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Transition to turbulence in high speed flows is determined by multiple parameters,
many of which are not fully understood, leading to problems in developing physics-
based prediction methods. In this contribution, we compare transition mechanisms in
configurations with unswept and swept leading-edges that are exposed to freestream
acoustic disturbances. Direct numerical simulations are run at a Mach number of six with
the same freestream noise, consisting of either fast or slow acoustic disturbances, with
two different amplitudes to explore the linear and nonlinear aspects of receptivity and
transition. For the unswept configuration, receptivity follows an established mechanism
involving synchronisation of fast acoustic disturbances with boundary-layer modes. At
high forcing amplitudes, transition proceeds via the formation of streaks and their
eventual breakdown. In the swept case, the process of streak-induced transition is
modified by the presence of a crossflow instability in the leading edge region. Linear
stability analysis confirms the presence of a crossflow mode as well as weaker first and
second mode waves. Both fast and slow types of forcing independently stimulate an
unusual transition mechanism involving significantly narrower streaks than those arising
from the crossflow instability behind the swept leading edge or those induced nonlinearly
in the unswept case. In the observed transition process, the crossflow mode leads to a
thin layer of streamwise vorticity that breaks up under the influence of high-spanwise
wavenumber disturbances. These disturbances first appear in the leading-edge region.

Key words:

1. Introduction

The prediction of laminar-turbulent transition is a key factor in the aero-thermal
design of hypersonic vehicles. Transition has a dramatic effect on skin friction and heat
transfer rates on the surface of a body flying at hypersonic speeds, and it is necessary to
understand the physical mechanisms involved in order to be able to accurately predict
the transition point. The main route from the laminar to turbulent state, in the case
of small amplitude environmental disturbances, can be summarised in the following
three fundamental processes: a) receptivity, b) eigenmode growth of instabilities and
c) nonlinear breakdown to turbulence.

The whole process leading to breakdown depends on the initial conditions established
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by the receptivity mechanism. The receptivity process is, in turn, affected by parameters
related to the flow conditions, such as the Mach and Reynolds numbers, and by the nature
of the external environmental disturbances as well as local geometrical features such as
nose bluntness, surface roughness and waviness.The natural receptivity, in particular,
concerns the generation of boundary-layer disturbances by means of the environmental
disturbance field, including acoustic, vorticity and entropy waves (Saric et al. 2002).
For subsonic flows, the wavelengths and phase speeds of the external disturbances are
in general much different to those of the internal modes, i.e. the external waves and
the boundary-layer modes are de-synchronised (Nishioka & Morkovin 1986). Hence, in
this case a process of energy transfer from the wavelength of the forcing to that of the
generated internal wave is needed. This wavelength-conversion mechanism, for a certain
frequency, is promoted in regions of short-scale streamwise variations of the mean flow,
including the leading edge, as well as regions with high curvature such as roughness and
wall humps, as described by Goldstein & Hultgren (1989). At hypersonic Mach numbers,
however, the small difference in phase speed between the forcing waves and the dominant
boundary-layer modes can lead to a direct excitation of these modes via a resonance
mechanism near the leading edge (Fedorov & Khokhlov 2001; Fedorov 2003; Zhong &
Ma 2006; Zhong & Wang 2012), without the need for a wavelength-conversion mechanism.
This does not imply that in hypersonic flows a wavelength-conversion mechanism at the
leading-edge does not exist, but only that it is not needed for the generation of the
internal boundary-layer modes, as it is essentially ‘bypassed’ by a resonance mechanism
occurring near the leading egde. This resonance mechanism was introduced by Fedorov
& Khokhlov (2001), whose results refer to nominally zero-pressure-gradient flows, for
example just past the leading edge, and describe the receptivity mechanism in the so-
called ‘upstream’ region, i.e. the region preceding the excitation of the second instability
mode.

According to the theoretical results of Fedorov & Khokhlov (2001), receptivity at
hypersonic speeds can be divided into two alternative processes based on either a) the
receptivity to fast acoustic or entropy or vorticity waves, or b) the receptivity to slow
acoustic waves. When the first class of waves interact with the boundary layer, a stable
mode (the so called fast mode, or mode F, according to the Fedorov (2003) notation) is
generated at the leading edge by direct resonant interaction (or synchronisation) with
the forcing waves. This mode, whose phase speed gradually decreases in the streamwise
direction, is at first strongly excited in the early nose region, but then decays when it
is no longer synchronised with the phase speed of the forcing waves. During its decay,
the fast mode enters a modulation process with the external waves, as shown by Ma &
Zhong (2005), and, further downstream, leads to the excitation of a lower phase-speed
boundary-layer instability mode (denoted as mode S, or slow mode, since its phase speed
is close to the value of slow acoustic waves), belonging to the class of Mack modes
(Mack 1984). Among the higher-frequency Mack modes, the second mode was found to
play a major role in the transition process of hypersonic boundary layers by Stetson
et al. (1984). In this case, the excitation of the unstable mode (mode S) was initially
due to a synchronisation process with the decaying fast mode (mode F). In the case of
slow acoustic waves, in contrast, mode S can be directly generated at the leading edge
through the resonance mechanism with the slow acoustic waves. The subsequent growth
of instability modes is usually taken to be predictable using established tools such as
the Parabolised Stability Equations (PSE), as was demonstrated by Malik & Balakumar
(2007) for a blunt flat plate at Mach number 3.5.

