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Abstract:

This research programme is concerned with the design of road traffic noise barriers, in
particular, the use of multiple-walls on the ground and on top of earth mound type
barriers.

As part of this research, a comprehensive up-to-date review of the research carried out
on noise barriers was undertaken. A number of areas requiring further research were
identified. The discussion of these resulted in the proposal of a simplified noise barrier
selection method which would be of use particularly to non-acousticians. This method
indicated that acoustic information available for the design of earth mounds was limited,
although this barrier type is commonly used in practice and is known to have a number
of non-acoustic benefits. Initial investigations showed that the performance of an earth
mound could be enhanced by the use of multiple-walls on its top.

A detailed investigation was undertaken into the acoustic performance of multiple-walls
both on the ground and on top of earth mounds. Both physical and numerical modelling
techniques were used for this purpose. The physical scale modelling experiments were
carried out both under uniform field conditions and in two different semi-anechoic
chambers in the presence of a continuous noise source, using a model scale of 1:10. The
numerical modelling was applied using indirect boundary element method formulation.
The commercial software named SYSNOISE was employed for the computations. It
was found that numerical modelling results and the semi-anechoic chamber experiments
generally agreed very well. The level of accuracy of the uniform field experiments
depended on the choice of source and receiver locations as well as the size of the model
geometry.

This investigation resulted in acoustic advice on the use of multiple walls both on their
own and on top of earth mounds. Under favourable conditions, the multiple-wall
configurations were shown to provide substantial attenuations of up to 26dB. The
physical parameters involved in their design and their noise attenuation mechanisms
were identified. In addition to long-wave scattering and diffraction effects, it was
identified that surface wave generation mechanisms and interference effects played a
role in attenuating noise. The acoustic advice for the design of earth mounds was
extended to the applications of single, double and multiple-walls on their top.

This work also showed that uniform field conditions in conjunction with a continuous
noise source could be used for physical modelling. It was found that for small-sized
geometries good agreements were observed between physical modelling (both types)
and numerical simulations. There were lesser agreements between the sets of data for
larger geometries.

The multiple-wall configurations investigated as part of this research programme could
be used as noise mitigating measures in central reservations of dual carriageways.
However, further research would be required into their acoustic performance and
engineering design. The results obtained from this investigation have led to the
identification of a number of research areas which could be undertaken in the future.
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1 GENERAL INTRODUCTION

1.1 EFFECTS OF NOISE

Noise can have a variety of effects depending on type, duration and timing of the noise
source as well as the susceptibility of the recipient. Continued exposure to loud noise
may cause hearing loss which can be of temporary or permanent nature. However,
according to World Health Organisation guidelines1and the background research to
these guidelines2, noise harms more than our ears. Some of the adverse effects of
noise on humans and human life have been identified in these documents as
interference with speech communication, sleep disturbance effects, psycho-
physiological effects, mental health effects, performance effects, residential effects and

annoyance as well as economic costs. These are briefly discussed below.

1.1.1 Interference with Speech Communication

Interference of noise with speech communication can result in problems with
concentration, fatigue, uncertainty and lack of self-confidence, irritation,
misunderstandings, decreased working capacity, problems in human relations, and a

number of reactions to stress.

1.1.2 Sleep Disturbance Effects

Social survey data indicate that sleep disturbance is considered to be a major
environmental noise effect. Exposure to noise can induce disturbances of sleep in
terms of difficulty to fall asleep, alterations of sleep pattern or depth, and awakenings.
These are known as primary effects. Other primary physiological effects that can be
induced by noise during sleep are reactions such as increased blood pressure,
increased heart rate, increased finger pulse amplitude, vasoconstriction, and change in
respiration and cardiac arrhythmia. Exposure to night-time noise can also induce
secondary effects or after-effects, that is, effects that can be measured in the morning
or the day after the noise exposure. These secondary effects include reduced
perceived sleep quality, increased fatigue, decreased mood or well-being and

decreased performance.



1.1.3 Psycho-Physiological Effects

A large body of research exists relating noise effects to stress response, cardiovascular
effects, psycho-endocrine and immunological effects as well as physical health such as
bodily fatigue. However most of these studies have not been able to provide

information on the temporal relationship between noise exposure and start of a

disease.

1.1.4 Mental Health Effects

Exposure to high levels of occupational noise has been associated with development of
neurosis and irritability and exposure to high levels of environmental noise with mental

health.

