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Abstract
In clinic settings, factors such as time, cost, expertise, and technology feasibility limit the use of instrumented biomechani-
cal analysis. Recent advances in commercial markerless motion capture systems can address patient ease-of-use factors, but 
are high cost and require specialised equipment, dedicated spaces, and technical expertise. As such, they present similar 
limitations to biomechanical analyses in clinic settings. Single-camera pose estimation techniques have generated cautious 
optimism for markerless gait analysis. However, parameters derived using low-cost and low-sample rate cameras commonly 
used in clinic settings are not yet accurate enough to detect change in complex movement systems. Video frame interpolation 
is a single-step process that artificially increases the sample rate of videos. This study applied video frame interpolation to 
videos of walking and demonstrates improved precision for step, stance, swing and double support times, as well as mar-
ginal improvements to the precision of ankle and knee joint angles, derived by single-camera pose estimation. Video frame 
interpolation potentially represents a delimiting factor for gait analysis in clinic settings, as limiting factors such as time, 
cost, technology feasibility and patient ease-of-use can be minimised.

1  Introduction

The early identification of change within an individual’s 
walking pattern is an important factor in movement health 
monitoring. In clinic settings, factors such as time, cost, 
expertise, and technology feasibility limit the use of instru-
mented biomechanical analysis (e.g., patient-worn markers 
or sensors). Therefore, patient self-reporting or practitioner 
observations or both are often relied upon. However, self-
reporting bias as well as intra- and inter-clinician reliability 
can limit understanding [1]. Pose estimation is a computer 
vision technique that estimates body landmark locations 
in camera images without markers [2]. Recent advances 
in commercial markerless motion capture systems, which 
adopt pose estimation, can address patient ease-of-use [3] 
and measurement precision concerns [4]. However, such sys-
tems require multiple synchronised and precisely calibrated 
video streams. As such, they are high cost, require special-
ised equipment, dedicated spaces, and technical expertise. 
Therefore, commercial markerless systems present similar 
limitations to traditional biomechanical analyses. Recently, 
single-camera markerless pose estimation techniques [5, 6] 
have been used to quantify various parameters of human 
movement [2], including spatiotemporal parameters of 
gait [7]. For a detailed review of popular pose estimation 
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methods, readers are directed to several recent reviews 
[8–10].

The accuracy of two-dimensional joint positions derived 
by pose estimation has generated cautious optimism for 
human movement analysis applications [1–3]. Recent work 
[7] demonstrated the potential clinical utility of temporal 
gait parameters such as stance, swing and step time. Stenum 
et al. [7] reported mean absolute step time differences of 
0.02 s (i.e., pose estimation.vs motion capture). When com-
pared to minimal detectable change (MDC) values reported 
elsewhere (e.g., 0.02 – 0.08 s [11, 12]), Stenum et al. [7] sug-
gested that pose estimation could detect change in healthy 
walking. Analysis of the structure of movement variabil-
ity–afforded by nonlinear analyses–can provide insight into 
change within complex movement systems [13]. Whilst the 
accuracy of temporal gait parameters derived using single-
camera pose estimation is encouraging, estimates are not 
precise enough to detect change in complex movement sys-
tems using nonlinear analyses. For example, whilst 25 Hz 
video was used by Stenum et al. [7], research has demon-
strated that a sample rate of 120 Hz would be necessary 
to maintain sufficient precision to calculate sample entropy 
for walking parameters [14]. Efforts to advance the preci-
sion and application of two-dimensional pose estimation 
have considered the validity of joint location estimates and 
development of biomechanical models [2]. However, the 
application of two-dimensional pose estimation for nonlinear 
analyses of gait particularly in clinic settings has not been 
addressed. Clinic settings are often limited by feasibility 
factors such as cost, time, expertise, and dedicated spaces; 
cameras commonly used are flexible but low-cost and low-
sample rate (e.g., 25–30 Hz). Gait parameters derived by 
single-camera pose estimation might make movement health 
monitoring in clinic settings more feasible; however, meas-
urement precision must first be addressed.

Video frame interpolation (VFI) is a method to artifi-
cially increase video sample rate by estimating flow between 
intermediate video frames [15]. The Real-time Intermedi-
ate Flow Estimation (RIFE) VFI algorithm [15] estimates 
bidirectional optical flow between video frames, then scales 
and reverses flow to approximate intermediate flow. A neural 
network iteratively refines flow estimates from coarse-to-
fine resolutions, improving processing time and allowing 
interpolation between arbitrary timesteps [15]. Huang et al. 
[15] assessed the performance of RIFE VFI with respect to 
video quality, reporting that it outperformed other methods 
based on peak signal-to-noise ratio, structural similarity, 
and computation speed. Regarding gait analysis, VFI was 
recently applied to videos of walking to assess its effect on 
temporal gait parameters derived by pose estimation [16]. 
Improved foot contact and step time estimates were reported 
(e.g., root-mean square error was ~ 55 and ~ 34% lower than 
estimates derived using original videos, respectively) and 

it was noted that VFI might represent a simple approach 
to improving the precision of gait parameters derived by 
pose estimation in clinic settings. However, the application 
of VFI, to derive commonly used gait parameters (e.g., ankle 
and knee joint angle, stance, step, swing and double sup-
port time) using single-camera pose estimation, has not been 
addressed. The aim of this study was to demonstrate the 
application of VFI for gait analysis derived by two-dimen-
sional pose estimation, using single-camera video.