In the case of freestream high-amplitude disturbances, nonlinearities can lead to a rapid
transition to turbulence. In some conditions, transition occurs as a result of transient
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growth, whose related mechanism in hypersonic flows, similarly to what was found in
low-speed flows (Andersson et al. 2001; Brandt & Henningson 2002), is associated with
the conversion of streamwise vorticity into streamwise streaks via a lift-up effect, as was
shown by Paredes et al. (2016a,b,c) for flat-plate and circular-cone flows at hypersonic
Mach numbers. Another possibility is based on oblique transition (Berlin & Henningson
1999), in which the response to oblique freestream waves in combination with a nonlinear
mechanism was found to be a powerful process, characterised by non-modal growth of
the disturbances and requiring lower initial amplitudes compared to the case of transition
caused by two-dimensional TS and second mode instabilities.

Three-dimensional boundary layers, e.g. on swept wings or axisymmetric cones at
an angle of incidence, can include additional instability modes, which are linked to
inflectional crossflow boundary-layer profiles. Boundary layers in the presence of crossflow
instabilities have been studied extensively in low-speed flows, e.g. in the works of Kohama
(1987), Reed & Saric (1989), Bippes (1999), White & Saric (2005). The final breakdown
to turbulence is then caused further downstream by the development of high-frequency
secondary instabilities of the deformed mean flow (Kohama 1987; Malik et al. 1999;
White & Saric 2005). Crossflow instabilities include both stationary and travelling
waves (Choudhari 1994). The stationary modes are usually associated with surface
roughness, whereas the travelling modes are linked to vortical freestream disturbances
and are expected to be dominant in noisy environments. Travelling crossflow waves
are usually found in a relatively low frequency range. Borg et al. (2015), for example,
detected linearly growing travelling waves in quiet conditions, with a peak centred at
45 kHz, in their Mach 6 experiment over a scaled model of the Hypersonic International
Research Experimentation Program’s Five (HIFiRE-5) elliptic cone in the Mach 6 Purdue
quiet tunnel. In another experimental study at hypersonic conditions, Craig & Saric
(2016) considered flow over a 7◦ right circular cone at 5.6◦ angle of attack in the
Mach 6 quiet tunnel at Texas A&M University. Consistent with the low-speed findings,
they observed stationary vortices growing and significantly deforming the mean flow,
and then attenuating after reaching nonlinear saturation. Moreover, they measured
unsteady fluctuations in two different frequency bands of 15-60 kHz and 80-130 kHz. The
disturbances in the lower frequency band were attributed to growing travelling crossflow
waves, whereas those in the high-frequency band were identified as secondary instabilities.
Similar results were obtained experimentally by Ward et al. (2015) for a Mach 6 flow
over a yawed circular cone. Again high-frequency secondary instability was identified
as being the cause for the breakdown of the stationary vortices, but disturbances in a
lower frequency range of 40-50 kHz, were also detected as and associated with travelling
crossflow modes.

From a theoretical and simulation perspective, the works of Choudhari et al. (2013),
based on linear/nonlinear parabolised stability equations, and of Li et al. (2014), based
on secondary instability theory, PSE and DNS results, have shed light on the important
role played by the growth of the secondary instabilities of primary travelling crossflow
waves, as a viable transition scenario when the initial amplitudes of the travelling waves
are comparable to those of the stationary modes. The amplification characteristics of
secondary instabilities originating from stationary crossflow modes over a circular cone
at moderate angle of incidence were investigated by Li et al. (2016) by quasi-parallel
stability theory and PSE. In their computations, stationary vortices were excited to finite
amplitudes by an azimuthally periodic array of roughness elements. Results showed that
secondary instabilities may originate from different unstable modes, which were identified
as strongly modulated travelling crossflow waves (found in two different frequency bands
with peak below 100 kHz, namely 14 kHz and 93 kHz), higher-frequency Mack modes,
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and secondary instabilities. Travelling waves and Mack modes are instabilities of the
unperturbed flow, but are so strongly modulated by the presence of the stationary
vortices that they lose their original characteristics and evolve downstream, effectively
as secondary instabilities of the primary stationary modes.

