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Abstract 

Objective The objectives of this study were to: (i) review and provide a narrative synthesis of three-dimensional (3D) 
foot surface scanning methodological and statistical analysis protocols, and (ii) develop a set of recommendations for 
standardising the reporting of 3D foot scanning approaches.

Methods A systematic search of the SCOPUS, ProQuest, and Web of Science databases were conducted to iden-
tify papers reporting 3D foot scanning protocols and analysis techniques. To be included, studies were required to 
be published in English, have more than ten participants, and involve the use of static 3D surface scans of the foot. 
Papers were excluded if they reported two-dimensional footprints only, 3D scans that did not include the medial arch, 
dynamic scans, or derived foot data from a full body scan.

Results The search yielded 78 relevant studies from 17 different countries. The available evidence showed a large 
variation in scanning protocols. The subcategories displaying the most variation included scanner specifications 
(model, type, accuracy, resolution, capture duration), scanning conditions (markers, weightbearing, number of scans), 
foot measurements and definitions used, and statistical analysis approaches. A 16-item checklist was developed to 
improve the consistency of reporting of future 3D scanning studies.

Conclusion 3D foot scanning methodological and statistical analysis protocol consistency and reporting has been 
lacking in the literature to date. Improved reporting of the included subcategories could assist in data pooling and 
facilitate collaboration between researchers. As a result, larger sample sizes and diversification of population groups 
could be obtained to vastly improve the quantification of foot shape and inform the development of orthotic and 
footwear interventions and products.

Background
Human foot morphology is highly variable and is influ-
enced by a broad array of factors, including age [1], sex 
[2], ethnicity [3], body mass [4], genetic disorders [5], 
and musculoskeletal foot conditions such as hallux val-
gus [6, 7] and osteoarthritis [8]. Foot shape impacts many 
aspects of an individual’s life, including standing bal-
ance, movement during walking, sporting performance, 
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predisposition to lower limb injury, and footwear fit [9]. 
Sub-optimal footwear fit has a significant impact on an 
individuals comfort, risk of foot pathology development, 
and falls risk [10].

The impact of variation in foot shape and on footwear 
fit are significant barriers that consumers, clinicians, and 
industry face. With the use of three-dimensional (3D) 
scanning technology, detailed information about the foot 
can be obtained and analysed to quantify foot shape [11]. 
This detailed foot shape data can provide researchers 
with a greater understanding of foot shape across popula-
tion groups to improve footwear design and fit. Obtain-
ing optimal footwear fit has been increasingly difficult 
with the continued rise of online purchasing. Currently, 
there are hundreds of footwear brands on the market, 
and they do not follow a standardised sizing system [12, 
13]. For example, length measurement differences (in the 
same US size) of 0.5 cm can be observed when compar-
ing a Nike and Adidas running shoe [12]. Difficulties in 
obtaining correct footwear fit have resulted in higher 
return rates from online orders due to fit uncertainty, 
resulting in a negative client experience and increased 
cost for the company [12, 14]. Additionally, the higher 
return rates has a significant environmental and eco-
nomic impact [15].

Although 3D surface scanning has been used to meas-
ure foot shape since the mid-1990s [16], only recently has 
statistical shape modelling using sophisticated morpho-
metric and multivariate statistical analysis techniques 
been used to identify discrete foot types from 3D shape 
data [17]. These techniques allow foot shape to be sep-
arated from overall object size by using rich 3D data to 
identify characteristics that are unable to be measured 
using predetermined 2D measurements [18]. The ability 
to differentiate foot shape according to sex, age, ethnic-
ity, and pathology has practical applications for footwear 
design from a structural and functional perspective.

Capturing a 3D model of the foot has been achieved 
through a variety of methods since its inception. The type 
of 3D scanning systems have been varied, ranging from 
the use of stereophotogrammetry (which uses multiple 
photographs taken from different angles) to structured 
light (patterns projected on the object) and laser scan-
ning systems (laser/s are repeatedly projected onto a sur-
face while the camera/s and computer system acquires 
the 3D data) [19]. Early scanning equipment involved 
using a projector paired with a charged coupled device 
to capture 3D foot shape [16]. In addition to these meth-
ods, smart phone cameras, digitisers, RealSense depth 
cameras (Microsoft® Kinect; Microsoft, Redmond, WA, 
USA), and adjustable height pins (Amfit® system, Amfit 
Inc, Vancouver, WA, USA) have been used to generate 
3D foot data [20–22]. Recent studies primarily employ 

laser scanning technology; however, a wide range of laser 
scanners are currently available. As a result of the large 
variety of 3D scanning systems, potential differences in 
scanner specifications, scanning condition protocols, 
foot measurements, and statistical analysis techniques 
may exist between studies. To help overcome some of 
these issues, 3D surface scanning standards have been 
created by the International Organisation for Standardi-
sation (ISO) [23] and the Institute of Electrical and Elec-
tronics Engineers (IEEE) [24], with the first ISO standard 
being released in 2015. However, currently it is unclear if 
these standards have been adopted in the literature.