2 � Method

The Research Ethics Committee of Sheffield Hallam Univer-
sity approved (ER: 43,285,879) the secondary analysis of a 
publicly available dataset [17]. The dataset comprised syn-
chronised three-dimensional motion capture data and digital 
video recordings of overground walking for 32 healthy par-
ticipants (22 men, 10 women). The current study analysed 
‘s1’ videos, which comprised straight line walking trials 
(~ 6 m) and include gait initiation and termination. Data for 
four participants were excluded owing to labelling inconsist-
encies; thus, motion capture and video data were analysed 
for 28 participants (one trial per participant). We aimed to 
replicate analyses of Stenum et al. [7] to allow comparison.

2.1 � Data capture

Three-dimensional motion capture data were obtained using 
ten Vicon MX-T40 cameras (2,352 × 1,728 pixels, 100 Hz) 
and two-dimensional digital videos were captured using four 
Basler Pilot (piA1900-32gc, Ahrensburg, Germany) RGB 
cameras (960 × 540 pixels, 25 Hz). RGB cameras were 
mounted on tripods (elevation: ~ 1.3 m) to capture sagittal 
(left- and right-sides) and frontal (front- and rear-sides) per-
spectives of walking; only sagittal camera views (left- and 
right-camera distances: ~ 3.3 m) were analysed in this study 
(refer to [17] for a schematic). Motion capture and video 
data were synchronised using Vicon MX Giganet.

2.2 � Motion capture data analysis

Motion capture and joint angle data, previously processed 
as part of the public dataset [17], were imported into Matlab 
(R2022a, The Mathworks, USA). Gait events were defined 
as described in Zeni et al. [18], where positive and negative 
peaks in the horizontal coordinate of ankle-pelvis vectors 
define heel-strike and toe-off, respectively. Step time, stance 
time, swing time, and double support time were defined as 
follows:

–	 Step time: duration between consecutive contralateral 
heel-strike events (s).
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–	 Stance time: duration between ipsilateral heel-strike and 
toe-off events (s).

–	 Swing time: duration between ipsilateral toe-off and heel-
strike events (s).

–	 Double support time: duration between heel-strike and 
contralateral toe-off events (s).

Finally, processed ankle and knee angle data were 
trimmed to identified gait cycles (heel-strike to heel-strike) 
and normalised to 100 data points.

2.3 � Video post‑processing, pose estimation 
and data analysis

Google Colaboratory (four Intel(R) Xeon(R) CPUs @ 
2.20 GHz, Tesla T4 GPU, 26 Gb RAM) was used to pro-
cess original videos using Python notebooks via a web 
browser. RIFE VFI (code supplied by Huang et al. [15]) 
was applied to original videos to provide artificially 
upsampled walking videos (960 × 540 pixels, 100 Hz). 
Figure 1 illustrates walking images extracted from original 

Fig. 1   Walking sequence 
extracted from original video at 
25 Hz (a, top row) and the cor-
responding sequence extracted 
from VFI video at 100 Hz (b, 
bottom three rows). Timecodes 
highlighted in red indicate origi-
nal frames and unhighlighted 
timecodes indicate interpolated 
frames
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(A) and VFI (B) video at 25 and 100 Hz, respectively, for 
a 0.08 s time-window.

Subsequently, two-dimensional pose estimation 
(Body_25 keypoint model) using OpenPose (code supplied 
by Cao et al. [5]) was performed using Google Colaboratory 
for the original and VFI videos (example Python notebook 
for VFI and pose estimation available at: https://​github.​com/​
marcu​sdunn-​phd/​Video​PostP​roces​sing_​PoseE​stima​tion). 
Subsequently, two-dimensional image coordinates of joint 
landmarks were imported into Matlab and analysis code sup-
plied by Stenum et al. [7] used to perform the following: 
(1) manually correct frames with incorrectly identified left 
and right legs, (2) fill gaps (linear interpolation for gaps 
spanning up to two video frames) in joint coordinate data 
(e.g., frames where joints were not detected), and (3) filter 
joint coordinate data using a zero-lag, 4th order low-pass 
Butterworth filter (5 Hz cut-off frequency). Videos were 
not spatially calibrated as in Stenum et al. [7], owing to (1) 
unmeasured scaling reference points and (2) photogrammet-
ric errors associated with image scaling and lens distortion 
[19, 20]. The lack of spatial calibration limits the assessment 
of step length data in this study; however, ankle and knee 
joint angles were assessed and were defined as follows [7]:

–	 Knee flexion–extension angle: vectors between the hip 
and knee joints, and knee and ankle joints, where posi-
tive and negative angles represent flexion and extension, 
respectively.

–	 Ankle dorsi-plantar flexion: vectors between the knee and 
ankle joints, and ankle joint and big toe location, where 
positive and negative angles represent dorsiflexion and 
plantarflexion, respectively.

Gait events, step time, stance time, swing time, and dou-
ble support time were defined as described in Sect. 2.2. 
Ankle and knee angle data were trimmed to the identi-
fied gait cycles (heel-strike to heel-strike) and normalised 
to 100 data points. Finally, 99% confidence intervals were 
constructed for all normalised ankle and knee angle gait 
cycles (n = 1102). Gait cycles containing joint angles that 
exceeded confidence intervals (n = 40) were excluded from 
further analysis.