Mental health in noise research covers a variety of symptoms, ranging from anxiety,
emotional  stress, nervous  complaints, nausea, headaches, instability,
argumentativeness, sexual impotency, changes in general mood and anxiety, and
social conflicts, to more general psychiatric categories like neurosis, psychosis and

hysteria.

Noise is not believed to be a direct cause of mental illness but might accelerate and
intensify the development of latent mental disorders. The relationship among noise
annoyance, noise sensitivity and mental morbidity is complex and not yet well
understood. The consumption of tranquilizers and sleeping pills has been proposed as

an indication of latent disease or mental disturbance in noise-exposed communities.

1.1.5 Performance Effects

The effects of noise on human performance are very complex. Acute noise exposure
appears to disrupt tasks that demand attention to multiple cues, tasks in which high
levels of working memory capacity are required, and tasks where continuous and
detailed attention to frequent signals is required. There are well documented
aftereffects, particularly of uncontrollable noise, on human performance that demands

sustained effort. Chronic noise exposure affects reading acquisition in children.

1.1.6 Residential Effects and Annoyance

The annoyance-inducing capacity of a noise depends mainly upon its intensity and
spectral characteristics, and variations of these with time. However, annoyance

reactions are sensitive to many non-acoustic factors of a social, psychological, or
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economic nature and there are considerable differences in individual reactions to the
same noise. Furthermore, community annoyance varies with activity (speech
communication, relaxation, listening to radio and TV, etc.). Annoyance is affected by
the equivalent sound level, the highest sound level of a noise event, the number of
such events, and the time of the day. It should be noted that a large proportion of low

frequency components in the noise may increase annoyance considerably.

1.1.7 Economic Costs

In order to fully assess the costs of noise in monetary terms, the following would all
need to be considered: the societal costs for noise-induced illnesses, disabilities, loss
of psychological well-being, healthcare costs, as well as the losses in productivity. In
addition to these primary costs, secondary costs involved are related to a further
deterioration of life quality, for instance in the form of discomfort and annoyance
caused by noise exposure. In the short term, increased noise pollution would usually
result in lowered market values of real estate, population segregation, and general

deterioration of residential areas.

1.2 EUROPEAN NOISE POLICY

It has been discussed above that, environmental noise, caused by traffic, industrial and
recreational activities is one of the main local environmental problems and the source
of an increasing number of complaints from the public. Generally however action to
reduce environmental noise has had a lower priority than that taken to address other

environmental problems such as air and water pollution.

Regarding research on environmental noise, Europe has been lagging behind North
America and Japan. The European Commission Green Paper on “Future Noise
Policy”3, published in 1996, stresses the fact that in Europe the data available on noise
exposure is generally poor in comparison to that collected to measure other
environmental problems and often difficult to compare due to the different
measurement and assessment methods. According to the statistics in the Green
Paper, it has been estimated that around 20 % of the European Union’s population or
close to 80 million people suffer from noise levels that scientists and health experts
consider to be unacceptable which is a level more than 65 dB(A), where most people
become annoyed, where sleep is disturbed and where adverse health effects are to be
feared. An additional 170 million citizens are living is so-called ‘grey areas’, which are
areas subject to levels between 55 and 65 dB(A), where the noise levels are such to

cause serious annoyance during the daytime.
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According to the statistics in the Green Paper the economical costs of noise to society
especially transport noise is estimated in the range between 0.2 % and 2 % of GDP.
Using the lower figure of 0.2% of GDP represents an annual cost to society of over 12

billion ECU.

With regard to nuisance due to excessive noise levels, road traffic noise is the main
culprit as it accounts for the 90 % of the cases experienced by the 80 million people
exposed to levels more than 65 dB(A). Thanks to the legislation and technological
progress significant reductions of noise from individual sources have been achieved
since 1970. However, data covering the past 15 years does not show significant
improvements in exposure to environmental noise especially road traffic noise. The
growth and spread of traffic in space and time and the development of leisure activities
and tourism have partly offset the technological improvements. In the case of motor
vehicles other factors such as the dominance of tyre noise above quite low speeds (50
km/h) and the absence of regular noise inspection and maintenance procedures are

also important.

