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We have computationally studied the properties of higher-order magnetic anisotropy constants in an
L10/A1-FePt core-shell system which is characterized by a strong second-order two-ion Fe-Pt anisotropy
component. We show that the core-shell structure induces an unexpected fourth-order anisotropy constant
K2, the magnitude of which varies nonmonotonically with the core-size ratio R reaching a peak at R ≈ 0.50.
Furthermore, we find that K2 scales with the normalized magnetization by (M/Ms )2.2 at temperatures below the
Curie temperature, a remarkable deviation from the established Callen-Callen theory which instead predicts a
scaling exponent of 10. We construct an analytic model which demonstrates K2 arises from the canting of the core
and shell magnetization, and successfully reproduces and justifies the scaling exponent obtained from numerical
simulation.

DOI: 10.1103/PhysRevB.107.L041410

Heat-assisted magnetic recording (HAMR) is emerging as
the next-generation approach for magnetic recording [1,2].
The functioning of HAMR requires the writing medium to
be made of a magnetic material with high anisotropy and
low Curie temperature. FePt in the L10 phase satisfies this
requirement, and thus has been studied extensively for poten-
tial HAMR applications [3,4]. As prepared, bulk-alloy FePt
generally exists in the A1 phase in which Fe and Pt atoms
are randomly distributed, thus resulting in a low magnetic
anisotropy. However, at high temperatures FePt can undergo
a transition to the ordered L10 phase [5], sketched in Fig. 1.
The exceptionally large magnetocrystalline anisotropy of L10-
FePt stems from a hybridzation between the 3d Fe and 5d Pt
orbitals along the [001] crystal direction [6–11] which brings
into play the strong spin-orbit coupling of the Pt, resulting in
a dominant two-ion anisotropy component [12,13] in addition
to the local single-site anisotropy.

Measurements of the second-order anisotropy constant K1

in bulk L10-FePt using a simple angular form of the magnetic
anisotropy energy function, E = K1 sin2 θ , have generally
been consistent and well established [12–17], with values for
the magnetic anisotropy energy as high as 6.2 MJ/m3 [17]. On
the contrary, a consensus on the existence and the significance
of the fourth-order anisotropy constant K2 is lacking. Previous
studies have arrived at conflicting conclusions where K2 has
been argued to be a misinterpretation [17], negligibly small
compared to K1 [16], or non-negligible [12]. In addition, a
further issue drawing attention is a reported deviation of the
scaling of K2 [16] from the classical Callen-Callen power
law [18] which, interestingly, has also been observed in other
materials [19,20].

*Corresponding author: btn500@york.ac.uk

Furthermore, a recent study by Sepehri-Amin et al. [21]
on L10-FePt thin films discovered an effect of Pt enrichment
on the film surface regardless of the FePt composition, which
subsequently was shown to distort the ordered structure of the
L10 phase and thus reduce the magnetocrystalline anisotropy
of the FePt grains. This phenomenon is manifested via a heavy
intermixing of Fe atoms and Pt atoms on the grain surface.
The proportions of Fe and Pt atoms at various distances from
the grain surface are shown to be dependent on grain size.
The intermixing between Fe and Pt atoms at the grain surface
compromises the chemical ordering of the L10-FePt grain,
thus reducing the uniaxial anisotropy. The impact of this Pt
segregation is found to be more pronounced in grains smaller
than 15 nm, which is detrimental for HAMR where smaller
grain sizes are desired. The varying relative proportion of the
two L10/A1 phases has also been seen to affect the uniax-
ial magnetic anisotropy in previous experimental studies of
phase-graded thin films [22]. The effect of Pt surface segre-
gation in a phase-graded FePt system, therefore, necessitates
an investigation into quantifying the impact of L10/A1 phase
composition to the anisotropy of L10-FePt.

