of rubber taken from cores used in the construction of tennis balls a) 

compression, b) tension

The 5th and final loading of each sample is shown in Figure 3.4. Test B was 

identified as the median for compression and test 4 was selected for tension. 

Although there is strong agreement between the results for the individual tests, 

there may still be errors related to the experimental procedure. The main 

sources of error within both the tension and compression tests will most likely 

have arisen from measuring the sample dimensions. However, these errors 

should still be relatively low, as mean dimensions were calculated by 

undertaking all measurements three times. The most evident issue for the 

compression tests is the use of a relatively large preload of 20 N. It should also 

be noted that this preload only represents approximately 3% of the total applied 

load. The other, major source of error in the compression tests is the inevitable 

shear forces in the buttons as a result of friction from the compression plates. 

However, this was kept to a minimum, for this type of test, by using lubricant. 

There will also be errors in the tensile results due to the use of the clip-on 

extensometer. Any variation between tests may also be due to slight differences 

in the materials between the individual cores.
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Figure 3.4 Results o f tennis ball rubber material testing a) 5th cycle from each compression test, b) 5th 

cycle from each tensile test.

The results for tension and compression were combined and the number of 

data points reduced to simplify material model construction in Anys/LS-DYNA 

10.0 (Figure 3.5). The shear modulus of the rubber was calculated as 2.39 * 

106 N-m"2, using the Young's modulus and Poisson's ratio. As the tensile stress- 

strain curve is relatively linear (Figure 3.5) the Young's modulus of 7.13 * 106 

N-m'2 was calculated from the maximum strain. A Poisson's ratio of 0.49 was 

assumed, as this value is recommended for use in the MAT_OGDEN_RUBBER 

material model (LSTC, 2003).
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Figure 3.5 Combined tension and compression results for the tennis ball rubber material testing.

In order to model the time dependent nature of rubber the 

MAT_OGDEN_RUBBER material model requires stress relaxation data (LSTC,



2003). Stress relaxation data is obtained by holding a material sample at a 

constant strain, whilst measuring the time-dependent stress in the test piece, 

following rapid loading (Menard, 2008). Specialist equipment, which was not 

available for this project, is required to undertake this type of testing. Therefore, 

the estimated stress relaxation curve used by Goodwill et al. (2005) will be used 

in the material model.

3.2.3. Felt cover properties

The felt material properties are difficult to measure using tensile and 

compressive testing. Ideally, they should be obtained using a biaxial tester, but 

there was not one available for this project. Therefore, the MAT_LOW- 

DENSITY_FOAM material model, which will be used for the felt cover, will be 

identical to the one in Goodwill et al. (2005).

3.2.4. Summary

In this section the majority of the properties of tennis balls which are required to 

produce an FE model were measured. Material testing was undertaken for 

tennis ball rubber taken from sample cores, to measure the density, stress- 

strain properties and enable the shear modulus to be calculated. It was not 

possible to experimentally measure the stress relaxation properties of the 

rubber because of the unavailability of specialist test facilities. The density and 

shear modulus were measured as 1254 kg-m'3 and 2.39 * 106 N-m'2, 

respectively. Due to slight errors in the test procedures the material properties 

may need to be slightly adjusted to provide an optimum fit with the experimental 

data which will be used to validate the model. The stress relaxation curve which 

will be used in the MAT_OGDEN_RUBBER material model will be identical to 

the one used by Goodwill et al. (2005). It was also not possible to 

experimentally obtain the material properties of the felt. The material model 

used to simulate the felt will be identical to the one in Goodwill et al. (2005).

3.3. Finite element model of a pressurised tennis ball

3.3.1. Details o f the FE model

An FE model of a pressurised tennis ball consisting of two parts, a rubber core 

and felt cover, was produced in Ansys/LS-DYNA 10.0 (Figure 3.6). The internal
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and external diameters of the core were 0.05254 m and 0.05942 m and the felt 

was given a uniform thickness of 0.003 m. The rubber core and felt cover were 

both made up of 21600 3D solid elements, with four elements through the 

thickness. This mesh density was selected following a convergence study 

(Appendix A.1, page 242).

am
Rubber core

Felt cover

Figure 3.6 Ball model with a quarter section removed.

The internal pressure of the ball was simulated in the model as an airbag, by 

creating a node set from the elements on the interior surface of the rubber core 

and assigning an AIRBAG_SIMPLE_PRESSURE_VOLUME command to it 

(Goodwill et al., 2005). The internal pressure (P) and volume (V) relationship is 

assumed to be adiabatic during impact and defined by PV14 equal to a constant 

(Figure 3.7). The relative volume of the ball is defined as the actual volume 

divided by the original volume (Figure 3.7). The adiabatic assumption, of no 

heat transfer between the enclosed volume and its surroundings is based on 

the short time frame of the impact (~5 ms) and the insulating properties of the 

rubber core and felt cover. The internal pressure of the balls which was 

measured experimentally was the gauge pressure (Figure 3.8); the atmospheric 

pressure of 101.325 x 103 N-m'2 was added to this value to give the absolute 

pressure. The absolute pressure was then calculated for the required range of 

volumes. As there is no atmospheric pressure in the FE model (Figure 3.8) the 

absolute pressure at each volume was converted back into the gauge pressure. 

Hence, the curve in Figure 3.7 is the gauge pressure versus relative volume.
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The internal pressure was applied in both the dynamic relaxation and transient 

phases of the simulations, and the convergence tolerance was 1 * 10'6. The 

initial pressure of 85 * 103 N-m'2 was found to increase the initial volume of the 

ball by approximately 5% during the dynamic relaxation phase. Therefore, the 

initial pressure of 85 * 103 N-m'2 was assigned to a relative volume of 1.05 

(Goodwill et al., 2005). The external diameter of the ball at the start of the 

transient phase of the analysis was 0.066 m, which is within the limits of 

0.06541 to 0.06858 m set by the International Tennis Federation (ITF).
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Figure 3.7 Pressure-volume curve used to simulate the internal pressure of the ball.

Reality FE Model
No atmospheric pressureAtmospheric pressure

Absolute pressure = 
Atmospheric pressure 

+ Gauge pressure
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Figure 3.8 Pressure in reality and in the FE model.

MAT_OGDEN_RUBBER was the material model used for the rubber core, as 

used by Goodwill et al. (2005). The density of 1254 kg-m'3 resulted in the rubber 

core having a mass 0.0427 kg. Inspection of the stress-strain curve shows that 

the highest tensile strain reached during testing was approximately 0.2
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(Figure 3.5, page 63), as this was the maximum achievable using the clip-on 

extensometer. Preliminary investigations, using the material properties from 

Goodwill et al. (2005), have highlighted that the maximum strain in the tennis 

ball rubber core is around 0.3, when impacted at 30 m-s'1 (Figure 3.9). Hence, if 

the current data was used to construct the material model simulations at high 

impact speeds would rely on values predicted by Ansys/LS-DYNA 10.0. It is 

predicted that a more accurate and reliable alternative is to manually estimate 

the shape of the tensile stress-strain curve beyond the current maximum strain, 

before it is input into Ansys/LS-DYNA 10.0. This hypothesis will be analysed 

when the model is experimentally validated.
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Figure 3.9 State o f maximum strain (red region) in the rubber core for a perpendicular tennis ball impact 

at 30 m-s’1 on a rigid surface.

It is assumed that the Young’s modulus of the rubber will remain relatively 

constant between a strain of approximately 0.2 and 0.4 (Goodwill et al., 2005; 

Smith, 1993) (Figure 3.10). The material curve in Figure 3.10 was input into a 

MAT_OGDEN_RUBBER material model to produce Ogden shear modulus 

coefficients of -0.01487, 1.552 and 2.149 and alpha constant coefficients of 

-7.424,-1.664 and 3.280.
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Figure 3.10 Modified quasistatic stress-strain curve for the tennis ball rubber.

As mentioned in the previous section, the estimated relaxation data used by 

Goodwill et al. (2005 ) was used in the model (Figure 3.11). The relaxation 

modulus is defined as stress at a set time divided by the applied strain. The 

relaxation curve in Figure 3.11 resulted in Maxwell shear modulus coefficients 

of 1.9750 x 10"4, 1.4491 *  10‘1, 2 .0240  and 8 .2093  x 10 '1 and decay constant 

coefficients of 2 .5675  x 101, 2 .5957x  102, 2 .6242  x 103 and 2.6531 x 104.

«io'3.S

Time (s) (Log. scale)

Figure 3.11 Estimated stress relaxation curve for tennis ball rubber.

As described in the previous section, the felt cover was simulated using the 

MAT_LOW-DENSITY_FOAM material model from Goodwill et al. (2005). The 

mass of the felt cover was 1.67 x 10'2 kg. This resulted in a total mass for the 

ball of 5.92  x 10'2 kg, which is within the limits of 5 .60  x 10'2 to 5 .94  x 10'2 kg 

set by the ITF.
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In order to validate the FE model, an impact between the ball and a rigid 

surface was to be simulated. The material model used for the rigid surface was 

MAT_RIGID. The rigid surface had 18000 brick elements; this mesh density 

was selected to produce elements of a similar size to those in the ball and 

eliminate contact instabilities. CONTACT_AUTOMATIC_SURFACE_TO_SURF- 

ACE was used to define contact between the ball and rigid surface. As the rigid 

surface is considerably stiffer than the felt, the contact option SOFT = 1 was 

used (LSTC, 2003; Goodwill et al., 2005) and the time step scale factor was 

changed from the default of 0.9 to 0.5 in order to improve contact behaviour. 

CONTROLJHOURGLASS, with an hourglass coefficient of 0.15, was also used 

to prevent zero-energy modes of deformation occurring in the model. The 

coefficient of friction between the ball and rigid surface was 0.62; this value 

corresponds to a smooth rebound ace court (hard court) (Brody et al., 2002). 

The initial velocity of the ball was applied using INITIAL_VELOCITY_GENERA- 

TION.

3.3.2. Summary

In the above section, an FE model of a pressurised tennis ball was constructed 

in Ansys/LS-DYNA 10.0. The model consisted of a felt cover and rubber core, 

with an airbag replicating the internal pressure. MAT_OGDEN_RUBBER was 

the material model used for the rubber core, whilst MAT_LOW- 

DENSITY_FOAM was used for the felt cover. The internal pressure was applied 

to the interior surface of the core using an AIRBAG_SIMPLE_PRESSURE_VO- 

LUME command. The next section describes the validation of the model against 

experimental data.

3.4. Validation of the pressurised tennis ball model

3.4.1. Experimental methods

The dynamic properties of punctured and pressurised balls and cores were 

obtained for inbound velocities in the range from approximately 5 to 30 m-s"1, 

using an impact rig (Figure 3.12). Punctured and pressurised balls and cores 

were used to independently validate the three separate parts of the model, 

which are the internal pressure, rubber core and felt cover. The punctured core 

was used to validate the rubber core, whilst the punctured ball was used for the
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felt cover. The results for the pressurised cores and balls were used to provide 

an indication of the accuracy of the internal pressure, which was used in the 

model. The balls and cores were punctured using a pressure gauge and it was 

assumed that the small hole which was created would 'reseal', preventing air 

from leaving the balls during the impacts. The impact rig was used to 

experimentally obtain the dynamic properties of the tennis balls and cores 

(Figure 3.12), as it is more efficient than manually tracking images from a high­

speed video camera. The rig consisted of an air-cannon for projecting the balls, 

a set of light gates for measuring inbound and rebound velocities and a force 

plate for obtaining contact times and force plots. The experimental validation of 

the impact rig can be found in Appendix A.2 (Page 244).

(a) (b) (c)

Figure 3.12 Tennis ball impact rig a) Complete rig, b) Light gates and force plate c) Air-cannon

In order to obtain the deformation of the balls/cores, impacts at approximately 5, 

15 and 25 m-s'1 were recorded separately using a Phantom v4.2 high-speed 

video camera, recording at 6000 fps (Figure 3.13a). The camera was positioned 

parallel to the force plate, as this allowed the maximum deformation of the 

balls/cores to be calculated by comparing them against an image of a non­

deformed ball/core (Figure 3.13b). The inbound velocity and deformation 

measurements were undertaken manually using Richimas. A repeatability study 

was undertaken for the pressurised and punctured, balls and cores to assess 

the magnitude of the manual sampling method using Richimas. A single impact
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for each type of ball was selected at low, medium and high inbound velocity. 

The inbound velocity and deformation of each of these impacts was measured 

ten times using Richimas and is shown in Table 3.1. The SD obtained for 

deformation are similar to those measured by Goodwill (2002).

(a) (b)

I
Air-cannon

rmation T 

221
Figure 3.13 a) Set up for impact rig validation and measuring ball/core deformation and b) Method for 

calculating maximum ball/core deformation.

Table 3.1 Richimas tracking repeatability for ball and core impacts on a rigid surface. (value} /  valued = 

SD / SD as a percentage o f the mean.

Low inbound Medium inbound High inbound
Velocity (m-s'1) Velocity (m-s'1) Velocity (m-s"1)

Ball Mean inbound velocity (m-s'1) 6.7 (0 .4 /5 .8% ) 9.7 (0 .4 /4 .1% ) 26.1 (0 .5 /1 .9% )

Mean deformation (mm) 11.5 (0 .4 /3 .6% ) 15.3 (0 .2 /1 .4% ) 31.9 (0 .2 /0 .6% )

Punctured

Ball
Mean inbound velocity (m-s'1) 5.4 (0 .2 /3 .9% ) 15.6 (0 .4 /2 .6% ) 23.3 (0 .5 /2 .3% )

Mean deformation (mm) 9.8 (0 .2 /1 .6% ) 23.9 (0 .3 /1 .4% ) 29.1 (0 .2 /0 .7% )

Core Mean inbound velocity (m-s'1) 6.7 (0 .4 /5 .7% ) 15.1 (0 .6 /4 .1% ) 25.1 (0 .4 /1 .7% )

Mean deformation (mm) 15.4 (0 .5 /3 .3% ) 25.5 (0 .3 /1 .3% ) 33.0 (0 .4 /1 .2% )

Punctured

Core
Mean inbound velocity (m-s'1) 4.8 (0 .9 /18 .4% ) 13.5 (0 .9 /6 .6% ) -

Mean deformation (mm) 9.3 (0 .9 /9 .1% ) 20.5 (0 .3 /1 .5% ) -

The laboratory investigation was replicated in the FE model by simulating 

impacts of punctured and pressurised cores and balls on a rigid surface with 

inbound velocities from 5 to 30 m-s"1, at 5 m-s"1 increments. The rubber core 

model was produced by removing the felt cover from the ball. Although not 

initially pressurised, the punctured core and ball were assigned airbags, with an 

initial pressure of 0 at a relative volume of 1, as it was assumed that no air will 

enter or exit during the collision (Figure 3.14). The pressure volume curve

Light gates

Camera
Force plate
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shown in Figure 3.14 was calculated in the same way as for the pressurised ball 

model (Page 66).
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Figure 3.14 Pressure volume curve for the punctured balls and cores.

The MAT_OGDEN-RUBBER model used for the rubber core is based on 

extended tensile material data (Figure 3.10, page 68), due to limitations with the 

available equipment. In order to ensure the highest possible accuracy a ball 

model was constructed using the measured rubber material properties 

(Figure 3.5, page 63) and analysed against the model based on the extended 

material data. The shear modulus coefficients from the measured model are 

-1.375, 5.646 and 7.75 and the alpha constant coefficients are -2.624, -1.424 

and 3.28. The ball models based on the measured and extended tensile rubber 

properties were analysed for rebound velocity.

3.4.2. Results

Figure 3.15 shows that the rebound speeds of the punctured and pressurised 

core models are in good agreement with the experiment for inbound velocities 

above approximately 15 and 20 m-s"1, respectively. For lower inbound speeds 

both models slightly under-calculate the rebound velocity of the cores. The 

punctured and pressurised ball models show very strong agreement with the 

experimental data at low speeds, only marginally underestimating the rebound 

velocity (Figure 3.15). At velocities above 15 m-s"1 for the punctured ball and 25 

m-s'1 for the pressurised ball, the rebound speed was marginally overestimated.
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Figure 3.15 Rebound velocity against inbound velocity for perpendicular impacts on a rigid surface a) 

Punctured core, b) Core, c) Punctured ball, d) Ball (Experimental results obtained using light gates).

A 2nd order polynomial trend line was fitted to each set of results from the four 

FE models. The equation of this line was used to compare the FE model results 

with the experimental data, for each calculated inbound velocity. Table 3.2 

shows the root mean squared error (RMSE) between the FE models and 

experimental data was less than 0.8 m-s'1 for all four sets of impacts. The same 

method was used to statistically compare maximum deformations and contact 

times.

Table 3.2 RMSE between the model and experiment for rebound velocity

Punctured core Core Punctured Ball Ball

RMSE for rebound velocity (m-s-1) 0.79 0.62 0.70 0.39

73



Table 3.3 shows a comparison between the results obtained for rebound 

velocities of the pressurised ball models based on the measured (Figure 3.5, 

page 63) and extended (Figure 3.1, page 68) rubber material properties. The 

RMSE between the rebound velocities obtained from the two models is less 

than 0.05 m-s'1. However, it is predicted that the model based on the extended 

material data will be more reliable for simulating impacts with additional 

complexity. If the measured material data was used, the FE model would have 

to predict the characteristics of the rubber if the maximum strain was greater 

than 0.2. Therefore, using the extended material data should result in a more 

stable model.

Table 3.3 Rebound velocity comparison for the pressurised ball models based on the measured and

extended tensile rubber material data.

Inbound velocity 

(m-s'1)

Extended tension 

rebound velocity (m-s'1)

Measured tension 

rebound velocity (m-s'1)

Difference

(m-s'1)

5 3.87 3.87 -1.3 x 10’3

10 7.33 7.33 -2.2 x 10"4

15 10.35 10.36 -4.6 x 10‘3

20 12.86 12.88 -2.0 x 10'2

25 14.69 14.74 -5.7 x 10‘2

30 15.99 16.07 -8.4 x 10‘2

RMSE 4.2 x 10 2

Figure 3.16 shows that the core models both show strong agreement with the 

experimental data for maximum deformation for the full range of velocities under 

investigation. It should be noted that the model does tend to appear to slightly 

under-calculate the deformation of the pressurised core, indicating that the 

structural stiffness is too high. The pressurised ball model is in excellent 

agreement with the experiment, as with the results for rebound velocity. 

However, the punctured ball model slightly over calculates the deformation, 

suggesting that the structural stiffness is too low. The RMSE for maximum 

deformation, between the FE models and experimental data, is less than 3 mm 

for all four sets of impacts (Table 3.4).
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Figure 3.16 Deformation against inbound velocity for a perpendicular impact on a rigid surface a) 

Punctured core, b) Core, c) Punctured ball, d) Ball (Experimental results obtained a high speed video 

camera (Figure 3.13, page 71).

Table 3.4 RMSE between the model and experimental data for maximum deformation.

Punctured core Core Punctured Ball Ball

RMSE for maximum deformation (mm) 1.07 2.60 2.42 0.99

Figure 3.17 shows that the core models have good agreement with the 

experimental data for contact duration at high impact speeds. At lower 

velocities, below approximately 7 and 15 m-s'1 for the punctured and 

pressurised model, the contact time is marginally overestimated. Both ball 

models show excellent agreement with the experiment, except for a slight 

overestimation of contact duration at slower velocities. This implies that the ball 

models dissipate too much energy during low speed collisions, which is in
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agreement with the results for deformation and rebound velocity. Table 3.5 

shows the RMSE between the FE models and experimental data was less than 

0.4 ms for all four sets of impacts.
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Figure 3.17 Contact time against inbound velocity for perpendicular impacts on a rigid surface a) 

Punctured core, b) Core, c) Punctured ball, d) Ball (Experimental results obtained a force plate).

Table 3.5 RMSE between the model and experimental data for contact time.

Punctured core Core Punctured Ball Ball

RMSE for contact time (ms) 0.27 0.23 0.35 0.36

Figure 3.18 shows a comparison of force plots from the FE with force plots 

obtained experimentally, using a force plate. As vibrations were observed on all 

of the experimental force plots they were analysed to determine the 

fundamental frequency. The data was analysed by converting it into the 

frequency domain in Matlab using a Fast Fourier transform (FFT). The
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fundamental frequency was calculated as approximately 8,500 Hz 

(Appendix A.3, page 244). This high frequency is unlikely to be a mode of the 

ball, and more likely to be a mode of vibration of the force plate.

Figure 3.18 shows that the force plots for the 5 m-s'1 (experiment correct to 0.6 

m-s'1) impacts are all in good agreement with the experimental results. This is 

particularly true for the peak force and the drop in force near the start of the 

impact, due to the wall buckling. However, the model predicts that the buckling 

occurs approximately 0.15 ms later than the experiment and the overall contact 

time is over calculated by around 0.5 ms.
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Figure 3.18 Force plot o f a 5 m-s'1 perpendicular impact for a a) Punctured core, b) Core, c) Punctured 

ball, d) Ball (Experimental results obtained using a force plate).

Figure 3.19 shows that at an inbound velocity of 15 m-s'1 (experiment correct to 

0.1 m-s'1) all the models, except the punctured core, have relatively good 

agreement with the experimental data for both the peak force and curve shape. 

The accurate estimates of contact time, for all the models, indicate that they 

have the correct structural stiffness (Brody et al., 2002).
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Figure 3.19 Force plot o f a 15 m s '1 perpendicular impact for a a) Punctured core, b) Core, c) Punctured 

ball and d) Ball.

Figure 3.20 shows that at an inbound velocity of 25 m-s'1 (experiment correct to

0.1 m-s'1) there is a very strong agreement with contact times between the core 

and punctured and pressurised ball models and the experimental data. There is 

also good agreement, between model and experimental data, for the time at 

which buckling of the walls initiates. However, the models under-predict the 

buckling force, indicating their structural stiffness is too low. No experimental 

force plots were obtained for the punctured core at 25 m-s'1.
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Figure 3.20 Force plot o f a 25 m-s'1 perpendicular impact for a a) Core, b) Punctured ball, c) Ball.

3.4.3. Discussion

An FE model of a pressurised tennis ball has been validated for perpendicular 

impacts ranging from 5 to 30 m-s'1, on a rigid surface. These impacts give 

typical ball deformations which are encountered during play. The results show 

that the punctured core model marginally over predicts the rebound velocity, 

indicating that the energy losses are insufficient. Any errors within the rubber 

material model are likely to be as a result of the method used for obtaining the 

compression data, which does have the ability to produce shear stresses within 

the test piece. A more accurate method would be to use a biaxial tester as this 

creates a condition of simple compression.

The purpose of the pressurised core simulations was to test the airbag model. 

As the punctured and pressurised core models have a very similar agreement 

with the experimental data it is concluded that the current airbag can be 

considered to be an accurate representation of the internal pressure within a 

tennis ball. The punctured ball model is used to assess the accuracy of the felt 

cover and the results show strong agreement with the experimental data for 

velocities below approximately 20 m-s'1. The models overestimation of rebound 

velocity, above 20 m-s'1, is believed to be as a result of the high impact that 

forces air to escape from the punctured balls during the experiment. The 

stronger agreement with the experimental results for the pressurised ball model 

at high impact velocities provided evidence for this prediction. However, the 

pressurised ball model over predicts the rebound velocity at high impact speeds 

indicating that the energy losses are insufficient. This is likely to be due to errors 

within the felt model, as found by Goodwill et al. (2005). The felt material model

79



could be improved by replacing the input properties with those obtained from a 

biaxial test machine.

3.4.4. Summary

An FE model of a normal impact between a pressurised tennis ball and a rigid 

surface has been produced and validated at room temperature. Analysis 

against experimental data has been undertaken on the complete pressurised 

ball model, along with separate investigations of its individual components. The 

model has been validated for impact speeds between 5 and 30 m-s'1 and can 

be used to obtain a range of results including rebound velocities, contact times, 

impact forces and deformations. This will aid in furthering the understanding of 

the ball impact and the model can now be extended to simulate the full range of 

collisions that are encountered during a game of tennis.

3.5. Validation of the tennis ball model for different 
temperatures

3.5.1. Modifications to the FE model

In this section the FE model of a tennis ball is modified to simulate temperatures 

of 283.15 and 313.15 K. The temperature, at which the original FE model's 

material testing or validation was undertaken, was not recorded. For the 

purpose of this investigation both of these temperatures were considered to 

have been 295.15 K (22°C); assuming this to be a realistic estimation of room 

temperature. Figure 3.21 shows the relationship between the internal pressure 

and relative volume of the ball, for temperatures of 283.15, 295.15 and 313.15 

K. For simplicity the initial volume was assumed to remain constant between 

temperatures.
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Figure 3.21 Tennis ball internal pressure against relative volume, for temperatures in the range from 

283.15 to 313.15 K.

The mechanical properties of the rubber core of a tennis ball also change with 

temperature. The effect of altering the static stiffness of the rubber core was 

achieved by adjusting the stress-strain data in the MAT_OGDEN_RUBBER 

material model (Figure 3.22a). To produce models, which simulated the full 

effects of adjusting temperature, both the internal pressure (Figure 3.21) and 

static and dynamic material properties of the rubber were modified. The static 

modulus of the rubber was increased by 10% for the model at 283.15 and 

decreased by 10% for the model at 313.15 K (Figure 3.22a). The stress 

relaxation modulus of the rubber in the model was increased by 75% to 

simulate a temperature of 283.15 K and it was decreased by 20% for 313.15 K 

(Figure 3.22b). The results of the fit to the material model and relaxation curve 

are shown in Table 3.6. The material properties of the felt were not modified 

with temperature, as any changes were assumed to have an insignificant effect 

on the rebound characteristics of the ball. The apparatus required to obtain the 

material properties of the rubber at different temperatures was not available for 

this project. Therefore, the material properties of the rubber were changed in an 

iterative process until the models were in good agreement with the experimental 

data, in terms of both COR and contact time.
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Figure 3.22 a) Static rubber core material properties, a) Dynamic rubber core material properties

Table 3.6 Fit to MAT_OGDEN_RUBBER for temperatures o f 283.15 and 313.15 K.

Temperature (K) 283.15 313.15

Ogden shear -0.1636 x 10 '\ 0.1707 x i o 1 -0.1338 x 10 '\ 0.139 x 101

modulus coefficients 0.2363 x 101 0.1934 x 101

Ogden alpha -0.7424 x 101, -0.1664 x 101 -0.7424 x 101, -0.1664 x 101

constant coefficients 0.3280 x 101 0.3280 x 101

Maxwell shear -3.4562 x 10-4, -2.5360 x 10’1 1.5800 x 10-4, 1.1593 x 10'1

modulus coefficients 3.5419, 1.4366 1.6192, 6.5675 x 10‘1

Decay constant 2.5675 x 101, -2.5957 x 102 2.5675 x 101, 2.5957 x 102

coefficients 2.6242 x 103, 2.6531 x 104 2.6242 x 103, 2.6531 x 1Q4

The FE models were validated by comparing COR and contact times, for 

perpendicular impacts with a rigid surface, with the experimental results 

published by Downing (2007a). Details of the experimental procedures can be 

found in Downing (2007a). The first stage of this investigation was to analyse 

the effect of only adjusting the internal pressure of the model for temperatures 

of 283.15 and 313.15 K. Following this, an analysis was undertaken to identify 

the effect of increasing and decreasing the static stiffness of the rubber by 10%, 

whilst keeping the original internal pressure. Finally, the internal pressure and 

static and dynamic material properties of the rubber were all updated to 

simulate the two temperatures under investigation.
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3.5.2. Results

The results from Downing (2007a) at 298.15 K were initially compared to the FE 

model and experimental data from the previous section. This was necessary 

due to different balls being used in each experiment, in addition to 

discrepancies in the test temperatures. Figure 3.23 shows that COR and 

contact times were found to be in good agreement between the two sets of 

experimental data and the original FE model. However, contact times were 

marginally higher at inbound velocities below 20 m-s'1 for the validation data 

and the FE model in comparison to Downing (2007a).

(a) (b)
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Figure 3.23 a) COR and b) contact time, comparison between the experimental data from the original 

validation data (295.15 K) and Downing (2007a) (298.15 K) and the original FE model.

Figure 3.24 shows that when only the internal pressure was adjusted, the model 

over-predicted COR when the temperature was 283.15 K. At 313.15 K the 

model is in good agreement with the experimental data, although it marginally 

under-predicted COR for inbound velocities below 20 m-s'1. The FE model and 

experimental data both show increasing COR with temperature.
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Figure 3.24 COR for adjusted internal pressure at temperatures o f a) 283.15 K and b) 313.15 K.

Figure 3.25 shows that that when only the internal pressure was adjusted, the 

FE model was in relatively good agreement with the experimental data at both 

temperatures, for contact time. However, the experimental data shows 

increasing contact time with temperature, whilst the FE model has the opposite 

trend.
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Figure 3.25 Contact time for adjusted internal pressure at temperatures o f a) 283.15 K and b) 313.15 K. 

Experimental data from Downing (2007a).

Figure 3.26a shows that increasing the static stiffness of the rubber in the FE 

model by 10% results in a marginal increase in the COR (dynamic stiffness kept 

constant). The opposite was the case for a 10% reduction in static stiffness. 