To the best of our knowledge, with the exception of a 
broad overview of 3D foot scanning published in 2010 
[25], and recent reviews specifically focused on smart-
phone apps [26] and comparing 3D scanning to tradi-
tional methods for fabricating orthoses [27], no studies 
have consolidated and reviewed the literature pertain-
ing to 3D foot scanning methods in detail. Therefore, the 
objectives of this paper are to: (i) review and provide a 
detailed narrative synthesis of 3D foot surface scanning 
methodological and statistical analysis protocols, and (ii) 
construct a methodological checklist to help homogenise 
the reporting of 3D scanning and statistical analysis pro-
tocols for future studies.

Methods
This scoping review was conducted and reported in 
accordance with the Joanna Briggs Institute methodology 
for scoping reviews [28] and the PRISMA extension for 
scoping reviews [29].

Search strategy
Three electronic databases were searched. An ini-
tial limited search of SCOPUS, ProQuest, and Web of 
Science were undertaken by two independent review-
ers (JJA, HBM) to identify key studies for the topic. A 
reviewer (JJA) and research librarian (NP) identified 
key text words contained in the titles and abstracts of 
key studies and these were used to develop a full search 
strategy for SCOPUS, ProQuest, and Web of Science. 
Key search terms were grouped into three main con-
cepts and adapted to each database: (i) 3D foot scan-
ning, (ii) shape modelling/analysis/morphology, and 
(iii) foot/feet. Concept synonyms were searched under 
‘topic’ which included title, abstract, and key words. 
Results from within each concept were combined with 
‘OR’ and between concepts were combined with ‘AND’. 
The search strategy is provided in Supplementary file 
1. Manual citation tracking and reference checking of 
included studies were performed. Grey literature such 
as conference proceedings were screened for additional 
studies. Only studies published in the English language 
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were included. Studies published from inception to 
March  28th, 2022, were included. Titles and abstracts 
were screened by two independent reviewers (JJA and 
HBM) for assessment against the inclusion/exclusion 
criteria for the review. Any disagreements on eligibility 
were resolved at a consensus meeting by a third inde-
pendent reviewer (SEM).

Inclusion / exclusion criteria
To be included, papers needed to report studies that 
employed static 3D surface scanning of the foot. Stud-
ies with participants of any age, sex, geographical loca-
tion, musculoskeletal pathology, or health setting were 
included. Papers were excluded if the studies used 
two-dimensional footprints only, 3D scans that did not 
include the medial arch, dynamic/sequential scans to 
infer foot movement, derived foot data from a full body 
scan, or diagnostic imaging techniques that may be used 
to create 3D models of the foot (such as x-ray, magnetic 
resonance imaging or computed tomography). Single 
case studies, studies involving 10 or fewer participants, 
non-English full text or conference proceedings/abstracts 
with less than four text pages were excluded due to a 
lack of detail provided, as were papers which described a 
scanning technique but provided no data on foot shape, 
and thesis dissertations. Foot dimensions measured were 
included if used in two or more studies.

Study selection and data extraction
Study selection and data extraction were performed inde-
pendently by two reviewers (JJA and HBM). Any disa-
greements on study eligibility were discussed between 
reviewers (JJA and HBM) and resolved at a consensus 
meeting by a third independent reviewer (SEM). A cus-
tom generated data extraction template was created 
in Covidence (Covidence, Melbourne, Australia). The 
following individual study data were extracted from 
included studies: general study information (title, author, 
database / journal, country, and primary objective), 3D 
scanner characteristics (name, type, accuracy, and cap-
ture duration), study methods (e.g., sample size), 3D 
scanner methodology (e.g., calibration, data collection, 
3D foot measures), scanner reliability (intra- and inter-
rater), participant demographics (participant subgroup, 
age, sex, weight, height, body mass index [BMI], co-mor-
bidities, shoe size, and ethnicity), processing techniques 
(meshing, smoothing, cropping, scaling, and software 
used), broad study design, statistical analysis approach, 
inclusion/exclusion criteria, and main outcomes. All 3D 
foot measures were cross checked using the IEEE and 
ISO definitions.

Results
A flowchart of included studies is shown in Fig.  1. The 
initial search yielded 1,635 articles; from which 224 
duplicates were removed. A further 1,180 articles were 
excluded in the title and abstract screening with an addi-
tional 153 excluded after the full text screening. A final 
78 studies were deemed to meet the inclusion criteria.