In this Letter we present a computational study using
an atomistic model showing the existence of a fourth-order
anisotropy component of phase-coupled L10/A1-FePt core-
shell grains which are specifically constructed to replicate the
aforementioned Pt surface segregation effect. We propose an
analytic model to explain the properties of this fourth-order
anisotropy and show that the applicability of our analytic
model can be extended to a generic nanocomposite material
with soft-hard magnetic interlayers.

We construct elongated FePt grains with faceted surfaces
following the method of Moreno et al. [23] which closely
resemble realistic ones found in a typical HAMR recording
medium [21]. The grains are elongated along the [001] lat-
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FIG. 1. The crystal structures of FePt: (a) the disordered A1-fcc
bulk-alloy Fe0.5Pt0.5 and (b) ordered L10-fct. Dark and light spheres
indicate Fe and Pt atoms, respectively. Cross-sectional views of the
simulated L10/A1 core-shell grains with core-size ratios (c) R =
0.80, (d) R = 0.60, and (e) R = 0.40 showing different volume frac-
tions of the ordered and disordered phases. The core ordered region
in each cross section is indicated by the shaded area.

tice direction by a shape factor of 1.5. In order to replicate
the effect of Pt surface segregation, the grains are structured
with a core made of the ordered L10-phase FePt surrounded
by a disordered A1-phase FePt shell. The grain size is fixed
at 8 nm × 8 nm × 12 nm. The diameter of the core can be
freely adjusted so as to reproduce varying degrees of ordering
through a surface coupling effect between the L10 and A1
phase. The fractional core size R of the grain is defined as
R = dshell/dgrain, where dcore is the core diameter and dgrain

the entire grain diameter. In simulations R is varied between
0.05 and 0.95. The lower and upper bounds of R represent
two extreme cases: When R = 0.05 the L10 core consists of
only one single atom, while when R = 0.95 the grain has only
one atomistic layer of the A1 shell. Cross-sectional views of
the core-shell grains with various core sizes R are shown in
Fig. 1. The unit cell of the fct L10-FePt is slightly compressed
on the c axis [24–26] while that of the fcc A1-FePt is not. For
simulation efficiency and without altering any physical prop-
erties, a common unit cell is implemented for both phases with
a uniform cubic shape and a lattice spacing of a = 0.3795
nm obtained from experiments and consistent with previous
computational studies [25–28].

Our simulations are carried out using the VAMPIRE atom-
istic simulation software package [29,30] using a constrained
Monte Carlo (CMC) integrator [31]. The system magnetiza-
tion can be constrained at an angle θ to the easy axis which is
oriented along the z direction. At temperatures varying from
0 to 1000 K, a full angular sweep is performed for θ from
0◦ to 180◦. The anisotropy constants are computed via the
angular-dependent restoring torque ∂E (θ )/∂θ [31–33]. For
a uniaxial system, E (θ ) can be expressed as a power series,
E = E0 + K1 sin2(θ ) + K2 sin4(θ ) + · · · , where the constant
E0 can usually be omitted and K1 and K2 are the second- and
fourth-order anisotropy constants, respectively. Therefore, by

TABLE I. Core-shell simulation parameters.

Parameter Notation Unit L10 phase A1 phase

Atomistic spin moment μs μB 3.23 3.23
Local anisotropy kloc meV/atom −0.097 0
Two-ion anisotropy k2ion meV/atom 1.427 0
Total exchange [36] J0 J/link 3 × 10−21 3 × 10−21

CMC equilibration steps 2 × 105 2 × 105

CMC total step 8 × 105 8 × 105

fitting to the torque computed from simulation output, the
values of anisotropy constant(s) can be determined.