Figure 3.26b shows that reducing the static material stiffness by 10% results in 

a significant increase in contact time. Again, the opposite was the case for a 

10% increase in stiffness. The range in both COR and contact time between 

both FE models (20% change in rubber material stiffness) is approximately 

equal to the range of scatter in the experimental data, for a specific inbound 

velocity.
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Experimental data from Downing (2007a).
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Figure 3.27 shows that the FE model, with the updated internal pressure and 

static and dynamic rubber material properties, is in good agreement with the 

experiment for COR at 283.15 K (static and dynamic rubber modulus 10 and 

75% higher respectively) and 313.15 K (static and dynamic rubber modulus 10 

and 20% lower respectively). The model and experiment both show increasing 

COR with temperature.

o  Experiment 
—  FE Model

Experiment 
FE Model

Inbound Velocity (m s'1) Inbound Velocity (m s'1)

Figure 3.27 COR results for the complete ball model updated to simulate temperatures of a) 283.15 K 

and b) 313.15 K. Experimental data from Downing (2007a).

Figure 3.28 shows that the complete model is also in good agreement with the 

experimental data for contact time at both temperatures. Both the model and 

experiment show increasing contact times with temperature.

85



—  ■ I----------

4 44.4

3.838

C 3 6C 36

343.4'r

313.15 K283.15 K
J-«i35

Inbound Velocity (m s'1) Inbound velocity (m s'1)

Figure 3.28 Contact time results for the complete ball model updated to simulate temperatures o f a)

283.15 K and b) 313.15 K. Experimental data from Downing (2007a).

Figure 3.29 shows that the maximum impact force is marginally higher at

283.15 K in comparison to 313.15 K for all the inbound velocities under 

investigation. It can also be observed that the maximum force occurs earlier into 

the impact for the model at 283.15 K for inbound velocities of 15 and 20 m-s’1. 

At inbound velocities of 25 and 30 m-s'1 the maximum impact force at 283.15 K 

lags that of the model at 313.15 K.
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Figure 3.29 Force plots for the complete ball models a) 15 m-s'1, b) 20 m-s'1, c) 25 m-s'1, b) 30 m-s'1.
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3.5.3. Discussion

Increasing the internal pressure of a tennis ball, in isolation, raises its structural 

stiffness, thus reducing its contact time. Hence, when only the internal pressure 

of the tennis ball was adjusted, contact times were found to decrease with 

temperature. This was in contradiction to the experimental data, where contact 

times increased with temperature. When the effect of changing the material 

properties with temperature is added into the model, contact time and COR are 

in good agreement with the experimental data. Therefore, in accord with 

Downing (2007a), it is concluded that the change in a ball's material properties 

with temperature, have a greater influence on its rebound characteristics than 

the alteration in internal pressure. In this paper it was found that a greater 

change in the dynamic material properties of the rubber was required to 

simulate a temperature of 283.15 K (75% increase), in comparison to 313.15 K 

(20% decrease). This was also found by Downing (2007a), who demonstrated 

that for normal impacts there is a greater difference in both COR and contact 

times between 298.15 and 283.15 K, in comparison to 298.15 and 313.15 K. 

Independently adjusting the static material properties of the rubber resulted in 

an increase in COR and a reduction in contact time, with increasing stiffness. A 

tennis ball's static structural stiffness is predicted to be affected by temperature 

in two ways; 1) the material and hence structural stiffness of the ball is reduced 

with increasing temperature and 2) the lower static stiffness of the rubber at 

higher temperatures results in the ball expanding more from the applied internal 

pressure, which in turn increases its volume lowering its initial internal pressure. 

The diameter of the ball in the FE model was found to increase from 0.066004 

to 0.066204 m when the simulated temperature was increased from 283.15 to

313.15 K. This equated to a 0.62% increase in the frontal area or drag force 

acting on the ball during flight. Further research is required to determine 

whether temperature has a significant effect on a tennis ball's cross sectional 

area and hence flight characteristics.

The results show that when just the internal pressure of the ball was updated to 

simulate a temperature of 283.15 K, the model over-predicted COR. It was also 

found that increasing the static stiffness of the rubber, to simulate a drop in 

temperature, resulted in an increase in the COR, making the model over-predict 

the COR even more. Therefore, if only the internal pressure and static stiffness
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of the rubber were adjusted the model would over-predict COR at 283.15 K, 

whilst the opposite would be the case at 313.15 K. An increase in damping 

results in a decrease in COR (Dignall and Haake, 2000); hence including the 

change in the dynamic material properties of the rubber resulted in strong 

agreement with the experimental data.

This investigation has provided an indication as to how the static and dynamic 

material properties of a tennis ball rubber core change with temperature. 

However, the intention of this study was only to provide a gauge of the extent to 

which the material properties of a tennis ball change with temperature. In this 

investigation the static material properties were assumed to adjust with 

temperature, whilst following the trend of the original data. In reality it is very 

unlikely that this would be the case, especially in the range from 298.15-283.15 

K, which experienced the largest change in rebound characteristics. In addition, 

more precise material testing would be required to determine how the static 

properties of rubber cores change with temperature. Relaxation testing at a 

range of temperatures could be used to determine the stress relaxation 

properties of the rubber.

The change in felt material properties with temperature may also have an 

influence on the rebound characteristics of a tennis ball. If the stiffness of the 

felt were to decrease with increasing temperature, then the ball would stretch 

more from the internal pressure. This would in turn increase the initial volume of 

the ball, reducing its internal pressure and hence structural stiffness. However, 

it is predicted that the stiffness of the felt would change by a very marginal 

amount within the temperature range used in this investigation. In-depth 

material testing would be required to quantify how the felt properties change 

with temperature.

3.5.4. Summary

An FE model of a tennis ball, validated at room temperature, has been updated 

to simulate temperatures of 283.15 and 313.15 K for inbound velocities in the 

range from 15 to 30 m-s"1. This was achieved by modifying the internal pressure 

in accordance with the laws of thermodynamics, whilst simultaneously 

estimating the change in the rubber core material properties. The model was 

found to be in good agreement with the experimental data for the entire range of
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velocities under investigation, at both temperatures. Overall, the change in 

rubber properties with temperature was found to have a more significant effect 

on the rebound characteristics of a tennis ball than the change in internal 

pressure (Downing, 2007a). In-depth material testing would be required to 

determine precisely how the rubber core and felt cover properties change with 

temperature.

3.6. Chapter summary

In this chapter the properties of tennis balls were obtained and used to produce 

an FE model in Ansys/LS-DYNA 10.0. The rubber core was simulated with a 

MAT_OGDEN_RUBBER material model, whilst MAT_LOW-DENSITY_FOAM 

was used for the felt cover. An AIRBAG_SIMPLE_PRESSURE_VOLUME 

command was used to replicate the internal pressure of the ball. The complete 

model and the separate parts were all validated against experimental data 

obtained at room temperature for perpendicular impacts. There was good 

agreement between the model and experimental data for the full range of 

impact velocities (5-30 m-s"1) under investigation. The model was subsequently 

updated to simulate temperatures of 283.15 and 313.15 K for inbound velocities 

in the range from 15 to 30 m-s'1. This was achieved by modifying the internal 

pressure in accordance with laws of thermodynamics, whilst simultaneously 

estimating the change in the rubber core material properties. The model was 

found to be in good agreement with the experimental data for the entire range of 

velocities under investigation, at both temperatures. The next stage of the 

project is to build and validate an FE model of a head-clamped tennis racket.

3.7. Practical applications

Tennis balls rebound slower from a rigid surface when they are punctured. The 

internal pressure of a tennis ball will decrease over time, once it has been 

removed from its pressurised container. Therefore, it is predicted that using old 

tennis balls will decrease the speed of the game.

Tennis balls rebound slower from a rigid surface when the temperature is 10°C 

in comparison to 40°C. Therefore, it is predicted that the speed of the game will 

be increased when played at 40°C in comparison to 10°C.
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4. Head-clamped racket model

4.1. Introduction

Following the work detailed in Chapter 3, the next logical step was to obtain the 

required properties of tennis strings and construct an FE model of a string-bed. 

It would be very difficult and computationally inefficient to simulate the entire 

process of stringing a tennis racket in an FE model. Therefore, the string-bed 

geometry will be constructed as an interwoven lattice of individual main and 

cross strings prior to any loads, which represent string tension being applied.

The string-bed model will be validated against experimental data, obtained by

projecting balls onto a head-clamped racket. To provide a rigorous validation a 

range of inbound velocities, angles and spin rates will be used. Following this, a 

model of a head-clamped tennis racket will be constructed and validated 

against experimental data. This model will be validated for four different impact 

locations on the string-bed. This will enable a large area of the string-bed to be 

validated, as opposed to just a single location. The results obtained from the 

head-clamped racket model will also be analysed against those from the string- 

bed model. The main objectives of this chapter are;

1. To obtain the required properties of tennis strings.

2. To build an FE model of a tennis racket string-bed.

3. To validate an FE model of a tennis racket string-bed against 

experimental data.

4. To build an FE model of a head-clamped tennis racket.

5. To validate an FE model of a head-clamped tennis racket against 

experimental data.
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The strings simulated in the model are Prince Premier Softflex 16 (nylon) and 

the dimensions of the string-bed are based on those of a Prince TX151 racket.

4.2. String properties

4.2.1. Introduction

Tennis strings with a diameter of 1.32 * 10'3± 0.02 x 10'3 m and a density of 

1100 kg’m'3 were provided by the manufacturer for testing. The diameter and 

density of the strings were also provided by the manufacturer. As previously 

mentioned the string-bed geometry is to be constructed as an interwoven 

lattice, prior to any loads which represent string tension being applied. This 

means the geometry of the non-tensioned string-bed in the model will be 

representative of the geometry of an actual tensioned string-bed. Therefore, 

only the string properties above the stringing tension are required. 

MAT_ELASTIC was the linear material model selected for the strings. This 

material model was selected as it has low computational requirements and 

tennis strings are believed to have relatively linear properties in their operational 

range (Calder et a!., 1987), as detailed in the literature review (Section 2.3.3, 

Page 15). Cross (2001a) proposed two methods for determining the dynamic 

stiffness of tennis strings in their operational range. In method 1, the Instron 

method, the change in length between 311 and 222 N (70 and 50 lbs) is 

obtained from the unloading curve of a specific Instron test. Method 2, the 

Hammer method, involves striking a string tensioned to 275 N with a hammer 

and measuring the change in tension and perpendicular displacement. The 

change in length of the string is calculated from its perpendicular displacement. 

In both methods the dynamic stiffness is defined as the ratio of the change in 

force to change in length. The Young’s modulus of the string can be calculated 

by multiplying the dynamic stiffness by the length and dividing by the cross 

sectional area. In this section the two methods of obtaining dynamic stiffness 

will be used to calculate the Young's modulus of the string. The two methods for 

obtaining the dynamic stiffness of tennis strings are detailed in full in the 

literature review (Section 2.3.3, Page 15).
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4.2.2. Results

The Instron method was used to obtain tensile force-displacement curves for 

the string (Figure 4.1). The test was repeated ten times (Figure 4.2) and the 

mean dynamic stiffness was calculated as 33.3 kN-m"1, with a SD of 0.46 

kN-m'1. The stiffness obtained from the Instron machine is considered to be 

dynamic because it is obtained from an unloading curve of a specific test, as 

detailed in the literature review (Section 2.3.3, Page 15). The slight variation, 

which can be observed between the repeats, could be due to marginal material 

or geometric variations between the individual lengths of string tested. Material 

variations could be a result of the manufacturing process, whilst geometric 

variations could be due to slight differences in the cross sectional area or gauge 

length.

Two separate values of dynamic stiffness were used to calculate a Young's 

modulus for the strings using the Hammer method. A value of 26.1 kN-m'1, with 

a standard deviation of 0.11 kN-m'1 was provided by the manufacturer and a 

value of 30.8 kN-m"1 was taken from Lindsey (2006). The marginal discrepancy 

in the values of dynamic modulus obtained from the two sources is expected 

due to experimental inconsistency between the different operators.

Figure 4.1 Setup for tennis string materials testing using the Instron method.
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Figure 4.2 Instron force extension plots for tennis strings.

The calculated values of Young's modulus for the different tests are shown in 

Table 4.1. The values of Young's modulus obtained from the Hammer strike 

method are 17% (manufacturer) and 23% (Lindsey, 2007) higher than the value 

obtained from the Instron method.

Table 4.1 Young's modulus values obtained for the tennis string.

Method Young's Modulus (GN-m')

Instron 5 .8 5  ± 0 .09

H am m er - D ynam ic m odulus from m anufacturer 6 .8

H a m m e r - D ynam ic m odulus from Lindsey (2 0 0 6 ) 7.2

4.2.3. Summary

The dynamic properties of Prince Softflex strings have been obtained using the 

Instron and Hammer method. There was a relatively large difference in the 

values of Young's modulus obtained using the two experimental methods. The 

material properties, from both methods, will now be incorporated into separate 

FE models of tennis racket string-beds. Further work will be undertaken to 

determine which method of dynamic string testing results in the optimum value 

of Young's modulus.
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4.3. Finite element model of a tennis racket string-bed

4.3.1. FE model o f a tennis racket string-bed

An explicit FE model of a tennis racket string-bed, consisting of 16 main and 19 

cross strings, was created in Ansys/LS-Dyna 10.0 (Figure 4.3). The overall 

dimensions of the string-bed were 0.331 * 0.253 m, with the strings having a 

diameter of 1.32 * 10'3 m. The string-bed pattern was based on dimensions 

provided by the racket manufacturer. As explained in the previous section two 

different methods were used for measuring the Young's modulus of the strings 

within their operational range, the Instron (5.85 GN-m"2) and the Hammer (7.2 

GN-m'2) method (Section 4.2, page 9190). The operational range of strings is 

defined as the region between the stringing tension and the maximum load 

applied during a tennis shot. As the two methods produced different values of 

Young's modulus two separate MAT_ELASTIC material models were 

constructed for the strings and independently validated. The density was 1100 

kg-m"3 and the Poisson's ratio was assumed to be 0.3. SOLID164 3-D 8 node 

bricks (identical to the ball), with single point integration or constant stress, were 

used to mesh the main and cross strings, which consisted of 19,624 and 17,712 

elements, respectively. This mesh density was selected as it produced 

elements of a similar size to those in the ball and hence prevented contact 

instabilities.

(a) (b)

Rigid
cylinder

Figure 4.3 a) String-bed model and b) Close-up of string-bed model showing the rigid cylinders on the ends of 

every string.
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Contact between the ball and string-bed was defined as 

CONTACT_AUTOMATIC_SURFACE_TO_SURFACE with a COF of 0.4 

(Cross, 2000b). The same procedure was used for string to string contact, 

except the COF was set to 0.1. As with the ball to rigid surface model the 

contact option SOFT = 1 was used for the ball to string-bed contact. When the 

option SOFT = 1 is used, the contact stiffness is based on the nodal mass and 

global time step size. This option was used by Goodwill et a l, (2005) when 

simulating an impact between a ball and a rigid surface and is generally better 

when modelling contact between materials with a large difference in stiffness 

(LSTC, 2003) i.e. the strings and felt. The hourglass coefficient was set to 0.15, 

as in the ball model (Section 3.3, Page 64), to prevent zero-energy modes of 

deformation. Unlike the ball model the time step scale factor was set at the 

default of 0.9. Reducing the time step scale factor to improve contact behaviour 

was not required as the strings had a significantly lower stiffness that the rigid 

surface, which was used in the ball model validation (Section 3.3, page 64). A 

rigid cylinder 1 * 10'3 m in length and 1.32 * 10'3 m in diameter was attached to 

both ends of every string (Figure 4.3b). A load of 150 N was applied to each of 

these rigid volumes, in the required direction during the dynamic relaxation 

phase, to produce a total tension on every string of 150 N. These rigid volumes 

were then fully constrained during the transient phase of the simulation, 

effectively resulting in the string-bed of a head-clamped racket. Applying 

constraints to rigid cylinders as opposed to directly to the ends of the nylon 

strings, prevented element distortion, hence resulting in a more stable model. 

The convergence tolerance for dynamic relaxation was 0.01 (Figure 4.4). This 

increase in convergence tolerance, in comparison to the ball model (Chapter 3), 

was required to reduce the elevated convergence time as a result of the extra 

complexities of the string-bed model. The stated tolerance was necessary to 

ensure that the simulations would actually converge within a realistic time 

frame.
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Figure 4.4 Convergence of string-bed model.

The string-bed model was validated by simulating an impact with the tennis ball 

model (Chapter 3, Page 59). The ball's initial velocity and spin were assigned 

using INITIAL_VELOCITY_GENERATION. In order to ensure the impact 

occurred at the correct location, the string-bed's position in the horizontal plane 

was adjusted according to the distance the ball would travel up to the point of 

contact. This was achieved using a piece of bespoke software, developed in MS 

Visual Basic 2005, which modifies the LS-DYNA .k text file by selecting the 

nodes corresponding to the string-bed and updating their locations. This 

programme, Tennis Design Tooi (TDT), is the basis of a tennis racket design 

tool. The TDT is described in detail in Chapter 6 (Page 159). The initial position 

of the geometric centre of the ball remained at the origin of the world coordinate 

system as this allows the simplest application of spin.

4.3.2. Summary

A string-bed model consisting of 16 main and 19 cross strings was constructed 

in Ansys/LS-Dyna 10.0. Solid elements were used to mesh the strings and 

contact between them was defined using CONTACT_AUTOMATIC_SURFACE- 

_TO_SURFACE. String-bed tension was replicated by applying a load of 150 N 

to a rigid cylinder on both ends of every string in the dynamic relaxation phase. 

The model will now be validated against experimental data.
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4.4. Validation of the string-bed model

4.4.1. Experimental methods 

Tennis balls were projected against a head-clamped racket using a modified 

BOLA device (Figure 4.5). An aluminium tube was fitted to the BOLA to provide 

greater consistency for the balls inbound angle. An International Tennis 

Federation (ITF) Carbon Fibre tennis racket with a head size of 0.063 m2 (98 

in2) was used for all tests. Two groups of four rackets were used in the 

investigation, strung at 200 and 289 N (45 & 65 lbs), respectively. To ensure 

consistent and accurate results the string-bed deflection of the rackets was 

measured directly before and after testing using a Babolat RDC machine 

(Section 2.3.4, Page 19), the mean of these two values are quoted in this 

section as opposed to the stringing tension. Ball inbound angles and velocities 

in the range from 20 to 60° and 20 to 30 m-s'1 were analysed. A range of 

velocities and angles were used to provide a rigorous validation of the string- 

bed. This will ensure that the final user will have confidence in the ability of the 

complete racket model to accurately simulate a wide range of different tennis 

shots. The inbound angle was adjusted by tilting the racket as opposed to 

adjusting the cannon and flight path of the ball. To account for the horizontal 

distance travelled by the ball whilst in contact with the string-bed the impacts 

were offset from the long axis of the racket. Changing the frame of reference 

from the court to the laboratory, where the racket is initially stationary, means 

that the ball should have backspin prior to impact to represent a topspin shot 

(Goodwill et a l, 2004a). Around twenty impacts were undertaken for every 

racket at each angle; the inbound backspin was varied from 0 to 600 rad-s'1. 

This range of inbound spin was considered to be representative of the majority 

of groundstrokes during match play. Two rackets were used for each string 

tension at 40° and the mean RDC values are quoted in the results section.
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Figure 4.5 Experimental setup for the head-clamped racket testing.

The flight of the balls was recorded as a series of bitmap files, using a Phantom 

v4.1 high-speed video camera, positioned 8 m from the racket in the direction of 

its longitudinal axis and recording at 1000 fps (Figure 4.6). The string-bed axis 

definitions shown in Figure 4.6 will be used throughout this thesis. Inbound and 

rebound velocities, angles and spins were measured from the recorded images 

using Richimas v3. Details of the use of Richimas can be found in Goodwill and 

Haake (2004a).

Figure 4.6 Camera position for recording the head-clamped racket impacts.

The mean inbound angles were found to be different from those predicted from 

the experimental set-up; the calculated values are shown in Table 4.2. For 

simplicity the inbound conditions will be referred to by their nominal values. The 

impact locations had to be calculated as they were offset from the centre of the 

string-bed. The mean horizontal distances from the ball impact location to the 

geometric string-bed centre (GSC), were calculated for each set of impacts. 

This was achieved by estimating each ball's impact position relative to the 

string-bed centre, from its initial location upon exiting the tube fitted to the BOLA

Long axis

Camera

Short axis
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and the calculated mean angle corresponding to the experimental set-up. 

Figure 4.7 shows how the impact locations were calculated when the nominal 

inbound angle was 40°. The initial location of the ball was used to obtain its 

horizontal and vertical distance from the centre of the string-bed, labelled Xi 

and Y in Figure 4.7, respectively. The distance Y and the inbound angle (0) 

where then used to calculate the horizontal displacement of the ball up until the 

point of impact (X2). The impact distance from the centre of the string-bed (X3) 

was obtained by subtracting X2from Xi. Full details of how the impact locations 

were calculated for the other inbound angles can be found in (Appendix B.1, 

Page 247). The calculated impact locations are shown in Table 4.2. FE 

simulations were undertaken with inbound velocities, angles and impact 

locations identical to those in the laboratory experiment. For each angle and 

velocity pair, simulations were undertaken with backspin ranging from 0 to 600 

rad s'1, at 200 rad s'1 increments.

BOLA

String-bed centre

String-bed -  -

Figure 4.7 Obtaining impact position on the string-bed for a nominal inbound angle o f 40°.
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Table 4.2 Inbound angles, velocities and impact locations relative to the centre of the string-bed (mean ± SD)

Nominal inbound 

angle (°)
60 60 40 40 20 20

Nominal inbound 

velocity (m s'1)
30 20 30 20 25 20

Calculated inbound 

angle (°)
57.4 ±1 .1 57.6 ± 0 .9 37.7 ± 0 .8 37.7 ± 1.2 17.9 ± 1 18.3 ± 0 .9

Calculated inbound 

velocity (m-s'1)
29.7 ± 0.9 20.4 ± 0 .5 29.9 ± 0 .7 20.4 ± 0.5 24.9 ± 0 .5 20.4 ± 0.4

Mean horizontal impact distance 0.070 0.069 0.055 0.052 0.045 0.042

from the string-bed centre (m) ± 0.007 ± 0.004 ± 0.007 ± 0.010 ± 0.007 ±0 .010

A repeatability study was undertaken to assess the level of human error in the 

Richimas method. An impact at low, medium and high inbound spin was 

selected and analysed ten times (Table 4.3). The SD are similar to those found 

by Goodwill and Haake (2004a). All of the other impacts were analysed once 

and are assumed to have SD similar to those in Table 4.3.

Table 4.3 Standard deviations for the manual tracking method for ball impacts on a head-clamped racket. 

{value) = SD as a percentage o f the mean.

Low inbound spin 

(-6 rad-s'1)

Medium inbound spin 

(331 rad-s'1)

High inbound spin 

(610 rad-s'1)

Inbound velocity (m-s'1) 0.2 {0.5%) 0.1 (0.4%) 0.2 (0.7%)

Rebound velocity (m-s'1) 0.1 {0.4%) 0.1 (0.6%) 0.1 (0.6%)

Inbound angles (°) 0.3 {0.8%) 0.4 (0.9%) 0.5 {1.2%)

Rebound angles (°) 0.3 {1.0%) 0.4 (2.0%) 0.2 (2.8%)

Inbound spin (rad-s'1) 6.3 {819.5%) 12.2 (3.7%) 10.0 {1.6%)

Rebound spin (rad-s'1) 12.5 {5.1%) 7.2 (3.8%) 3.8 (2.4%)

Impact distance from long axis (m) 0.001 (1.8%) 0.001 {2.1%) 0.001 (2.3%)

4.4.2. Results

Figure 4.8a-f shows that the model results for rebound velocity are in good 

agreement with the experimental data. Although the model marginally under­

estimated the rebound velocity of the ball at 20° and 20 m-s'1, for a backspin of 

200 rad-s'1 (Figure 4.8a). The model also appears to slightly over-calculate 

rebound velocity at 60° and 30 m-s'1 (Figure 4.8f). Overall, the results from both 

the model and experiment show that rebound velocity decreases as the inbound 

angle, relative to the racket normal, increases. Rebound velocity can also be 

seen to decrease with increasing inbound backspin; with the decrease 

becoming more pronounced as the inbound angle increases. Although, at an
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angle of 60° the rate of decrease in rebound velocity drops significantly for 

inbound backspins greater than around 400 rad-s'1 (Figure 4.8e & f). This non­

linear relationship of the data appears to be evident in both the model and 

experiment. The rebound velocities are higher for the rackets strung at lower 

tension. The rebound velocities are also very slightly higher for the model in 

which the strings had a Young's modulus of 5.85 GN-m'2 (Instron), in 

comparison to the model were the Young's modulus was 7.2 GN-m"2 (Hammer). 

The discrepancy between the rackets strung at different tensions and the FE 

models with different materials properties becomes less pronounced as the 

inbound angle relative to the normal increases. It should be noted that the 

difference in the results obtained from the two FE models is less than the 

scatter in the experimental data.
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Figure 4.9 shows that the model results for rebound angle are in good 

agreement with the experimental data. However, the rebound angles for the 20° 

simulations are slightly higher than the experimental values (Figure 4.9a and b). 

The general trend is that the rebound angle of the ball increases with the 

inbound angle. The results also show that rebound angle decreases as inbound 

backspin increases. However, Figure 4.9e and f show that the reduction in 

rebound angle with increasing inbound backspin appears to become less 

pronounced in the experimental data, for backspins greater than approximately 

350 rad-s'1. This non-linearity, which is in agreement with the results for 

rebound velocity, can be observed in the FE model with a nominal inbound 

angle of 60° at 20 m-s’1 but not at 30 m-s'1. The difference in the rebound angle 

between the two FE models is very small and less than the scatter within the 

experimental results. Rebound angle doesn't appear to be affected by string- 

bed stiffness in either the experimental data or FE model. In the experiment 

string-bed stiffness was determined by string tension, while in the FE model it 

was determined by the Young's modulus of the strings.
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Figure 4.10 shows that all the model results for rebound spin are in good 

agreement with the experimental data. The results show that rebound spin



decreases with increasing backspin, whilst it increases with the inbound angle. 

Again, a non-linearity can be observed, for both model and experiment, in the 

rebound characteristics of the ball for inbound backspins above approximately 

350 rad-s'1 at a nominal inbound angle of 60° (Figure 4.10e and f). As with the 

results for rebound velocity and angle, the difference between the two FE 

models is very small. String-bed stiffness does not appear to have an influence 

on rebound spin.
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Two different FE models were used in this investigation. One had a material

model for the strings based on properties obtained using the Hammer method
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with a string stiffness of 7.2 GN-m2; whilst the other was based on properties 

obtained using the Instron method with a string stiffness of 5.85 GN-m2 

(Section 4.2, page 91). There is very little difference between the ball rebound 

results obtained from the different FE models. The Young's modulus of 7.2 

GN-m"2 obtained using the Hammer method will be used for the remainder of 

the project, as the Hammer method is used by the manufacturer.

The FE model was used to analyse the horizontal velocity and spin of the ball 

throughout an impact. The impact selected for analysis had an inbound velocity 

of 30 m-s'1, an angle of 40° and a backspin of 200 rad-s'1. Figure 4.11a shows 

that the horizontal force acting on the ball, comprising of friction and a string- 

bed horizontal reaction force, switches direction just after the midpoint (2.85 ms) 

of the impact. The initial horizontal force is negative which means that the force 

is acting in the opposite direction to the ball motion. At a time of approximately 

2.85 ms the horizontal force becomes positive, implying that it is in the same 

direction as the ball motion. This causes an increase in the horizontal velocity 

and a decrease in the angular velocity (spin) of the ball (Fig.6b and c). The 

horizontal force switches direction again at around 4.2 ms, resulting in a very 

slight decrease in the horizontal velocity and an increase in spin. As the 

horizontal force acting on the ball switches direction during impact there will be 

an instance at which the ratio of the vertical to horizontal loads will equal zero. 

This illustrates that any analytical model that assumes a simple, linear 

relationship between a friction and vertical reaction force is invalid.
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Figure 4.11 Results obtained from an FE model o f a string-bed for an impact with an inbound velocity o f  

30 m-s'1, angle o f 40° and backspin o f 200 m-s'1 a) Vertical and horizontal force, b) Horizontal velocity 

and c) Spin (E = 7.2 GN-m2 obtained using the Hammer method).
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Figure 4.12 shows the results obtained when the COF between the ball and 

string-bed was adjusted for the FE model with the material properties obtained 

using the Hammer method (E = 7.2 GN-m2). It can be observed that increasing 

the COF from 0.4 to 0.6 has only a minor effect on the rebound properties of the 

ball, with both models in good agreement with the experimental data. Reducing 

the COF from 0.4 to 0.2 has a more pronounced effect on the rebound 

characteristics of the ball. The model with the COF of 0.2 over-predicts the 

rebound spin of the ball (Figure 4.12).
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Figure 4.12 Effect o f ball to string friction in the string-bed model for an impact with an inbound velocity 

o f 30 m-s'1 and an angle o f 40° a) velocity, b) angle and c) spin (E = 7.2 GN-m2 obtained using the 

Hammer method).

The FE model was used to determine why reducing the COF between the ball 

and string-bed resulted in an increase in rebound spin. The impact selected for 

analysis had an inbound velocity of 30 m-s'1, an angle of 40° and a backspin of 

200 rad-s'1. Figure 4.13a shows that the horizontal force acting between the ball 

and string-bed was larger for the model with the higher COF. The larger 

horizontal force acting on the ball, in the model with the higher COF, caused its 

spin to increase at a faster rate (decrease in backspin) (Figure 4.13b). This
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resulted in the ball in this model having a higher spin rate for the first half of the 

impact. However, the horizontal force acting on the ball changed direction at 

around the midpoint of the impact, as previously determined (Figure 4.13a). 