Characteristics of included studies
The included studies originated from 17 different coun-
tries: China (n = 41) [4, 11, 30–68], Japan (n = 6) [16, 44, 
69–72], Germany (n = 4) [13, 73–75], Romania (n = 3) 
[8, 76, 77], South Korea (n = 3) [78–80], Spain (n = 3) 
[22, 81, 82], United States (n = 3) [83–85], Italy (n = 3) 
[20, 21, 86], India (n = 2) [5, 87], Malaysia (n = 2) [3, 88], 
New Zealand (n = 2) [35, 62], Australia (n = 2) [89, 90], 
Belgium (n = 2) [18, 91], United Kingdom (n = 2) [92, 
93], Canada (n = 1) [94], Iran (n = 1) [9], Russia (n = 1) 
[47], Slovenia (n = 1) [95], and Sweden (n = 1) [75]. Sev-
eral study designs were utilised in the literature, these 
included: 51 comparisons of mean differences between 
groups [3, 5, 8, 9, 22, 30–35, 38–41, 43–45, 47–50, 52–62, 
66, 68, 70, 72, 75–78, 80, 83, 85–89, 93–95], 20 cluster/
principal component analyses [5, 11, 13, 16, 18, 31, 32, 38, 
42, 51, 58, 63, 64, 68, 73, 79, 82, 85, 87, 90], 14 reliability 
studies [20–22, 34, 37, 39, 48, 49, 53, 75, 78, 88, 90, 91], 
10 validation studies [20, 21, 39, 40, 46, 48, 53, 65, 78, 81], 
one correlation study [33], one comparison of distribu-
tions between groups [92], one regression analysis [87], 

Fig. 1 Flowchart of included studies
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and 11 repeated measures studies were reported, which 
were grouped into three subcategories; seven studies 
reported the effect of different loading conditions [4, 22, 
36, 39, 74, 84, 90], three reported changes before/after 
exercise [62, 69, 71], and one reported different align-
ment methods [67]. Thirty-one studies reported partici-
pant inclusion criteria [4, 5, 9, 11, 13, 16, 32, 34, 36, 40, 
43, 47, 50, 52, 56, 58, 61, 69, 71, 73, 74, 78, 79, 81, 83, 84, 
87, 89, 91, 92, 94] and 30 studies reported exclusion cri-
teria [4, 5, 9, 22, 32–36, 40–42, 46, 47, 52, 61, 67, 69, 71, 
73–76, 78, 84, 89–92, 94].

Sample size ranged from 11 to 1,200,847, with 57 stud-
ies including healthy young adults [3, 4, 8, 11, 13, 16, 
18, 20, 21, 30–40, 42–46, 48–50, 54–56, 59–61, 63–71, 
74, 77, 78, 80–84, 87, 88, 90, 91, 93, 94]. Other groups 
included: older adults (> 65 years) (n = 18) [8, 9, 34, 38, 45, 
56, 61, 70, 72, 74, 77, 82–84, 87, 91, 93, 94], children/ado-
lescents (< 18 years) (n = 11) [5, 13, 37, 38, 41, 52, 56, 75, 
80, 89, 92], participants with medical conditions (n = 7) 
(such as Down syndrome [89], diabetes [8, 34, 87], arthri-
tis [8, 94], and cerebral palsy [5]), sports people (n = 8) 
(such as football (soccer) players [73], American football 
players [85], road cyclists [22], collegiate runners [69, 71], 
recreational runners [35, 62], and amateur sprinters [50]), 
non-habitual exercisers [50], pregnant women [4], and 
habitually barefoot or shod participants [35, 47]. Addi-
tionally, five studies included controls in their sample [8, 
73, 87, 89, 93], while other studies did not provide spe-
cific participant characteristics [51, 58, 79, 86].

All but six studies [21, 53, 57, 65, 73, 79] reported 
participant sex. Fifty-three studies reported mean age 
(ranging from 8 to 75 years) [3, 4, 8, 9, 11, 13, 16, 18, 
22, 30–36, 38, 40, 43–46, 48, 50, 51, 54–56, 58, 59, 
61–64, 67–72, 74, 75, 77, 82–84, 86–90, 93, 94], and 
51 reported age standard deviation [3, 4, 8, 9, 11, 13, 
16, 18, 22, 30–36, 38, 40, 43–46, 48, 50, 51, 54–56, 58, 
59, 61–64, 68–72, 74, 75, 77, 82–84, 86–90, 94]. Fifty-
four studies reported minimum age (ranging from 2 to 
69 years), maximum age (ranging from 7 to 87 years), 
and age range (2 to 87 years) [3–5, 9, 11, 16, 18, 20, 21, 
30–34, 36–42, 46, 48–50, 52, 54, 55, 59, 60, 63–68, 70, 
72, 74, 75, 77, 78, 80–84, 88–94]. Fifty-three studies 
reported mean height (ranging from 100.9 to 187.8 cm) 
and 52 reported height standard deviation [3, 4, 8, 9, 
11, 16, 18, 22, 30–32, 35, 36, 38, 39, 41–52, 54–56, 58, 
59, 61–64, 68–72, 74, 75, 84–91, 93, 94]. Fifty-four 
studies reported mean weight (ranging from 15.7 to 
111.8  kg) and 53 reported weight standard deviation 
[3, 4, 8, 9, 11, 16, 18, 22, 30–33, 35, 36, 38, 39, 41–52, 
54–56, 58, 59, 61–64, 68–72, 74, 75, 84–91, 93, 94]. 
Twenty-four studies reported BMI mean (ranging from 
15.2 to 32.9  kg/m2), and 23 reported standard devia-
tion [18, 20, 21, 34, 35, 41, 43–45, 47, 50, 52, 54, 55, 

61, 68, 70–72, 74, 75, 89, 93, 94]. Twenty-three studies 
reported participant ethnicity/cultural background [3, 
4, 11, 13, 31–33, 35, 40–42, 44, 55, 59–61, 63, 64, 68, 
76, 77, 80, 88].