The measurements of noise exposure levels and the exposure of populations remain
far from comprehensive and the data are infrequently updated often using simplistic
models. The European Commission believes that improvements in noise data,
harmonisation of methods of assessment of noise exposure to enable the
comparability, monitoring and mutual exchange of information, and the provision of
information to the public are the main priorities for short and medium term action. In
order to establish a framework for the actions above the Commission recently passed a
legislation in the form of a directive4. The new directive establishes the noise indicators
to be used for the assessment of noise throughout the member countries. According to
the directive, the local authorities in all major cities of Europe are responsible for
producing strategic noise maps and preparing action plans based on these for tackling

noise.

The Commission hopes, the results could help overcome the shortcomings mentioned
above and can assist national and local authorities and the European Community to
take more informed decisions about the noise measures for which they are

responsible.

In order to achieve the objectives set out in the Green Paper, the Commission has
formed various Working Groups to cover topics such as harmonisation of noise indices,
calculation and assessment methods, noise maps, provision of information on the
effects of noise and on the effectiveness of noise abatement measures, and emission
control of railway vehicles. The working group 5 (WG 5) on abatement measures is set

up to provide guidelines to be used by local authorities for designing noise abatement
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plans and the execution of those plans. Among the objectives of the WG 5 is making
an inventory of the various noise mitigation methods such as land use planning, speed
limits, car free areas, noise barriers, building blocks used as noise barriers, porous
road surfaces, tunnels, prohibition of certain activities during parts of the day, permits,

noise monitoring and road pricing.

These guidelines, whenever made available, can only be implemented subject to the
policies of local / national governments in a specific country. The following section
discusses how legislation and government policy in the U.K. starting from 1970s to the

present day affected practice of road traffic noise control.

1.3 ROAD TRAFFIC NOISE CONTROL IN THE U.K.

There are several methods available worldwide for controlling road traffic noise in
practice. These are environmental barriers, low noise road surfaces, alteration of
horizontal or vertical alignment of the roads (realignment, natural screening by use of
cuttings), noise insulation of properties, traffic management (traffic control devices,
prohibition of certain vehicle types, modified speed limits, exclusive lane designations),
and the acquisition of property to serve as a buffer zone to prevent future development.
The relevant legislation currently in place and the policy of the national / local
authorities will dictate which of these approaches will be implemented. The U.K. is no
different and the road traffic noise control practice has been heavily and - up to recent

times - adversely influenced by legislation and policies.

The Land Compensation Act 19735 is the earliest example of these. This legislation
was introduced to provide compensation to owners whose property has been devalued
as a result of public works including all road schemes. The Noise Insulation
Regulations were introduced in 19756 enabling part of this compensation for house
holders to be the provision of noise insulation where the exposure to noise would be
increased to 68 dBA, L 1018 due to a new or altered road. In order to qualify for a grant
the necessary calculations had to be carried out in accordance with the official road
traffic noise prediction method, namely Calculation of Road Traffic Noise (CRTN)
published in 19757. The CRTN was revised in 1988s, following the amendment of The
Noise Insulation Regulations9. This revision retained the basic approach provided 13

years earlier, only extending the method to cover a wider range of applications.

It has always been recognised that control of noise at source is more desirable than
providing noise insulation at the affected properties. As traffic volumes and noise levels
increase, the numbers of properties adversely affected grow and it becomes an

increasingly viable option to provide screening for roads. The CRTN can also be used



for environmental appraisal of road schemes, highway design and land use planning
and therefore includes guidance on purpose built noise barriers. CRTN was - and still is
- far from meeting these demands, even in its revised form. The guidance it includes on
prediction of barrier performance was very simplistic and did not make allowances for

possible developments in barrier design.

In 1990 The Government summarised its policy on the environment in the White Paper
"This Common Inheritance"10. The White Paper noted the significance of selection of
lines and levels for roads in such a way to minimise noise and the role of noise barriers
and earth mounds as a means of protecting people from noise. It also anticipated that

quieter surfaces would be used to reduce noise at source.

Even though it was government's policy to provide screening rather than insulation,
initial cost considerations seemed to take precedent over value. Overlooking the wider
environmental issues meant the people continue to be exposed to traffic noise in their
gardens, parks or even in their homes if they preferred to keep their double-glazed
windows open. The CRTN, the Land Compensation Act 1973 and high permissible
noise levels compared with other European countries are shown to be among the main

reasons inhibiting the UK use of high performance barriers11.