The spin Hamiltonian of the core-shell simulations is the
sum of the respective Hamiltonian of the L10-phase core and
of the A1-phase shell H = Hcore + Hshell which, following
the standard Heisenberg form, includes the exchange and
anisotropy components without an external magnetic field B
term. In general the exchange can be written in tensor form
−(Ŝi )T J̃i j Ŝ j , where the J̃i j encapsulates anisotropic ex-
change and the Dzyaloshinskii-Moriya interaction. In the case
of the A1 phase of FePt the exchange is isotropic while for the
L10 phase the exchange is anisotropic and can be expressed
[34] as the sum of a diagonal tensor plus a two-ion anisotropy
term J̃i j = Ji j + 2K2ion. The Hamiltonian of the core and
of the shell are given as follows,

Hcore = −1

2

∑
i, j∈tn

ŜT
i (Ji j + 2K2ion )Ŝ j − kL10

loc

∑
i∈tn

(
Ŝz

i

)2
,

Hshell = −1

2

∑
i, j∈tn

ŜT
i Ji j Ŝ j − kA1

loc

∑
i∈tn

(
Ŝz

i

)2
, (1)

where Ŝi and Ŝ j are spin unit vectors, Ji j the (isotropic)
exchange energy tensor between pair (i, j) within the
truncated-neighbor range tn, and kA1

loc and kL10
loc the local,

in-plane single-site anisotropy of the respective phase, the
numerical values of which in simulations are respectively set
to 0 [35] and −0.097 meV/atom [34]. Unlike the exchange,
the expression for anisotropy does not have to avoid dou-
ble counting, thus explaining the prefactor 2 of K2ion which
cancels out the summation prefactor 1/2. In FePt, the ex-
change interaction Ji j extends further than strictly nearest
neighbors. However, since the exchange interaction strength
decreases rapidly with increasing distance between neighbor-
ing atoms, a reasonably good model includes the exchange
interactions truncated after the next-next-nearest neighbors.
The calculation of the truncated Ji j and K2ion is described
in Supplemental Material Sec. S1 [36] which yields a Curie
temperature of around 700 K for both ordered and disordered
phases, comparable with experiment [37]. Numerical values
of exchange energy, anisotropies, and other simulation pa-
rameters are tabulated in Table I. Simulations are repeated ten
times to compute statistical values.

The magnetocrystalline anisotropy energy, if assumed to
include only a second-order anisotropy term E = K1 sin2(θ ),
would imply a restoring torque τ (θ ) ∝ sin(2θ ). However, our
simulation results [a sample shown in Fig. 2(a)] demonstrate
that a fit (dashed line) to the calculated torque is noticeably
skewed from the simulation data (solid symbols). In contrast,
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FIG. 2. (a) Fitting to the torque τ for a core size R = 0.50 at
10 K displays a clear deviation from simulation data (solid symbols)
if including only a second-order anisotropy term (dashed line), but
matches better if adding a fourth-order anisotropy term (solid line).
(b) The canting of the core and shell magnetization with analytic fits.

when a fourth-order anisotropy term is added, i.e., E (θ ) =
K1 sin2(θ ) + K2 sin4(θ ), the new torque fit (solid line) now
matches the simulated data extremely well. The discernible
skewing of the torque curve in comparison to a simple sin(2θ )
profile has been observed, without explanation, in a previous
experimental study on FePt granular films [38]. In our sim-
ulations, however, the skewed torque curves in Fig. 2(a) are
a clear indicator of the existence of a significant fourth-order
anisotropy component in the core-shell grains.

The magnitude of the temperature-dependent fourth-order
anisotropy K2, expressed via the K2/K1 ratio, is found to be
dependent on the core size R with a nonmonotonic variation.
Low-temperature data in Fig. 3 indicate that the magnitude of
K2 can be significant (exceeding 20% of K1) if the proportions
of the two phases are comparable, or insignificant (just a few
percent of K1) if one phase dominates. This result is intriguing
because it essentially recaptures conflicting observations in
the literature [12,16]. Additionally, the classical Callen-Callen
power law [18] predicts the scaling behavior K2 ∝ (M/Ms)10,
where (M/Ms) is the magnetization normalized against the
saturated magnetization Ms at 0 K. However, our simulation
results conclusively contradict this prediction. The inset of
Fig. 4 shows an example of K2 scaling obtained from simula-
tion for R = 0.70 from which we find β ≈ 2.3 only. Overall,
the scaling exponent β is found to be consistently lower than
the Callen-Callen predicted value of 10. The variation of β

for K2 as a function of R (in Fig. 4) generally conforms to

FIG. 3. The dependence of the anisotropy magnitude ratio K2/K1

on the core size R. Symbols are the numerically determined values
from atomistic simulations and the solid line is the predicted analytic
value

2 � β � 3 with exceptions seen in the two extreme cases
R = 0.05 and R � 0.80.