Scanning conditions
Sixty-seven of the included studies performed 3D sur-
face scanning of participants in bipedal stance (half 
bodyweight) [3, 4, 9, 11, 13, 16, 18, 20–22, 30–37, 39–45, 
47, 48, 50–54, 56–59, 61–75, 78–82, 84–86, 88–95], 11 
studies with partial/semi weightbearing (seated/stand-
ing) [22, 43, 52, 59, 70–72, 83, 84, 86, 90], six studies in 
unipedal stance (full bodyweight) [18, 57, 59, 75, 84, 90], 
five studies in non-weightbearing (prone/supine) [4, 30, 
34, 46, 57], and two studies with external bodyweight [36, 
57]. Nine studies did not report the weightbearing con-
dition [5, 8, 38, 49, 55, 60, 76, 77, 87]. Thirty-nine stud-
ies reported performing scans bilaterally [3, 5, 9, 11, 13, 
18, 20–22, 30, 31, 33, 37, 40, 43, 44, 50, 52, 53, 55, 56, 58, 
59, 61, 62, 65, 69, 70, 72, 73, 76, 77, 79, 86–88, 91, 92, 95] 
and 32 reported unilateral scanning [4, 16, 32, 34, 35, 39, 
41, 42, 45–49, 51, 63, 64, 66–68, 71, 74, 75, 78, 80–85, 89, 
90, 93]. Seventeen studies provided a justification if uni-
lateral scanning was performed (random, dominant, left, 
right, most painful) [16, 34, 45, 63, 64, 67, 68, 74, 75, 81, 
82, 84, 85, 89, 90, 93, 94]. Thirty studies analysed the right 
foot only [4, 9, 16, 32, 35, 39, 41–45, 47–49, 51, 63, 64, 
68–71, 78, 80–84, 89, 92, 93], 30 analysed both feet [3, 5, 
8, 11, 13, 18, 21, 22, 31, 33, 37, 40, 50, 52, 53, 55, 56, 58, 
59, 61, 65, 72, 73, 75–77, 86–88, 91], and three analysed 
the left foot only [67, 85, 90]. Forty studies reported scan-
ning the foot in a barefoot condition [3, 9, 16, 20–22, 30, 
32–34, 36, 39, 40, 43–45, 47, 48, 52–55, 59, 64–72, 74, 81, 
83, 84, 86, 92, 94, 95], while one study reported the use 
of socks/hosiery [46]. Twenty-eight studies reported the 
number of scans per foot (ranging from two to 15 scans) 
[4, 16, 18, 21, 22, 33, 34, 36, 39, 50, 52–55, 63, 64, 66, 68, 
69, 71, 72, 75, 78, 86, 88, 90–92]. Thirty-three studies 
reported the use of scanning markers [3, 13, 16, 32–34, 
39, 40, 42, 44, 48, 50, 51, 54, 55, 59, 61, 63, 64, 67–69, 71, 
72, 77, 80–84, 86, 88, 91] and 12 used markerless scan-
ning [20, 30, 46, 47, 52, 53, 75, 79, 92–95]. Thirty studies 
reported the number of markers used in their scanning 
process, which included a range of one to 14 markers [3, 
16, 32–34, 39, 40, 42, 44, 48, 50, 51, 54, 55, 59, 61, 63, 64, 
67–69, 71, 72, 80–84, 86, 91]. Except for four studies [22, 
34, 46, 92], static platform scanners were used. Fifty-nine 
studies captured at or above malleolar level [3, 8, 11, 16, 
18, 22, 30–34, 37–42, 44, 46–50, 53–59, 61, 62, 64, 66–69, 
72–77, 79, 81–95], six studies captured the plantar sur-
face only [4, 20, 21, 52, 65, 78], and thirteen studies did 
not report the depth of scan [5, 9, 13, 35, 36, 43, 45, 51, 
60, 63, 70, 71, 80].
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Scanner specifications
Seventy-two of the included studies reported the 3D 
scanner model. Twenty-five studies used the INFOOT 
USB scanning system (IFU-S-01, I-Ware Laboratory Co., 
Ltd, Japan) [3, 8, 33, 40, 41, 44, 50, 54–56, 58, 61, 63, 64, 
68, 76, 77, 80–82, 85, 87–89, 91], seven used the YETI 
foot scanner (Vorum Research Corporation, Canada) [38, 
48, 51, 59, 66, 67, 73], four used the Microsoft® Kinect 
[11, 20, 21, 53], four used the 3D easy-foot-scan (Ortho-
Baltic, Kaunas, Lithuania) [35, 36, 47, 62], three used the 
FSN-2100 (Dream GP Inc., Osaka, Japan) [43, 45, 70], 
two used the FotoScan 3D scanner (Precision 3D Lim-
ited, United Kingdom) [89, 94], two used the FootIn3D 
(Elinvision, Lithuania) [18, 90], and 25 studies reported 
using other scanner models not used in any other study 
included in this review [4, 9, 13, 16, 22, 30, 34, 37, 39, 42, 
46, 49, 52, 69, 71, 72, 74, 75, 78, 79, 83, 86, 92, 93, 95]. 
Sixty-one studies reported the scanner type. Forty-two 
studies stated the use of a laser scanner [3–5, 9, 18, 33, 
36, 38, 40, 43–45, 47, 48, 50–52, 54–59, 61, 63–65, 67, 
68, 70, 72, 73, 79–82, 84, 85, 87, 89, 91, 93], eight studies 
stated the use of a structured/projected light scanner [16, 
34, 37, 74, 75, 78, 89, 92], 11 studies stated other scan-
ner types (RGB-depth camera, smartphone [LiDAR], and 
author own custom devices) [11, 20–22, 30, 32, 39, 41, 
42, 46, 86], and 18 studies did not state a scanner type [8, 
13, 31, 35, 49, 53, 60, 62, 66, 69, 71, 76, 77, 83, 88, 90, 94, 
95]. Forty-five studies reported scanner accuracy, with 
a range of < 0.2 to 3.4 mm [3–5, 9, 11, 16, 18, 21, 30, 31, 
33–35, 37, 40, 44, 46, 47, 49–55, 58, 59, 62–64, 68, 69, 71, 
73–75, 78, 83, 84, 86, 89, 90, 92–94]. Thirty-two studies 