2.4 � Statistical analyses

For step time, stance time, swing time, and double support 
time, agreement was assessed using Bland and Altman 95% 
Limits of Agreement (LOA). In the case of heteroscedas-
ticity (i.e., |r2|> 0.1), ratio LOA (dimensionless) were also 
reported. Further, root-mean square error (RMSE) was cal-
culated. For ankle and knee angles, 95% Functional Limits 
of Agreement (FLOA: [21]) and RMSE were calculated for 
gait cycle normalised joint angles.

3 � Results

Table 1 presents LOA, Ratio LOA, and RMSE for tempo-
ral gait parameters. Left and right cameras yielded 166 and 
164 step times, respectively, and 138 and 136 stance, swing, 
and double support times, respectively. Systematic errors 
for VFI videos were between 0.001 and 0.004 s lower than 
original videos for all temporal gait parameters except dou-
ble support times derived by the left camera, which were 
0.001 s greater. Random errors for VFI videos were between 

Table 1   LOA, Ratio LOA, and RMSE for step, stance, swing, and 
double support times, using original (25 Hz) and VFI (100 Hz) vid-
eos of walking

Camera N LOA r2 Ratio LOA RMSE

Origional
 Step time (s)
  Left 166 − 0.001 ± 0.046 0.103 1.00 

(× / ÷ 1.080)
0.024

  Right 164 0.000 ± 0.038 0.092 – 0.019
 Stance time (s)
  Left 138 − 0.011 ± 0.052 0.283 0.987 

(× / ÷ 1.071)
0.029

  Right 136 − 0.009 ± 0.047 0.094 – 0.025
 Swing time (s)
  Left 138 0.011 ± 0.050 0.034 – 0.027
  Right 136 0.009 ± 0.047 0.177 1.020 

(× / ÷ 1.109)
0.025

 Double support time (s)
  Left 138 − 0.009 ± 0.051 0.278 0.947 

(× / ÷ 1.440)
0.028

  Right 136 − 0.009 ± 0.050 0.240 0.954 
(× / ÷ 1.433)

0.027

Video frame interpolation
 Step time (s)
  Left 166 − 0.001 ± 0.032 0.160 0.999 

(× / ÷ 1.054)
0.016

  Right 164 0.000 ± 0.026 0.287 1.000 
(× / ÷ 1.041)

0.013

 Stance time (s)
  Left 138 − 0.011 ± 0.035 0.212 0.986 

(× / ÷ 1.046)
0.021

  Right 136 − 0.005 ± 0.035 0.181 0.994 
(× / ÷ 1.049)

0.019

 Swing time (s)
  Left 138 0.010 ± 0.036 − 0.001 – 0.021
  Right 136 0.005 ± 0.039 0.114 1.011 

(× / ÷ 1.091)
0.020

 Double support time (s)
  Left 138 − 0.010 ± 0.035 0.251 0.933 

(× / ÷ 1.270)
0.020

  Right 136 − 0.005 ± 0.037 0.225 0.967 
(× / ÷ 1.305)

0.020

https://github.com/marcusdunn-phd/VideoPostProcessing_PoseEstimation
https://github.com/marcusdunn-phd/VideoPostProcessing_PoseEstimation
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0.008 and 0.017 s lower than original videos for all temporal 
parameters derived by left and right cameras. RMSE for VFI 
videos were between 0.005 and 0.008 s lower than original 
videos for all temporal parameters derived by left and right 
cameras.

Table 2 presents FLOA (systematic and random error 
components are mean values for the gait cycle) and RMSE 
for ankle and knee joint angles. Normalised gait cycles 
included in analyses exist within 99% confidence intervals; 
Table 2 presents the number of gait cycles (GC) included in 
each comparison. Systematic errors (mean for gait cycle) for 
VFI videos were between 0.11 and 1.38° lower than original 
videos for all joint angles, except right ankle and knee angles 
derived by the right camera, which were between 0.27 and 
1.05° greater. RMSE (mean for gait cycle) for VFI videos 
were between 0.1 and 2.7° lower than original videos for all 
joint angles, except left ankle angles estimated by the right 
camera (0.1° greater; Table 2).

Random errors (mean for gait cycle) for VFI videos were 
between 0.08 and 3.05° lower than original videos for all 

joint angles, except left knee angles estimated by the right 
camera, which were 0.11° greater. Figure 2 and 3 present 
mean and standard deviation ankle and knee joint angle data 
and corresponding FLOA throughout the gait cycle. FLOA 
visualises varying agreement for ankle and knee joint angles 
derived from the original (Fig. 2) and VFI (Fig. 3) videos 
throughout the gait cycle.

4 � Discussion

The application of VFI to artificially upsample videos of 
walking captured at 25 Hz to 100 Hz demonstrated a general 
improvement to the precision of temporal gait parameters 
derived by pose estimation (Table 1). For example, RMSE 
for step, stance, swing, and double support times derived 
using VFI videos were lower than all original video analyses. 
This represents an improvement to RMSE ranging between 
0.005–0.008 s, or ~ 20–33%. Further, LOA indicated lower 
systematic errors for step, stance, and swing times, rang-
ing between 0.001–0.004  s (~ 9–44%). An exception to 
this was systematic errors for double support time, which 
increased by 0.001 s (~ 11%), but this was only observed in 
left camera estimates (Table 1). Importantly, random errors 
for step, stance, swing, and double support time estimates 
were reduced by between 0.008–0.017 s (~ 17–33%) for VFI 
videos, when compared to original videos. The reduction of 
random errors in temporal parameters is an important factor 
in gait analysis and particularly in health monitoring applica-
tions, where the understanding of step-to-step variation can 
reveal change in complex movement systems [13].