When the horizontal force changed direction it caused the spin of the ball to 

decrease (Figure 4.13b). As the horizontal force acting on the ball was larger for 

the model with the higher COF, the decrease in spin was greater. This resulted 

in the spin of the ball in this model dropping below that of the other ball at 

around 3.5 ms and leaving the string-bed with a lower spin rate. Hence, it is the 

over-spinning of the ball in the FE model that causes the higher COF to result in 

a lower rebound spin rate. These results indicate that there is an optimum value 

of ball to string friction for obtaining maximum rebound spin.
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Figure 4.13 Effect o f ball to string coefficient o f friction for an impact on the FE model o f a string-bed 

with an inbound velocity o f 30 m-s'1, angle o f 40° and backspin of 200 rad-s'1 a) the horizontal force 

acting between the ball and string-bed and b) the spin o f the ball throughout the impact.

A separate investigation was also undertaken to determine the effect of string to 

string friction. Impacts at the GSC, with an inbound velocity of 30 m-s-1 and an 

inbound angle of 40° were simulated using the string-bed model. The inbound 

backspin was in the range from 0 to 600 rad-s‘1. Adjusting the string to string 

friction in the range of 0.01-0.3 had no significant effect on the rebound 

characteristics of the ball (Figure 4.14). Therefore, the string to string COF used 

in the model will remain at 0.1.
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Figure 4.14 Effect o f string to string friction for an impact on the FE model of a string-bed with an 

inbound velocity o f 30 m-s'1 and angle 40° a) velocity, b) angle and c) spin.

4.4.3. Discussion

The FE model has been found to be in good agreement with the experimental 

data for rebound velocity, angle and spin, albeit with a few small discrepancies. 

It was found that the horizontal force acting on the ball, switches direction at 

approximately the mid-point of the impact when the inbound velocity, angle and 

backspin were 30 m-s'1, 40° and 200 rad-s'1, respectively. This implies that the 

ball spin rate has exceeded that associated with rolling and is hence over­

spinning, as found by Goodwill and Haake (2004a). The fact that the friction 

force becomes negative again indicates that a tennis ball impacting obliquely to 

a string-bed converges towards a rolling state. Further research would be 

required to quantify this hypothesis.

The results indicate that reducing the COF between the ball and string-bed 

below 0.4 decreases the accuracy of the FE model, whilst increasing the COF 

has little effect on the rebound properties of the ball. Therefore, the COF 

between the ball and string-bed will remain at 0.4. A COF of 0.4 is within the 

range of 0.27 - 0.42 found by Cross (2000b). String to string friction in the range 

from 0.01 to 0.3 was found to have only a very small effect on the rebound 

characteristics of the ball. However, further research should be undertaken in 

order to determine a more precise value for both ball to string and string to 

string friction.

This investigation has shown that the current FE model is capable of replicating 

a single impact location on a string-bed for different inbound velocities, angles 

and spins. In reality, a ball will impact at a variety of locations on a string-bed
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during play (Choppin et a!., 2007). Therefore, to ensure that the model 

accurately represents reality it must be validated for different impact positions 

on the string-bed. These impact positions should be extremes in the longitudinal 

and lateral directions, to allow the largest possible area of the string-bed to be 

validated.

4.4.4. Summary

An FE model of a tennis racket string-bed has been produced and successfully 

validated against experimental data for different impacts. These impacts had 

inbound backspins in the range from 0-600 rad-s'1, with nominal velocities from 

20-30 m-s'1 and angles from 20-60°. The experimental validation was 

undertaken using a BOLA to project balls onto a head-clamped tennis racket. It 

was found that a ball will enter into an over-spinning stage during the impact, 

except when there is a combination of a high inbound angle (60°) and backspin 

(>400 rad-s'1). Extending the validation to include different impact positions on 

the string-bed would increase its applicability.

4.5. Head-clamped racket model

4.5.1. FE model of a head-clamped racket

An FE model of a head-clamped tennis racket was constructed using Ansys/LS- 

DYNA 10.0. The string-bed was based on the model described previously 

(Section 4.3, Page 94) with slight modifications to the geometry to encompass 

the racket frame. The geometry for the strings, in conjunction with the racket, 

was constructed in Pro Engineer Wildfire 2.0. The Pro Engineer parts 

representing the strings and racket were brought together as an assembly and 

imported directly into Ansys/LS-DYNA 10.0 using the ANSYS Connection for 

Pro Engineer. This is a feature which allows a Pro Engineer part or assembly to 

be launched into ANSYS directly from Pro Engineer. The modified main and 

cross strings consisted of 27,395 and 24,960 SOLID164 3-D 8 node brick 

elements (same as previously validated string-bed model), respectively. The 

racket geometry had an overall length of 0.68 m and a head size of 0.35 * 0.27 

m, respectively (Figure 4.15). These dimensions are representative of a modern 

tennis racket (Haake et a!., 2007).
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Figure 4.15 Racket geometry used in the FE model.

The racket was assigned a fully constrained MAT_RIGID material model 

(Table 4.4) consisting of 27,410 SHELL163 elements, 2 x 10'3 m in thickness. 

Shell elements were used as they are designed for modelling thin walled 

structures, such as the frame of a composite tennis racket. Shell elements are 

also computationally more efficient that solid elements. As with the string-bed 

model, a load of 150 N was applied to a small rigid cylinder attached to both 

ends of each string in the dynamic relaxation phase of the analysis, to represent 

the tension applied during stringing (Section 4.3.1, page 94). However, unlike 

the string-bed model these rigid cylinders were only fully constrained in the 

transient phase until a simulation time of 0.0013 s; at which point the ends of 

the strings were tied to the racket using 

CONTACT_TIED_SURFACE_TO_SURFACE. The simulations were set up so 

that the ball would contact with the string-bed at a simulation time of 0.0015 s; 

0.0002 s after the strings had been tied to the racket frame. The birth time for 

the ball to string-bed contact was also set to 0.0013 s to reduce the 

computational requirements of the model. As CONTACT_TIED cannot be used 

for MAT RIGID elements (LSTC, 2003) the sections of the frame tied to the 

ends of the strings were meshed with a MAT_ELASTIC material model. This 

separate part referred to as 'Racket holes' in Table 4.4 consisted of 4,477 

elements. When defining contact with shell elements, it is possible to specify a 

contact thickness which overrides the geometric thickness. The contact 

thickness of the shell elements in this part was set to 0.5 mm to prevent 

distortion of the strings due to overlapping geometry.
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Contact between the strings and racket was defined as 

CO NTACT_AUTOM AT I C_S U RF AC E_T 0_S U RF AC E with a COF of 0. A COF 

of 0 was used to allow the most even possible distribution of stress throughout 

the strings during the dynamic relaxation phase of the simulations. The contact 

thickness of the shell elements in the racket was set to 0.2 mm.

Table 4.4 Part material properties for the head-clamped racket model.

Part Material model Young's Modulus (GN-m ) Density (kg-m ) Poisson's ratio

Strings MAT_ELASTIC 7.2 1100 0.3

Racket MAT_RIGID 2000 1600 0.3

Racket holes MAT_ELASTIC 70 1600 0.3

INITIAL_VELOCITY_GENERATION was used to apply the required initial 

velocity and spin to the ball. The TDT (Visual Basic programme, Chapter 6 

Page 159), was used to set the impact location on the string-bed. However, the 

programme was updated for the head-clamped racket model to ensure the ball 

impacted at a time of 0.0015 s. The convergence tolerance for dynamic 

relaxation was 0.1 (Figure 4.16). This increase in convergence tolerance, in 

comparison to the string-bed model (Section 4.3.1, page 94), was required to 

reduce the elevated convergence time. The stated tolerance was necessary to 

ensure that the simulations would actually converge within a realistic time 

frame.

0.9
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g  0.3
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Time (s) .-4x 10"
Figure 4.16 Convergence o f head-clamped racket model.

4.5.2. Summary

An FE model of a head-clamped racket was constructed in Ansys/LS-DYNA

10.0. The racket frame was meshed with shell elements and the material model
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was MAT_RIGID. The strings were tied to the racket frame using 

CONTACTJTIED_SURFACEJTO_SURFACE. The model will be validated 

against experimental data for a range of impact locations on the string-bed.
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4.6. Validation of the head-clamped racket model

4.6.1. Experimental methods

In the laboratory experiment tennis balls were projected from a modified BOLA 

onto a head-clamped ITF carbon fibre test racket (Figure 4.5, page 98). The 

balls were projected with backspin in the range from 0 to 600 rad-s'1 at a 

nominal inbound velocity and angle (relative to the racket normal) of 20 m-s'1 

and 40°, respectively. A pair of rackets both strung at 289 N (65 lbs) were used 

for testing and each were impacted at two locations on the string-bed. This 

resulted in a total of four separate impact locations labelled; centre, off-centre, 

throat and tip. The reason for using four different impact locations was to 

validate a large area of the string-bed, as opposed to just a single position. This 

is the main difference between the experimental work undertaken in this 

subsection and the validation of the string-bed model (Section 4.4, page 97). 

The centre, throat and tip impacts were all slightly offset (-0.03 m) from the long 

axis of the racket towards the BOLA, to account for the horizontal displacement 

of the ball whilst it remained in contact with the string-bed during impact. The 

experimental method used previously was developed to enable the impact 

location on the string-bed to be measured more accurately. The flights of the 

balls were recorded as a series of bitmap images using two synchronised 

Phantom v4.2 high-speed video cameras, recording at 1000 fps (Figure 4.17a). 

A still bitmap image of a ball resting on the string-bed was also captured from 

camera 1. This image was used as a reference of the vertical location of the ball 

upon impact with the string-bed. Four sphere shaped markers were attached to 

the frame along the two axes of the string-bed (Figure 4.17b). This allowed the 

horizontal location of the ball to be calculated upon impact with the string-bed, 

relative to the frame markers. Camera 1 was used to obtain the ball's velocity, 

angle, spin and the impact distance from the long axis of the string-bed. The 

impact distance from the short axis of the string-bed was measured using 

Camera 2.
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Figure 4.17 a) Camera set up for the head-clamped racket model, b) Racket markers used as a reference 

for obtaining the impact location on the string-bed.

The bitmap images obtained from the two cameras were manually analysed 

using Richimas v3. Two methods were used to obtain the impact distance from 

the long axis of the string-bed; the Angle method and the Vertical location 

method. The Angle method involved estimating the impact location of the ball 

from its initial position on exiting the tube attached to the BOLA and its 

calculated inbound angle (Figure 4.18a). This was the same as the method 

used for the validation of the string-bed model, except frame markers were used 

to increase accuracy (Figure 4.7, page 99).

For the Vertical location method the position of the centre of the ball was 

measured for the frames around the point of impact with the string-bed. The 

start of contact was assumed to be when the measured vertical location was 

closest to the centre of the ball resting on the string-bed. The RMSE between 

the vertical locations of the impacting and resting ball was 5 mm. The RMSE 

between the horizontal distances obtained from the two methods of measuring 

impact location was 4 mm. The impact distance from the short axis of the string- 

bed was obtained by measuring the location of the ball, in the images from 

camera 2, just before impact (Figure 4.18b).
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Figure 4.18 Calculating the impact distance from a) the long axis o f the string-bed (view from camera 1) 

and b) the short axis o f the string-bed (view from camera 2)

Table 4.5 shows the calculated inbound velocities, angles and impact positions. 

The relatively large SD for both inbound angle and impact distance from the 

long axis of the string-bed are predicted to be due to the varying lift force acting 

on the ball due to the applied backspin. The effect of inbound spin on inbound 

velocity, angle and impact position is shown in Figure 4.19. A separate 

investigation indicated that accounting for the difference in inbound properties 

with increasing backspin, in the FE simulations, had little effect on the rebound 

properties of the ball (-0.05 m-s'1, -0.6°, -5  rad-s'1) (Appendix 0, Page 253). 

Therefore, FE simulations were undertaken using the average inbound 

velocities and angles from the laboratory experiment (Table 4.5).

Table 4.5 Actual experimental inbound velocities and angles (mean ± SD)

Impact

Inbound

Velocity

( m s 1)

Inbound 

Angle (°)

Impact distance from long 

axis (m)

(+ = towards BOLA)

Impact distance from short 

axis (m)

(+ = towards tip)

Centre 21.0 ± 0 .3 38.0 ± 1.0 0.029 ± 0.009 -0.017 ±0 .005

Off-centre 21.4 ± 0 .4 37.4 ± 0 .6 0.058 ± 0.007 -0.025 ± 0.004

Throat 21.3 ± 0 .4 37.4 ± 0 .5 0.033 ± 0.005 -0.070 ± 0.003

Tip 21.5 ± 0 .4 37.3 ± 0 .5 0.035 ± 0.005 0.007 ± 0.004
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Figure 4.19 Effect o f inbound spin on the experimental data for the head-clamped racket model a) 

inbound velocity, b) inbound angle and c) impact distance from the long axis o f the racket.

As the images were manually analysed they were subject to human error, thus 

three of the centre impacts, with distinctly different inbound backspin, were 

analysed 10 times to quantify this error. Table 4.6 shows the obtained SD for 

the inbound and rebound properties of the ball and the impact positions. The 

SD for velocity, angle and spin are similar to those measured by Goodwill and 

Haake (2004a). All the other impacts in this section were analysed once and are 

assumed to have a SD similar to those in Table 4.6.

Table 4.6 Standard deviations for the manual tracking method for the head-clamped racket, {va lue) -  SD 

as a percentage o f the mean.

Low inbound spin 

(-3 rad-s'1)

Medium inbound spin 

(235 rad-s'1)

High inbound spin 

(472 rad-s'1)

Inbound velocity (m-s'1) 0.1 (0.4%) 0.1 (0.5%) 0.2 (0.9%)

Rebound velocity (m-s'1) 0.2 (0.9%) 0.1 (0.7%) 0.1 (0.6%)

Inbound angle (°) 0.3 (0.9%) 0.4 (1.1%) 0.3 (0.9%)

Rebound angle (°) 0.4 (1.6%) 0.3 (2.1%) 0.3 (3.8%)

Inbound Spin (rad-s'1) 4.3 (136.0%) 4.6 (1.9%) 5.7 (1.2%)

Rebound spin (rad-s'1) 4.7 (2.5%) 2.9 (2.1%) 2.9 (2.7%)

Impact distance from long axis (m) 0.001 (4.0%) 0.002 (5.8%) 0.001 (4.6%)

Impact distance from short axis (m) 0.001 (5.1%) 0.002 (7.2%) 0.001 (18.1%)

4.6.2. Results

Figure 4.20 shows the results obtained for horizontal and vertical coefficient of 

restitution (COR). In this thesis, horizontal COR is defined as the ratio of the 

horizontal component of the rebound and inbound velocities (Figure 4.21). The 

results obtained from the FE model for both horizontal and vertical COR are in 

good agreement with the experimental data for all four impact positions. The
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vertical COR decreased by a very marginal amount with increasing backspin, in 

agreement with Goodwill and Haake (2004a). The horizontal COR, which is 

much lower than the vertical COR, decreased considerably with increasing 

backspin, this was also in agreement with Goodwill and Haake (2004a). A 

Oneway ANOVA was performed on the experimental data to determine if 

impact location had a significant effect on either horizontal or vertical COR. 

There was a significant effect of impact location on vertical COR, F(3, 48) = 

16.356, p < 0.05, u) = 0.71, but not horizontal COR. A Tukey HSD Post Hoc 

analysis was undertaken to determine which impact locations were significantly 

different, in terms of vertical COR. The vertical COR for the off-centre impacts 

was found to be significantly different to the other three locations. The lower 

vertical COR for the off-centre impacts can be clearly observed in Figure 4.20. It 

is predicted that the structural stiffness of a tennis racket string-bed will not be 

constant across the entire area. The structural stiffness is expected to lowest at 

the GSC and highest in the region close to the racket frame. It is predicted that 

the off-centre impacts had the lowest vertical COR because the string-bed had 

the highest structural stiffness in this location. There is very good agreement 

between the two FE models for vertical COR. The head-clamped racket model 

has slightly lower horizontal COR than the string-bed model, although the 

difference is less than the scatter in the experimental data. A separate study 

was undertaken to determine the cause of the discrepancy between the results 

obtained from the two models (Appendix B.3, Page 254). The exact reason for 

the discrepancy was not found. However, it was predicted that the difference is 

likely to be due to convergence as well as slight differences in the geometry and 

mesh of the models.
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Figure 4.20 Horizontal and vertical COR for oblique spinning impacts on a head-clamped racket a) 

centre, b) off-centre, c) tip and d) throat.
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Figure 4.21 Definition o f horizontal COR.

Figure 4.22 shows that the FE model results for rebound spin are in relatively 

good agreement with the experimental data; however, the model does appear 

to slightly under-estimate the rebound spin of the ball for higher inbound 

backspins (>300 rad-s'1). A Oneway ANOVA was undertaken using the 

experimental data to determine if impact location had a significant effect on the 

rebound spin of the ball. As with horizontal COR, rebound spin does not change 

significantly with impact location. There is good agreement between the string-
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bed and head-clamped racket models. However, the head-clamped racket 

model has slightly lower rebound spin (-10 rad-s'1) than the string-bed model.
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Figure 4.22 Rebound topspin for oblique spinning impacts on a head-clamped racket a) centre, b) off- 

centre, c) tip and d) throat.

Figure 4.23a shows that for the centre impact with zero inbound spin the 

horizontal force acting between the ball and string-bed is initially negative. 

Therefore, the force acts in the opposite direction to which the ball is travelling, 

resulting in a decrease in its horizontal velocity (Figure 4.23b) and an increase 

in spin (Figure 4.23c). The horizontal force (Figure 4.23a) becomes positive at 

approximately the mid-point of the impact, which subsequently increases the 

balls horizontal velocity (Figure 4.23b), whilst decreasing its spin (Figure 4.23c). 

The horizontal force then drops to around zero and there appears to be no 

further change in the horizontal velocity or spin of the ball. Figure 4.23d-i show 

that similar results are observed as the inbound backspin of the ball is 

increased. However, the results indicate that the horizontal force acting on the 

ball, and the time at which it drops to zero at the end of the impact, both
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increase with inbound backspin. It is this increase in horizontal force which 

causes the decrease in horizontal rebound velocity with increasing inbound 

backspin. The small oscillations in the horizontal force plot are predicted to be 

due to the movements of strings (Cross, 2003).
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Figure 4.23 Results for a centre impact on the head-clamped racket model at 21 m-s'1 and 38° with a-c) 

no spin, d-f) 200 rad-s'1 backspin, g-i) 400 rad-s'1 backspin, j-1) 600 rad-s'1 backspin.
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The FE model was been validated against experimental data for different impact 

locations. However, unlike the FE model it is not possible to precisely control 

the impact location when projecting balls onto a head-clamped racket. A 

separate investigation was undertaken using the string-bed model to determine 

the effect of impact location on the rebound properties of the ball. The impact 

locations used in this follow-up investigation are shown in Table 4.7 and 

Figure 4.24. These impact locations were used as they are within the validated 

region of the string-bed. The inbound backspin for all of the simulations used in 

this investigation was 200 rad-s'1. The inbound velocity was 20 m-s'1 and the 

inbound angle was 40°.

Table 4.7 Impact positions for the FE model investigation.

Simulation impact distance from the long axis (mm) Impact distance from the short axis (mm)

1 30 0
2 45 0
3 60 0
4 30 -35
5 45 -35
6 60 -35
7 30 -70
8 45 -70
9 60 -70

Long axis

Short axis

Figure 4.24 Impact positions on the string-bed.

Figure 4.25a shows that the rebound velocity of the ball remains relatively 

constant across the entire range of impact positions used in this investigation. 

Although, the rebound velocity of the ball is lowest for the impact at the
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maximum offset towards both the throat and away from the long axis of the 

string-bed (Position 9 in Figure 4.24). This is predicted to be due to the string- 

bed having a higher structural stiffness in the region close to frame of the 

racket, as previously mentioned. Figure 4.25b shows that the rebound angle of 

the ball increases considerably as the impact position moves away from the 

long axis of string-bed in a direction parallel to the short axis. The larger 

rebound angle is predicted to be due to the vertical velocity of the ball being 

lower as a result of higher string-bed stiffness in the region closer to the frame 

of the racket. The rebound angle remains virtually constant as the impact 

position moves away from the short axis of the string-bed in a direction parallel 

to its long axis. Figure 4.25c shows that the rebound spin of the ball remains 

relatively constant for all the impacts positions used in this investigation. 

However, the rebound spin is considerably lower for the impact 30 and -70 mm 

offset from the long and short axis, respectively (Position 7 in Figure 4.24).
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Figure 4.25 Results obtained from the head-clamped racket model for impacts with an inbound velocity 

of 20 m-s'1, an angle of 40° and backspin of 200 rad-s'1 at a range of locations on the string-bed a) velocity, 

b) angle, c) spin.

The results suggest that for a head-clamped racket, offsetting the impact 

position from the short axis of the string-bed has little effect on the rebound 

characteristics of the ball. Offsetting the impact from the long axis of the string- 

bed had a larger effect on the rebound characteristics of the ball. This is 

believed to be due to the more asymmetrical shape of the string-bed (relative to 

a plane parallel to its short axis) throughout the impact, as shown in 

Figure 4.26.

Inpact distance from 
Impact distance from the short axis immi
the long axis immi
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Figure 4.26 Effect o f impact position on the deformation o f the string-bed of a tennis racket.

4.6.3. Discussion

In this investigation, an explicit FE model of a head-clamped tennis racket was 

validated against experimental data for a nominal inbound angle of 40°, relative 

to the string-bed normal. The results show that the horizontal COR decreases 

considerably with increasing inbound backspin, whilst the vertical COR 

decreases by only a very marginal amount, which agrees with Goodwill and 

Haake (2004a) (Figure 2.7, page 23). Analysis of the horizontal force acting on 

the ball throughout the impact showed that it increased with inbound backspin. 

The horizontal force initially acts to decrease the horizontal velocity of the ball; 

therefore, as the horizontal force increases with inbound backspin the horizontal 

velocity of the ball decreases by a larger amount and hence causes the 

reduction in horizontal COR. It was also found that the ball over-spins at around 

the mid-point of the impact, resulting in a subsequent increase in its horizontal 

velocity and decrease in spin, in agreement with other studies (Cross, 2003; 

Goodwill and Haake, 2004a). However, it is not clear from the results as to 

whether the ball momentarily grips the strings before over-spinning, as found by 

Cross (2003).

An FE model of a head-clamped racket has been validated for four different

impact positions on the string-bed. The good agreement with the experimental

data for both horizontal and vertical COR also indicates that the model

accurately predicts the rebound angle of the ball. The results show that for a

head-clamped racket the rebound characteristics of the ball remain virtually

constant as the impact position changes in a direction parallel to the long axis of

the string-bed. The rebound characteristics of the ball do change slightly more

as the impact position changes in a direction parallel to the short axis. Overall,

the effect of changing the impact position is very small compared to varying the
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inbound velocity or angle of the ball. Unlike a hand-held racket a head-clamped 

racket is unable to rotate during impact. The rotations of a hand-held racket are 

likely to enhance the effect of different impact positions on the string-bed. 

However, it is difficult to undertake reliable laboratory investigations using a 

hand-held racket. Brody (1987) concluded that a freely suspended racket is a 

good laboratory representation of a hand-held racket, as detailed in the 

literature review (Section 2.4.4, page 28). Goodwill and Haake (2001) 

experimentally analysed the effect of impact position along the long axis of a 

freely suspended tennis racket. They projected balls perpendicular to the racket 

at a range of velocities. It was concluded that the impact location has a large 

effect on the rebound velocity of both the ball and racket. Future work will 

involve the validation of an FE model of a freely suspended racket against 

experimental data. The reasons for using a freely suspended racket are detailed 

in the literature review (Section 2.4.4, page 28). This model will be used to 

determine the true effect of different impact positions on the string-bed relative 

to play. The freely suspended racket model will be created by changing the 

material model whilst removing the displacement constraints applied to the 

frame.

4.6.4. Summary

An explicit FE model of a head-clamped tennis racket has been successfully 

validated against experimental data. It was found that the impact position on the 

string-bed does not have a large effect on the rebound properties of the ball. 

The results from the FE model also indicate that the ball over-spins in the latter 

part of the impact. It would have been difficult to use the experimental data, in 

isolation, to determine if the ball was over-spinning during the impacts. Hence, 

this investigation demonstrates how a validated FE model can be used to 

enhance academic knowledge. In order to further the scientific understanding of 

the game of tennis, a freely suspended racket model should be validated 

against experimental data.
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4.7. Chapter summary

In this chapter an FE model of a head-clamped tennis racket was constructed 

and validated against experimental data. The process of building the model was 

broken down into three separate stages. The initial stage was to obtain the 

required properties of the tennis strings. The second stage was to build and 

validate an FE model of a string-bed. The final stage constructed and validated 

an FE model of a head-clamped racket. It was found that the inbound velocity 

and angle had a large effect on the rebound properties of the ball. Impact 

location was found to have only a minor effect on the rebound properties of the 

ball.
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5. Freely suspended racket model

5.1. Introduction

The aim of this project is to build an accurate FE model for simulating impacts 

between a tennis ball and racket. In the previous chapter an FE model of a 

head-clamped tennis racket was validated against experimental data, for a wide 

range of different impacts (Chapter 1, Page 90). The purpose of this was to 

validate the string-bed model and in particular, the method used to attach the 

strings to the racket frame. This chapter will include the creation and 

experimental validation of an FE model which simulates impacts between a 

tennis ball and a freely suspended racket. There are two main reasons for using 

a freely suspended racket;

1) A freely suspended racket will enable the simplest validation of the racket 

frame, without the additional variable of human grip. This will allow the accurate 

validation of racket frame parameters, such as stiffness and mass distribution.

2) A freely suspended racket is currently considered to be the best 

representation of a human grip, as detailed in the literature review 

(Section 2.4.4, Page 28).

The freely suspended racket model will be created by removing the 

displacement constraints applied to the frame in the head-clamped racket 

model. Previous studies have shown that a model which assumes the racket to 

be rigid is not suitable for predicting the rebound velocity of the ball, for impacts 

away from the Geometric String-bed Centre (GSC) (Brody, 1997; Goodwill and 

Haake, 2001 & 2003). Therefore, the MAT_RIGID material model, which was 

used for the head-clamped racket, will be changed to one which is capable of 

simulating deformation. The model will be validated against experimental data 

obtained by projecting balls onto a freely suspended racket. The experimental 

impacts will be captured using two synchronised high-speed video cameras and 

reconstructed into 3D for analysis. Only the movements of the ball will be 

analysed, as it will be too computationally expensive to run FE simulations for
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sufficiently long duration to obtain the mean rebound velocity of the racket. 

Perpendicular impacts will be simulated at different locations on the string-bed 

to provide a thorough validation of the model. However, in order to develop an 

effective design tool, which can simulate realistic tennis shots, the model will 

also be validated for oblique spinning impacts. The mass and balance point of 

the racket have been found to have a large effect on the rebound velocity of the 

ball (Haake et a/., 2007). Therefore, the mass and balance point of the racket in 

the FE model must match those of the ITF Carbon Fibre racket, which will be 

used for the laboratory based experiments. The swingweight and twistweight of 

the racket in the model will also correspond to those of an ITF Carbon Fibre 

racket. The main objectives of this chapter are;

1. To build an FE model of a freely suspended tennis racket.

2. To experimentally validate an FE model of a freely suspended racket, for 
perpendicular impacts at different locations on the string-bed.

3. To experimentally validate an FE model of a freely suspended racket for 
oblique spinning impacts, at the centre of the string-bed.

5.2. FE Model of a freely suspended tennis racket

5.2.1. FE Model of a freely suspended tennis racket

The freely suspended racket model was based on the head-clamped racket

model (Section 4.5, Page 111), with a few modifications. The MAT_RIGID

material model was changed to MAT_ELASTIC, to provide a better

representation of reality and enable racket deformation to be simulated.

MAT_ELASTIC was used as a starting point, as it is the simplest material model

in Ansys/LS-DYNA 10.0 with the capacity to simulate deformation. A linear

material model was considered to be adequate due to the relatively small

deformations of a racket during an impact with a ball. The racket geometry was

also separated into three parts, i.e. the handle, throat and head (Figure 5.1).

The three parts of the frame were assigned separate shell sections to allow

them to each have an individual wall thickness. With this model the mass

distribution of the racket can be adjusted by changing the shell thickness and

density of the handle, throat and head sections.
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Figure 5.1 FE model racket geometry with three separate sections.

As previously mentioned, ITF Carbon Fibre rackets were used for the laboratory 

experiments. The ITF Carbon Fibre racket was selected as it is designed for 

laboratory testing and hence is likely to have a relatively simple composite lay­

up. This should make the racket relatively straightforward to simulate in an FE 

model. In order to provide an accurate validation, the mass and mass 

distribution of the racket in the FE model were set to correspond to the ITF 

Carbon Fibre racket. The majority of the properties of the ITF racket were taken 

from Goodwill (2002) (Table 5.1).

Table 5.1 Properties of the IT F  Carbon Fibre tennis racket (Goodwill, 2002).