reported scanner resolution [4, 13, 16, 18, 21, 30, 33–37, 
40, 43, 46–48, 51, 56, 58, 59, 70, 72–75, 78, 82–85, 88, 90, 
92]. Thirty-four studies reported scanner capture dura-
tion (ranging from 0.1 to 30  s) [3, 4, 16, 18, 21, 30, 32, 
34, 37, 39, 40, 42–47, 49, 50, 52–54, 59, 63, 64, 68, 70, 72, 
78, 84, 90–92, 95]. Eleven studies performed independent 
testing for scanner accuracy [21, 39, 49, 53, 59, 69, 71, 75, 
78, 86, 91].

Scanner reliability and calibration methods
Twenty-seven studies reported 3D scanner intra-rater 
(test–retest) reliability [20–22, 30–34, 37, 39, 40, 46, 49, 
53, 59, 69, 71, 73, 75, 78, 82, 86, 88, 90–93]. Two stud-
ies reported scanner inter-rater reliability [90, 93]. Four-
teen  studies reported scanner calibration methods [22, 
30, 33, 37, 39, 49, 57, 59, 78, 83, 84, 86, 89, 93].

Foot dimensions measured
A wide range of foot measures to quantify foot shape were 
reported within the included studies (see Fig. 2). Sixty-five 
studies measured foot length [3–5, 8, 9, 11, 13, 20–22, 30–
38, 40–44, 46–50, 53, 55–64, 66–77, 79–82, 84, 85, 87–89, 
91, 93–95], 64 studies measured ball width/breadth [3–5, 
9, 11, 13, 20–22, 30–35, 37, 39–44, 46–50, 53, 55–64, 
66–77, 79, 81–89, 91, 93–95], 51 studies measured ball 
girth [3, 5, 11, 22, 30–33, 37, 38, 40–44, 47–49, 53, 55–57, 
59, 61–77, 79, 82–89, 91, 93], 51 studies measured instep 
height [4, 8, 13, 20, 21, 30–34, 38, 40–44, 47–50, 54, 55, 
57–59, 61–64, 67–75, 78–84, 89, 91, 93–95], 43 studies 
measured heel width [8, 9, 13, 30–33, 40–44, 46–48, 55, 
57–59, 61, 63, 64, 66–69, 71–76, 79, 81, 83–86, 89, 91, 93, 

Fig. 2 Frequency of reported 3D foot scan dimensions from the included papers
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95], 43 studies measured length to first metatarsal head 
(medial arch length) [13, 21, 30–34, 40–44, 47, 48, 50, 54–
57, 59, 61–64, 67–71, 73–76, 79, 80, 83–86, 88, 89, 91, 93], 
38 studies measured instep girth [8, 22, 30–34, 37, 38, 40–
44, 47–50, 55, 56, 61–64, 66–68, 72, 75–77, 79, 82, 84, 86, 
87, 89, 91], 27 studies measured length to fifth metatar-
sal head (lateral arch length) [13, 32, 33, 40, 41, 43, 44, 47, 
50, 55, 56, 61, 63, 64, 68–71, 73–75, 79, 84, 88, 89, 91, 93], 
20 studies measured first toe angle [33, 35, 39–41, 43, 44, 
47, 50, 61, 63, 64, 69–72, 74–76, 91], 20 studies measured 
malleolus/sphyrion height [8, 30–32, 41, 42, 44, 46, 48, 49, 
55, 57, 59, 61, 73, 76, 81, 83, 84, 91], 19 studies measured 
toe height [8, 13, 32, 33, 41, 42, 57, 61, 63, 64, 68, 72, 73, 
76, 81–84, 89], 17 studies measured fifth toe angle [33, 
39, 40, 43, 44, 50, 61, 63, 64, 69–72, 74–76, 91], 13 studies 
measured instep width [21, 30, 31, 48, 56, 58, 59, 67, 78, 
79, 83–85], 13 studies measured ball height [33, 37, 39, 40, 
42, 50, 55, 61, 73–75, 91, 93], 13 studies measured navicu-
lar height (sitting/standing) [34, 41, 42, 50, 55, 61, 63, 69, 
71, 72, 76, 80, 91], 12 studies measured short heel girth 
[5, 30, 32, 37, 41, 44, 48, 55, 67, 76, 82, 87], eight studies 
measured ankle girth [30, 32, 42, 48, 49, 73, 79, 87], six 
studies measured heel angle (frontal plane) [69, 71, 73, 76, 
91, 94], six studies measured ball angle [32, 74, 75, 79, 83, 
84], five studies measured long heel girth [30, 34, 48, 67, 
86], three studies measured flare angle [11, 58, 85], and 
two studies measured toe length [50, 84]. Figure 3 shows 
the most commonly reported foot dimensions.