Heteroscedasticity was present for temporal gait param-
eters derived using both original and VFI video sequences 
(Table 1). Previous, comparable work [16] only reported 
heteroscedasticity for foot contact time, when using 25 Hz 
video sequences, and did not report heteroscedasticity for 
any parameters derived using VFI videos. There are sev-
eral factors that might cause heteroscedasticity in this study, 
including the temporal resolution of comparator motion 
capture data, the camera perspective of participants, and 
details of the foot trajectory post-processing. For example, 
the motion capture data in the current study have a temporal 
resolution of 0.01 s, in contrast to 0.005 s in Dunn et al. 
[16]. Low temporal resolution limits the precision to which 
the parameters can be assessed and is a known limitation of 
publicly available datasets of this type [1]. Further, walk-
ing distance in the current dataset was 6.3 m and 4 m in 
Dunn et al. [16]. This potentially yields a wider range of 
participant-camera perspectives in the current study than in 
previous research [16]. Linked to this, Stenum et al. [7] dem-
onstrated heteroscedasticity in step length estimates (i.e., 
step length error related to perpendicular distance between 
camera and participant). Heteroscedasticity reflects the 

Table 2   FLOA and RMSE for left and right ankle and knee angles 
(gait cycle), using original (25 Hz) and VFI (100 Hz) videos of walk-
ing (GC is the number of gait cycles included in each comparison)

Camera GC FLOA RMSE

Origional
 Left ankle angle (°)
  Left 63/68 14.72 ± 20.21 19.25 ± 11.30
  Right 64/67 18.00 ± 18.40 20.90 ± 8.53

 Right ankle angle (°)
  Left 69/71 14.97 ± 20.29 18.29 ± 8.88
  Right 66/71 13.14 ± 20.13 17.46 ± 11.42

 Left knee angle (°)
  Left 67/68 − 5.60 ± 19.35 10.85 ± 4.99
  Right 66/67 − 4.67 ± 18.47 10.30 ± 4.98

 Right knee angle (°)
  Left 71/71 − 7.29 ± 19.15 11.23 ± 5.55
  Right 71/71 − 8.32 ± 17.84 11.85 ± 5.24

Video frame interpolation
 Left ankle angle (°)
  Left 64/68 14.41 ± 17.87 16.52 ± 6.59
  Right 61/65 17.55 ± 15.95 19.53 ± 6.87

 Right ankle angle (°)
  Left 69/70 14.36 ± 17.24 16.57 ± 7.19
  Right 68/71 14.19 ± 19.53 16.63 ± 8.31

 Left knee angle (°)
  Left 62/68 − 5.49 ± 17.12 10.20 ± 5.40
  Right 64/65 − 3.29 ± 18.58 10.40 ± 5.94

 Right knee angle (°)
  Left 67/70 − 6.84 ± 17.32 10.84 ± 5.80
  Right 70/71 − 8.59 ± 17.76 11.76 ± 5.60
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location of participants and their steps in camera images, 
as well as image scaling techniques used to estimate real-
world measurements [19]. Oblique camera perspectives of 

participants might also affect the precision of gait event 
detection. This study follows gait event detection in Stenum 
et al. [7], where foot contact events were defined as the peak 

Fig. 2   Ankle and knee joint 
angle estimates (gait cycle) 
derived using original videos. 
Top rows (graph pairs) are 
mean and standard deviation 
for motion capture (grey), left 
camera (red) and right camera 
(blue) joint angles. Bottom rows 
(graph pairs) are FLOA for left 
camera (red) and right camera 
(blue) joint angles

Fig. 3   Ankle and knee joint 
angle estimates (gait cycle) 
derived using VFI videos. Top 
rows (graph pairs) are mean and 
standard deviation for motion 
capture (grey), left camera (red) 
and right camera (blue) joint 
angles. Bottom rows (graph 
pairs) are FLOA for left camera 
(red) and right camera (blue) 
joint angles
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horizontal coordinate in ankle-pelvis vectors [18], whereas 
the foot (heel and toe midpoint) velocity algorithm [22] was 
used by Dunn et al. [16]. Further, trajectories were filtered 
using 7 Hz (2nd order) and 5 Hz (4th order) Butterworth 
filters in Dunn et al. [16] and the current study, respectively. 
Thus, foot trajectories in the current study would likely 
exhibit smoother profiles than in Dunn et al. [16]. Whilst 
smoother trajectories might aid robustness of automated 
event detection, the precision of identified events might also 
be affected. Moreover, the relative performance of trajec-
tory- and velocity-based approaches to gait event detection 
has been reported to vary for different cohorts in different 
studies (e.g., [18, 23]). Thus, different gait event detection 
methods and lower temporal resolution of comparator data 
might explain inconsistencies between temporal gait param-
eter error distributions in previous research [16] and the cur-
rent study.