Mass Overall Width Handle Balance point Mass moment of inertia

(kg) length (m) (m) length (m) from butt (m) from butt (mkg2)

0.348 0.683 0.265 0.228 0.325 0.05337

The polar moment of inertia (I) (Twistweight) of the ITF racket was not 

measured by Goodwill (2002) and was hence obtained experimentally using 

Bifilar Suspension theory (Walker, 1991) (Figure 5.2). To do this, the racket was 

hung vertically from two tennis strings of equal length, as shown in Figure 5.2, 

and set to oscillate about its central axis. The time for a set number of 

oscillations was measured using a stopwatch. The experiment was undertaken 

three times with the period of torsion vibration (T) obtained from 10, 20 and 30 

oscillations. For each number of oscillations the experiment was repeated five 

times.
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Figure 5.2 Bifilar Suspension used to obtain the polar moment o f inertia o f a tennis racket.

Table 5.2 shows the mean polar moment of inertia and standard deviation (SD) 

both decreased with the number of oscillations. The lower SD is predicted to be 

due to a reduced human error in the timing of the oscillations. In this report the 

polar moment of inertia of the racket is assumed to be 15.5 ± 0.5 x 10-4 kgm2.

Table 5.2 Measured polar moment o f inertia for the ITF Carbon Fibre tennis racket.

Number of oscillations Mean polar moment of inertia (kgm'')

10 0.001585 ±0.000045

20 0.001552 ±0.000028

30 0.001516 ±0.000023

The density and shell thickness of the head, handle and throat sections were 

adjusted until the mass and mass distribution of the racket in the model 

corresponded to an ITF Carbon Fibre racket (Table 5.3). In order to do this 

successfully the mass of the whole racket in the FE model was firstly set to 

equal that of the experimental racket. Secondly, the mass of the individual parts 

of the racket (handle, throat and head) were adjusted in order to then fit the 

balance point, mass moment of inertia and polar moment of inertia of the 

experimental racket. The mass and polar moment of inertia of the individual 

parts of the racket were obtained directly from the FE model. The polar moment 

of inertia of the complete racket was calculated from summing the values for the 

individual parts. In order to calculate the balance point and mass moment of 

inertia of the racket about the butt, the distances from the centre of mass (COM) 

of the three parts to the butt were required. The distance of the COM of the 

three parts, from the string-bed centre along the length of the racket, was 

obtained directly from the FE model. The mass moment of inertia of the
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individual parts of the racket about an axis through their COM and parallel to the 

short axis of the string-bed was obtained directly from the FE model. Parallel 

axis theory was used to obtain the mass moment of inertia about the butt of the 

racket (Table 5.3).

Table 5.3 Racket mass distribution in the FE model.

Part
Density
(kg-m3)

Shell
thickness

(m)

Mass
(kg)

Distance to COM 
from butt (m)

Balance 
point from 

butt (m)

Mass moment of 
inertia about 
butt (kgm2)

Polar 
moment of 

inertia (kgm2)
Handle 1900 0.003 0.0980 0.084 0.0082 0.00098 0.000021

Throat 2100 0.002 0.0895 0.257 0.0232 0.00622 0.000125

Head 1350 0.002 0.1618 0.505 0.0813 0.04331 0.001446
Complete

racket - - 0.3483 - 0.3236 0.05111 0.001592

Required 
value 

Difference 
between FE

- - 0.3480 - 0.3250 0.05337 0.001550

and reality 
(%)

0.1 -0.4 -4.4 2.7

The geometry and materials used in the construction of a tennis racket 

determine its stiffness, which in turn affects the rebound characteristic of the 

ball (Cross, 2000c; Kanda et a/., 2002; Goodwill and Haake 2001 & 2003; 

Haake et a l, 2007). Experimentally obtaining the mechanical properties of 

composites is difficult, requiring access to both specialist equipment and 

material samples. Material samples were not available for this project. 

Therefore, the material properties of the racket were estimated from published 

data. The material properties of a composite depend on the ratio of the separate 

components and their individual properties. Jenkins (2003) published tensile 

modulus values for carbon filaments, as 517 GPa for very high modulus and 

350 GPa for high modulus. John (2003) states 4 GPa as a Young's modulus for 

epoxy resin. Assuming the carbon fibre composite to be around 30 to 50% resin 

and the Young's modulus to be a third of the maximum in any direction (John, 

2003); the Young's modulus of a typical carbon fibre lay-up used in the 

construction of a modern tennis racket is predicted to fall between 10 and 140 

GPa. The natural frequency (fn) of a 2D beam is determined by its structural 

stiffness (k) and mass (m) (Equation 1).



As the mass of the racket in the FE model was set to correspond to an ITF 

Carbon Fibre racket, it was possible to obtain the correct natural frequency by 

adjusting the Young's modulus. The natural frequencies of tennis rackets dating 

from the 1870's to 2007 are within the range of 70-190 Hz (Haake et al., 2007). 

The natural frequency of the ITF Carbon Fibre racket is 134 Hz (Goodwill,

2002). Modal analysis was undertaken on the racket model using ANSYS 

Mechanical 10.0, for a range of values of Young's modulus (Figure 5.3). The 

Young's modulus was set to the same value in the three parts of the racket. An 

apparent Young's modulus of 20 GN-m'2 resulted in a natural frequency of 135 

Hz, which is very close to the value of 134 Hz found by Goodwill (2002) for the 

ITF Carbon Fibre racket.

400

350

250

2  150

Z 100

50 100

Youn.qs modulus (GPa)
150

Figure 5.3 The relationship between apparent Young's modulus and natural frequency for the racket in 

the FE model.

Two FE models were created to encompass the large range of values of racket

stiffness typically found (Table 5.4). The model with an apparent Young's

modulus of 10 GN-m'2 will represent a composite tennis racket with a low

structural stiffness. This model should produce lower rebound velocities than

obtained from the experimental data, when simulating perpendicular impacts

away from the GSC (node point) (Kanda et al., 2002; Goodwill and Haake,

2003). The racket with the apparent Young's modulus of 70 GN-m'2 is

representative of a very stiff racket, this should produce higher rebound

velocities than the experimental data, when simulating perpendicular impacts
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away from the GSC (node point) (Kanda et al., 2002; Goodwill and Haake,

2003). The stiffer racket had a natural frequency of 253 Hz, that was higher 

than the upper bound of 190 Hz as proposed by Haake et al. (2007). However, 

it is predicted from the trend in Haake et al.'s data that rackets will be developed 

with higher natural frequencies than the maximum values measured in 2007.

Table 5.4 Natural frequencies o f the two racket models with different Young's modulus.

Racket Young's Modulus (GPa) Natural Frequency (Hz)

Low structural stiffness 10 96

High structural stiffness 70 253

The convergence tolerance for dynamic relaxation was changed from the value 

of 0.1 used in the head-clamped racket model, to 0.06 and should increase the 

accuracy of the model (Figure 5.4). This is because the total kinetic energy of 

the model and string-bed will be lower, causing the stress distribution in the 

strings to be closer to those which have been subjected to quasistatic loading 

i.e. a string-bed tensioned using a stringing machine. To account for the slightly 

longer convergence time, the tied contact between the strings and racket and 

the contact between the ball and string-bed was set to initiate at a simulation 

time of 0.00135 s, rather than 0.0013 s in the head-clamped racket model. The 

rigid cylinders at the ends of the strings were also released from their 

constraints at 0.00135 s. The use of rigid cylinders to apply tension to the string- 

bed is described in section 4.3.1, on page 94. When defining contact with shell 

elements it is possible to override the geometric thickness of the elements with 

a contact thickness. The contact thickness of the shell elements which were 

used to tie the strings to the racket frame were set to the actual thickness of the 

frame (2 mm). The contact thickness of the shell elements used in the contact 

between the racket and strings was 0.4 mm.
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Figure 5.4 Convergence of the freely suspended racket model.

5.2.2. Summary

An FE model of a freely suspended tennis racket was created in Ansys/LS- 

DYNA 10.0. The racket frame geometry was separated into three separate 

parts to allow the mass distribution of the frame to be adjusted. The mass and 

mass distributions of the racket were set to correspond to that of an ITF Carbon 

Fibre racket. MAT_ELASTIC material models were used for the separate parts 

of the racket frame as they are capable of simulating deformation. The natural 

frequencies of racket models with different values of Young's modulus were 

determined using modal analysis. FE models with natural frequencies of 96 and 

253 Hz will now be analysed against the experimental data. The purpose of this 

is to determine the effect of tennis racket stiffness. The racket was not strung 

during the frequency analysis, as a method for tensioning the string-bed was 

not available. Cross et al. (2001 b) found the fundamental frequency of a tennis 

racket to drop by 8.5% when strung.

5.3. Validation of the freely suspended racket model

5.3.1. Experimental methods

Tennis balls were projected from a modified pitching machine (BOLA) onto a

freely suspended ITF Carbon Fibre racket, using the impact rig detailed in

Choppin (2008) (Figure 5.5a). The racket was hung vertically from a pin with its

butt at the lower end. The pin was located underneath the tip of the frame

between the two central main strings. Using a pin to simulate a freely

suspended racket is a technique which had been used by numerous authors

(Goodwill and Haake, 2001 & 2003; 2002; Goodwill, 2002; Choppin 2008). The
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impacts were captured using two synchronised Phantom V4.3 high-speed video 

cameras, recording at 1,900 fps. This frame rate allowed enough images to be 

obtained to accurately track the ball for the full range of velocities under 

investigation. The impacts were recorded using two cameras positioned on 

separate sides of the impact rig to provide 3D coordinates of the ball and racket, 

as detailed by Choppin (2008) (Figure 5.5b).

140cm

1.65501

Figure 5.5 a) Impact rig used for simulating impacts on a freely suspended tennis racket (Modified from 

Choppin, 2008) b) Optimum camera positions for measuring the trajectory of a tennis ball in 3D 

(Modified from Choppin, 2008).

As previously mentioned, the model was validated against experimental data for 

both perpendicular and oblique impacts. Three rackets were used for the 

experimental testing, all strung at 289 N (65 lbs). Perpendicular impacts were 

simulated on two of the rackets at four different impact positions on the string- 

bed, labelled: centre, off-centre, tip and throat (Figure 5.6). The inbound velocity 

of the balls in the perpendicular impacts was in the range from 10 to 40 m s '1.
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Figure 5.6 Impact positions on the string-bed for the validation o f the freely suspended racket model for 

perpendicular impacts.

Oblique spinning impacts were simulated at nominal inbound velocities of 20 

and 30 rn-s"1 and a nominal angle of 25° to the z axis, on a plane parallel to the 

x and z axes (Reference to axes on Figure 5.5). The inbound backspin of the 

oblique impacts was in the range from -100 to 500 rad-s'1. Oblique impacts 

were obtained by tilting the racket about its vertical axis (y) (Figure 5.7). The 

racket was positioned against a triangular wedge, located beneath the pin, to 

enable a consistent racket angle of 25° to be obtained for all of the impacts. All 

three rackets were used for the oblique impacts. The two rackets used 

previously for the perpendicular impacts were subjected to impacts at a single 

nominal velocity; the third racket was used for both nominal velocities, 

effectively acting as a control. Choppin et al. (2008) found that male and female 

players typically impact the ball 0.55 ± 0.032 m and 0.55 ± 0.031 m from the 

butt of the racket, respectively. Goodwill and Haake (2004b) found that for an 

oblique impact on a freely suspended racket at 30 m-s'1 and 36° (relative to 

racket normal) the ball will travel approximately 0.035 m (±0.005) horizontally 

(parallel to short axis) whilst it remains in contact with the string-bed. The 

nominal impact location of the oblique impacts was 0.55 m from the butt of the 

racket (0.0295 m above GSC) and 0.02 m offset from the long axis. The offset 

from the long axis was to compensate for the horizontal displacement of the ball 

whilst it remains in contact with the string-bed during the impact.
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Figure 5.7 Racket positioning for perpendicular and oblique 

fro m  above).

The impacts were recorded as bitmap images and analysed using Richimas v3.

The intrinsic 2D positions of the ball were obtained manually from each camera

using Richimas image analysis software. The pairs of 2D coordinates obtained

using Richimas were converted into extrinsic global 3D coordinates (camera

frame o f reference) using a readily available MATLAB R2006b Toolbox which

was developed by Bouguet (2008). The 3D calibration was undertaken using a

checkerboard, as developed by Zhang (1999) and applied to tennis impact

testing by Choppin (2008). To ensure high accuracy, over 15 pairs of calibration

images were obtained (Zhang, 1999). To measure the impact position on the

string-bed, the 3D coordinates of the ball were converted into the racket frame

of reference, with the GSC at the origin (Figure 5.8). The GSC was located at

the origin by obtaining the global 3D coordinates of three white markers at

known locations on the racket frame. A transformation matrix was used to

convert the global 3D coordinates of the ball into local 3D coordinates in the

racket’s frame of reference. To ensure the highest possible accuracy when

calculating the velocity of the ball, its position (x, y  and z coordinates) was

obtained at four discrete locations before and after impact. The velocity of the

ball was calculated separately in the x, y and z directions using the gradient of

the distance-time data. The resultant velocity was resolved from the x, y and z

velocities. Assuming the velocity of the ball to be linear in each plane, it was

possible to predict the position of the ball at any possible time point (d = v.t).

The time step (ti) was chosen as 0.13 ms (0.25 frames), in order to be

sufficiently small enough to accurately estimate the impact position of the ball
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on the string-bed. Impact was assumed to initiate at the first instance when the 

ball's perpendicular distance (Z) from the string-bed (XY plane at Z = 0) was 

less than its radius (33 mm). The horizontal (x) and vertical (y) impact distances 

from the GSC were obtained from the position of the ball at the first point of 

contact with the string-bed. The global 3D coordinates of the racket markers, 

used in the calculations, were the mean values obtained for each set of 

impacts. For full details of the method used to validate tennis ball to racket 

impacts in 3D using two high-speed video cameras, refer to Choppin (2008).

Figure 5.8 Racket position showing throat and side markers and axis coordinate system.

Ball spin from the oblique impacts was calculated using markers, which were 

drawn on the felt (Figure 5.8). The process involved using Richimas to obtain 

the coordinates of the geometric ball centre (GBC) (A) and a marker (intercept 

of lines on the ball) (B) (Figure 5.9). The radius of the ball and the distance (X) 

were then used to obtain the angle 0. The process was repeated to obtain four 

angles before and after impact. The top/back spin about the y axis, relative to 

the racket, was calculated from the gradient of the angle time data. The 

sidespin about the x axis was also calculated using this technique.
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Figure 5.9 Method used for calculating the top/back spin o f a tennis ball, by calculating the change in 0 

over time.

There will be errors in the method used for calculating spin, due to the angle 

between the flight path of the ball and the cameras, as shown in Figure 5.10. If 

the ball is incident with no spin, the view from both cameras will perceive it to be 

spinning in the direction in which it is travelling (Figure 5.10). In this 

investigation the ball was defined as having positive inbound backspin when it 

was spinning in the same direction as its flight path, relative to the right camera. 

Therefore, using this orientation the right and left camera will over and under 

predict the inbound backspin, respectively. Theoretically, if the angle of the left 

camera relative to the flight path of the ball is the same as that of the right 

camera, the error in each camera will be equal and opposite. Hence, the mean 

of the inbound spin rates obtained from the two cameras should be 

approximately equal to the correct value. The actual rebound path of the ball is 

currently unknown, which makes it difficult to predict the error in the spin 

calculation. To ensure the highest possible accuracy with this method, the spin 

was calculated independently from both cameras and the mean value was used 

to validate the model. It may have been possible to calculate the spin of the ball 

in 3D, by positioning the cameras so they could both track the movement of a 

single marker. However, this would have meant changing the camera positions 

from the optimum ones found by Choppin (2008), which would have led to 

subsequent errors.
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Figure 5.10 Spin error in the experimental data as a result of camera positions.

5.3.2. Impact parameters - Perpendicular impacts

Table 5.5 and Figure 5.11 show the calculated impact locations for the 

perpendicular impacts. FE simulations were undertaken with the same mean 

impact locations as the laboratory experiment. The root mean squared error 

(RMSE) between the resultant and z velocities (perpendicular to string-bed) for 

all the perpendicular impacts in the experiment was 0.008 m-s'1 for inbound and 

0.04 m s'1 for rebound. As the RMSE is very low the impacts were considered to 

be perpendicular to the racket and the resultant velocities were analysed 

against the FE models. The FE simulations of the perpendicular impacts had 

inbound velocities of 10, 20, 30 and 40 m-s'1. Two sets of simulations were 

undertaken with values of Young's modulus of 10 GPa and 70 GPa, whilst the 

Poisson's ratio remained constant at 0.3.

Table 5.5 Impact locations for the perpendicular impacts on a freely suspended racket (mean ±SD).

Impact location
Horizontal distance from the 

string-bed centre (mm)

Vertical distance from the string-bed 

centre (mm) (+ = towards tip)

Centre 13 ± 7 8 ± 7

Off-centre 31 ± 10 4 ± 7

Throat 18 ± 8 -55 ± 16

Tip 13 ± 11 49 ± 7

Tl Tn .̂
"~0~- ~~0  ►

 ►
Perceived spin direction

View  from the right cam era (exaggerated)
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Figure 5.11 Diagram showing the standard deviations in impact locations for the perpendicular impacts 

on the freely suspended racket.

5.3.3. Impact parameters - Oblique impacts

Table 5.6 shows the calculated inbound velocities, inbound angles and impact 

locations on the string-bed for the oblique impacts. The inbound side spin of the 

balls (relative to the racket) was found to be negligible, therefore, only the 

top/back spin was used to validate the FE models. Figure 5.12 shows the 

top/back spin measured from the two cameras was in good agreement. The 

RMSE between the spin measured from the left and right camera was, 20.6 

rad-s'1 for inbound and 11.1 rad-s'1 for rebound. Assuming both cameras were 

positioned in equal and opposite locations relative to the inbound path of the 

ball; the error in inbound spin from each camera is predicted to be 

approximately 10 rad-s'1. The rebound path of the balls was in the direction of 

the left camera and approximately parallel to the lens of the right camera. This 

is predicted to be the reason for the lower discrepancies between the two 

cameras for rebound spin. As a comparison another method was used to 

measure the spin of the balls (Appendix C).
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Table 5.6 Inbound velocities, angles and impact locations for the oblique impacts on a freely suspended 

racket (mean ± SD).

Nominal inbound velocity (m-s*1) 20 30

Nominal inbound angle (°) 25 25

Calculated inbound velocity (m-s*1) 18.0 ± 0 .5 28.0 ± 0.4

Calculated inbound angle (°) 23.7 ± 1 .3 22.9 ± 0.9

Horizontal distance from the string-bed centre (mm) 9 ± 16 1 5 ±  10

Vertical distance from the string-bed centre (mm) (+ = towards tip) 9 ± 12 8 ± 11
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Figure 5.12 Comparison of spin calculated from the left and right camera a) inbound and b) rebound.

A repeatability study was undertaken to assess the level of human error in the 

manual tracking method. An impact with low, medium and high inbound spin 

was selected and analysed ten times (Table 5.7). The spin rate was the 

average obtained from both cameras as described previously. The impacts had 

a nominal inbound velocity of 20 m-s"1. All of the other impacts in this 

investigation were analysed once and are assumed to have a SD similar to 

those in Table 5.7. The uncertainties in the measured values are similar to 

those reported by Goodwill and Haake (2004b).
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Table 5.7 Results o f a repeatability test for impacts with low medium and high inbound spin, {va lue) =  

SD as a percentage o f the mean.

Low spin 
(-4.9 rad-s'1)

Medium spin 
(251.6 rad-s'1)

High spin 
(529.9 rad-s'1)

Resultant inbound velocity (m-s'1) 0.1 {0.4%) 0.1 (0.6%) 0.1 (0.5%)

Resultant rebound velocity (m-s'1) 0.1 {1.0%) 0.1 (0.8%) 0.1 {1.5%)

Inbound angle (degrees) 0.3 {1.4%) 0.5 (2.0%) 0.4 {1.4%)

Rebound angle (degrees) 0.3 {0.9%) 0.5 {3.1%) 0.9 {18.1%)

Inbound spin (rad-s'1) 8.6 {176.3%) 8.0 (3.2%) 20.6 (3.9%)

Rebound spin (rad-s'1) 9.4 (9.2%) 4.4 (38.5%) 8.4 {18.9%)

Impact distance from long axis (mm) 1 (56.2%) 2 {17.4%) 2 {13.0%)

Impact distance from short axis (mm) 1 (8.8%) 1 {19.8%) 1 (2.7%)

The FE simulations of the oblique impacts had inbound velocities, inbound 

angles and impact locations, identical to those measured in the laboratory 

experiment. In the FE simulations, the inbound backspin was in the range of 0 

to 400 rad-s'1, at 200 rad-s'1 increments. As with the perpendicular impacts, FE 

models with natural frequencies of 96 and 253 Hz were analysed against the 

experimental data.

5.3.4. Summary of experimental conditions

Tennis balls were projected onto a freely suspended tennis racket using a 

modified BOLA. Perpendicular impacts were simulated at four discrete locations 

on the string-bed, with inbound velocities in the range from 10 to 40 m-s'1. 

Oblique spinning impacts were simulated at approximately the centre of the 

string-bed, with nominal inbound velocities of 20 and 30 m-s'1. The nominal 

inbound angle was 25° and the backspin was in the range from -100 to 500 

rad-s'1. The impacts were captured using two synchronised Phantom V4.3 high­

speed video cameras and analysed in 3D. The uncertainties in the measured 

values was in the range of 0.1 m-s'1 for velocity, 0.9° for angle, 21 rad-s'1 for 

spin and 2 mm for impact position.

FE simulations with the initial conditions shown in Table 5.8 were undertaken to 

correspond to the experimental data.
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Table 5.8 Initial conditions used in the FE model to simulate an impact between a tennis ball and freely 

suspended racket.

Inbound velocity 
(m s ‘1)

Inbound angle (°) Inbound backspin 
(rad-s'1)

Number o f impact 
locations

Perpendicular impacts 10, 20, 30 & 40 0 0 4

Low velocity oblique impacts 18 23.7 0 ,200  & 400 1

High velocity oblique impacts 28 22.9 0 ,200  & 400 1
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5.4. Results and discussion of the freely suspended racket 
model validation

5.4.1. Results of perpendicular impacts

Figure 5.13 shows a comparison of the FE model with the experimental data in 

terms of the rebound velocity of the ball, for the perpendicular impacts at the 

four locations on the string-bed. There are two sets of data from the FE model 

corresponding to different racket stiffnesses. The rebound velocity of the ball is 

slightly lower for the off-centre impacts, in comparison to those at the centre. 

The rebound velocity is lowest for the tip impacts and highest for those at the 

throat, in agreement with Goodwill and Haake (2001 & 2003) and Kanda et al.

(2002). Figure 5.13c shows that four of the tip impacts, which had low inbound 

velocity (<20 m-s'1), had a larger rebound velocity than expected from the trend 

of the rest of the data (See highlighted data points). Three of these four impacts 

were closer to the GSC in comparison to the mean impact location, in both the 

vertical and horizontal directions. The remaining impact had an offset distance 

from the long axis of the string-bed which was less than the mean value.

Raising the Young's modulus of the racket in the FE model, increased the 

rebound velocity of the ball for the throat impacts whilst having a negligible 

effect on those at the other locations, in agreement with Goodwill and Haake

(2003). The FE model of the racket with the Young's modulus of 10 GPa, was in 

relatively good agreement with the experimental data for all four of the impact 

locations on the string-bed. The model with the higher Young's modulus of 70 

GPa slightly over-predicted the rebound velocity of the ball for the impacts at 

the throat. This over-prediction increased with inbound velocity.
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Figure 5.13 Ball rebound velocity for perpendicular impacts on a freely suspended racket a) Centre, b) 

Off-centre, c) Tip and a) Throat.

Second order polynomial trend lines were fitted to the results obtained from 

each of the FE models. The equation of each of these lines was used to obtain 

a rebound velocity for each of the calculated experimental inbound velocities. 

The RMSE's between both racket models and the experimental data was then 

obtained for each impact location on the string-bed (Table 5.9). The results 

show that, overall, the FE model with the Young's modulus of 10 GPa was in 

better agreement with the experimental data.

Table 5.9 RMSE between the FE models and experimental data for rebound velocity, for perpendicular

impacts on a freely suspended racket.

Impact location Centre Centre Off-centre Off-centre Tip Tip Throat Throat

Young's modulus (GPa) 10 70 10 70 10 70 10 70
RMSE for rebound velocity 

(m -s1) 0.55 0.67 0.48 0.85 0.91 1.04 0.57 1.02



Figure 5.14 shows resultant force plots obtained from the FE model for the 

perpendicular impacts with an inbound velocity of 40 m-s'1. The results indicate 

that the structural stiffness of the racket does not have a large effect on the 

impact force between the ball and string-bed; although the results do indicate 

that the impact location has a large influence on the contact force throughout 

the impact. The impacts at the centre had the highest peak forces, whilst the 

impacts at the tip had the lowest. The difference in the maximum force between 

the centre and tip impacts was approximately 400 N. The highest impact force 

was experienced for the centre impacts, as these were closest to one of the 

rackets two node points. The plots for the off-centre, tip and throat impacts all 

show a dip in force around the mid-point of the impact. This dip is due to the 

racket deforming as the ball and string-bed reach the point of maximum 

displacement during the impact. The impact forces are slightly larger for the 

stiffer racket because it deformed less during the impacts. There is no dip in the 

force plot for the centre as this impact location was close to a node point and 

the racket had very little deformation.
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Figure 5.14 Ball to racket resultant force plots for perpendicular impacts at 40 m-s'1, a) Centre, b) Off- 

centre, c) Tip and d) Throat.

5.4.2. Discussion of perpendicular impacts

The FE model was in relatively good agreement with the experimental data in 

terms of the rebound velocity of the ball, for all four of the impact locations used 

in this investigation. However, there was a large amount of scatter in the 

experimental data. This is predicted to be due to the relatively high variation in 

the actual impact positions, for each of the four nominal impact locations on the 

string-bed. The scatter in the experimental data highlights the complexities in 

accurately validating an FE model, whilst also providing evidence for its 

requirement. Goodwill and Haake (2004b) also had a large amount of scatter in 

their experimental data when analysing oblique impacts on a freely suspended 

racket. They stated the scatter in their data to be due to; 1) uncertainty in their 

experimental measurements and 2) the rebound characteristics of the ball being
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highly dependent on the impact position, as a result of the non-uniformity of the 

string-bed. The FE model was in better agreement with the experimental data 

when the Young's modulus of the racket was 10 GPa in comparison to 70 GPa. 

Increasing the stiffness of the racket resulted in an increase in the rebound 

velocity of the ball for impacts at the throat, in agreement with Goodwill and 

Haake (2003) and Kanda et al. (2002). Modal analysis showed that a Young's 

modulus of 20 GPa would result in a natural frequency of 135 Hz, which is 

effectively equal to the natural frequency of the ITF Carbon Fibre racket 

(Goodwill, 2002). Therefore, it is predicted that using a Young's modulus of 20 

GPa would result in better agreement with the experimental data for impacts at 

the throats. Changing the Young's modulus of the racket to 20 GPa would have 

only a very marginal effect on the rebound velocity of the ball at the other 

impact locations.

5.4.3. Results of oblique impacts

Figure 5.15 shows a comparison of the FE model with the experimental data, 

for the oblique impacts at the two inbound velocities. As with the perpendicular 

impacts there are two sets of data for the FE model corresponding to different 

racket stiffnesses. The rebound velocity of the ball decreased with increasing 

inbound backspin and was lower for the impacts at 18 m-s'1 in comparison to 

those at 28 m-s'1. The resultant rebound velocities obtained from the two FE 

models were in very good agreement with the experimental data, for both 

inbound velocities. There was only a very small difference in the rebound 

velocities obtained from the two FE models of different racket stiffness. This 

was in agreement with the results obtained for the perpendicular impacts at the 

centre of the string-bed.
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Figure 5.15 Ball rebound velocity for oblique impacts on a freely suspended racket a) 18 m-s'1 and 24° b) 

28 m-s'1 and 23°.

Figure 5.16 shows that the rebound angle of the balls (relative to the racket 

normal) decreased with increasing inbound backspin. The rebound angles were 

virtually identical for both inbound velocities when the balls were incident with a 

negligible amount of inbound spin. However, the rebound angle decreased 

more with increasing inbound backspin when the inbound velocity of the balls 

was 18 m-s'1, in comparison to 28 m-s’1. Therefore, when the balls were incident 

with high inbound backspin (>100 rad-s'1) the rebound angle of the balls was 

lower for the inbound velocity of 18 m-s'1.

As with rebound velocity, there was very little difference in the results obtained 

from the two FE models. The FE models were both in relatively good agreement 

with the experimental data, although the models slightly under-predicted the 

rebound angle of the ball by a few degrees, for both inbound velocities.
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Figure 5.16 Ball rebound angle for oblique impacts on a freely suspended racket a) 18 m-s'1 and 24° b) 28 

m-s'1 and 23°.

Figure 5.17 shows that the rebound spin of the balls decreased with increasing 

inbound backspin. The rebound spin was lower for the inbound velocity of 18 

m-s‘1 and it decreased more with inbound backspin. As with rebound velocity 

and angle there was very little difference in the results obtained from the two FE 

models. The FE models were in good agreement with the experimental data for 

inbound backspins which were lower than approximately 200 rad-s'1. At higher 

inbound backspins the models slightly under-predicted the rebound spin of the 

balls. It is difficult to precisely assess the accuracy of the FE model for high 

inbound backspins, due to the low number of experimental data points and the 

relatively large uncertainty in the measurement of inbound and rebound spin 

(approx.20 rad-s'1).
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Figure 5.17 Ball rebound spin for oblique impacts on a freely suspended racket a) 18 m-s'1 and 24° b) 28 

m-s'1 and 23°.