IEEE and ISO reporting
Thirteen studies cited the ISO standards [33, 35, 39, 47, 
49, 50, 57, 63, 64, 68, 80, 82, 88]. No studies cited the 
IEEE whitepaper standards.

Processing techniques and software used
Nineteen studies reported the processing techniques 
used. Sixteen studies used meshing [11, 16, 18, 20, 37, 
39, 49, 52, 65, 79, 82, 88, 90, 92, 94, 95], 11 studies used 
smoothing [20, 35–37, 42, 47, 58, 78, 85, 92, 94], six stud-
ies used scaling [18, 44, 46, 79, 82, 90], and four studies 
used cropping [18, 79, 85, 93].

Statistical analysis techniques
Forty-three studies reported analysing mean differences 
(i.e., t-tests or ANOVAs) [3–5, 8, 9, 11, 22, 32–36, 39–41, 
43–45, 47, 48, 50, 52, 54–56, 59–62, 68–72, 75, 76, 80, 83, 
86, 87, 89, 91, 93], 24 studies reported analysing associa-
tions (i.e., Pearson’s r, Spearman’s rho, or intraclass corre-
lation coefficients) [5, 9, 11, 16, 20, 22, 32–34, 40, 41, 43, 
45, 49, 51, 52, 55, 58, 75, 78, 80, 84, 87, 91], and 20 studies 
reported performing cluster analysis (i.e., principal com-
ponents analysis [PCA] or k-means) [11, 13, 16, 18, 20, 
31, 32, 38, 42, 51, 56, 58, 63, 64, 68, 73, 78, 85, 87, 90].

Discussion
The purpose of this scoping review was to provide a 
description of the methodological and statistical analysis 
protocols used in 3D surface scanning of the foot. Over-
all, the included literature highlights large variability of 
methods used in 3D foot scanning. We identified four 
key areas that showed variability and paucity of report-
ing between 3D scanning methods, these included the 
wide range of scanners used (model, type, specifications), 
scanner condition protocols (weightbearing condition, 
markers used, number of scans, unilateral/bilateral, 
barefoot/socks), statistical analysis techniques, and foot 
measures used. Additionally, the literature included a 
broad range of participants (height, weight, age, sex, 
sport, medical condition); however, studies were heavily 
skewed to include healthy young adults of Chinese her-
itage. The predominance of young adults from Chinese 
heritage may be due to most studies being conducted in 
China and using a convenience sample. Furthermore, the 
included studies lacked data on pathological foot shapes 
(hallux valgus and osteoarthritis). This underlines the 
need for a consistent approach in reporting methods for 
future 3D surface scanning research.

The available evidence incorporated several 3D scan-
ning models and associated scanning types to collect 3D 
foot shape data. The most common type of scanning sys-
tem was laser scanning, with the INFOOT USB scanning 
system (IFU-S-01, I-Ware Laboratory Co., Ltd, Japan) 
being the most frequently used (see Fig.  4). However, a 
large proportion of studies did not report the scanning 
type or scanner model. Authors may have not considered 
this detail to be of high importance to the methods or 
aims of the study. Additionally, another reason may have 
been due to the scanner being the authors’ own custom 
design. A likely explanation for the variability of model 
selection is scanner cost with several studies using low-
cost scanners such as smartphone cameras [22] and the 
Microsoft Kinect motion sensor [53]. Across studies, 3D 
scanner price ranged from approximately $200USD for a 
depth sensor (Microsoft® Kinect) to $20,000USD for the 
INFOOT USB scanning system, with the latter poten-
tially not being economically viable for many researchers. 
The reporting of scanner accuracy, resolution, and cap-
ture duration were also highly variable between studies. 
For example, scanner accuracy, resolution, and capture 
duration were only reported in 39 (50%), 25 (32%), and 28 
(35%) studies, respectively. Additionally, resolution was 
reported in several different ways, these included width 
x height (pixels), megapixels (width x height divided by 1 
million), or total point clouds at intervals per cross sec-
tion of foot length (mm) [48, 56, 84]. The variability in 
capture duration reporting was evident between studies. 
Capture duration is an important specification to include 
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in the scanner selection process as shape data distortion 
can be minimised with faster capture speeds [96]. Cur-
rently, it is difficult for current and future researchers 

to select the best suited scanner model as there is a 
lack of consistency and clarity in reporting of these 
specifications.