Regardless, the application of VFI in this study demon-
strated a consistent improvement to temporal gait parameters 
and importantly, reduced random errors when estimating 
temporal gait parameters. When considering clinical appli-
cations of temporal gait metrics, MDC values for step time 
in healthy walking have been reported to range between 
0.02–0.08 s [11, 12]. Stenum et al. [7] suggested that step 
times derived using pose estimation (mean and maximum 
errors of 10 ms and 100 ms, respectively) were sensitive 
to change. The current study demonstrates that VFI further 
improves the precision of temporal gait parameters such 
as step time, reducing both systematic and random error 
components by up to 44 and 33%, respectively (Table 1). 
The reduction of random errors in particular (i.e., narrower 
LOA) is an important factor in gait analysis and movement 
health monitoring. This is because an understanding of the 
magnitude and structure of step time variation can reveal 
changes in complex movement systems [9]. Further research 
into the role of markerless gait analysis and VFI, to under-
stand change in complex movement systems, is necessary 
and warranted.

Estimating ankle and knee joint angles from VFI videos 
yielded marginal improvements when compared to original 
videos (Table 2). For left and right ankle and knee joint 
angles, FLOA indicated marginally lower systematic errors 
(0.11–1.38°, or ~ 2–29%), except for higher systematic errors 
for right ankle and knee angles, derived by the right cam-
era (1.05° and 0.27°, or 8 and 3%, respectively). Random 
errors for ankle and knee angles were reduced by 0.08–3.05° 
(0.4–15%), except for marginally increased random errors 
for left knee angles derived by the right camera (0.11° 
or 0.6%). Stenum et al. [7] presented mean and standard 
deviation joint angles at fixed intervals (~ 3%) throughout 
the gait cycle, as well as mean absolute error (MAE); thus, 
assessing the magnitude and impact of outlying joint angle 
data points is difficult. Our analysis of pose estimated joint 

angles first excludes trials outside 99% confidence intervals 
(n = 40 or ~ 3.6%). Whilst this yields fewer trials for analysis 
(Table 2), retaining a confident estimate of ‘real’ joint angles 
is a pragmatic approach that can be applied to automatic 
tools and analyses in clinic settings. Moreover, FLOA aid 
interpretation of the varying precision of joint angles derived 
by pose estimation across the gait cycle, using original and 
VFI videos. For example, systematic differences between 
motion capture and pose estimated ankle angles reflect foot 
segment definition. Further, differences within knee joint 
angles emerge during stance (~ 30%) and swing (~ 80%) 
phases for ~ 10% of the gait cycle and exist in both original 
and VFI videos (e.g., Fig. 2, 3). Differences in knee angles 
might reflect the precision of markerless knee joint estimates 
during contralateral swing and stance phases (e.g., limb 
obfuscation or occlusion, or manual post-processing when 
recreating joint trajectories), as comparable differences were 
not observed in ankle joint angles. The application of VFI 
was not anticipated to improve the precision of joint angle 
estimates, since the spatial resolution of VFI videos remain 
unchanged. The improvements for VFI video estimates 
(Table 2) likely reflect trajectory post-processing, where 
additional video frames and thus pose estimated data (inclu-
sive of different frame-by-frame estimation errors), result in 
different trajectories to those derived using original videos.

Video quality factors might affect the precision of pose 
estimation [24]. Huang et al. [15] assessed VFI image qual-
ity using peak signal-to-noise ratio and structural similar-
ity. Huang et al. [15] reported that their approach outper-
formed other VFI methods, except for one closed-sourced 
software. Results of our study indicate that VFI improved 
the temporal precision of walking gait analyses derived by 
pose estimation. This suggests that VFI might benefit other 
gait analysis applications using pose estimation (e.g., run-
ning, sprinting), or other image-based object tracking tasks. 
However, any assumptions of underlying movements or 
analyses should be carefully considered. Regarding clinical 
applications of joint angle data in healthy walking, Wilken 
et al. [25] reported MDC values of 4–6° and 4° for knee 
and ankle angles, respectively. Stenum et al. [7] reported 
MAE for knee and ankle angles derived by pose estimation 
as 5.6 and 7.4°, respectively. Therefore, and based on [25], 
Stenum et al. [7] suggested that only knee angle data were 
sensitive to change in healthy walking. In this study, gait 
cycle averaged errors were greater than those reported by 
Stenum et al. [7]. This greater error might reflect the greater 
sensitivity of RMSE to outlying data points than MAE and 
might also reflect manual approaches to the post-processing 
of obfuscated or occluded joint locations. However, when 
considering joint angles derived using VFI videos, FLOA 
(Table 2) illustrate a general improvement when compared 
to joint angles derived using standard videos. This indicates 
that VFI might improve the clinical application of knee and 
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ankle angle data derived by pose estimation in healthy walk-
ing. Further work is required to clarify this, the effects of 
interventions to reconstruct joint trajectories, and any sub-
sequent impact in clinical applications.

The use of an existing dataset [17] presents several limi-
tations when understanding the application of VFI to gait 
analysis. Filming factors (e.g., fixed camera height, dis-
tance, and perspective), as well as the temporal precision 
of motion capture data (e.g., 100 Hz) limit the exploration 
of VFI for use in the calculation of gait metrics. Moreover, 
insufficient and inconsistent camera calibration information 
prohibited the understanding of VFI on the calculation of 
some spatial gait metrics (e.g., step length), owing to pho-
togrammetric errors associated with image scaling and lens 
distortion [19, 20]. The dataset presented by [17] was used 
owing to the wide range of participants, multi-view colour 
video, and synchronised, three-dimensional motion capture 
data. Whilst such datasets are extremely valuable, the afore-
mentioned factors are known limitations of datasets of this 
type [1]. Further, findings in this study are relevant to sin-
gle-camera pose estimation techniques using RGB images. 
This is because standard videos are necessary to allow the 
application of VFI used in this study [15]; other single-cam-
era, markerless motion capture tools, such as the Microsoft 
Kinect [26–28] are dependent on depth data, limiting the 
application of VFI in this case [15]. Finally, and whilst this 
study aimed to replicate processes in Stenum et al. [7], knee 
angle errors that emerge mid-cycle likely indicate different 
approaches during manual post-processing of joint trajec-
tories for obfuscated or occluded limbs. Further research 
is necessary to identify systematic approaches and best 
practices, for the interrogation and reconstruction of such 
trajectories. This highlights the necessity for well-defined, 
systematic solutions to markerless, single-camera gait analy-
sis particularly in clinic settings and reaffirms a key benefit 
of VFI, as its application might complement automatic gait 
analysis solutions.