5.4.4. Explaining the effects of inbound spin on the rebound properties of 

the ball

An investigation was undertaken to ascertain how and why the rebound 

properties of the ball changed with inbound spin. An impact at 28 m-s-1 and 23°, 

with 200 rad-s-1 of backspin was selected for analysis. These values of inbound 

velocity and backspin were used as they are considered to be representative of 

those employed in play (Choppin et a i, 2008); these impacts were also in good 

agreement with the experimental data.

Figure 5.18 shows how the horizontal and vertical forces acting on the ball and 

its horizontal velocity and spin change throughout the impact. The horizontal 

and vertical planes are defined as being parallel and perpendicular to the string- 

bed, respectively. The horizontal force acting on the ball was initially negative. 

This means that the force was initially acting in the opposite direction to the 

horizontal motion and spin of the ball. This caused a decrease in the horizontal 

velocity of the ball and an increase in its spin (decrease in backspin). At 

approximately the mid-point of the impact the horizontal force acting on the ball 

switched direction. This caused an increase in the horizontal velocity of the ball 

and a decrease in its topspin. The horizontal force acting on the ball then 

converged towards zero. Once the horizontal force equalled zero, there was no 

further change in the horizontal velocity or spin of the ball. This implies that the 

ball was rolling off the string-bed. These results are in agreement with those 

found for the head-clamped racket model (Figure 4.23, page 122).



■ — I--------

(C)

150

100 

f  50 
2 o
I  -50 

-100

- t .......

" t .....

-150

-200

1500

Hor.

1000

500

Ll_

-500

Time (ms)

11

 i -i-

8

30 2 3
Time (ms)

4 5

Figure 5.18 a) Force b) Horizontal velocity and c) Spin, throughout an impact at the centre o f a freely 

suspended racket with an inbound velocity o f 28 m-s'1, angle of 23° and with 200 rad-s'1 o f backspin (70 

GPa /253  Hz).

5.4.5. Discussion of oblique impacts

In this investigation, racket models with natural frequencies of 96 and 253 Hz 

were analysed against experimental data, for oblique spinning impacts. As with 

the perpendicular impacts, there was a large amount of scatter in the 

experimental data. This was due to slight variations in the inbound properties of 

the ball and the impact location on the string-bed. The FE models were both in 

very good agreement with the experimental data, in terms of the rebound 

velocity of the ball. The models were also in relatively good agreement with the 

experimental data for rebound angle and spin; although, they did slightly under- 

predict the rebound angle of the ball for the entire range of inbound backspins. 

The models also under-predicted the rebound spin of the ball for inbound 

backspins greater than approximately 200 rad-s‘1. However, it was difficult to 

precisely determine the accuracy of the FE model due to the uncertainty in 

experimentally measuring both inbound and rebound spin (-20 rad-s'1). The 

stiffness of the racket frame had very little influence on the rebound 

characteristics of the ball. The difference between the two models was much 

lower than the scatter in the experimental data. This agreed with the results 

obtained for perpendicular impacts close to the GSC. The GSC corresponds to 

a node point of the racket and hence has very low vibrations. It is likely that 

racket stiffness will have a greater influence on the rebound characteristics of 

the ball for impacts away from the GSC, particularly in the throat region, as 

found with the perpendicular impacts. Currently the material model for the 

racket is MAT_ELASTIC. Changing the material model to
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MAT_ORTHOTROPIC_ELASTIC may provide a better representation of a 

carbon fibre composite tennis racket.

The FE model's under-prediction of rebound angle is not due to the racket being 

of an incorrect structural stiffness. This is known because a wide range of 

values of racket stiffness had no notable effect on the rebound characteristics of 

the ball. The under-prediction of rebound angle is also unlikely to be due to 

errors in the mass and mass distribution of the racket, as these were set to 

correspond to the ITF Carbon Fibre racket, which was used in the laboratory 

experiment. However, the model could be improved by splitting the racket 

geometry into more parts to allow further control over its mass distribution. 

Therefore, the under-prediction of rebound angle could more likely be due to 

errors in the structural stiffness of the string-bed. Goodwill and Haake (2004b) 

found string tension to have no effect on rebound velocity or spin, for an oblique 

impact with no inbound spin on a freely suspended racket (Section 2.4.5, page 

31). However, in Goodwill and Haake’s investigation the rebound angle of the 

balls was approximately 5° larger for the rackets strung at 70 lbs, in comparison 

to those strung at 40 lbs. This indicates that the FE models under-prediction of 

rebound angle may have been because the structural stiffness of the string-bed 

was lower than that of the racket in the experiment. The model is predicted to 

correspond to that of a racket strung at around 40 lbs, as opposed to 65 lbs in 

the experiment. Further testing is required to quantify this hypothesis.

The results indicate that the ball was over-spinning at around the mid-point of 

the impact. This was in agreement with the results obtained for the head- 

clamped racket model. It would have been very difficult to come to these 

findings using a conventional laboratory based experiment. However, it is 

difficult to rely on these results whilst there is still uncertainty in the structural 

stiffness of the string-bed.

5.4.6. Summary

An FE model of freely suspended tennis racket was validated against 

experimental data for both perpendicular and oblique impacts. Two FE models 

were validated with Young’s modulus values for the racket of 10 and 70 GPa 

(96 and 253 Hz). The reason for this was to determine the effect of racket 

stiffness on the rebound characteristics of the ball. When simulating
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perpendicular impacts, the FE model with the Young’s modulus of 10 GPa had 

the best agreement with the experimental data, and this is a similar stiffness to 

the ITF Carbon Fibre racket used in the laboratory experiment. The results from 

the FE model showed that the stiffness of the racket had no notable effect on 

the rebound characteristics of the ball for oblique impacts at the GSC. This is 

predicted to be because the GSC corresponds to a node point of the racket. 

There was a large amount of scatter in the experimental data, which was 

concluded to be due to; 1) uncertainty in measurement and 2) deviation in the 

inbound properties of the ball and impact location on the string-bed. The FE 

model was in relatively good agreement with the experimental data for both 

perpendicular and oblique impacts.

5.5. Chapter summary

An FE model of an impact between a tennis ball and freely suspended racket 

was constructed in Ansys/LS-DYNA 10.0 and validated against experimental 

data. A MAT_ELASTIC material model was used to simulate the racket frame. 

The model was validated against laboratory based experimental data for 

perpendicular and oblique impacts. There was a large amount of scatter in the 

experimental data due to slight variations in the inbound characteristics of the 

ball and the impact location on the string-bed. Two values of Young's modulus 

were used for the racket when validating the model; 10 and 70 GPa. The model 

with the value of 10 GPa was in better agreement with the experimental data 

when simulating perpendicular impacts. There was no notable difference in the 

results obtained from the two FE models when simulating oblique spinning 

impacts at the GSC. For the oblique impacts, the model was in very good 

agreement with the experimental data for rebound velocity and in relatively 

good agreement for rebound angle and spin. The next stage of the project is to 

analyse the model against data obtained from match play. The model will also 

be used to analyze the effect of racket parameters such as structural stiffness 

and mass, for different impact locations on the string-bed.

The main outcomes of this chapter were;

1. An FE model of a freely suspended tennis racket was constructed in 
Ansys/LS-DYNA 10.0.
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2. The FE model was validated against experimental data for perpendicular 
impacts at four different locations on the string-bed.

3. The FE model was validated against experimental data for oblique 
spinning impacts at the centre of the string-bed.

5.6. Practical applications

For perpendicular impacts away from the GSC, the rebound velocity of the ball 

increases with racket stiffness. Perpendicular impacts are considered to be a 

good representation of a serve. The tip of the racket has the highest velocity 

during a serve and hence is where players aim to impact the ball. The rebound 

velocity of the ball also decreases as the impact location moves away from the 

long axis of the racket. Therefore, a player should do the following to achieve 

the highest rebound velocity for the ball when performing a serve;

1. Use a racket with a high structural stiffness

2. Impact the ball on the long axis of the racket

For oblique impacts at the centre of the string-bed, the rebound characteristics 

of the ball are not affected by the stiffness of the racket. Oblique spinning 

impacts are considered to be representative of a topspin forehand. Players 

typically impact topspin forehands in a region close to the centre of the string- 

bed. Therefore, it is predicted that the stiffness of the racket will have only a 

very small effect on the rebound velocity of the ball when performing a typical 

topspin forehand.

For oblique impacts rebound topspin decreases with increasing inbound 

backspin (racket frame of reference). Therefore, it will be easier for a player to 

perform a forehand shot with high topspin, when the ball rebounds from the 

court with little or no topspin (court frame of reference).
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6. Parametric modelling program

6.1. Introduction

For an FE model of a tennis racket to function as an effective design tool, it 

must be possible to easily adjust the input parameters. The adjustment of these 

parameters should be both straightforward and efficient, thus enabling design 

engineers to concentrate on the meaning of the results, rather than the 

intricacies of the FE model. A parametric modelling program was produced 

using Visual Basic 2005. This program serves as a Graphical User Interface 

(GUI), which can be used to adjust parameters in the FE model and run 

simulations. The objective of this chapter is to describe this parametric 

modelling program.

6.2. Description of the parametric modelling program

A program was created, using Visual Basic 2005, to enable properties of the FE 

models, such as the inbound trajectory of the ball, to be easily and quickly 

adjusted. The program is called the Tennis Design Tool (TDT). The TDT 

enables users who are not familiar with Ansys/LS-DYNA 10.0, to run a variety of 

simulations, including all the models detailed in this thesis. The TDT is 

structured on a template system; the templates are the Ansys/LS-DYNA 10.0 .k 

files (text file containing keyword commands) and there is a separate template 

for each of the models detailed in this thesis. The user selects the 

corresponding template for the type of simulation they require, the TDT thus 

edits selected values in the template and writes a new .k file to a specified 

location. The TDT consists of four sections representing individual models of 

the ball (Rigid Surface), string-bed, head-clamped racket (Clamped Racket) and 

freely-suspended racket (Racket). Figure 6.1a shows the start up screen for the 

TDT and the initial step would be to select the type of impact from the drop 

down list (Figure 6.1b).
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Figure 6.1 a) Start up screen for the parametric modelling program and b) The four impact types 

available in the parametric modelling program.

The four impact types will now be explained in detail starting with the 'Rigid 

Surface' (Figure 6.1b) or 'ball to rigid surface' impact. Figure 6.2 shows the view 

when Rigid Surface is selected as the impact type. The ball parameters 

available for editing are the inbound velocity, angle and spin (Figure 6.2a). The 

simulation controls include the simulation time and dynamic relaxation 

tolerance, as well as the template and output locations. Once the 'Write file' 

button has been selected, a .k file with the input parameters will be created in 

the specified location and the calculated x and y velocities of the ball will be 

displayed. Once the .k file has been created there are two options; run the 

simulation, or add it to the scheduler list. The scheduler list can be copied into a 

batch file, enabling a batch of simulations to be sent to the solver. Following 

this, there is the option of using the last created file as a template, selecting a 

new one or keeping the original (as per the default). In addition, there is the 

option of creating multiple files with different spin rates (Figure 6.2b). 

Deselecting an adjust box results in the corresponding parameter remaining 

unchanged from how it appears in the template (Figure 6.2a).

160



In s tru c tio n s

(b)

Figure 6.2 a) Ball parameters in the parametric modelling program and b) The display in the parametric 

modelling program when creating multiple files.

Figure 6.3a shows the view when Stringbed is selected as the impact type. 

There are the additional options of changing the ball’s impact location and the 

string-bed parameters. The TDT alters the impact location of the ball by editing 

the coordinates of the nodes, which correspond to the string-bed. By default, 

the location of the string-bed is adjusted with the inbound angle of the ball to 

ensure the impact initiates at the Geometric String-bed Centre (GSC). The 

impact location can be moved from the GSC by inputting x and z offset 

distances (Figure 6.3a and b). If the location of the string-bed is moved and the 

template is updated to the last created file, the option to change the impact 

location will again be removed. This is to ensure that the string-bed is always in 

the same position before being moved. The adjustable string-bed parameters 

are the string tension, string-to-string friction and Young’s modulus. The 

Young’s modulus is calculated from the strings diameter and dynamic stiffness, 

using the Hammer method (Section 4.2, page 91). There is also the option of 

selecting preset strings from a drop-down list. When Clamped Racket is 

selected as the impact type the same options are available as for the Stringbed; 

however, the distance of the ball from the string-bed is automatically updated to 

ensure the impact initiates at 0.0015 s (Section 4.5, page 111).
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parametric modelling program.

Figure 6.4 shows the view when Racket is selected as the impact type. The 

adjustable racket parameters are the density and Young’s modulus of the head, 

throat and handle. When the .k file is created, the racket mass, balance point, 

twistweight and swingweight are displayed. The balance point is displayed as 

the distance from the butt in meters and the percentage of the racket length 

(Figure 6.4).
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Figure 6.4 Racket parameters in the parametric modelling program.

A separate program was produced to decrease the total time required to 

analyse the results obtained from the FE simulations (Figure 6.5). This program 

can be used to obtain contact times, maximum forces and force plots for all 

impact types detailed within this thesis. In addition, maximum ball deformation 

and ball deformation plots can be obtained for perpendicular, non-spinning 

impacts.

163



I I I I I V-r LI I V-/ I I I W V ^ I O I  I I I i y  | J I  u y i  U l  I I

2  Results

Analysis type Deformation 

Inbound velocity (m/s) 40

Output location Browse

C SDocumente and Settog$Udlen3\Desk*op

Template location { Browse

E AReaills progianYne\diemetet.txt

2400

2000

800

Contact time (ms) 4.2250 
Max. Force (N) 2527.9

Ball diameter (mm) 65.420 
Max. deformation (mm) 32.3
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Figure 6.5 Results programme, showing results for a 40 m-s'1 perpendicular impact at the GSC of a 

freely-suspended racket.

A text file containing the contact force between the ball and rigid surface / 

string-bed can be obtained from LS-Prepost. However, the ball is not in contact 

with the rigid surface / string-bed for the entirety of the simulation. Figure 6.6a 

shows a plot of contact force, for a ball impacting with a freely suspended 

racket, which was obtained directly from a text file created using LS-Prepost. 

Figure 6.6b shows a force plot of the same impact, where the text file has been 

edited using the program. The superfluous contact force has been removed i.e., 

when it equals to zero before and after impact, and the time data has been 

changed from seconds to milliseconds. The start of contact is defined as the 

last instance of when the force is equal to zero, prior to any nonzero force being 

recorded. The opposite is the case for the end of contact. The updated text file 

containing the results will be created in the specified location using the ‘Write 

file’ button. The modified force-time plot is displayed along with the contact time 

and maximum force (Figure 6.5).

Ball deformation

2 3
Time (ms)
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Figure 6.6 Force plot for a 40 m-s'1 perpendicular impact at the GSC o f a freely suspended racket a) 

Original force plot from ANSYS/LS-Dyna and b) Force plot updated in the results program.

The deformation of the ball is obtained by measuring its changing vertical 

diameter (Figure 6.7a) using LS-Prepost (perpendicular impact only). The 

definition for the deformation of the ball is shown in Figure 3.13b on page 71. 

The program edits the text file, corresponding to the plot shown in Figure 6.7a, 

to obtain the deformation of the ball throughout the impact (Figure 6.7b). The 

deformation of the ball is obtained automatically by subtracting its diameter at 

each time step from its original diameter. The start of contact is defined as the 

last instance of when the current diameter is greater than or equal to the 

original. The contact time is taken from the previous analysis of the 

corresponding contact force data. As with the contact force data, the time is 

converted from seconds to milliseconds and a deformation plot is displayed 

along with the maximum deformation. The modified text file containing the 

deformation-time data for the ball will be created in the specified location.
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Figure 6.7 Ball diameter for a 40 m-s'1 perpendicular impact at the GSC o f a freely suspended racket a) 

Ball diameter from ANSYS/LS-Dyna and b) Ball deformation calculated in the results program.

6.3. Discussion

The first program described in this chapter, the TDT , has proven efficient for 

setting up large numbers of different simulations. It has the ability to easily 

create a model with a specific ball impact location on a string-bed, with the 

required inbound properties. The alternative, of using the Ansys/LS-DYNA 10.0 

interface to change all the required parameters and inherently having to 

manually undertake the calculations, would be very inefficient. The separate 

results program has also proven effective for obtaining contact times and 

forces, as well as ball deformation properties. A robust design tool could 

potentially be produced, by combing the two programs into a single interface, 

with the additional ability to automatically read-in and analyse the results. A 

design engineer would be able to send a batch of simulations to the solver and 

return to the completed simulations, with the results displayed in a standard 

format.

The material properties of a large number of strings could be added to the 

program, allowing their performance with different rackets to be assessed. 

Using a drop-down list, similar to that of the strings, material properties of 

various composite lay-ups could also be added to the program. In the current 

version this would allow different composite lay-ups to be assigned to the head, 

throat and handle of the racket. However, the geometry could be separated into
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a larger number of individual parts, enabling the composite lay-ups to be more 

realistic. The design engineer could then analyse the effect of adjusting the 

material properties of the racket.

6.4. Chapter summary

A program has been produced to allow certain parameters of the existing FE 

models to be easily adjusted. This is more efficient and less prone to human 

error than using the Ansys/LS-DYNA 10.0 interface. The program has been 

designed to be developed alongside the FE model. In addition, a separate 

program has been produced to aid in the analysis of the results obtained from 

the FE simulations. Combing the two programs into a single interface, with the 

additional ability to automatically read-in and analyse the results, could 

potentially result in a very effective design tool.

6.5. Practical applications

A program has been produced which can be used to asses the effect of various 

racket parameters, such as mass and structural stiffness, on a wide range of 

different impacts. This has vast practical applications for manufacturers to 

assess the effect of changing different components of the racket.



7. Comparison of the FE model with simulated play

7.1. Introduction

The preceding chapters of this thesis have been concerned with building an FE 

model of a freely suspended tennis racket. The model has been extensively 

validated against laboratory based experimental data. The next logical step is to 

compare the results obtained using the FE model with tennis ball to racket 

impact data for actual tennis shots. In this chapter, the ball to racket impact data 

collected by Choppin et al. (2007a & b) at the 2006 Wimbledon Qualifying 

Tournament will be used. The main objective of this chapter is;

• To compare the FE model of a freely suspended racket with impact data 
from the 2006 Wimbledon Qualifying Tournament (Choppin etal. 2007a 
& b).

7.2. Method

In this section the FE model of a freely suspended tennis racket will be 

compared with impact data obtained from players practicing at the 2006 

Wimbledon Qualifying Tournament (Choppin etal., 2007a & b).

7.2.1. Analysis of ball to racket impact data obtained from testing elite 

players

Choppin et al. (2007a, 2007b and 2008) undertook testing on nineteen elite 

players at the 2006 Wimbledon Qualifying Tournament, as detailed in the 

literature review (Section 2.5, page 34). The raw data from the player testing 

was obtained from Simon Choppin, with his permission to use in this 

investigation. The results obtained for each tennis shot were;

1. The inbound and rebound velocity and spin of the ball;

2. The inbound velocity of the racket;

3. The resultant inbound angle (relative to racket normal) between the ball 
and racket;

4. The impact location on the string-bed.
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5. The length, width, mass and balance point of the racket.

Haake et al. (2007) demonstrated that the mass, balance point and structural 

stiffness of a tennis racket all influence serve velocity. Therefore, ideally, all the 

different players' rackets should be modelled and compared against the 

experimental data. For practicality, a threshold for inclusion was used to reduce 

the required number of simulations. The threshold relative to the ITF Carbon 

Fibre racket was within 0.5% for length, 3.5% for width, 2.5% for balance point 

and 3% for mass. Cross (2001b) stated that the swingweight of a tennis racket 

is primarily determined by its length, mass and balance point. The racket used 

in the FE model and the ITF Carbon Fibre racket used to experimentally 

validate the model, were both compared against each of the 19 player's rackets 

(Figure 7.1). Rackets 4, 7, 9, 10, 18 and 19 were considered to have similar 

properties to the racket in the FE model. Therefore, the results from the players 

who used these rackets were selected for analysis against the FE model. The 

results from the other players were discarded.
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Figure 7.1 Comparison of the racket in the FE model and the ITF Carbon F ibre  racket with each o f the 

19 players' rackets, a) length, b) width, c) mass and d) balance point.

Figure 7.2 shows a comparison of the six selected players' rackets, the ITF 

Carbon Fibre racket (experimental) and the racket in the FE model. All of the 

players were right handed except the player using racket 9. Therefore, to 

ensure consistency these results were discarded. There are small differences 

between the properties of the selected players' rackets and the racket in the 

model. However, these differences are unlikely to have a significant effect on 

the rebound characteristics of the ball.
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Figure 7.2 Comparison of the racket in the FE model and the ITF test racket with a selection of the 

players' rackets, a) length, b) width, c) mass and d) balance point.

It is doubtful that the players will have all used a racket with the same structural 

stiffness. However, the structural stiffness of a tennis racket does not have a 

significant influence on the rebound characteristics of the ball, for impacts close 

to the geometric string-bed centre (GSC) (Figure 5.15, Figure 5.16 & 

Figure 5.17, page 152-154). Therefore, 18 shots with impact positions close to 

the GSC were selected from the player testing data for analysis against the FE



model (Figure 7.3a). The ball in the freely suspended racket model travelled 

approximately 25 mm horizontally whilst in contact with the string-bed when the 

inbound velocity was 28 m-s'1, the angle was 23° and the backspin was 400 

rad-s'1. This was in agreement with the amount of horizontal displacement of 

the ball measured by Goodwill and Haake (2004b), for an oblique impact on a 

freely suspended tennis racket. Choppin et al. (2007a) obtained the impact 

position on the string-bed when the centre of the ball was equal to a plane 

through markers on the racket frame. In this investigation the position measured 

by Choppin et al. was assumed to be the mid-point of the impact. Therefore, the 

impacts were all offset horizontally by an additional 12.5 mm, to account for the 

horizontal displacement of the ball while it remains in contact with the string-bed 

(Figure 7.3b).
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Flight direction
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Impact distance from long axis (mm) Impact distance from long axis (mm)

Figure 7.3 Impact positions a) player testing and b) FE simulations.

Table 7.1 shows the pre-impact conditions obtained from the selected ball to 

racket impact data. The resultant pre-impact velocity between the ball and 

racket was calculated in 3D. The spin axis of the ball was assumed to be 

parallel to the long axis of the racket (top/back spin relative to racket). The 

resultant inbound angle between the ball and racket was calculated in 2D, as 

done by Choppin et al. (2007a). However, the inaccuracy as a result of using 

the 2D angle was expected to be small, as the root mean squared error (RMSE) 

between the resultant 2D and 3D resultant pre-impact velocities was only 1.53 

m-s'1.
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Eighteen FE simulations were undertaken, using the freely suspended racket 

model, with inbound ball velocities, angles, spin rates and impact positions 

identical to the player testing data shown in Table 7.1. In the FE simulations the 

adjusted x-offset from the long axis was used (Figure 7.3b). The model was 

validated against the ball to racket impact data in the racket's frame of 

reference. This meant that the vertical velocity of the ball was perpendicular to 

the string-bed, whilst the horizontal velocity was parallel to the string-bed. The 

comparison was undertaken in the racket's frame of reference to allow an 

initially stationary racket to be used in the simulations. Cross and Lindsey 

(2005) provide a detailed description of how to convert the Newtonian frame of 

reference from the court to the racket.

Table 7.1 Pre-impact conditions from the player testing results (+ x offset = towards inbound path o f the

ball) (+ y offset = towards tip) (Player data from Choppin et al. (2007a & b))

Shot
Racket

tilt
n

Inbound
spin

(ra d s 1)

Resultant inbound 
velocity 
(m -s1)

Inbound
angle
n

x-offset 
from long 
axis (mm)

Adjusted 
x-offset from  

long axis (mm)

y-offset from  
short axis 

(mm)
1 -0.5 273.3 28.9 18.1 -1.9 10.6 32.9

2 0.0 120.4 30.1 17.8 -16.1 -3.6 31.2

3 0.4 392.7 34.1 16.0 -17.4 -4.9 9.1

4 3.2 31.4 37.0 19.4 -7.0 5.5 15.3

5 8.4 369.7 39.1 20.5 -20.6 -8.1 16.2

6 8.1 392.7 38.6 24.3 10.2 22.7 37.6

7 5.2 90.1 36.2 24.4 18.0 30.5 -2.1

8 3.1 314.2 36.7 23.3 -0.1 12.5 -5.8

9 7.1 314.2 34.0 24.8 -34.0 -21.5 26.4

10 2.4 299.5 35.6 25.5 -19.6 -7.1 36.9

11 0.6 136.1 37.4 23.9 28.9 41.4 21.2

12 5.7 285.9 36.9 22.6 -2.4 10.2 0.5

13 8.7 369.7 39.0 23.5 16.8 29.3 28.2

14 4.9 152.9 37.2 20.9 -7.2 5.3 18.3

15 7.7 314.2 29.7 19.8 23.4 35.9 0.8

16 1.0 299.5 30.9 21.3 3.8 16.3 13.9

17 2.3 299.5 32.4 20.3 7.6 20.1 12.7

18 5.0 330.9 34.0 14.3 15.1 27.6 20.6

Average 4.1 265.3 34.9 21.1 -0.1 12.4 17.4

SD 3.1 109.9 3.3 3.2 17.2 17.2 13.4

The Young's modulus of the racket in all of the FE simulations was 20 GPa. 

This Young's modulus was used as it resulted in the racket having a natural
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frequency of 135 Hz (Figure 5.3, page 134), which is effectively the same as the 

ITF Carbon Fibre racket. However, the structural stiffness of the racket frame 

was not expected to have a large influence on the rebound trajectory of the ball, 

as all of the impacts were close to the GSC (approx. node).

7.3. Results

Figure 7.4a shows that the FE model was in relatively good agreement with the 

player testing data for horizontal rebound velocity. The RMSE between the 

model and player testing data was 1.9 m-s'1. Figure 7.4b shows that the model 

was in better agreement with the player testing data for vertical rebound 

velocity. The RMSE between the model and player testing data was 1.0 m-s"1. 

As both the horizontal and vertical rebound velocities were in good agreement 

with the player testing data, the model was also in good agreement with the 

player testing data in terms of the resultant rebound velocity (Figure 7.4c). The 

RMSE for resultant rebound velocity was 0.9 m-s'1.
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Figure 7.4 Comparison of rebound velocity from the player testing and FE model a) Horizontal, b) 

Vertical {perpendicular to string-bed) and c) Resultant (Player data from Choppin et a l  (2007a & b)).

Figure 7.5 shows that the FE model was in relatively good agreement with the 

player testing data for rebound angle, although the RMSE between the two was 

relatively large at 9.1°. This discrepancy, in the angles, may be as a result of 

slight errors in both the horizontal and vertical rebound velocity of the ball 

(Figure 7.4a & b) becoming exaggerated in the rebound angle calculation.
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Figure 7.5 Comparison of rebound angle from the player testing and FE model (relative to racket norm al) 

(Choppin et al., 2007a & b).

Figure 7.6 shows that the FE model consistently under-estimated the rebound 

spin of the ball, in comparison to the player testing data. The RMSE between 

the two sets of data was 61.3 rad-s'1. However, this is approximately equal to 

the uncertainty in the player testing data.
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Figure 7.6 Comparison of rebound topspin from the player testing and FE model (Player data from 

Choppin et al., 2007a & b).

7.4. Discussion of player testing

An FE model of a freely suspended tennis racket has been analysed against 

experimental data taken from elite players, obtained by Choppin et al. (2007a &
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b). The model was in very good agreement with the player testing data for 

rebound velocity and in relatively good agreement for rebound angle. The 

model consistently under-predicted the rebound spin of the ball, in comparison 

to the player testing data.

The model was in very good agreement with laboratory based experimental 

data, for the rebound velocity of the ball (Figure 5.15, page 152). Therefore, the 

model was expected to be in good agreement with the player testing data in 

terms of rebound velocity. The main racket parameters which influence the 

rebound velocity of the ball are mass, mass distribution, structural stiffness 

(Haake et al., 2007a) and string-bed stiffness (Haake et al., 2003; Goodwill and 

Haake, 2004b; Cross and Lindsey, 2005; Brody et al., 2002). Only data from 

players who used rackets with a similar length, width, mass and balance point 

to the racket simulated in the FE model were selected for analysis. Therefore, 

the main variables between the FE model and player testing data, were the 

structural stiffness of the racket and the string-bed. Only impacts close to the 

GSC were selected for analysis, to limit the influence of the structural stiffness 

of the racket on the rebound characteristics of the ball. Therefore, the marginal 

discrepancy between the model and player testing data is likely to be due to 

differences in string-bed stiffness.

The FE model slightly under-predicted the rebound angle of the ball, in 

comparison to laboratory obtained experimental data (Figure 5.16, page 153). 