Fig. 3 The most frequently reported 3D foot scan dimensions from the included papers. A: foot length (FL), B: ball width, C: ball girth, D: instep 
height, E: heel width, F: length to first metatarsal head, G: instep girth
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Scanner reliability was scarcely reported, with only 21 
of the 78 (26%) studies performing test–retest reliabil-
ity and 13 (17%) reporting scanner calibration methods. 
This may be problematic as potential technical error of 
measurement of the observer conducting the scan could 
occur, and may not be identified without reliability and 
scanner calibration being performed prior to data collec-
tion [88]. Similarly, there was considerable variation in 
the number of foot scans performed per participant. Two 
studies examined reliability and validity of the INFOOT 
3D scanner using three repeat scans per participant [91, 
97]. This showed very good to excellent reliability for 
most measurements and a strong correlation between the 
scanner and both x-ray and clinical measurements [91].

Variability in weightbearing condition definitions were 
evident among the included studies. The description 
for semi/partial weightbearing and non-weightbearing 

were inconsistent. The IEEE define non-weightbearing 
as “the foot is in the air when measured not supporting 
any bodyweight” [24]. Several studies reported the par-
ticipant in a non-weightbearing condition; however, the 
described position involved the participant resting their 
foot on the 3D scanner (in a seated or reclined position). 
This inconsistency would result in some weight trans-
fer through the foot, with authors reporting this weight 
being up to 1% of the participant bodyweight [84]. As a 
result, this positioning cannot truly be classified as non-
weightbearing and instead represents a partial/semi 
weightbearing condition. Additionally, the term ‘minimal 
weightbearing’ has been used by authors to describe the 
semi/partial weightbearing condition [90]. Since length, 
width, and arch height have been shown to vary in dif-
ferent weightbearing conditions [57] and the largest inter 
and intra operator foot shape differences occur in semi/
partial bodyweight scans [90], it is important to have 
accurate descriptions of the participant scanning condi-
tion. Furthermore, there is no current definition for the 
external body weight condition or a specific protocol of 
how to collect external body weight scans. For example, 
authors calibrated external weight (using iron bars) and 
placed into vest pockets [36], while others used pressure 
sensors under toughened glass [57]. The IEEE definitions 
for weightbearing postures are shown in Fig. 5.

The types of marker placement (manual and virtual/
automatic) were inconsistent between studies. Both 
methods have their limitations. The manual method is 
time consuming and relies on an experienced investigator 
to accurately palpate anatomical landmarks. Automatic 
marker placement is faster, although there may be errors 
during software estimation of landmark positions [75, 
98]. There was also considerable variability in the number 
of markers used. Some studies simply used two manual 
markers to identify the first and fifth metatarsal heads, 
then used software to estimate the other landmarks (vir-
tual and manual) [50]. Conversely, other authors used up 
to 14 manual markers to identify anatomical landmarks 
critical for shoe fitting [81]. The use of unilateral and 
bilateral scanning was comparable within the included 
studies, with 50% and 41% of studies using bilateral and 
unilateral scanning, respectively. Several studies found 
differences between the left and right foot. The differ-
ences largely involved arch height, which was theorised 
to be related to foot dominance [50, 70]. These findings 
indicate that unilateral scanning has the potential to miss 
key foot shape information involving the midfoot/arch 
area. Furthermore, this may be more apparent in popu-
lations with unilateral foot pathology (e.g., hallux and 
osteoarthritis).

While all studies included in this review used 3D scan-
ning technology and several authors applied PCA to 

Fig. 4 The INFOOT USB scanning system (IFU-S-01, I-Ware Laboratory 
Co., Ltd, Japan), the most frequently reported 3D scanner from the 
included papers
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determine foot shape, most studies performed PCA by 
extracting simple 1D or 2D measures (e.g., length, width, 
and girth measurements) from the 3D foot scan [13, 42]. 
This is commonly performed by predetermining the 
measures from all participants prior to obtaining the 3D 
scan, then comparing the measurement variations across 
the range of foot scans. This technique reduces the ability 
to utilise the rich shape data provided by 3D scan [99], 
resulting in the acquisition of incomplete foot shape data 
and attempting to infer 3D characteristics of the foot 
from 1D or 2D measurements. A more sophisticated 
approach was reported by Stanković et al, who collected 
3D point cloud data from the scans and performed PCA 
by aligning mesh vertices to determine shape differences 
[18]. This means that the shape information that can-
not be inferred from 1D or 2D measures are included to 
achieve a more accurate representation of the variability 
in foot morphology regardless of foot size (see Fig. 6).