Traditional biomechanical tools have not been success-
fully implemented in clinic-based practice; this reflects 
complexities related to technology and data collection pro-
tocols [29]. Advances in commercial markerless systems 
can address patient ease-of-use concerns [3]; however, the 
space and technological requirements of these systems pre-
sent similar limitations to traditional biomechanical tools 
in clinic settings. Single-camera pose estimation represents 
a promising advance to the feasibility of clinic-based gait 
analysis [3]. The use of high-speed cameras is a logical 
route to address sample rate considerations of advanced 
gait analysis techniques but the feasibility of using high-
speed cameras in a clinic is questionable [29]. The current 
study demonstrated that VFI yields marked improvements to 
temporal gait parameter estimates, and markedly improves 
random error components in particular. Moreover, VFI did 

not detrimentally effect image quality and yields marginal 
improvements in ankle and knee joint angle estimates. In the 
context of movement health monitoring, reducing random 
error within gait parameters is imperative, as the magnitude 
and structure of movement variability can provide insight 
into movement health [14].

5 � Conclusion

Single-camera pose estimation techniques have generated 
cautious optimism for markerless gait analysis in clinic set-
tings. However, parameters derived using low-cost and low-
sample rate cameras are not yet sensitive to detect change in 
complex movement systems. This study demonstrated that 
by upsampling single-camera videos of walking with VFI 
(from 25 to 100 Hz), the precision of gait parameters derived 
by pose estimation can be markedly improved. RMSE were 
improved by up to 33% for step, stance, swing, and double 
support times, and by up to 8% for knee and ankle joint 
angles. Our findings represent a novel contribution to mark-
erless gait analysis derived by single-camera pose estima-
tion, as VFI can improve derived gait metrics and be sys-
tematically applied to videos captured in clinic settings. VFI 
therefore represents a delimiting factor for clinic-based gait 
analysis using pose estimation, as limiting factors associ-
ated with traditional analysis techniques (e.g., time, cost, 
dedicated space, patient ease-of-use, and clinician expertise) 
can be minimised. However, acceptable precision to monitor 
change in complex movement systems is not easily defined; 
research addressing the reliability and sensitivity of marker-
less single-camera gait analysis is warranted.

Author contribution  MD Conceptualisation, Data curation, Formal 
analysis and investigation, Writing–original draft preparation, Writ-
ing–review and editing. AK: Writing–review and editing. ZM-S Formal 
analysis and investigation, Writing–review and editing. KW, KM, JW, 
Writing–review and editing.

Funding  No funding was received for conducting this study.

Data availability  Example Python notebook (code) for video frame 
interpolation and pose estimation available at: https://​github.​com/​
marcu​sdunn-​phd/​Video​PostP​roces​sing_​PoseE​stima​tion.

Declarations 

Conflict of interest  The authors have no relevant financial or non-fi-
nancial interests to disclose.

Ethical approval  The Research Ethics Committee of Sheffield Hallam 
University approved (ER: 43285879) the secondary analysis of a pub-
licly available dataset.

Consent for publication  All authors have given their consent for pub-
lication.

https://github.com/marcusdunn-phd/VideoPostProcessing_PoseEstimation
https://github.com/marcusdunn-phd/VideoPostProcessing_PoseEstimation


Application of video frame interpolation to markerless, single‑camera gait analysis﻿	 Page 9 of 10     22 

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Wade L, Needham L, McGuigan P, Bilzon J (2022) Applications 
and limitations of current markerless motion capture methods for 
clinical gait biomechanics. Peer J 10:12995. https://​doi.​org/​10.​
7717/​peerj.​12995

	 2.	 Cronin NJ (2021) Using deep neural networks for kinematic analy-
sis: challenges and opportunities. J Biomech 123:110460. https://​
doi.​org/​10.​1016/j.​jbiom​ech.​2021.​110460

	 3.	 Stenum J, Cherry-Allen KM, Pyles CO, Reetzke RD, Vignos MF, 
Roemmich RT (2021) Applications of pose estimation in human 
health and performance across the lifespan. Sensors (Basel) 
21(21):7315. https://​doi.​org/​10.​3390/​s2121​7315

	 4.	 Kanko RM, Laende E, Selbie WS, Deluzio KJ (2021) Inter-ses-
sion repeatability of markerless motion capture gait kinematics. 
J Biomec 121:110422. https://​doi.​org/​10.​1016/j.​jbiom​ech.​2021.​
110422