Therefore, the model was also expected to under-predict the player testing 

data, in terms of the rebound angle of the ball. The slight discrepancy between 

the model and player testing data was predicted to be partly due to differences 

in both string-bed stiffness and ball to string friction. However, the discrepancy 

could also have been due to differences in the twistweight of the rackets or 

because the players were applying a torque to the handle. Applying a resistive 

torque to the handle, in the range of 7-15 Nm, has been found to reduce the 

rebound angle of the ball by approximately 2°, for perpendicular impacts at 30 

m-s‘1 (Choppin, 2008). Applying a resistive torque to the handle of the racket in 

the FE model may reduce the rebound angle of the ball and hence increase 

agreement with the player testing data.
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The FE model consistently under-predicted the rebound spin of the ball in 

comparison to the player testing data. However, the model was in relatively 

good agreement with experimental data obtained by projecting balls onto a 

freely suspended tennis racket (Figure 5.17, page 154). This also indicates that 

the player's grip may be influencing the impact. The players could have been 

applying a torque to the handle, causing the ball to rebound with a higher spin 

rate than an identical impact on a freely suspended racket. It is likely that a 

racket with a resistive torque applied to the handle would produce higher 

rebound spin than a freely suspended racket. This has implications for 

experimentalists using the freely suspended racket as an approximation of a 

hand-held racket.

Discrepancies between the FE model and player testing data could be due to 

the impact location on the string-bed. In the FE simulations the impacts were 

offset horizontally by an additional 12.5 mm to account for the horizontal 

displacement of the ball, whilst it remains in contact with the string-bed. This 

was based on the assumption that the location obtained from the player testing 

data corresponded to the mid-point of the impact. In the next section the FE 

model will be used to determine the effect of changing the impact location on 

the string-bed, for oblique spinning impacts.

The discrepancies between the two sets of data could also be due to the 

uncertainty in measured velocities, spin rates and impact positions, during the 

player testing. The inbound velocities and spin rates and the impact locations 

on the string-bed were based on the values obtained from the player testing 

data. Therefore, errors in the inbound conditions could have resulted in 

incorrect ball rebound properties.

7.5. Summary of player testing analysis

The model was in relatively good agreement with elite player testing data 

obtained in 3D, in terms of the rebound characteristics of the ball. The results 

indicate that the model can predict rebound velocities to within 1 m-s'1, angles 

to within 10° and spin rates to within 65 rad-s‘1. These values are for an impact 

close to the GSC of a racket, which is similar in size and mass to the one in the 

FE model. Discrepancies between the model and player testing data are
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predicted to be due to differences in the structural stiffness of the string-bed, 

torque applied to the handle of the racket and uncertainty in the player testing 

data. Validating the model against data obtained from players using a ball 

(Prince Tour), strings (Prince Premier Softflex 16) and racket (ITF Carbon Fibre) 

identical to those in the model would provide a better indication of its accuracy. 

Reducing the uncertainty in the player testing data would also provide a better 

indication of the accuracy of the model.

7.6. Chapter summary

In this chapter an FE model of a freely suspended tennis racket was analysed 

against data obtained from elite players, at the 2006 Wimbledon Qualifying 

Tournament. The model was in very good agreement with the player testing 

data for the rebound velocity of the ball and in relatively good agreement for 

rebound angle. The discrepancy for angle was considered to be partly due to 

the combination of errors in the vertical and horizontal rebound velocity of the 

ball. The model consistently underestimated the rebound spin of the ball. This 

was concluded to be because the player was applying a torque to the handle of 

the racket, which was not accounted for by the model.
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8. Applications of the model

8.1. Introduction

The FE model will be used to determine the effect of the structural stiffness, 

mass and balance point of a tennis racket, for an oblique spinning impact at a 

variety of locations on the string-bed. The results will then be analysed to 

determine the influence that each of the individual racket parameters may have 

on a typical forehand shot. Finally, the implications to tennis racket design will 

be discussed. The main objectives of this chapter are;

1. To determine the influence of racket stiffness, mass and balance point 
on a typical forehand tennis shot.

2. To determine how this would be perceived by players on the court.

3. To outline guidelines for tennis racket design.

8.2. Method

An investigation was undertaken using the freely suspended racket model to 

determine the effect of racket structural stiffness, mass and balance point on a 

forehand shot. In order to determine the overall effect of each of the racket 

parameters, impacts were simulated at six locations on the string-bed 

(Table 8.1, Figure 8.1). The FE simulations had an inbound velocity of 35 m-s'1, 

an angle of 20° (relative to racket normal) and a backspin of 300 rad-s'1. These 

inbound conditions were found to be representative of a tennis shot for an elite 

player, in the previous section (Table 7.1, page 175). Two sets of simulations 

were undertaken for each of the three racket parameters under investigation 

(Stiffness, mass and balance point). This gave six different impact locations and 

six different racket parameter configurations, which required 36 simulations.
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Table 8.1 Impact locations on the string-bed used to determine the effect o f different racket parameters.

Simulation Impact distance from the long axis (mm) Impact distance from the short axis (mm)

1 0 60
2 0 0
3 0 -60
4 60 60
5 60 0
6 60 -60

Short axis - I  (-$ -¥ -5 7 -

Flight direction 

Long axis
1 = 0 ,6 0  

2 =  0,0

3 = 0 ,-6 0

4  = 6 0 ,6 0

5 = 6 0 ,0

6 = 60 ,-6 0

Figure 8.1 Impact locations on the string-bed used to determine the effect o f different racket parameters.

The structural stiffness of the racket was adjusted by changing the Young's 

modulus. The first set of six simulations had an apparent Young's modulus of 10 

GPa and a natural frequency of 96 Hz. The second set of simulations had an 

apparent Young's modulus of 70 GPa and a natural frequency of 253 Hz. Refer 

to Figure 5.3, on page 134, for the relationship between Young's modulus and 

natural frequency of the racket. The mass and balance point of the racket 

remained identical to the original model (Table 5.1, page 131).

Table 8.2 Two sets o f FE simulations used to determine the effect o f racket structural stiffness.

Simulation set Young's Modulus (GPa) Natural frequency (Hz)

1 10 96
2 70 253

The mass of the racket was adjusted by changing the density. The densities of 

the three parts were all changed by the same percentage to ensure the balance 

point of the racket remained constant. Haake et al. (2007) found the mass of 

150 tennis rackets, from the 1870's to 2007, to be in a range of 0.24-0.44 kg 

(Figure 2.9, page 26). The mass of the racket in the FE model was increased
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and decreased by 20% (0.07 kg) (Table 8.3). Table 8.4 shows the density and 

mass of the separate parts of the racket. Changing the mass of the racket also 

alters the natural frequency, swingweight and twistweight, as shown in 

Table 8.3 and Figure 8.2. Natural frequency would increase as the mass of the 

racket decreased (Figure 8.2a). The swingweight and twistweight of the racket 

would both increase with racket mass (Figure 8.2b).

Table 8.3 Two sets o f FE simulations used to determine the effect o f racket mass. The mass moment o f  

inertia, the polar moment o f inertia and natural frequency o f the racket in the FE model are also displayed.

Simulation
set

Racket 
mass (kg)

Mass moment of inertia 

(swingweight) (kgm2)
Polar moment of inertia Natural 

(twistweight) (kgm2) frequency (Hz)

1
2

0.279
0.418

0.0406
0.0605

0.0013 151 

0.0019 123

Table 8.4 Density and mass o f the separate parts o f the racket in the two FE models used to determine the

effect o f racket mass.

Simulation
set

Handle 
density 
(kgm )

Handle Throat 
mass density 
(kg) (kg m )

Throat
mass
(kg)

Head „ . Racket 
density Head"Jass mass 
(kg-m ) <kg) (kg)

1
2

1520
2280

0.078 1680 
0.118 2520

0.072
0.107

1080 0.127 0.279 
1620 0.190 0.418

007
' Swingweight
■ Twistweight

O Original racket006

005O)

t=  004

O 0 03

002

001

0.450.2 0.25 0.3 0.35 0.4
Racket mass (kg)

170
O Original racket

160

B 130

120

0.25 03 0.35 0.4
Racket mass (kg)

0.45 0.5

Figure 8.2 Relationship between the mass o f the racket in the FE model and a) its natural frequency, b) 

its moment o f inertia.

The balance point of the racket was adjusted by changing the density of the 

handle and head. Haake et al. (2007) found the balance point of 150 rackets,
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from the 1870’s to 2007, to be between 0.30 and 0.39 m from the butt of the 

racket. The balance point was set to 0.299 m from the butt by adding 0.02 kg to 

the handle and removing 0.02 kg from the head (Table 8.5). The balance point 

was set to 0.396 m from the butt by removing 0.06 kg from the handle and 

adding 0.06 kg to the head (Table 8.5). The density and mass of the handle and 

head of both rackets are shown in Table 8.6. Changing the balance point of the 

racket also alters the natural frequency, swingweight and twistweight, as shown 

in Table 8.5 and Figure 8.3. In relation to the racket in the original model, the 

natural frequency increased when the balance point was moved closer to both 

the butt and the tip (Figure 8.3a). The swingweight and twistweight of the racket 

both increased as the balance point moved closer to the tip of the racket 

(Figure 8.3b). The twistweight increased because, in the model, mass is added 

to the entire racket head. In reality, mass could be added at the tip of a racket to 

increase its swing weight, whilst keeping the twistweight virtually constant.

Table 8.5 Two sets o f FE simulations used to determine the effect o f the balance point o f the racket. The 

mass moment o f inertia, the polar moment o f inertia and natural frequency o f the racket in the FE model 

are also displayed.

Simulation Balance point Mass moment of inertia Polar moment of inertia Natural

set from Butt (m) (swingweight) (kgm2) (twistweight) (kgm2) frequency (Hz)

1 0.299 0.0454 0.0014 137

2 0.396 0.066 0.0021 143

Table 8.6 Density and mass o f the separate parts o f the racket in the two FE models used to determine the

effect o f the position o f the balance point.

Simulation Handle density Handle mass 
set (kg-m-3) (kg)

Head density 
(kgm3)

Head mass 
(kg)

Balance point from 
Butt (m)

1 2288 0.118 
2 737 0.038

1180
1859

0.139
0.218

0.299
0.396
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007180
Swingweight 

» • • • •  Twistweight 
©  Original racket

Balance point 0,299 m /44%  from butt 
■■■ Balance point 0.396 m /58%  from butt 
O Original racketV — 006170

005o>

••£ 0 04150

o  0 03

5  130 002

120 001

O-
025 0.3 0 35 0.4

Racket mass (kg)
0.45 0.5 025 0.3

Balance
0 4035

Balance point from butt (m)

Figure 8.3 Relationship between the position o f the balance point o f the racket in the FE model and a) 

natural frequency, b) moment o f inertia.

8.3. Results

8.3.1. Racket structural stiffness

Figure 8.4 shows that the rebound velocity increased with the structural 

stiffness of the racket, for all six impact positions. Rebound velocity decreased 

as the impact position moved closer to the tip (0, 60) of the racket, along the 

long axis. Rebound velocity also decreased as the impact position moved away 

from the long axis. The structural stiffness of the racket had the largest effect on 

rebound velocity for the impacts in the throat region (0, -60 & 60, -60).
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■ High structural stiffness 

□  Low structural stiffness

0,60 0,0 0, -60 60,60 60,0 60, -60 
Impact position relative to the geometric string-bed centre

Long axis

0(60 Flight directior

Short axis -

0J-60

Figure 8.4 Effect o f the structural stiffness of a tennis racket on the rebound velocity of the ball, for an 

impact at 35 m-s'1 and 20° with 300 rad s '1 of backspin.

The longitudinal rebound angle was very small for the impacts in the central 

region of the string-bed (0, 0 & 60, 0) (Figure 8.5). The two rackets also had 

relatively similar rebound angles for the impacts at the throat and tip which were 

offset from the long axis (60, -60 & 60, 60). However, the rebound angles were 

approximately 9-12° larger than at the GSC. The structural stiffness of the 

racket had a larger influence on the longitudinal rebound angle of the ball for the 

impact at the throat and tip on the long axis (0, -60 & 0, 60). At these locations 

the longitudinal angle was larger for the racket with low structural stiffness. This 

is likely to be due to the racket with low structural stiffness deforming more 

throughout the impact. A large longitudinal angle may cause the ball to deviate 

horizontally from its intended path and hence reduce 'control'.
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High structural stiffness 

□ Low structural stiffness

0,60  0 ,0  0,-60  60,60 60,0

Impact position relative to the geometric string-bed centre
Long axis —

60 , -60

Short axis
Longitudinal 
rebound angle

Figure 8.5 Effect o f the structural stiffness of a tennis racket on the longitudinal rebound angle of the ball, 

for an impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

Figure 8.6 shows that the horizontal rebound angle increased for all three 

impact locations on the long axis (0, -60, 0 & 0, 0, 60), when the structural 

stiffness of the racket was decreased. For both rackets, the rebound angle 

increased as the impact position moved from the throat (0, -60) to the tip (0, 60) 

along the long axis. The rebound angles also increased as the impact positions 

moved away from the long axis of the racket. This is likely to be due to a 

decrease in the vertical rebound velocity of the ball, as a result of the racket 

rotating about its long axis. The largest rebound angle for both rackets was at 

the tip location offset from the long axis of the string-bed (60, 60). At this 

location and the throat impact offset from the long axis (60, -60) the rebound 

velocity of the ball was effectively independent of the structural stiffness of the 

racket. A larger rebound angle could be regarded as being equivalent to the ball 

rebounding closer to the racket normal in the court's frame of reference. This 

may give the impression of reduced 'power' (Bower and Cross, 2005).
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■ High structural stiffness

□ Low structural stiffness

0,60 0,0 0,-60 60,60 60,0 60,-60 

Im pact position re la tive  to  th e  geom etric string-bed centre

Horizontal 
rebound angle

Figure 8.6 Effect o f the structural stiffness o f a tennis racket on the horizontal rebound angle of the ball, 

for an impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

Figure 8.7 shows that the sidespin was slightly higher for the structurally stiff 

racket at the GSC (0, 0) and throat (0, 60), in comparison to the racket with low 

structural stiffness. However, the sidespin was over 20 rad-s'1 larger at the tip of 

the racket (0, 60) with low structural stiffness. For the structurally stiff racket the 

highest sidespin was for the impact at the throat (0, -60). Sidespin will result in a 

horizontal force acting on the ball during flight. If large enough, this horizontal 

force could potentially cause the ball to deviate from its intended trajectory.
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High structural stiffness

□ Low structural stiffness

0,60 0,0 0, -60 60,60 60,0
Im pact position re la tive  to  th e  geom etric  string-bed centre

60, -60

Long axis

Short axis -

Fbghl d irection Side spin 
towards tip

Figure 8.7 Effect of the structural stiffness of a tennis racket on the rebound sidespin o f the ball, for an 

impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

Increasing the structural stiffness of the racket resulted in a very slight increase 

in topspin for impacts at the GSC (0, 0) (Figure 8.8). For both rackets, the 

rebound topspin of the ball increased as the impact position moved away from 

the GSC (0, 0), along the long axis of the string-bed towards both the tip (0, 60) 

and throat (0, -60). The rebound topspin was approximately 11 rad-s'1 higher at 

the throat (0, -60) for the racket with low structural stiffness. The rebound 

topspin at the tip (0, 60) was virtually identical for both rackets. Offsetting the 

impact from the long axis of the string-bed resulted in a considerable decrease 

in rebound topspin for both rackets. The decrease in topspin was slightly less 

pronounced for both rackets in the impact offset from the GSC (60, 0).
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■ High structural stiffness

□ Low structural stiffness

0,0 0,-60 60,60 60,0 

Impact position re la tive  to  th e  geom etric string-bed centre

Rebound
topspin

Figure 8.8 Effect o f the structural stiffness of a tennis racket on the rebound topspin of the ball, for an 

impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

8.3.2. Summary of racket structural stiffness

The results indicate that the structural stiffness of a tennis racket influences the 

rebound velocity, angle and spin of the ball. A stiffer racket will cause the ball to 

rebound slightly faster and with a larger angle in the court frame of reference, 

as shown in Figure 8.9. This indicates that a stiffer racket will provide a player 

with more ’power’. A racket with low structural stiffness will cause the ball to 

rebound at a larger longitudinal angle and with considerably more sidespin, for 

impacts in the tip region. A large longitudinal angle and high sidespin may 

cause the ball to deviate horizontally from its intended trajectory and hence 

reduce ’control’. The magnitude of topspin for a ball rebounding off a racket with 

high structural stiffness is much less dependent on the impact location. This 

also indicates that a stiffer racket may increase ’control’ and improve 

consistency. Elite players typically impact the ball close to the GSC, when 

performing a topspin forehand (Choppin et al., 2008). A ball impacting at the
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GSC of a racket with high structural stiffness, will rebound very slightly faster 

and higher (court frame of reference) and with a little more topspin and 

sidespin.

Stiff racket

Flexible racket

Figure 8.9 Diagram to illustrate the difference between using a stiff and flexible racket when performing 

a forehand shot.

8.3.3. Racket mass

Figure 8.10 shows that rebound velocity increased considerably with the mass 

of the racket, for all six impact positions. For both rackets, rebound velocity 

decreased as the impact position moved closer to the tip of the racket (0, 60), 

along the long axis. Rebound velocity also decreased as the impact position 

moved away from the long axis. The difference in rebound velocity for the two 

rackets was approximately 3.5 m-s'1, for all the impact positions on the string- 

bed.
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■ High mass □ Low mass

0,60 0,0 0,-60 60,60 60,0 60,-60 

Im pact position re la tive  to  th e  geom etric  string-bed centre

Long axis

Flight d irec tor0j60

Short axis -

0;-60

Figure 8.10 Effect o f the mass of a tennis racket on the rebound velocity of the ball, for an impact at 35 

m-s'1 and 20° with 300 rad-s'1 of backspin.

Figure 8.11 shows that the longitudinal rebound angle was approximately zero 

in both rackets for the impacts in the central region of the string-bed (0, 0 & 60, 

0). The impacts with the lighter racket produced larger longitudinal rebound 

angles for all of the other positions on the string-bed. The largest rebound angle 

for both rackets was for the impact at the tip offset from the long axis (60, 60). 

The discrepancy between the rebound angles of the two rackets was also 

largest at this location, with a difference of approximately 10°. As mentioned 

previously, a large longitudinal angle may cause the ball to deviate horizontally 

from its intended path, thus reducing 'control'.
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Figure 8.11 Effect o f the mass of a tennis racket on the longitudinal rebound angle o f the ball, for an

impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

Figure 8.12 shows that the horizontal rebound angle increased for all six impact 

locations, when the mass of the racket was decreased. For both rackets, the 

rebound angle increased as the impact position moved from the throat (0, -60) 

to the tip (0, 60) along the long axis. The rebound angles also increased as the 

impact positions moved away from the long axis of the racket. This is likely to 

be due to the racket rotating about its long axis. The largest rebound angle for 

both rackets was at the tip location offset from the long axis of the string-bed 

(60, 60). This was also the location where the discrepancy between the two 

rackets was largest at approximately 25°. As previously mentioned, a larger 

rebound angle equates to the ball rebounding closer to the racket normal in the 

court frame of reference, which may give the impression of reduced 'power' 

(Bower and Cross, 2005).
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Figure 8.12 Effect o f the mass of a tennis racket on the horizontal rebound angle of the ball, for an 

impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

Figure 8.13 shows that the sidespin of the ball was lower for all the impact 

locations on the heavy racket. The largest discrepancy in the sidespin in the two 

rackets was for the impacts at the tip (0, 60). As previously mentioned, sidespin 

could potentially cause the ball to deviate horizontally from its intended course.
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Figure 8.13 Effect o f the mass of a tennis racket on the rebound sidespin of the ball, for an impact at 35 

m-s’1 and 20° with 300 rad-s’1 of backspin.

Figure 8.14 shows that increasing the mass of the racket resulted in an increase 

in topspin, for all six impact locations. For both rackets, the rebound topspin of 

the ball increased as the impact position moved away from the GSC (0, 0), 

along the long axis of the string-bed towards both the tip (0, 60) and throat (0, - 

60). Offsetting the impact from the long axis of the string-bed resulted in a 

considerable decrease in rebound topspin for both rackets. The decrease in 

topspin was much less pronounced for the impact on the heavy racket offset 

from the GSC (60, 0).
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Figure 8.14 Effect o f the mass of a tennis racket on the rebound topspin of the ball, for an impact at 35 

m-s"1 and 20° with 300 rad-s"1 of backspin.

8.3.4. Summary of racket mass

The results indicate that the mass of a racket has a relatively large influence on 

the rebound characteristics of the ball. Assuming racket mass is independent of 

swing speed for a forehand shot, the ball will rebound both faster and higher 

from a heavy racket (court frame of reference). Coupled with an increase in 

topspin, this is likely to give the impression of more 'power'. Reducing the mass 

of the racket caused the ball to rebound with a larger longitudinal angle and 

more sidespin, particularly for impacts near the tip. This may cause the ball to 

deviate from its intended path and reduce 'control'. A heavier racket is likely to 

increase rebound velocity, angle and spin for forehand shots at the GSC, which 

is where elite players typically impact the ball (Choppin et al., 2008). The effect 

of racket mass on serve velocity will be discussed at the end of the chapter.
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8.3.5. Balance point

Figure 8.15 shows that the rebound velocity of the ball was considerably higher 

for the head-heavy racket, at all six impact positions on the string-bed. For both 

rackets, rebound velocity decreased as the impact position moved to the tip 

region of the racket (0, 60, 60, 60). The position of the balance point had the 

largest influence on the impacts in the tip region (0, 60 & 60, 60), with a 

difference of approximately 4 m-s'1 between the two rackets.

0,60 0,0  0,-60 60,60 60,0 60,-60 

Im pact position re la tive  to  the geom etric string-bed centre

Long axis

Flight direction0/60

Short axis -

0J-60

Figure 8.15 Effect o f the position of the balance point o f a tennis racket on the rebound velocity of the 

ball, for an impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

Figure 8.16 shows that the longitudinal rebound angle was negligible for both 

rackets for the impacts at the centre of the string-bed (0, 0, 60, 0). The rebound 

angles were larger for the head-light racket in comparison to the head-heavy 

racket, at all the other impact locations on the string-bed. The largest 

discrepancy between the head-light and head-heavy rackets was for the
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impacts in the tip region (0, 60 & 60, 60). A large longitudinal angle could 

potentially result in a reduction in 'control'.
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Figure 8.16 Effect o f the position of the balance point o f a tennis racket on the longitudinal rebound 

angle o f the ball, for an impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

Figure 8.17 shows that the horizontal rebound angle was lower for the head- 

heavy racket, in all six impact positions. The rebound angles increased as the 

impact positions moved away from the long axis of the racket. For both rackets, 

the rebound angle increased as the impact position moved from the throat 

region (0, -60 & 60, -60) to the tip region (0, 60 & 60, 60). The increase in 

rebound angle was much more pronounced for the head-light racket. A larger 

rebound angle could potentially give the impression of reduced 'power' (Bower 

and Cross, 2005).
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Figure 8.17 Effect o f the position of the balance point o f a tennis racket on the horizontal rebound angle 

of the ball, for an impact at 35 m-s"1 and 20° with 300 rad-s"1 of backspin.

Short axis

0J-60

Figure 8.18 shows that the sidespin of the ball was higher for all the impact 

positions on the head-light racket, except the off-centre impact at the throat (60, 

-60). The largest difference in sidespin between the two rackets was for the 

impacts in the tip region (0, 60 & 60, 60). The sidespin of the ball was 

approximately 20 rad s'1 higher for the impact at the tip (0, 60) of the head-light 

racket, in comparison to the head-heavy racket.
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Figure 8.18 Effect o f the position of the balance point o f a tennis racket on the rebound sidespin o f the 

ball, for an impact at 35 m-s"1 and 20° with 300 rad-s"1 of backspin.

Figure 8.19 shows that moving the balance point closer to the tip resulted in an 

increase in topspin, for all six impact locations. For both rackets, the rebound 

topspin of the ball increased as the impact position moved away from the GSC 

(0, 0), along the long axis of the string-bed towards both the tip (0, 60) and 

throat (0, -60). Offsetting the impact from the long axis of the string-bed resulted 

in a considerable decrease in rebound topspin for both rackets. The decrease in 

topspin was slightly less pronounced for the impact that was offset from the 

GSC (60, 0) in the head-heavy racket.
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Figure 8.19 Effect o f the position of the balance point o f a tennis racket on the rebound topspin of the 

ball, for an impact at 35 m-s'1 and 20° with 300 rad-s'1 of backspin.

8.3.6. Summary of racket balance point

The results indicate that the ball will rebound faster, higher and with more 

topspin, if a player uses a head-heavy racket to perform a forehand shot. This is 

based on the assumption that the angular velocity of the racket is independent 

of its swingweight. The results also indicate that more 'control' can be obtained 

from a head-heavy racket. This is partly due to better consistency in the 

rebound properties of the ball, for different impact locations on the string-bed. It 

is also due to the ball rebounding with a smaller longitudinal angle and less 

sidespin. For forehand shots with the impact at the GSC, a head-heavy racket is 

likely to result in the ball rebounding faster and with more topspin, in 

comparison to a head-light racket with the same mass.

8.4. Explanation of results

The results were analysed to determine how the individual racket parameters

affect the rebound characteristics of the ball. Separate explanations are given
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for the vertical and horizontal directions, as defined in Figure 8.20. Only the 

impacts on the long axis of the string-bed were analysed. This was because 

there was uncertainty as to whether players might apply a torque to the handle 

of the racket, which is likely to have a significant affect on impacts offset from 

the long axis.

VERTICAL

L
HORIZONTAL

Figure 8.20 Definition of vertical and horizontal velocity for an impact between a tennis ball and freely 

suspended racket.

8.4.1. Vertical rebound velocity

Figure 8.21 shows the effect of racket structural stiffness on the vertical force, 

ball velocity, racket tip and COM displacement throughout an oblique impact at 

the tip. The maximum vertical impact force (Figure 8.21a) and vertical ball 

velocity (Figure 8.21b) were both marginally lower for the racket with low 

structural stiffness. The vertical displacement at the tip was slightly larger for the 

racket with low structural stiffness (Figure 8.21c), while the vertical centre of 

mass (COM) displacement was virtually identical between both rackets 

(Figure 8.21 d). This indicates that more of the energy from the impact was 

converted into deforming the racket with low structural stiffness, as shown in 

Figure 8.22, resulting in a slight reduction in the vertical rebound velocity of the 

ball.
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Figure 8.21 Effect o f racket structural stiffness on the vertical velocity o f an impact at the tip at 35 m-s'1 

and 20° with 300 rad-s'1 o f backspin a) Vertical force, b) Vertical ball velocity, c) Vertical racket tip 

displacement and d) Vertical racket COM displacement.

Stiff racket Flexible racket

COM COM

Tip

I
Tip

I
Figure 8.22 The vertical deformation o f a stiff and flexible freely suspended tennis racket for an impact 

at the tip.

Figure 8.23d shows that the COM displacement was very similar for the racket 

with high structrual stiffness and the racket with low structrual stiffness, for the 

impact at the throat. The maximum vertical force (Figure 8.23a) and tip 

displacement (Figure 8.23c) were both slightly larger for the racket with high 

structural stiffness. As the COM of both rackets was translating vertically at the 

same rate (Figure 8.23d), a larger tip displacement indicates less deformation of 

the racket, as shown in Figure 8.24. This resulted in less 'wasted' energy and a
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slightly higher vertical rebound velocity for the ball impacting the racket with 

high structural stiffness (Figure 8.23b).
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Figure 8.23 Effect o f racket structural stiffness on the vertical velocity o f an impact at the throat at 35 

m-s'1 and 20° with 300 rad-s'1 o f backspin a) vertical force, b) vertical ball velocity, c) racket tip 

displacement and d) racket COM displacement.

Stiff racket Flexible racket

Figure 8.24 The vertical deformation o f a stiff and flexible freely suspended tennis racket for an impact 

at the throat.

For the impact at the tip, the vertical impact force was considerably larger for 

the heavy racket, from approximately 1.5 ms into the impact (Figure 8.25a). The 

vertical displacement of the tip (Figure 8.25c) and COM (Figure 8.25d) were 

also smaller from approximately 1.5 ms into the impact, for this racket. This
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indicates that the heavier racket was translating less and rotating less about its 

COM. As less energy went into translating and rotating the heavier racket, the 

vertical rebound velocity of the ball was significantly larger (Figure 8.25b).
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Figure 8.25 Effect o f racket mass on the vertical velocity o f an impact at the tip at 35 m-s'1 and 20° with 

300 rad-s'1 of backspin a) vertical force, b) vertical ball velocity, c) racket tip displacement and d) racket 

COM displacement.

The results in Figure 8.26a, c and d indicate that the heavier racket was also 

translating and rotating less for the impact at the throat. As with the impact at 

the tip, the vertical rebound velocity of the ball was larger for the heavier racket, 

as less energy went into displacing it.
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Figure 8.26 Effect o f racket mass on the vertical velocity o f an impact at the throat at 35 m-s'1 and 20° 

with 300 rad-s'1 o f backspin a) vertical force, b) vertical ball velocity, c) racket tip displacement and d) 

racket COM displacement.

For an impact at the tip, the vertical COM displacement (Figure 8.27d) of the 

head-light racket was slightly lower, while the displacement at the tip was larger 

(Figure 8.27c). This indicates that the head-light racket was rotating more about 

its COM, in comparison to the head-heavy racket. The head-light racket may 

also have been deforming more as a result of the increased distance from the 

impact point to the pivot (COM). The higher proportion of the energy from the 

impact, which went into rotating and deforming the head-light racket, resulted in 

the ball rebounding at a lower velocity (Figure 8.27b).
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Figure 8.27 Effect o f balance point on the vertical velocity o f an impact at the tip at 35 m-s'1 and 20° with 

300 rad-s'1 of backspin a) vertical force, b) vertical ball velocity, c) racket tip displacement and d) racket 

COM displacement.