To discuss these two key results, we propose a simple
analytic model which we show can explain the origin and
behaviors of the fourth-order anisotropy constant K2 in not
only our simulated FePt core-shell system but also a generic
material with soft-hard magnetic interlayers. A full descrip-
tion of the analytic model is provided in the Supplemental
Material Sec. S2 [36], with the main points outlined as fol-
lows. The fundamental observation [illustrated in Fig. 2(b)] is
that there exists a canting between the core and shell magne-
tization which minimizes the total (interlayer exchange and
anisotropy) energy of the system. Consider a general core-
shell system in which the core is made of a hard-magnetic
material having an out-of-plane uniaxial anisotropy ku (per
atom) and the shell a soft-magnetic material with negligible
uniaxial anisotropy and, for simplicity, assume coherent mag-
netization in both core and shell. To minimize the system
total magnetic energy E , the constrained angles of the mag-
netization θh and θs of the hard- and soft-magnetic phase are
allowed to deviate from the overall constraint angle θ by δθh

and δθs, respectively, which are sufficiently small to be treated

FIG. 4. Variation of the scaling exponent β of the fourth-order
anisotropy constant K2 as a function of the core size R with an inset
showing an example of K2 scaling to the normalized magnetization
M/Ms for R = 0.70 with a scaling exponent β = 2.326 ± 0.013.
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as perturbations. Then E can be expressed as

E = kuNc sin2(θ + δθh) − JNint cos(δθh − δθs), (2)

where Nc and Nint are the number of spins in the core and the
core/shell interface, respectively, and J the exchange integral.
The first term in Eq. (2) is an anisotropy term and the second
an interlayer exchange term which describes the exchange
coupling between the core spins and the shell spins. Since
θh and θs are the averaged contributions of all spins in each
respective phase, their proportional sum must result in the
system θ . Hence, Eq. (2) must be minimized subject to

f cos θh + (1 − f ) cos θs − cos θ = 0, (3)

where f = Nc/Ntot is the fractional volume of the hard phase
with Ntot being the total number of spins in the system. Note
that for regular geometries, the geometry-independent vari-
ables Nc, Nint, and Ntot can be replaced by the core volume Vc,
the interface area Acs, and the total volume Vtot, respectively.
Substitute θh = θ + δθh and θs = θ + δθs into Eq. (3) and
solve to first-order approximation:

δθs = − f

1 − f
δθh = − Nc/Ntot

1 − Nc/Ntot
δθh. (4)

Analytic fits following from Eq. (4) for both the geometry-
dependent case f = Vc/Vtot and the geometry-independent
case f = Nc/Ntot are shown in Fig. 2(b). Because of
the faceted shape of the simulated core-shell system, the
geometry-dependent fit is seen to deviate from simulation data
from R ≈ 0.75 while the geometry-independent fit matches
the entire data range extremely well. Minimizing Eq. (2)
subject to the constraint Eq. (3) leads to an expression
of E which explicitly includes both a second-order and a
fourth-order anisotropy term, the magnitude ratio of which is
given by

K2

K1
≈ 2kuNc

JNint

(
1 − Nc

Ntot

)2

. (5)