	 5.	 Cao Z, Hidalgo G, Simon T, Wei SE, Sheikh Y (2021) Openpose: 
realtime multi-person 2D pose estimation using part affinity fields. 
IEEE Trans Pattern Anal Mach Intell 43(1):172–186. https://​doi.​
org/​10.​1109/​TPAMI.​2019.​29292​57

	 6.	 Mathis A, Mamidanna P, Cury K, Abe T, Murthy V, Mathis 
M, Bethge M (2018) DeepLabCut: markerless pose estimation 
of user-defined body parts with deep learning. Nat Neurosci 
21:1281–1289. https://​doi.​org/​10.​1038/​s41593-​018-​0209-y

	 7.	 Stenum J, Rossi C, Roemmich RT (2021) Two-dimensional video-
based analysis of human gait using pose estimation. PLoS Comput 
Biol 17(4):e1008935. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10089​
35

	 8.	 Chen Y, Tian Y, He M (2020) Monocular human pose estimation: 
a survey of deep learning-based methods. Computer Vis Image 
Underst 192:102897. https://​doi.​org/​10.​1016/j.​cviu.​2019.​102897

	 9.	 Colyer S, Evans M, Cosker D, Salo A (2018) A review of the 
evolution of vision-based motion analysis and the integration of 
advanced computer vision methods towards developing a mark-
erless system. Sports Med-Open 4:24. https://​doi.​org/​10.​1186/​
s40798-​018-​0139-y

	10	 Dang Q, Yin J, Wang B, Zheng W (2019) Deep learning based 2D 
human pose estimation: a survey. Tsinghua Sci Tech 24:663–676. 
https://​doi.​org/​10.​26599/​TST.​2018.​90101​00

	11	 Meldrum D, Shouldice C, Conroy R, Jones K, Forward M (2014) 
Test-retest reliability of three dimensional gait analysis: including 
a novel approach to visualising agreement of gait cycle waveforms 
with bland and altman plots. Gait Posture 39(1):265–271. https://​
doi.​org/​10.​1016/j.​gaitp​ost.​2013.​07.​130

	12.	 Fernandes R, Armada-da-Silva P, Pool-Goudzwaard AL, Moniz-
Pereira V, Veloso AP (2016) Three dimensional multi-segmental 
trunk kinematics and kinetics during gait: Test-retest reliability 
and minimal detectable change. Gait Posture 46:18–25. https://​
doi.​org/​10.​1016/j.​gaitp​ost.​2016.​02.​007

	13.	 Fuller JT, Amado A, Emmerik RE, Hamill J, Buckley JD, Tsiros 
MD, Thewlis D (2016) The effect of footwear and footfall pattern 
on running stride interval long-range correlations and distribu-
tional variability. Gait Posture 44:137–142. https://​doi.​org/​10.​
1016/j.​gaitp​ost.​2015.​12.​006

	14.	 Fallahtafti F, Wurdeman SR, Yentes JM (2021) Sampling rate 
influences the regularity analysis of temporal domain measures 
of walking more than spatial domain measures. Gait Posture 
88:216–220. https://​doi.​org/​10.​1016/j.​gaitp​ost.​2021.​05.​031

	15.	 Huang Z, Zhang T, Heng W, Shi B, Zhou S (2020) RIFE: real-time 
intermediate flow estimation for video frame interpolation. Arxiv 
preprint arXiv. 2011:06294. https://​doi.​org/​10.​48550/​arXiv.​2011.​
06294

	16.	 Dunn M, Kennerley A, Webster K, Middleton K, Wheat J (2022) 
Application of video interpolation to markerless movement analy-
sis. In: Proceedings of the ISEA Engineering of Sport 14 Confer-
ence. https://​docs.​lib.​purdue.​edu/​resec-​isea/​2022/​sessi​on07/3/.

	17.	 Kwolek B, Michalczuk A, Krzeszowski T, Switonski A, Josinski 
H, Wojciechowski K (2019) Calibrated and synchronized multi-
view video and motion capture dataset for evaluation of gait rec-
ognition. Multimed Tools Appl 78:32437–32465. https://​doi.​org/​
10.​1007/​s11042-​019-​07945-y

	18.	 Zeni JA Jr, Richards JG, Higginson JS (2008) Two simple methods 
for determining gait events during treadmill and overground walk-
ing using kinematic data. Gait Posture 27(4):710–714. https://​doi.​
org/​10.​1016/j.​gaitp​ost.​2007.​07.​007

	19.	 Brewin MA, Kerwin DG (2003) Accuracy of scaling and DLT 
reconstruction techniques for planar motion analyses. J Appl Bio-
mech 19:79–88. https://​doi.​org/​10.​1123/​jab.​19.1.​79

	20.	 Dunn M, Wheat J, Miller S, Haake S, Goodwill S (2012) Recon-
structing 2D planar coordinates using linear and nonlinear tech-
niques. In: Proceedings of the 30th Annual Conference of Biome-
chanics in Sports. https://​ojs.​ub.​uni-​konst​anz.​de/​cpa/​artic​le/​view/​
5310.