Figure 8.28c and d show that the COM displacement was smaller and the tip 

displacement was larger, for the impact at the throat of the head-light racket. 

This indicates that the head-light racket was rotating and deforming more, 

throughout the impact. As more energy was used to rotate and deform the 

head-light racket, the rebound velocity of the ball was lower (Figure 8.28b).
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with 300 rad-s'1 o f backspin a) vertical force, b) vertical ball velocity, c) racket tip displacement and d) 

racket COM displacement.

8.4.2. Horizontal rebound velocity and spin

In order to determine how the individual racket parameters affect rebound spin, 

it is imperative to understand how spin is generated. Therefore, the FE model 

was used to determine how spin is generated during an oblique impact. An 

impact close to the GSC with an inbound velocity of 28 ms, angle of 23° and no 

initial spin, was selected for analysis (Figure 5.17, page 154). An impact with no 

initial spin was selected to allow the velocity of a node (point) at the top and 

bottom of the ball to be traced throughout the impact (Figure 8.29b). Prior to 

impact, the velocity at the two points was equal to the COM velocity of the ball. 

From the start of contact to approximately 2 ms into the impact, the top of the 

ball accelerated, whilst the bottom decelerated. During this period the topspin of 

the ball increased from 0 to a maximum of approximately 250 rad-s'1 

(Figure 8.29c). The horizontal velocity of the bottom of the ball then remained at 

approximately 1 m-s'1, until around 3.5 ms into the impact. This indicates that 

the ball was 'gripping' the string-bed, as suggested by Cross (2003) (Figure 2.6, 

page 22). During the period from 2-3.5 ms, the top of the ball decelerated, but

209



was travelling faster than the bottom. This indicates that the ball was deforming 

forwards and storing energy, which was also in agreement with Cross (2003). 

The peak in the horizontal force and velocity of the top of the ball at 

approximately 3.7 ms indicates the release of the stored energy. Once the ball 

lost its 'grip' with the string-bed there was no further change in the horizontal 

force, COM velocity or spin. This indicates that the ball was rolling off the string- 

bed.
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Figure 8.29 Spin generation for an impact close the GSC of a freely suspended racket, with an inbound 

velocity o f 28 m-s’1, angle of 23° and zero spin.

Figure 8.30 shows the horizontal force, horizontal velocity, topspin and the 

horizontal displacement of the racket tip and COM throughout the impact at the 

tip of the stiff and flexible racket. The horizontal contact force was very similar 

for both rackets, although it was slightly larger at approximately 2.5 ms for the 

flexible racket (Figure 8.30a). The horizontal velocity of the ball was also slightly 

higher for the flexible racket from approximately 2.5 ms (Figure 8.30b), while the 

topspin throughout the impact was essentially the same for both rackets 

(Figure 8.30c). The horizontal displacement of the tip of both rackets was also 

very similar, up until approximately 2 ms into the impact (Figure 8.30d). The 

horizontal COM displacement was virtually identical between the racket with
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high structural stiffness and the racket with low structural stiffness 

(Figure 8.30e). This implies that both rackets were translating horizontally at the 

same speed throughout the impact. This means that the impacts on both 

rackets were effectively identical up until approximately 2 ms, hence the balls 

had the same horizontal velocity and topspin. The horizontal displacement of 

the tip of the racket with low structural stiffness was larger in the latter half of 

the impact. This indicates that after 2 ms, the racket with low structural stiffness 

had a slightly larger deformation in the horizontal direction, as shown in 

Figure 8.31, resulting in a slight reduction in the resultant horizontal velocity 

between the ball and racket. This increased the horizontal contact force 

between the ball and string-bed (Figure 8.30a), as the ball was 'overspinning1 in 

the second half of the impact. Overspinning is defined as occurring when the 

ball has a faster rotation than that associated with rolling. The additional force 

was large enough to provide a very slight increase in the horizontal velocity of 

the ball, whilst having no notable effect on its topspin. The larger rebound angle 

of the ball impacting the racket with low structural stiffness (Figure 8.6, 

page189) was a result of marginally increased horizontal velocity, in 

combination with a slightly decreased vertical velocity (Figure 8.21b, page 204).
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Figure 8.30 Effect o f racket stiffness on an impact at the tip at 35 m-s'1 and 20° with 300 rad-s'1 o f  

backspin a) Horizontal force, b) Horizontal ball velocity, c) Topspin, d) Horizontal tip displacement and e) 

Horizontal COM displacement.
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Figure 8.31 The horizontal deformation o f a stiff and flexible freely suspended tennis racket for an 

oblique impact at the tip.

Figure 8.32 shows the affect of stiffness of the racket for an impact at the throat. 

As with the tip impact, the horizontal COM displacement was effectively the 

same for both rackets (Figure 8.32e). However, the horizontal displacement of 

the tip was larger for the stiffer racket from approximately 1 ms into the impact 

(Figure 8.32e). This indicates the stiffer racket was deforming less in the 

horizontal direction after 1 ms, as shown in Figure 8.33. It also suggests that the
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discrepancy in the deformation of the two rackets initiated earlier, in comparison 

to the impact at the tip. The increased horizontal deformation of the racket with 

low structural stiffness reduced the resultant horizontal velocity between the ball 

and racket. This caused a slightly lower horizontal force in the first half of the 

impact, which resulted in the ball having a lower horizontal velocity 

(Figure 8.32b) and topspin (Figure 8.32c) at approximately 2.2 ms, when it 

started to overspin. The reduced horizontal force acting on the ball resulted in a 

less pronounced increase in horizontal velocity (Figure 8.32b) and decrease in 

topspin (Figure 8.32b) during the overspinning stage. As the ball was closer to 

rolling it started underspinning, causing it to rebound at a lower horizontal 

velocity and with more topspin, in comparison to the racket with high structural 

stiffness.
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Figure 8.32 Effect o f racket stiffness on an impact at the throat at 35 m-s"1 and 20° with 300 rad-s'1 o f  

backspin a) Horizontal force, b) Horizontal ball velocity, c) Topspin, d) Horizontal tip displacement and e) 

Horizontal COM displacement.
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Figure 8.33 The horizontal deformation of a stiff and flexible freely suspended tennis racket for an 

oblique impact at the throat.

Figure 8.34 shows the effect of racket mass on the horizontal rebound velocity 

and topspin of the ball, for an impact at the tip. The COM (Figure 8.34e) and tip 

(Figure 8.34d) displacement was larger for the lighter racket, from 

approximately 1 ms to the end of the impact. This indicates that the lighter 

racket was translating and rotating about its COM. Therefore, the resultant 

horizontal velocity between the ball and racket was lower for the lighter racket. 

This caused the ball impacting the lighter racket to start overspinning at a lower 

velocity (Figure 8.34b) and spin rate (Figure 8.34c). Therefore, the ball 

rebounded from the lighter racket with slightly less topspin (Figure 8.34c) and 

slightly more horizontal velocity (Figure 8.34b). The increased horizontal 

rebound velocity (Figure 8.34b), coupled with the lower vertical rebound velocity 

(Figure 8.30b, page 212) caused the considerably larger rebound angle for 

impacts on the light racket (Figure 8.12, page 195).
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Figure 8.34 Effect o f racket mass on an impact at the tip at 35 m-s'1 and 20° with 300 rad-s'1 o f backspin a) 

Horizontal force, b) Horizontal ball velocity, c) Topspin, d) Horizontal tip displacement and e) Horizontal 

COM displacement.

For the impact at the throat, the horizontal displacement of the COM 

(Figure 8.35e) and tip (Figure 8.35d) were considrably larger for the lighter 

racket. This indicates that the lighter racket was displacing and rotating more 

about its COM. Hence, the ball impacting the lighter racket started overspinning 

at a lower horizontal velocity (Figure 8.35b) and spin rate (Figure 8.35c). This 

caused the ball impacting the lighter racket to rebound with slightly less topspin 

(Figure 8.35c) and more horizontal velocity (Figure 8.35b), as with the impact at 

the tip. However, the mass of the racket had less influence on the rebound 

velocity and spin of the ball, in comparison to the impact at the tip. This is 

because the impact was closer to the COM causing the racket to rotate less.
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Figure 8.35 Effect o f racket mass on an impact at the throat at 35 m-s'1 and 20° with 300 rad-s'1 o f  

backspin a) Horizontal force, b) Horizontal ball velocity, c) Topspin, d) Horizontal tip displacement and e) 

Horizontal COM displacement.

For the impact at the tip, the horizontal COM displacement was very slightly 

lower for the head-light racket (Figure 8.36e); whilst the horizontal tip 

displacement was considerably larger (Figure 8.36d). This indicates that the 

head-light racket was translating slightly less and rotating more about its COM. 

The extra rotation decreased the resultant horizontal velocity between the ball 

and racket. This caused the ball to overspin at a lower horizontal velocity 

(Figure 8.36b) and spin rate (Figure 8.36c) enabling the ball to rebound with 

more horizontal velocity (Figure 8.36b) and very slightly less spin 

(Figure 8.36c). The effect is comparable to increasing the mass of the racket 

(Figure 8.35, page 216). The combination of increased horizontal velocity 

(Figure 8.36b) and decreased vertical velocity (Figure 8.27b, page 208) resulted 

in the ball rebounding at a larger angle (Figure 8.17, page 200).
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Figure 8.36 Effect o f racket balance point on an impact at the tip at 35 m-s'1 and 20° with 300 rad-s'1 of  

backspin a) Horizontal force, b) Horizontal ball velocity, c) Topspin, d) Horizontal tip displacement and e) 

Horizontal COM displacement.

For the impact at the throat, the COM displacement (Figure 8.37d) was slightly 

smaller for the head-light racket, while the tip displacement (Figure 8.37d) was 

considerably larger. This reduced the resultant horizontal velocity between the 

ball and racket, causing an increase in horizontal velocity (Figure 8.37b) and 

topspin (Figure 8.37c). This was comparable to the impact at the tip, but the 

effect was reduced as the impact was closer to the COM for both rackets.
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Figure 8.37 Effect o f racket balance point on an impact at the throat at 35 m-s'1 and 20° with 300 rad-s'1 

o f backspin a) Horizontal force, b) Horizontal ball velocity, c) Topspin, d) Horizontal tip displacement 

and e) Horizontal COM displacement.

As previously mentioned, the impacts offset from the long axis of the string-bed 

were not analysed in detail. This is because the model consistently under­

predicted the rebound spin of the ball, in comparison to player testing data 

(Figure 7.6, page 178). The reason for the under prediction is likely to be 

because the players were applying a grip to the handle, and hence reducing the 

rotation of the racket about its long axis. The effects of racket rotation will now 

be discussed. The resultant rebound velocity was lower for the impacts offset 

from the long axis of the string-bed for all the rackets. This is because energy 

was 'wasted' in rotating the racket about its long axis. The rebound spin was 

also lower for the off-centre impacts as a result of the rotation of the racket. 

Figure 8.38 shows a comparison between a centre and off-centre impact. 

Assuming no or little rotation for a centre impact, the horizontal component of 

the balls velocity will be parallel to the string-bed. This will maximise the 

horizontal traction force acting on the bottom of the ball and result in the highest 

rebound topspin. The off-centre impact caused the racket to rotate, meaning the

horizontal velocity of the ball was no longer parallel with the string-bed. This
218



reduced the horizontal force acting on the bottom of the ball and hence the 

rebound topspin was lower.

Centre impact

I /
I /

Off-centre impact

Figure 8.38 Diagram showing a centre and off-centre impact on a freely suspended racket.

8.4.3. Summary of the effect o f racket parameters and implications to 

design

It is widely accepted that elite tennis players wish to maximise the rebound 

velocity and topspin of the ball, when performing the majority of shots. 

Structural stiffness has no influence on swingweight. Increasing the structural 

stiffness of a racket will always increase the rebound velocity of the ball (Haake 

et al. 2007). However, the influence of the structural stiffness of a racket, on the 

rebound velocity of the ball is relatively small. The effect of structural stiffness 

on the rebound topspin of the ball is complex, as it depends on when the racket 

starts to deform. However, the rebound topspin of the ball was more consistent 

for the different impact positions on the stiffer racket. As with rebound velocity, 

the effect of structural stiffness on topspin was also relatively small. Therefore, 

the structural stiffness of a tennis racket should be maximised to increase the 

rebound velocity of the ball and provide more consistent topspin for different 

impact positions on the string-bed.

Assuming swing speed is independent of swingweight, the rebound velocity and 

topspin of the ball can be maximised by increasing the mass of a tennis racket 

or by moving its COM closer to the impact position. This assumption can be 

considered valid, within reason, for a forehand shot, as the player is unlikely to 

be swinging the racket as fast as physically possible (Cross, 2001b). However,
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this assumption is not valid for a serve, where the maximum pre-impact racket 

velocity is dependent on swingweight (Mitchell et ai, 2000). This indicates that it 

is not possible to design a tennis racket to achieve both maximum serve 

velocity and maximum forehand velocity and topspin, although, there are a 

number of different combinations of racket mass and balance point, which 

provide the optimum swingweight for maximum serve velocities (Haake et a i 

2007). These range from a light racket with a balance point closer to the tip, to a 

heavy racket with a balance point closer to the butt (Haake et a i 2007). The 

exact mass and balance point will depend on the relationship between 

swingwight and pre-impact racket velocity, for each player.

The results indicate a large decrease in the rebound velocity and topspin of the 

ball, for impacts offset from the long axis of the racket. This is due to the racket 

rotating about its long axis. The rotation can be reduced by increasing the 

twistweight of the racket. An increase in twistweight can be achieved by making 

the racket wider, adding mass offset from the long axis or a combination of 

both. The most efficient method of increasing twistweight is to position any 

additional mass as far from the long axis as possible. Increasing the width of a 

tennis racket will increase its twistweight without significantly altering the mass 

and swingweight.

A racket optimised for all-round play is shown in Figure 8.39. The racket has 

low mass (approx. 0.26 kg) and a balance point positioned towards the tip 

(approx. 0.327 m from the butt) to provide the correct swingweight for maximum 

serve velocity (Haake et a i, 2007). The racket is also as wide as possible 

(0.3175 m) to increase its twistweight and hence maximise ball velocity and 

topspin for impacts offset from the long axis. The twistweight is maximised 

without compromising swingweight by making the racket light and adding mass 

at the widest points, as shown in Figure 8.39. This would also have the benefit 

of locating the COM closer to the GSC, where elite players typically impact the 

ball when performing a forehand shot (Choppin et a i, 2008). The racket is also 

as stiff as possible to maximise ball velocity and increase consistency for 

different impact positions on the string-bed. Figure 8.40 shows that the sections 

of the racket frame assigned high mass in Figure 8.39 experience relatively 

large Von Mises stresses, throughout an oblique impact at the GSC. Using
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additional material in these regions to increase mass would also have the 

advantage of increasing stiffness and reducing stress. The current FE model 

could be modified to allow the adjustment of twistweight and then be used to 

determine the optimum mass distribution for the racket.

Maximum width 
< ►

Low mass } High
High mass fstiffness

Figure 8.39 Predicted optimised tennis racket design for all round performance
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Figure 8.40 Von Mises stress for an impact between a ball and freely suspended racket with an inbound 

velocity o f 35 m-s'1, an angle of 20° and a backspin of 300 rad-s'1. The racket has a mass o f 0.348 kg, a 

natural frequency of 143 Hz and a balance point 0.396 m from the butt.

The following points should be taken into account when designing a tennis 

racket;
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1. The structural stiffness of a tennis racket should be maximised to 
increase rebound velocity.

2. The pre-impact swing speed of a tennis racket is dependent on its 
swingweight when undertaking a serve (Mitchell et a i, 2000).

3. There are a range of different combinations of racket mass and balance 
point, which can be utilised to achieve maximum serve speed (Haake et 
ai, 2007).

4. A heavy racket with a balance point as close as possible to the impact 
point will provide maximum rebound velocity and topspin for a forehand 
shot.

5. Increasing the twistweight of a tennis racket will provide higher rebound 
velocity and topspin for impacts offset from the long axis.

8.5. Chapter summary

The FE model was used to determine the influence of racket structural stiffness, 

mass and balance point on a typical forehand shot. Making the racket stiffer 

slightly increased the rebound velocity of the ball, although the effect was 

marginal. Increasing the mass of the racket and moving the balance point closer 

to the tip both increased the rebound velocity and topspin of the ball.
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9. Conclusions

9.1. Introduction

This final chapter summarises all the research that has been undertaken in this 

project. The chapter includes a summary of the validation of the ball, string-bed 

and freely suspended racket models. The applications of the complete model as 

a tool which can be used for both racket design and analysing the influence of 

technology on the game of tennis, are also discussed. Finally, there is a section 

on areas of possible future research.

9.2. Summary of research

9.2.1. Ball model

An FE model of a pressurised tennis ball, consisting of an airbag, rubber core 

and felt cover, was produced in Ansys/LS-DYNA 10.0. The model was validated 

by comparing FE simulations of rubber cores and tennis balls, impacting normal 

to a rigid surface with experimental data. The laboratory investigation was 

undertaken by firing balls and cores from an air cannon onto a force plate, at a 

range of velocities between 5 and 30 m-s’1. Force plots and contact times were 

obtained from a force plate, whilst the inbound and rebound velocities were 

recorded using a set of light gates. A Phantom v4.2 high-speed video camera 

was used to measure the maximum deformation of the balls and cores. The FE 

model was in very good agreement with the experimental data, for the entire 

range of impacts. This model supersedes previous FE models as the separate 

parts were independently validated against experimental data. The FE model of 

a tennis ball was updated to simulate the extreme playing temperatures of 10 

and 40°C and validated against experimental data obtained inside a climate 

chamber. The rebound velocity of a pressurised tennis ball was found to 

increase with temperature. Furthermore, the density of the air will decrease with 

increasing temperature causing a reduction in the drag force acting on the ball 

during flight. Therefore, the speed of the game is likely to be higher when the 

temperature is 40°C, in comparison to 10°C. Further research would need to be 

undertaken to provide more evidence for this hypothesis.
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9.2.2. Head-clamped racket model

An FE model of a string-bed was produced and validated against experimental 

data. The experiment was undertaken by firing balls from a modified BOLA onto 

a head-clamped racket. Impacts were undertaken at inbound angles in the 

range from 20-60° with inbound velocities in the range of 20-30 m-s'1, whilst 

backspin was increased from 0-600 rad-s'1. The impacts were recorded using a 

Phantom v4.2 high-speed camera and the footage was used to calculate 

inbound and rebound velocities, angles and spin rates. The FE model was in 

good agreement with the experimental data for the entire range of impacts. The 

model was then developed to include a racket frame. The main difference 

between the validation of the head-clamped racket model and the string-bed 

model was that impacts were simulated at four nominal locations on the string- 

bed. The head-clamped racket model was in good agreement with the 

experimental data and the string-bed model. It was concluded that the ball over­

spins at around the mid-point of an impact with a head-clamped racket when 

incident obliquely with backspin. This was in agreement with previous authors 

(Cross, 2003; Goodwill and Haake, 2004a). Reducing ball to string friction in the 

FE model had no notable effect on rebound velocity or angle but it increased 

topspin considerably. Increasing the string-bed stiffness of the head-clamped 

racket model, slightly reduced rebound velocity while having no notable effect 

on angle or spin. This model is more advanced that previous FE models as the 

individual strings are allowed to move independently. However, the results 

obtained cannot be related directly to play as the method used to clamp the 

racket is not representative of a player's grip.

9.2.3. Freely suspended racket model

An FE model of a freely suspended tennis racket was constructed and validated 

against experimental data. The experimental data was obtained by projecting 

balls from a BOLA onto a freely suspended tennis racket. The impacts were 

recorded using two synchronised Phantom v4.2 high-speed video cameras and 

reconstructed in 3D for analysis. Perpendicular impacts were simulated with 

inbound velocities in the range from 10-40 m-s'1 at four nominal impact 

locations on the string-bed. The model was in good agreement with the 

experimental data. The rebound velocity of the ball was highest at the throat



and lowest at the tip as found by previous authors (Brody, 1997a; Goodwill and 

Haake, 2001 & 2003). Increasing the structural stiffness of the racket raised the 

rebound velocity of the ball for impacts at throat, while having little effect at 

other locations on the string-bed, in agreement with Goodwill and Haake (2003). 

However, it was concluded that using a stiffer racket will slightly increase serve 

velocity. Oblique spinning impacts were simulated with nominal inbound 

velocities of 20 and 30 m-s'1, a nominal angle of 25° and backspin in the range 

from -100 to 500 rad-s'1. The model was in relatively good agreement with the 

experimental data and it was found that the structural stiffness of the racket had 

no effect on the rebound characteristics of the ball for impacts close to the 

geometric string-bed centre (GSC). As with the head-clamped racket model, the 

ball was found to be over-spinning during the oblique impacts. This is the first 

model with the capability of accurately simulating oblique spinning impacts, at 

different locations on the string-bed of a freely suspended tennis racket.

9.2.4. Parametric modelling program

A parametric modelling program was produced to allow FE simulations with 

different parameters to be set-up efficiently. Parameters which can be adjusted 

include the inbound trajectory of the ball, impact location on the string-bed, 

string tension and the material properties of the strings and racket. The 

parametric modelling program has been designed so it can be used without an 

in-depth knowledge of the FE models. This was one of the main objectives of 

the project.

9.2.5. Applications of the model

The FE model was found to be in relatively good agreement with ball to racket

impact data obtained from testing elite players, which had been analysed in 3D.

This indicates that the model can be used to determine the effect of altering

different racket parameters, in relation to a typical tennis shot. Following the

comparisons between the model and realistic data, the model was used to

determine the effect of racket structural stiffness, mass and the position of the

balance point, for an impact which was considered to be representative of a

typical forehand shot. The investigation was undertaken for a range of impact

positions on the string-bed. The structural stiffness of the racket was found to

have only a marginal effect on the rebound characteristics of the ball. However,
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using a racket with very high structural stiffness is likely to slightly increase the 

rebound velocity of the ball. Increasing the mass of the racket and moving the 

balance point closer to the tip both resulted in an increase in the rebound 

velocity and topspin of the ball. This indicates that a structurally stiff heavy 

racket, with the centre of mass (COM) at the GSC, will result in the maximum 

velocity and topspin for a forehand shot. In relation to tennis racket design, a 

manufacturer should prioritise optimising the mass and mass distribution of the 

frame well above increasing the structural stiffness. This is the first investigation 

which has determined the effect of racket structural stiffness, mass and balance 

point, for oblique spinning impacts at different locations on the string-bed.

9.3. Conclusions

Previous analytical models have been based on experimentally obtained 

parameters such as, coefficient of restitution (COR) and contact time. The FE 

models outlined in this thesis are based on parameters which were obtained 

independently of the validation experiments. The final result was a model, which 

can be used to accurately predict how individual parameters affect the 3D 

deformation of the ball, string-bed and racket throughout an impact. As well as 

adjusting the material properties to determine their influence, it is also possible 

to model different balls, strings and rackets efficiently by simply obtaining the 

required data and using it to replace the existing values within the model. For 

example, a different racket could be simulated using the CAD geometry for the 

frame and string-bed.

The main conclusions of the study are listed below;

• The rebound velocity of a tennis ball increases with temperature, 
predominantly because of an increase in the internal pressure of the ball.

• String-bed stiffness slightly affects rebound velocity and hence angle, 
while having no notable influence on spin. This is because string-bed 
stiffness determines the velocity of the ball in a direction perpendicular to 
the string-bed while having little influence on the displacement of the ball 
across the strings.
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• Decreasing ball to string friction increases rebound topspin, because 
there is a smaller friction force acting to reduce the topspin of the ball 
when it is 'over-spinning' in the latter half of the impact.

• Increasing the mass of a racket will increase the rebound velocity and 
topspin of the ball for an oblique impact, because the racket will translate 
and rotate less during the impact.

• Moving the balance point of a racket as close as possible to the impact 
point will increase the rebound velocity and spin of the ball for an oblique 
impact, because the racket will rotate less during the impact.

• Increasing the structural stiffness of a racket will increase the rebound 
velocity of the ball, because less energy from the collision will go into 
deforming the racket.

The main advantages of the FE model detailed in this thesis over current 

published models are;

• The model has been extensively validated against both experimental and 
elite player testing data.

• The model has the ability to accurately simulate oblique spinning impacts 
at different locations on the string-bed of a freely suspended racket.

9.4. Future research

This investigation has highlighted a number of possibilities for future research. 

This final section discusses possible areas of further study.

9.4.1. Ball model

The ball model used in this investigation was only validated for perpendicular 

impacts on a rigid surface. The next logical step would be to validate the model 

for oblique spinning impacts, as these are far more representative of play. This 

will aid the researcher in understanding the behaviour of a ball throughout an 

oblique impact; in particular, the 3D deformation of the ball, which has proved 

difficult to simulate using analytical models. The model could then be used to 

determine further insight into the influence of different parameters, such as the 

material properties and internal pressure of the ball. Through experimental 

testing of the COF and material properties, the model could be extended to 

include the different surfaces that tennis is played on.
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The viscoelastic properties of the rubber core were estimated in an iterative 

process, until the model was in good agreement with experimental data. This 

makes it difficult to determine precisely how changing the properties of the 

rubber would influence the characteristics of the ball. Ideally, the rate- 

dependent properties of the rubber should be obtained through materials 

testing. The model could then be used more effectively as a design tool. The FE 

model could potentially be used to aid in the design of a ball with consistent 

rebound characteristics across the entire range of temperatures at which tennis 

is played.

9.4.2. Freely suspended racket model

The freely suspended racket model was only validated for oblique impacts 

which were close to the GSC. As players do not always contact the ball at the 

GSC (Choppin et al. 2007a, 2007b & 2008), the next logical step would be to 

validate the model for oblique impacts at different locations on the string-bed. 

Further research could also be undertaken to determine a method of restraining 

the handle, which is more representative of a player’s grip.

The FE model slightly underestimated the rebound angle of the ball, in 

comparison to the experimental data, when simulating oblique impacts. This 

indicates that the structural stiffness of the string-bed may be too low (Goodwill 

and Haake, 2004b). Further material testing was undertaken on the tennis 

strings, using the method developed by Cross et al. (2000) (Section 2.3.3, page 

15) (Appendix D). It was thought that the frequency response of the s-type load 

cell may have resulted in an under prediction of the impact force and hence 

dynamic stiffness. Therefore, the s-type load cell was replaced with a Kistler 

piezoelectric force sensor. The piezoelectric force sensor produced results 

which were very similar to those obtained using an s-type load cell. However, it 

was concluded that the strain rate in all of the tests may have been too low, in 

comparison to an impact between a tennis ball and racket. Further research 

could involve determining the relationship between dynamic stiffness and strain 

rate for tennis strings. This could be undertaken using the impact rig 

(Appendix D) or possibly a dynamic material tester.

The oblique impacts in this thesis were all parallel to a plane, which was normal 

to the string-bed and passed through its short axis. It is predicted that in match
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play, many impacts will not involve the ball travelling parallel to this plane. 

Therefore, the FE model should be validated for oblique spinning impacts, 

which are at an angle to a plane through the short axis of the string-bed. This 

will ensure the model is accurate at simulating a wide range of tennis shots.

In the current model, the racket frame was separated into three parts (head, 

handle and throat), which were each assigned individual material properties. 

The material model used for the three parts was MAT_ELASTIC. The material 

model could be updated to one capable of simulating composite lay-ups and the 

racket could be separated into more parts. This would allow more control over 

the structural stiffness and mass distribution of the racket. In-depth testing 

would be required to determine the properties of the composite materials used 

in a tennis racket.

The FE model used in this investigation was based on an ITF Carbon Fibre 

racket. This racket was designed for laboratory testing and is not used during 

competitive play. The next logical step would be to simulate a number of 

different racket geometries. This could include rackets from different eras, in 

particular the 1870’s and 1970’s, as well as those currently in production. A 

methodology for getting the racket geometry into Ansys/LS-DYNA would need 

to be developed.

The intention of this project was to create a tool for designing and developing 

the next generation of tennis rackets. The next logical step would be to test and 

implement the tool into an actual design process. This would require 

collaboration with a racket manufacturer and would result in a more accurate 

validation of the model, as well as furthering scientific understanding. The 

model could be used to predict the performance of a new design of tennis 

racket. The FE model could then be validated against experimental data 

obtained from a prototype of the new design, to determine the accuracy of its 

predictions.

9.4.3. Analytical modelling

In this project, FE models have been used to enhance the understanding of 

tennis ball impacts on both a rigid surface and a freely suspended racket. FE 

models have the disadvantage that it takes a relatively long time to run 

simulations and obtain results. Analytical models can be solved almost instantly
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using software such as Matlab, making them more suitable for use in predictive 

programs, such as Tennis GUT (Haake et al. 2007). The results and findings 

from the FE models could be used to produce analytical models which are more 

advanced than those which are currently available.

9.4.4. Parametric program

A parametric program was produced to enable FE simulations to be undertaken 

with different parameters. The program could be developed alongside the FE 

models. Currently the inbound characteristics of the ball can be adjusted, as 

well as various properties of the strings and racket. The current ball model is 

only relevant for an impact on a rigid surface at room temperature. The program 

could be updated to include impacts on various court surfaces at different 

temperatures. As the material properties of different rackets and strings are 

obtained they could be implemented into the program. The number of templates 

could also be expanded to include different rackets.