To expand the model, consider cases similar to the sim-
ulated core-shell FePt in which the dominant part of the
core uniaxial anisotropy ku comes from a two-ion anisotropy.
This necessitates two further considerations. First, the two-ion
anisotropy is lost on the core/shell interface because of the
loss of Pt neighbors from the next-immediate atomistic layer
of the shell. Second, when the core is small, the in-plane
anisotropy becomes dominant because of vanishing two-ion
anisotropy at the core surface. Taking the simulated core-shell
FePt as an example, the in-plane anisotropy is the sum of the
local single-site anisotropies of the L10 and A1 phase, i.e.,
kip = kL10

loc + kA1
loc = −0.097 meV/atom, and manifests in the

extreme case R = 0.05 in Fig. 3 from which K2/K1 is seen to
become negative. Incorporating these two extra considerations
into the first term of Eq. (2) transforms its prefactor kuNc

to [ku(Nc − Nint ) + kipNc], which subsequently modifies the
expression in Eq. (5) to

K2

K1
≈ 2kuNc

JNint

(
1 − Nint

Nc
+ kip

ku

)(
1 − Nc

Ntot

)2

. (6)

Figure 3 shows the variation of K2/K1 with R at low
temperatures in which analytic predictions (solid line) are
compared with simulation data (symbols). Both analytic and

numerical variations share a similar nonmonotonic form with
a peak attained at R ≈ 0.55. The agreement for R � 0.5 is
extremely good, while for R < 0.5 the K2/K1 values appear to
be slightly overestimated by the analytic model. Nonetheless
the overall agreement is highly satisfactory, which supports
the hypothesis that the fourth-order anisotropy arises from the
core/shell spin canting and the exchange energy contribution
at the core/shell interface.

Furthermore, the scaling exponent 2 � β � 3 of K2 to
M/Ms as shown in Fig. 4 can now be explained. Our ana-
lytic model finds that K2 ∝ (ku)2/J (with a detailed derivation
given in the Supplemental Material Sec. S2 [36]). It has
been established for L10-FePt that ku ∝ (M/Ms)2.1 [34,39–
44] and J ∝ (M/Ms)2 via mean-field calculations [45,46].
The resulting scaling, therefore, reads K2 ∝ (M/Ms)2.2, thus
reproducing β ≈ 2.2 in good agreement with simulation re-
sults. Finally, deviations from the analytic model for the two
extreme cases R = 0.05 and R � 0.80 can be explained from
the previously mentioned inherent nature of the grain struc-
ture in the respective cases. In the R = 0.05 case, the L10

core is so small that it consists of a single Fe atom which
means the two-ion anisotropy component of the L10 phase
completely vanishes, leaving the core with just the negative
in-plane single-site Fe anisotropy. This explains the negative
ratio K2/K1 at R = 0.05 as seen in Fig. 3. Meanwhile, for the
R � 0.80 case, the A1 shell is so thin that it has exactly one
or two atomistic layers, hence invalidating the fundamental
premise of the analytic calculations which assumes interac-
tions up to the next-next-nearest neighbors. Hence, β of the
R � 0.80 case was seen in Fig. 4 to increase exponentially
in the β � 3 range, albeit still significantly lower than the
Callen-Callen’s predicted value of 10.

In summary, we have presented a comprehensive study of
higher-order anisotropy in a phase-coupled L10/A1-FePt core-
shell system. A fourth-order anisotropy is found to exist due
to a combination of the canting of the core and shell magne-
tization and the exchange coupling at the core/shell interface.
This fourth-order anisotropy is demonstrated to exhibit a
strong dependence on the system geometry and scale with
(M/Ms)2.2, which does not conform with the Callen-Callen
power law. We formulate an analytic model to explain the
origin and behaviors of this different fourth-order anisotropy
from which a high level of agreement with numerical sim-
ulation is achieved. Overall, our findings provide substantial
insights into a topic that has otherwise been lacking attention.
Because anisotropy decides thermal stability of the writing
medium, the significance of fourth-order anisotropy of L10-
FePt can potentially translate to an issue of consideration
for HAMR-related applications. Although investigated in the
particular case of an L10/A1-FePt core-shell structure, the
analytic model presented is valid for any combination of
soft-hard materials. The phenomenon should therefore be ob-
servable in a wide variety of systems.
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