The Department of Transport issued guidance on the use of barriers in the form of The
Design Manual for Roads and Bridges (DMRB) Volume 10, Section 5 1213 These
documents provided advice on how the impact of the barrier itself on its surroundings
can be minimised by the appropriate choice of form and materials used, at the same
time taking advantage of developments in the techniques of noise attenuation. It is
recognised that a new road can have a profound effect on the quality of life for
residents in the vicinity. This could be in the form of noise, dust, fumes caused by
traffic, restriction of access to local facilities and the obstruction of the views of the
surroundings. Barriers can therefore be incorporated into the overall scheme to
mitigate the immediate effects of traffic, but they may create an oppressive sense of
enclosure unless they are sensitively designed. The aim should be to make them as
unobtrusive in the landscape as possible, or to provide visual quality whenever full
integration is not feasible. Even though the overall design philosophy is presented in

detail, information on the acoustic design of different barrier profiles is inadequate.

DMRB Volume 11, Section 2, Part 3 (1993)# recognises that some measures mitigate
more than one effect. The bunds are given as an example for reducing visual intrusion
and the noise levels, and planting is recognised to reduce the effects for people and
also benefit wildlife. DMRB Volume 11, Section 3, Part 7 (1993)15 lists possible

mitigation measures generally applicable to noise and vibration. Provision of



environmental barriers both earth mounding and acoustic fencing is among the options

provided.

The Planning Policy Guidance No. 24 on Planning and Noise6 provided guidance to
the local authorities on the use of their planning powers to minimise the adverse
impacts of noise. Among the possible mitigation measures was the provision of
purpose built barriers and sound insulation. It also states that special consideration

should be given to designated areas and the countryside.

The Integrated Transport White Paper17, published in 2001, also stresses the sensitivity
of transport noise issues and the environment. The transport plan is expected to cost
£180 billion over the next 10 years. As far as the roads are concerned, the expenditure
is proposed to result in 70 local bypasses, 50 of which are in rural areas, 130 other
local road schemes, 567 km of trunk road and motorway widening and 30 strategic

route bypasses.

As stated in the Integrated Transport White Paper, there will be a strong presumption
against schemes that would significantly affect environmentally sensitive sites, or
important species, habitats or landscapes. All road schemes will include high standards
of environmental mitigation to ensure that, so far as reasonably possible, noise and the
impact on biodiversity, the landscape and heritage are minimised. Among the
outcomes expected to be achieved are reductions in traffic noise benefiting 3 million
people within 600 m of trunk roads. This is to be achieved by the application of lower
noise surfaces on 60% of the trunk road network, the construction of new bypasses,
better public transport, reduced congestion and improved traffic management in towns

and cities.

Contrary to the ideas put forward in the Integrated Transport White Paper the bypasses
running through the rural areas, rather than helping with the noise problem, are going
to be critical since they will introduce noise levels previously non - existent in these
sensitive environments. The improvement in the road network is naturally expected to
help the growth and spread of traffic in space and time. This is the very reason,
according to the findings of the European Commission’s Green Paper, which rendered
improvements in noise levels useless. The recommended use of low noise surfaces is
encouraging, even though it is not made clear what the expected overall effect will be

both in the short term, and in the longer term as such surfaces are worn away in time.

Following the Integrated Transport White Paper the news that The Highway Agency
abandoned whisper concrete and porous asphalt in favour of the thin asphalt
surfacings came as a shock to the industry. Both of these surfaces were developed a
decade earlier and were thought to be unrivalled in the industry. These surfaces are

going through a dynamic research and development phase and there are still questions
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surrounding their short and long term acoustic performance and non - acoustic

characteristics.

The above summary indicates the transformation in the U.K. traffic noise control policy
and practice. Over the years the preference shifted from noise insulation of properties
in 1970s towards the use of environmental barriers in 1990s and finally to the

application of low noise surfaces in 2000s.

14 CONCLUDING REMARKS

The European Commission recognised environmental noise as a major problem only
as recent as five years ago. Accordingly road transport noise is the dominant source.

However action to reduce these have not been given priority.

The U.K. has not been any less indifferent to the environmental noise problem. The
shift in policy and practice over the years is a positive sign of the recognition of the
reality of noise. It is good common sense and environmentally more acceptable to
address the problem at the source rather than at the receiver. The sound insulation of
the properties is simply to avoid the problem. Low noise surfaces, if they could be
effective on their own, would be the best way to control noise at source. However, low
noise surfaces are unable to offer a full solution to the problem presently and are likely