Twenty-two scanning measures were identified 
that satisfied our inclusion criteria of being reported 
in at least two studies. There was high variability in 
foot measure descriptor terminology and definitions 
across the included studies. This resulted in multiple 

descriptors being used for the same foot measure-
ment. For example, ball width (a term used by the 
IEEE) has been described within the included studies 
as ‘ball breadth’, ‘forefoot width/breadth’, ‘linear width’, 
‘ball section width/breadth’, ‘metatarsophalangeal joint 
width’, ‘stick width’, and ‘diagonal width’, and several 
descriptors have been used to identify foot length from 
the posterior aspect of the heel to the first metatarsal 
head, including ‘instep length’, ‘arch length’, ‘heel-to-
ball-length’, ‘ball of foot length’, ‘medial ball reach’, and 
‘medial arch length’. We also found that definitions of 
the same foot measure varied depending on the scan-
ner model and definition of the foot axis used. The ISO 
has created standards for 3D body scanning; however, 
foot length and width are the only included foot meas-
ures [23]. Additionally, only 13 (17%) of the included 
studies cited the use of these standards. The IEEE 
whitepaper [24] has collated several key descriptors 
and definitions based on various 3D scanner models 
to improve reporting consistency; however, no studies 
in this review cited the use of this resource. Further-
more, the IEEE whitepaper does not currently include a 
definition for ‘heel (frontal plane) angle’ and ‘navicular 

Fig. 5 Diagrammatic representations of the most frequently reported 3D foot scanning postures from the included papers. A: half-weightbearing 
(bipedal), B: fully weightbearing (unipedal), C: non-weightbearing, D: partial weightbearing (seated), E: partial weightbearing, seated, inclined plane
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height’ and therefore no collective definition for these 
measures currently exists.

This review has several strengths. Firstly, we con-
ducted a rigorous search strategy with the assistance of 
a research librarian (NP) to ensure optimum coverage 
of the available literature. Secondly, two independent 
reviewers were involved in the title and abstract screen-
ing and data extraction, with any conflicts being resolved 
by a third reviewer. Thirdly, we followed the Joanna 
Briggs Institute methodology for scoping reviews and 
used a standardised template for the extraction, analy-
sis, and presentation of results [100]. However, the find-
ings of this review should be interpreted in the context 
of the following key limitations. First, we did not include 
non-English publications in this review. Second, despite 
there being international standards, a wide range of foot 
measurement descriptors and definitions were used, 
so comparisons between studies were difficult. The dif-
ficulty in comparing foot descriptors and definitions 
was largely due to the limitations of the available litera-
ture. Third, due to limiting the included studies to ten 
participants, there could have been techniques missed 
from the excluded papers involving less than ten partici-
pants. Finally, a quality assessment of individual studies 
was not performed. However, this is considered optional 
when undertaking a scoping review and would not have 
been feasible considering the variability of study designs 
included.

Recommendations
This review highlights the need for consistent reporting 
of 3D  foot scanning protocols. There were inconsisten-
cies in reporting of several key areas which were high-
lighted between studies, these included reporting of the 

equipment used (type, model, scanner specifications), 
scanning conditions (markers, weightbearing, number 
of scans, unilateral versus bilateral), and definitions and 
descriptions of scanner measurements. Additionally, 
the statistical analysis approaches used throughout the 
literature are highly variable with many studies utilis-
ing techniques that may not optimise the shape analysis 
capabilities of 3D scanning technology. Although inter-
national standards (ISO and IEEE) exist, they were not 
widely adopted in the included studies. Based on the 
findings of this review, we have developed a consistent 
reporting method (CRITIC 16 item checklist - Consistent 
ReportIng Three-dimensIonal sCanning) for the identi-
fied areas above to help improve protocol transparency 
and reporting consistency between studies (see Table 1). 
The accurate reporting and improved protocol transpar-
ency has implications for holding researchers accounta-
ble for collecting reliable, repeatable, and accurate data to 
enhance industry products, which has never been more 
important in the 3D scanning space due to the increasing 
accessibility of 3D scanning technology.

Conclusions
The paper provides an overview of 3D  foot scanning 
methodological and statistical analysis protocols. It 
can be concluded that inadequate reporting and lack 
of consistency in 3D foot scanning methodological and 
statistical analysis protocols exists. Despite the avail-
ability of international standards for 3D foot scanning, 
few studies utilised this resource and consequently 
there is a lack of homogeneity between scanning pro-
tocols. Additionally, the need for utilisation of optimal 
statistical analysis techniques of a diverse population 
group to quantify foot shape is needed. The improved 

Fig. 6 The use of principal components analysis of 3D point cloud data to identify shape differences between females and males. Image adapted 
from Stankovic et al. (J Foot Ankle Res 2018;11:8)
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consistency of 3D foot scanning methodologies and uti-
lisation of more sophisticated statistical analysis tech-
niques could enhance data pooling and collaboration 
between researchers. As a result, larger sample sizes, 
diversification of population groups, and simultaneous 
data collection could be obtained to enhance the quan-
tification of foot shape and facilitate the development 
of improved orthotic and footwear products.
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