	21.	 Pini A, Markström JL, Schelin L (2022) Test-retest reliability 
measures for curve data: an overview with recommendations and 
supplementary code. Sports Biomech 21(2):179–200. https://​doi.​
org/​10.​1080/​14763​141.​2019.​16550​89

	22	 O’Connor CM, Thorpe S, O’Malley MJ, Vaughan CL (2007) 
Automatic detection of gait events using kinematic data. Gait 
Posture 25(3):469–474. https://​doi.​org/​10.​1016/j.​gaitp​ost.​2006.​
05.​016

	23	 Zahradka N, Verma K, Behboodi A, Bodt B, Wright H, Lee SCK 
(2020) An evaluation of three kinematic methods for gait event 
detection compared to the kinetic-based gold standard. Sensors 
(Basel). 20(18):5272

	24.	 Hardy P, Dasmahapatra S, Kim H (2021) Can super resolution 
improve human pose estimation in low resolution scenarios? 
Arxiv preprint arXiv. 2107:02108. https://​doi.​org/​10.​5220/​00108​
63700​003124

	25.	 Wilken JM, Rodriguez K, Brawner M, Darter BJ (2012) Reliabil-
ity and minimal detectible change values for gait kinematics and 
kinetics in healthy adults. Gait Posture 35(2):301–307. https://​doi.​
org/​10.​1016/j.​gaitp​ost.​2011.​09.​105

	26.	 Ng K-D, Mehdizadeh S, Iaboni A, Mansfield A, Flint A, Taati B 
(2020) Measuring gait variables using computer vision to assess 
mobility and fall risk in older adults with dementia. IEEE J Trans-
lat Eng Health Med 8:1–9. https://​doi.​org/​10.​1109/​JTEHM.​2020.​
29983​26

	27.	 Kastaniotis D, Theodorakopoulos I, Theoharatos C, Economou G, 
Fotopoulos S (2015) A framework for gaitbased recognition using 
Kinect. Pattern Recognit Letters 68(2):327–335. https://​doi.​org/​
10.​1016/j.​patrec.​2015.​06.​020

	28.	 Mentiplay B, Perraton L, Bower K, Pua Y-H, McGaw R, Hey-
wood S, Clark R (2015) Gait assessment using the microsoft 
Xbox one kinect: concurrent validity and inter-day reliability of 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7717/peerj.12995
https://doi.org/10.7717/peerj.12995
https://doi.org/10.1016/j.jbiomech.2021.110460
https://doi.org/10.1016/j.jbiomech.2021.110460
https://doi.org/10.3390/s21217315
https://doi.org/10.1016/j.jbiomech.2021.110422
https://doi.org/10.1016/j.jbiomech.2021.110422
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1371/journal.pcbi.1008935
https://doi.org/10.1371/journal.pcbi.1008935
https://doi.org/10.1016/j.cviu.2019.102897
https://doi.org/10.1186/s40798-018-0139-y
https://doi.org/10.1186/s40798-018-0139-y
https://doi.org/10.26599/TST.2018.9010100
https://doi.org/10.1016/j.gaitpost.2013.07.130
https://doi.org/10.1016/j.gaitpost.2013.07.130
https://doi.org/10.1016/j.gaitpost.2016.02.007
https://doi.org/10.1016/j.gaitpost.2016.02.007
https://doi.org/10.1016/j.gaitpost.2015.12.006
https://doi.org/10.1016/j.gaitpost.2015.12.006
https://doi.org/10.1016/j.gaitpost.2021.05.031
https://doi.org/10.48550/arXiv.2011.06294
https://doi.org/10.48550/arXiv.2011.06294
https://docs.lib.purdue.edu/resec-isea/2022/session07/3/
https://doi.org/10.1007/s11042-019-07945-y
https://doi.org/10.1007/s11042-019-07945-y
https://doi.org/10.1016/j.gaitpost.2007.07.007
https://doi.org/10.1016/j.gaitpost.2007.07.007
https://doi.org/10.1123/jab.19.1.79
https://ojs.ub.uni-konstanz.de/cpa/article/view/5310
https://ojs.ub.uni-konstanz.de/cpa/article/view/5310
https://doi.org/10.1080/14763141.2019.1655089
https://doi.org/10.1080/14763141.2019.1655089
https://doi.org/10.1016/j.gaitpost.2006.05.016
https://doi.org/10.1016/j.gaitpost.2006.05.016
https://doi.org/10.5220/0010863700003124
https://doi.org/10.5220/0010863700003124
https://doi.org/10.1016/j.gaitpost.2011.09.105
https://doi.org/10.1016/j.gaitpost.2011.09.105
https://doi.org/10.1109/JTEHM.2020.2998326
https://doi.org/10.1109/JTEHM.2020.2998326
https://doi.org/10.1016/j.patrec.2015.06.020
https://doi.org/10.1016/j.patrec.2015.06.020


	 M. Dunn et al.   22   Page 10 of 10

spatiotemporal and kinematic variables. J Biomech 48(10):2166–
2170. https://​doi.​org/​10.​1016/j.​jbiom​ech.​2015.​05.​021

	29.	 Gokeler A, Dingenen B, Mouton C, Seil R (2017) Clinical course 
and recommendations for patients after anterior cruciate ligament 
injury and subsequent reconstruction: A narrative review. EFORT 
Open Rev 2(10):410–420. https://​doi.​org/​10.​1302/​2058-​5241.2.​
170011

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jbiomech.2015.05.021
https://doi.org/10.1302/2058-5241.2.170011
https://doi.org/10.1302/2058-5241.2.170011

	Application of video frame interpolation to markerless, single-camera gait analysis
	Abstract
	1 Introduction
	2 Method
	2.1 Data capture
	2.2 Motion capture data analysis
	2.3 Video post-processing, pose estimation and data analysis
	2.4 Statistical analyses

	3 Results
	4 Discussion
	5 Conclusion
	References