In order to provide an effective design tool, the FE model should be used to 

analyse player’s shots. A methodology could be developed to provide a 

streamlined process for obtaining player testing data, running FE simulations 

with the same parameters and analysing the results. This could include 

determining the effects of undertaking the same shot with a different racket. 

Ideally, the parametric program should be updated to specifically interpret 

player testing data. In order for the parametric program to be used as a really 

effective tool, it should be updated to automatically read in and display the 

results of FE simulations.
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A Ball model validation

A.1. Ball model mesh convergence study

A FE model doesn’t give an exact solution; it provides an estimation, the 

accuracy of which is determined by a number of factors. One easily adjustable 

variable which can have a large influence on the final solution is the mesh 

density. As the number of elements in the model increases the results should 

converge towards the exact solution, with increasing process requirements. The 

aim is not to achieve the most accurate solution, as this would be an inefficient 

use of the available computational power, but one which can be considered 

independent of mesh density. The convergence error in the solution can be 

quantified using Equation 9.1 (Becker, 2004; Kurowski 2004).

Equation 9.1 Convergence error (Becker, 2004; Kurowski 2004).

An investigation was undertaken to determine the effect of mesh density on the 

maximum displacement and maximum von Mises stress in the ball. 

Perpendicular impacts were simulated with an initial velocity of 10 m-s"1. The 

number of elements in the rigid surface was kept constant at 4800. Initially, an 

investigation into the effect of element length was undertaken. Firstly, the 

number of elements around the central circumference of the ball was set at 48 

with 6  through the thickness, giving a total of 5184 (Table 1.1). The element 

length was then halved, quadrupling the total number, for each subsequent 

analysis, resulting in 20736 in the second and 82944 in the third simulation 

(Table 1.1). Following the study into element length, a second investigation into 

the effect of varying the number of elements through the thickness of the ball 

was undertaken. This involved three further simulations encompassing 4, 8  and 

10 elements through the thickness, whilst keeping 96 around the central 

circumference. This gave a total of 13824, 20736, 27648 and 34560 elements 

as shown in Table 1.1.

Convergence error= result(?z) -  result(w -1 ) 
result(fl)
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Table 1.1 Mesh convergence study.

Simulation
No. of elements around 

circumference
No. of elements through the 

thickness
Total number of elements

1 48 6 5184

2 96 6 20736

3 192 6 82944
4 96 4 13824

5 96 8 27648

6 96 10 34560

The maximum displacement of the ball increased with decreasing element 

length (Figure 1.1a). The percentage convergence error for displacement was 

1.5% between simulation 1 and 2, but only 0.4% between 2 and 3. This 

indicates that simulation 2  gives a good representation of the true displacement 

value. Simulation 2 also had a relatively short computation time of 16 minutes. 

The maximum stress in the ball also converged with the increasing element 

length and mesh density (Figure 1.1b). However, the percentage convergence 

error in the results is higher than of displacement, at -8 .6 % for the second and - 

2.5% for the third simulation. This indicates the requirement for a denser mesh 

if precise stress results are to be obtained and analysed.

Increasing the number of elements through the balls thickness from 6  to 8 , 

provided convergence for displacement in agreement with simulation 3 

(Figure 1.1a), at a greatly reduced simulation time of 55 minutes. However, 

increasing the number of elements through the thickness to 1 0  caused the 

maximum stress to drop by 0.1%. This apparent drop in accuracy may be due 

to the brick elements becoming too thin in relation to their length. There was 

also a large increase in computation time to 323 minutes (5.5 hours). Increasing 

the number of elements though the thickness also caused the stress to 

converge, but in a positive direction (Figure 1.1b). The amount of convergence 

between simulations was reduced in comparison with adjusting the element 

length. This may be a result of the mesh in simulation 2 being too course to 

provide accurate stress results, hence limiting the level of convergence possible 

within the range of elements for the current material models. An ideal 

simulation, balancing both accuracy and computation time, would consist of 

about 1 2 0  elements around the balls circumference with 8  through the 

thickness.

2 4 3
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E 1535

o  1525

E 1515

Constant element thickness 
Constant element lenght

1505
2 4 6 8 10

Total number of elements „ 104
2 4 6 8 10

Total number of elements x 1g4 Total number of elements x 1q4

Figure 1.1 Number of elements in the ball model against a) maximum displacement o f the ball and b) 

maximum von Mises stress in the ball.

A.2. Impact rig validation

A brief validation of the impact rig is detailed in Downing (2007c). However, a 

more comprehensive validation was undertaken, for inbound velocities in the 

range from 5 to 30 m-s'1, using a Phantom v4.2 high-speed video camera 

recording at 4000 fps. The bitmap images obtained from the camera were 

manually analysed using the bespoke analysis software Richimas. The time at 

the start and end of contact was assumed to be when the vertical location of the 

geometric centre of the ball equalled the position obtained from a ball resting on 

the surface. The root mean squared error (RMSE) between the camera and 

impact rig was 0.20 m s'1 for inbound velocity, 0.26 m-s'1 for rebound velocity 

and 0.4 ms for contact time. The relatively large discrepancy between the two 

methods of measuring contact time was attributed to errors in using a camera to 

determine the end of contact, as a result of the deformation of the ball 

(Goodwill, 2000).

A.3. Frequency analysis

Frequency content of force plot • Core 5m/s Frequency content of force plot - Punctured Ball 5m/s

0 4  0 6  0 8  1 1 2
Frequency (Hr) Frequency (Hr)
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Frequency content of force plot - Ball Sm/s

Frequency (Hz)

Figure 1.2 Frequency results for a 5 m-s'1 impact on a force plate.
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Figure 1.3 Frequency results for a 15 m-s'1 impact on a force plate.
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Figure 1.4 Frequency results for a 25 m-s'1 impact on a force plate.
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B Head-clamped racket model

B. 1. Calculating the impact position on the string-bed

The location of the GSC must be known for the impact distance of the ball from 

the GSC to be calculated. For the 40° impacts the horizontal position of the 

GSC was assumed to be the same as that of the impact rig's release pin, whilst 

the vertical position was obtained from the location of the strings (Figure 1.5). 

These 2 positions were obtained from the opening image of the first 3 impacts; 

the mean values were used when calculating the impact position. The impact 

position, relative to the GSC, was calculated from the initial location of the ball 

upon exiting the BOLA and its inbound angle, as shown in Figure 4.7, on page 

99.

Vertical position of 
centre of stringbed

Horizontal position of 
centre of stringbed

Figure 1.5 Horizontal and vertical positions o f the centre of the string-bed.

60° Impacts

For an impact angle of 60° the racket was tilted 20° about the pivot, away from 

the air-cannon (Figure 1.6).
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Figure 1.6 Set-up for 60° impacts, showing the location o f the release pin and pivot.

The following steps were undertaken to obtain the impact distance of the ball 

from the GSC;

1. The location of the string-bed centre was obtained.
2. The impact distance along the string-bed from its geometric centre was 

obtained.

Location of GSC

The horizontal and vertical positions of the release pin and pivot were obtained 

and used to calculate the location of the centre of the string-bed (Figure 1.6). 

The positions of these points were obtained from the first 3 images for each set 

of impacts and the mean values were used in the calculations.

Location o f GSC - Horizontal position

XB in Figure 1.7 denotes the horizontal distance, from the point on the string-bed 

which was directly above the pivot before it was tilted (Z), to the pivot after 

tilting. XB was calculated from the vertical distance from the centre of the pivot 

to the string-bed, when it was horizontal (r), and the angle (20°) between r and 

the vertical (Figure 1.7). Following this, the horizontal distance from the GSC to 

point Z (Xc) was calculated from the angle between the string-bed and 

horizontal (20°) and the horizontal distance between the release pin and pivot 

(XA). Finally, the horizontal distance from the pivot to the GSC (XD) was 

calculated from the addition of XBand Xc.



Release pin
2

Figure 1.7 Calculating the horizontal location o f the centre o f the string-bed, for 60° impacts.

Location of GSC - Vertical position

The vertical distance (YB), from the point Z to the pivot was calculated from r 

and the angle between r and the vertical (20°) (Figure 1.8). The vertical distance 

from point Z to the GSC (Yc) was obtained from XA and the angle between the 

string-bed and the horizontal (20°). The vertical distance from the centre of the 

string-bed to the pivot (YD) was calculated, by subtracting Yc from YB.

Pivot

Release pin

Figure 1.8 Calculating the vertical location o f the centre o f the string-bed, for 60° impacts.

Impact distance from the GSC

The distance from the GSC to the point of impact on the horizontal plane which 

passes through the GSC (X3) was calculated, in the same way as the 40° 

impact (Figure 1.9) (A description for 40° impacts is on page 99).
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Horizontal

Centre ot itringbed

Stringbed

Figure 1.9 Calculating impact position at 60° inbound angle

The distance of the impact along the string-bed from its centre (X4) 

(Figure 1.10) was calculated using the sine rule (Equation 1.2) (a = 20°, c = 90 

+ inbound angle).

x.'3♦

Figure 1.10 Calculating impact position at 60° inbound angle

X 3  xS inc
X 4  =

Sinb
Equation 1.2 Calculating the distance from the impact along the string-bed from its centre, for 60° 

impacts.

20° impacts

For the 20° impacts the string-bed was tilted about the pivot towards the air- 

cannon (Figure 1.11). As with the 60° impacts the first stage was to obtain the 

location of the GSC. Following this the impact distance along the string-bed 

from its geometric centre was obtained.
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Figure 1.11 Set-up for 20° impacts, showing the location o f the release pin and pivot.

Location of GSC - Horizontal position

The horizontal position of the centre of the string-bed was calculated using a 

similar method to the set-up for 60° impacts (Figure 1.12). The main difference 

was XB was subtracted from Xc to obtain XD, as the setup was tilted in the 

opposite direction.

X ,

Figure 1.12 Obtaining the horizontal position of the centre of the string-bed for 20° impacts.

Location o f GSC - Vertical position

The vertical position of the centre of the string-bed was obtained using a similar 

method as for the 60° set-up. The main difference was that YD was calculated 

from the addition of YB and Yc (Figure 1.13).
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centre

Release Pivot

Figure 1.13 Obtaining the horizontal position o f the centre o f the string-bed for 20° impacts.

The impact distance from the GSC along the horizontal was calculated in the 

same way as for the 60° impacts (Figure 1.14).

Figure 1.14 Calculating the impact distance from the string-bed along the horizontal axis for the 20° 

impacts.

The distance of the impact along the string-bed (X4 ) (Figure 1.15) was 

calculated using Equation 1.2 (a = 20°, c = 90 - inbound angle).

Figure 1.15 Calculating impact position at 60° inbound angle.
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B. 2. Effect of inbound spin

The inbound velocity, angle and impact location of balls projected onto a head- 

clamped racket have all been found to be dependent on inbound spin 

(Figure 4.19, page 118). An investigation was undertaken to determine the 

effect of any changes in inbound velocity, angle and impact location, as a result 

of inbound spin. This investigation was undertaken using the impacts at the 

centre of the string-bed. Linear trend lines were fitted to the experimental data 

(Figure 1.16). The equations of these lines were used to obtain inbound 

velocities, angles and impact locations for inbound spin rates in the range from 

0 to 600 rad-s" 1 (Table 1.2). FE simulations were undertaken for inbound spins 

of 0 and 600 rad-s'1, using the conditions in Table 1.2.
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Figure 1.16 Effect o f inbound spin inbound on a) velocity, b) angle and c) impact location for the centre 

impacts

Table 1.2 Calculated inbound velocity and impact location

Inbound spin FE inbound velocity (m-s'1) FE inbound angle (degrees) FE impact location (mm)
0 20.94 37.30 33.44

200 21.00 37.90 28.71
400 21.06 38.50 24.83
600 21.12 39.10 20.95

Average 21.03 38.20 26.98
Range 0.18 1.8 -12.50

Figure 1.17 shows that there was very little difference in the results obtained 

from the model with the updated inbound conditions, in comparison to the 

original model.
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Figure 1.17 Rebound a) velocity, b) angle and c) spin. Inbound velocity = 30 m-s'1, inbound angle = 40°.

B. 3. Difference between string-bed and head-clamped racket model

An investigation was undertaken to determine the cause of the difference in the 

results obtained from the string-bed and head-clamped racket models. The tip 

impacts, with an inbound backspin of 600 rad-s'1, were used in the investigation 

because there was a relatively large difference between the two FE models. It 

was predicted that the method used to attach the strings to the frame in the 

head-clamped racket model may be the cause of the difference in results. 

Head-clamped racket model simulations were undertaken with slight 

modifications. The details of these modifications are listed below;

1. The tied contact was removed and the rigid cylinders were fully 
constrained for the entirely of the transient phase of the simulation.

2. The same as above except the tied contact was replaced with normal 
contact with a COF of 0.

3. The thickness of the shell elements which were used for the tied contact 
was increased from 1 to 2  mm.

It was also predicted that the difference in the convergence of the simulations 

during the dynamic relaxation phase of the simulations could also have been 

causing the discrepancy in the results. The following simulations were 

undertaken.

1. String-bed model with a convergence tolerance for dynamic relaxation of 
0.1. This is the same as in the original head-clamped racket model.

2. Head-clamped racket model with a convergence tolerance for dynamic 
relaxation of 0.07. It was not possible to get the simulation to converge 
within a realistic time frame using a tolerance of 0 . 0 1  as in the original 
string-bed model.
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Figure 1.18 shows none of the modifications made to the models had a 

noticeable effect on the horizontal rebound velocity of the ball.

♦  Experiment 
—  FE - Head-clamped original
 FE - string-bed original

o  FE-String-bed 0.1 convergence tolerance 
+ FE - Head-clamped normal contact holes 
x  FE - Head-clamped no tied contact 
a FE - Head clamped thicker shell 
X FE - Head-clamped 0 07 relaxation tolerance

i
1 ?
oo
0)>
■Oc3
o
-Q
CDL_

o
N

-100 0 100 200 300 400 600500

Inbound spin (rad/s)

Figure 1.18 Horizontal rebound velocity

Figure 1.19 shows that all of the modifications had an effect on the vertical 

rebound velocity of the ball. Both of the head-clamped racket simulations with 

tied contact removed were in good agreement with the results obtained from the 

string-bed model. The head-clamped racket model with the thicker shell was 

also in better agreement with the string-bed model. These findings indicate that 

method used to attach the strings to the racket frame was affecting the results. 

Adjusting the convergence tolerance also increased agreement between the 

two models. This implies that the discrepancy in the results could be due to 

convergence.
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♦  Experiment
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 FE - string-bed original
O FE - String-bed 0.1 convergence tolerance 
+ FE - Head-clamped normal contact holes 
X FE - Head-clamped no tied contact
*  FE-Head clamped thicker shell
X FE - Head-clamped 0 07 relaxation tolerance
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Figure 1.19 Vertical rebound velocity

Figure 1.20 shows that increasing the shell thickness very slightly increased the 

agreement between the two models. The remaining modifications all slightly 

decreased the agreement between the two models. This contradicts the results 

obtained for vertical rebound velocity.

25a  -
♦  Experiment

—  FE - Head-clamped original
■ ~ FE - string-bed original

200 -
O FE - String-bed 0 1 convergence tolerance
+ FE - Head-clamped normal contact holes
X FE-Head-clamped no tied contact

\ \ a  FE - Head clamped thicker shell
♦  ^  \ X FE - Head-clamped 0.07 relaxation tolerance

150 -

V V +  *

N
♦

100 - v \
♦  ♦

♦

50 - N  s .

--------------------------0 — i i ------- T------------------------------------ 1------------- I “ I

-100 0 100 200 300 400 500 600

Inbound spin (rad/s)

Figure 1.20 Rebound spin

This investigation has highlighted that both the convergence of the models and 

the tied contact between the racket and strings can have a slight effect on the 

rebound characteristics of the ball. However, only increasing the shell thickness,
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in the areas were the strings were tied to the racket frame, improved the 

agreement between the results obtained from the two models for both rebound 

velocity and spin. There were apparent contradictions between the results 

obtained for rebound velocity and spin when the convergence tolerances of the 

models were adjusted. It is predicted that with this particular model increasing 

the convergence tolerance may simply lower the accuracy of the simulations. 

Overall it is predicted that the discrepancy between the two models is likely to 

be down to differences in convergence, geometry and mesh.
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C Alternative spin calculation

The number of quarter revolutions was counted, assuming the markers to be 

evenly spaced around the circumference of the ball. The ball had to have 

rotated at least a half turn for it to be included in the analysis. Figure 1.21a 

shows there was good agreement between the spin measured from the left and 

right camera using this method. Although, the right camera appears to produce 

slightly higher spin rates; the reason for this has been explained previously in 

section 5.3.1. The RMSE between the spin measured from the two cameras 

was 28.4 rad-s"1. Figure 1.21b shows a comparison of the spin measured from 

the two methods. The RMSE between the spin measured from the two methods 

was 36.4 rad-s'1.

600 600
O Data 

 Perfect lit
O Data 

 Perfect fit550 550

500 500

"qj 450450

400

350<r O  350 -0-

300 300

250 250

600

Left Camera Angle method

Figure 1.21 a) Comparison o f measured spin rates from each camera using the revolution method and b) 

comparison of spin between the angle and revolution method
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D Material testing of tennis strings

Method

Cross et al. (2000) proposed a method for determining the dynamic stiffness 

(Equation 1.3) of tennis strings. The test involves striking a tensioned string with 

a hammer and measuring the change in tension and perpendicular 

displacement. The change in length of the string is calculated from its 

perpendicular displacement (Figure 1.22). Cross et al. measured the impact 

force using an s-type force sensor. It is predicted that there may be errors as a 

result of using a force sensor which is designed for measuring quasistatic loads. 

Therefore, the experiment was undertaken using a Kistler piezoelectric force 

sensor in place of the s-type force sensor.

^  Changein forceDynamicstiffness= - -------------
Changein length

Equation 1.3 Dynamic stiffness

Rod JawsJaws Rod

L/ 2

h  -  (/-?) -i- *b': ) I/:

r -  7i> +  k\L - U )

Figure 1.22 Calculating tension (T) and extended length (L) (Cross et al., 2000).

The results were compared against results from previous tests using the s-type 

force sensor (Table 1.3). This was to provide an indication as to whether the 

type of force sensor influences the results. The Young's modulus was 

calculated from the dynamic stiffness using the length and cross sectional area 

of the string (Equation 1.4).
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Table 1.3 Previous results

Displacement y Impact force Dynamic modulus Length before E
(mm) (N) (kN-m'1) impact (m) (GN-m'2)

Prince Data 29 146 26.1 0.36 6.8

Lindsey
(2006)

- - 30.8 0.32 7.2

, , D ynam icstiffnessx Length
Y oungs modulus = --------------------------------------

Area

Equation 1.4 Calculating Young's modulus

The method used in this investigation is based on the one detailed by Cross et 

al. (2000) with a few modifications. A modified impact rig was used in this 

investigation (Figure 1.23). The main difference is that the wooden pendulum 

was replaced with an aluminium one. Cross et al. stated the mass of the 

hammer head was 0.292 kg and the effective mass of the hammer head, wood 

beam and optical grid was 0.45 kg. The mass of the hammer head in the 

modified rig was measured as 0.4 kg. The aluminium beam had a diameter and 

length of 0.015 and 0.55 m, respectively. Assuming a density of 2800 kgm "3 the 

mass of the beam was calculated as 1.1 kg. The total mass of the beam and 

hammer head was 1.5 kg. It was not possible to measure the mass o f the beam 

as it was securely attached to the impact rig.

Figure 1.23 Modified impact rig (Hammer head replaced with bolt)

The velocity of the hammer and displacement of the string were measuring 

using a Phantom v4.2 high-speed video camera, recording at 400 fps 

(Figure 1.24). The transverse velocity of the hammer head was calculated from 

the angular velocity of the pendulum. The distance from the pivot to the string
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was 0.6 m. The maximum displacement of the string was calculated from the 

largest angle which the pendulum reached during impact. To ensure high 

accuracy, a still image was obtained when the pendulum was resting against a 

tensioned string. This image was used to obtain the angle of the pendulum 

relative to vertical at the point of impact. As the velocity and displacement were 

calculated using angles calibration was not required.

Figure 1.24 Camera set-up

Cross et al. held the string at maximum tension (275 N) for 1000 s (16.7 

minutes) before subjecting it to 10 impacts from the hammer. The dynamic 

stiffness was then obtained from the average results of the 10 impacts. In this 

investigation the string was tensioned to 275 N and impacted with the hammer 

without a relaxation period. A relaxation phase was not used as it is predicted 

that drift on the piezoelectric sensor would have resulted in errors in the force 

readings. The string was impacted 5 times at the original velocity (2.6 m-s'1 and 

5 times at a higher velocity. The string tension was increased back to 275 N 

before each impact and the dynamic stiffness was calculated separately for 

each impact.

The effect of the mass of the pendulum was also analysed. The 0.4 kg hammer 

head was replaced with a 0.032 kg bolt. The bolt was threaded into the end of 

the aluminium beam, effectively extending the length of the beam. The total 

mass of the aluminium beam and bolt was 1.1 kg. The lighter pendulum 

resulted in a reduced contact time. Therefore, the frame rate of the high speed 

video camera was increased to 1000 fps. Each of the experiments was 

repeated three times.
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Results

Table 1.4 shows that the quasistatic Young's modulus of the strings was 

calculated as 1.4 GPa, which is just outside the expected range for Nylon of 2-4 

GPa.

Table 1.4 Quasi-static Young's modulus

Force
(N)

Cross sectional 
area 

(m2)

Stress
(N-m'2)

Initial string length 

(m)
Extension

(m)
Strain

Young's
modulus
(GN-m'2)

267.4 1.37 x KT6 1.95 x 10B 0.357 0.05 0.140 1.4

A reliability study was undertaken to determine the level of human error when 

manually measuring the velocity and displacement of the pendulum, using 

Richimas v3. A single impact was selected and analysed 10 times. The 

standard deviation (SD) for velocity was 0.1 m-s' 1 and the SD for displacement 

was 1.3 mm, for the investigation with the original pendulum. This resulted in a 

SD of 1.9 kN-m' 1 for dynamic stiffness and 0.6 GPa for the Young's modulus. 

For the investigation with the lighter pendulum, the SD for velocity and 

displacement was 0.1 m-s' 1 and 1.1 mm, respectively. These are virtually 

identical to the values obtained in the original investigation. This resulted in a 

SD for dynamic modulus and Young's modulus of 3.7 and 1.2 GPa, 

respectively. These are approximately double the values of the original study, 

which is because the string was displacing less for the impact with the 1 .1  kg 

pendulum. When calculating the Young's modulus of the strings a length of 0.42 

m was used. This was the length of all three of the strings, following loading to 

275 N from their initial length of 0.375 m.

Table 1.5 shows the results obtained when the strings were impacted at a 

velocity similar to that used by Cross et al. (2000). The velocity used by Cross 

et al. was 2.63 m-s' 1 and the mean velocity used in this investigation was 2.84 ± 

0.1 m-s' 1 (Table 1.5). The mean impact force at 126 ± 17 N (Table 1.5) was 

similar, although a little smaller, than the value provided by the manufacturer 

146 N (Table 1.3). The mean displacement (y in Figure 1.22) at 29 ± 1 mm was 

identical to the value of 29 mm provided by the manufacturer (Table 1.3). The 

mean dynamic modulus obtained in this investigation, at 22.4 ± 3.4 kN-m'1, was 

slightly lower than the value of 26 kN-m" 1 measured by the manufacturer. The
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mean impact force, displacement and dynamic modulus were all in line with the 

results obtained by Cross et al. (2000) for Nylon strings.

Table 1.5 Overall results - original velocity

Initial 
force (N)

Max. 
force (N)

Force
(N)

Velocity
(m-s'1)

Displacement
(mm)

Extension
(mm)

Dynamic 

stiffness (k 

N-m'1)

E

(GPa)

Mean 266.80 392.40 125.60 2.84 29.2 5.6 22.44 6.97

SD 16.24 14.11 16.73 0.10 1.1 0.4 3.40 1.06

Figure 1.25 shows an example of a force plot from an impact at the original 

velocity (2 . 8  m-s_1).

450

350  

300  

|  250

150

100

1.36 1.37 1.38 1.39 1.41.35

Time{s)

Figure 1.25 Force versus time for the original impact velocity.

A sensitivity investigation was undertaken to determine the influence of 

changing the displacement of the strings on the dynamic modulus. The results 

from a single impact were selected and the maximum displacement was 

increased and decreased by 3 mm respectively (Table 1.6). Table 1.6 shows 

that a small change in the displacement of the string (approx. 10%) results in a 

relatively large change in the dynamic modulus. This indicates that the dynamic 

modulus is moderately susceptible to errors in the tracking method.
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Table 1.6 Displacement sensitivity study - String 1 impact 4 original velocity

Initial
force

(N)

Max.
force
(N)

Force
(N)

Velocity
(m-s*1)

Displacement
(mm)

Extension
(mm)

Dynamic
stiffness
(kN-m*1)

E
(GPa)

Original
279 402 123.0 2.9 29.6 5.8 21.2 6.6

displacement 
- 3mm

279 402 123.0 2.8 32.6 7.0 17.5 5.4
displacement 

+ 3mm
279 402 123.0 2.9 26.6 4.7 26.2 8.1

displacement

Table 1.7 shows the mean results obtained when the string was impacted with 

the 0.4 kg pendulum, at the higher velocity of 3.6 ± 0.1 m-s'1. The mean 

dynamic modulus and Young's modulus were both within 3.4% of those 

obtained at the lower velocity (Table 1.5). This indicates that the strings have 

linear material properties within the range tested.

Table 1.7 Overall results for the 0.4 kg pendulum at the higher velocity

Initial 
force (N)

Max. 
force (N)

Force
(N)

Velocity
(ms*1)

Displacement
(mm)

Extension
(mm)

Dynamic
stiffness
(kN-m*1)

E
(GPa)

Mean 258.0 445.6 187.6 3.6 35.2 8.1 23.2 7.2
SD 20.0 12.8 11.3 0.1 1.2 0.6 1.8 0.6

Figure 1.26 shows a force plot obtained from an impact on a string at the higher 

velocity of 3.6 m-s'1. The force plot is similar to one obtained for the impact at 

the original velocity (Figure 1.25). The contact time for all the force plots is 

approximately 30 ms, which is similar to the values published by Cross et al 

(2000). A contact time of 30 ms is approximately 6  times longer than the typical 

contact time between a tennis ball and racket.
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Figure 1.26 Force plot - String 1 impact 5 higher velocity

Table 1.8 shows the overall results for the investigation with the 1.1 kg 

pendulum. The overall dynamic modulus was 30 ± 3.0 kN-m"1, which was 

slightly larger than the value of 23 ± 1.8 kN-m' 1 obtained with the heavy 

pendulum (Table 1.7, page 264). The Young's modulus was also slightly higher 

for this investigation at 9.3 ± 0.9 GPa, in comparison to 7.2 ± 0.5 GPa.

Table 1.8 Overall results

Initial
force
(N)

Max.
force

(N)

Force
(N)

Velocity
(m-s'1)

Displacement
(mm)

Extension
(mm)

Dynamic
stiffness
(kN-m'1)

E
(GPa)

Mean 277.5 346.3 68.7 4.0 18.7 2.3 30.0 9.3
SD 5.4 3.7 3.3 0.2 1.0 0.3 3.0 0.9

Figure 1.27 shows a force plot from an impact with the modified pendulum 

(hammer head replaced with bolt). The contact time for the impact is 

approximately 15 ms, which is around half the value for the impacts with the 1.5 

kg pendulum (Figure 1.26). 15 ms is closer to the required contact time of 5 ms.
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Figure 1.27 Force plot for an impact with the hammer head replaced by a bolt

Cross et al. (2000) stated that an impact between a tennis ball and racket 

results in a strain rate of approximately 40 000 mm-m' 1 (0.67 m-s"1). Table 1.9 

shows an estimate of the time-averaged strain rates for the three investigations. 

The impact with the 1.1 kg pendulum had the lowest strain rate at 0.3 m-s'1, 

which was also lower than the value of 0.67 m-s' 1 stated by Cross et al. (2000).

Table 1.9 Estimation o f strain rate

Study Approx. contact time (s) Extension (m) Strain rate (m-s'1)

1.5 kg pendulum - 2.8 m-s'1 0.030 0.0056 0.38
1.5 kg pendulum - 3.6 m-s'1 0.030 0.0081 0.54
1.1 kg pendulum - 4.0 m-s'1 0.015 0.0023 0.31

Conclusion

The dynamic modulus and Young's modulus obtained using the 1.5 kg 

pendulum and a piezoelectric force sensor were virtually identical to those 

obtained from previous investigations. This indicates that an s-type load cell is 

as suitable as a piezoelectric force sensor for this experiment. The impact 

duration in this investigation (approx. 30 ms) was approximately 6  times longer 

than when a ball impacts with a racket (approx. 5 ms). Using a lighter pendulum 

(1.1 kg) decreased the contact time to approximately 15 ms, which was closer 

to the required value. Using a lower mass pendulum increased the Young's 

modulus of the strings from 7.2 ± 0.6 GPa to 9.3 ± 0.9 GPa. However, there 

were large SD's in the results, due to uncertainties in the displacement 

measurements.
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In this investigation the contact time was 15 ms which is still three times larger 

than the required value of 5 ms. The contact time could be decreased by using 

a pendulum with a lower mass. This could be achieved by using an aluminium 

bar with a lower diameter. The inbound velocity should also be faster to 

increase the strain rate and provide more realistic displacement and force 

results.
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