Further stability calculations and direct numerical simulations of crossflow instabilities
have been carried out for swept wings, circular cones at an angle of attack, and elliptic
cones. Balakumar & Owens (2010) and Balakumar & King (2012) reported substantially
higher amplification (N) factors for travelling crossflow waves compared to stationary
waves in flows over a circular cone at 6◦ angle of attack, a swept cylinder and a swept
wing with sharp and blunt leading edge. DNS results of Bartkowicz et al. (2010), for
Mach 8 flow over the HIFiRE-5 elliptic cone model, showed the evolution of a system of
streamwise vortices forming next to the centreline bulge at different Reynolds numbers,
and associated these vortices with stationary crossflow waves. The addition of acoustic
noise caused unsteady waves to form on top of the vortices, causing their breakdown
at the highest Reynolds numbers. More recent DNS simulations of Dinzl & Candler
(2017) showed a difference between the centreline system of vortices and the crossflow
vortices generated by surface roughness. Recent studies based on BiGlobal linear stability
analysis (Paredes & Theofilis 2015; Paredes et al. 2016d) conducted on the HIFiRE-5
geometry confirmed the dominant role played by the crossflow instabilities in the off-
centreline region, as well as the presence of different instability modes occurring along the
centreline bulge, as was first identified by Choudhari et al. (2009). These centreline modes
can explain the strong disturbance growth observed in the computations of Bartkowicz
et al. (2010) along the centreline. Experiments (Juliano et al. 2015) have confirmed the
presence of both centreline and off-centreline transition in noisy conditions.

Previous work on crossflow-induced transition in hypersonic boundary layers has often
considered fully three-dimensional cases, in which it is difficult to separate out the
fundamental aspects from those that are geometry-specific, such as the centreline modes
on elliptic cones. In the present contribution we consider a planar leading-edge geometry
(a cylinder-wedge combination) in which, by definition, the base flow does not vary in
the spanwise direction. We present DNS of the complete transition process in unswept
and swept configurations. The simulations start from acoustic free-stream disturbance,
which are known to be the dominant type of disturbance in hypersonic wind tunnels,
as reported by previous experimental works (Schneider 2001, 2008, 2013; Masutti et al.
2012; Parziale et al. 2014), and more recently confirmed by the numerical study of Duan
et al. (2014) and the combined experimental-numerical study of Wagner et al. (2018).
Simulations are carried out for fast and slow acoustic disturbances as well as for two
different amplitudes to identify key nonlinear aspects. Section 2 details the methodology.
Section 3 shows the results for unswept cases, which at low amplitude confirms the
receptivity mechanism and at high amplitudes shows a streak-based breakdown process.
Section 4 provides results and interpretation for the swept cases. Key findings of this
section include the identification of a previously-unseen breakdown scenario in the swept
case that involves high wavenumber streamwise structures that serve to break down the
flow faster than sinuous or varicose secondary instabilities of the primary crossflow mode.
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2. Methodology

2.1. Governing equations

We consider numerical solutions of the three-dimensional Navier-Stokes equations for
compressible flows, written in conservation form, under the assumption of calorically
perfect gas. The non-dimensional conservation equations in Cartesian coordinates can be
written as

∂Q

∂t
+
∂Fj
∂xj

= 0 , (2.1)

where Q and Fj are vectors containing the conservative variables and the fluxes respec-
tively, given by

Q =


ρ
ρu
ρv
ρw
ρE

 , (2.2)

Fj =


ρuj

ρuuj + δ1jp− 1
Reτ1j

ρvuj + δ2jp− 1
Reτ2j

ρwuj + δ3jp− 1
Reτ3j

ρ
(
E + p

ρ

)
uj − 1

Re

(
uτ1j + vτ2j + wτ3j + µ

(γ−1)PrM2
∂T
∂xj

)

 . (2.3)

The velocity components (u, v, w) are normalised by the freestream main velocity (U∗∞),
while the density (ρ), temperature (T ), and dynamic viscosity (µ) are normalised by
their corresponding freestream value, namely ρ∗∞, T ∗∞, µ∗∞ respectively. The normalisation
factor used for the pressure (p) and viscous stresses (τij) is ρ∗∞U

∗2
∞ , whereas the freestream

kinetic energy per unit mass (U∗2∞ ) is used to normalise the specific total energy (E). The
characteristic length scale in the simulations is represented by the nose radius (R∗), with
the Reynolds number defined as Re = (ρ∗∞U

∗
∞R

∗)/µ∗∞. The fluid-dynamic characteristic
time is R∗/U∗∞. The Prandtl number is set to Pr = 0.72, and the specific heat ratio is
γ = 1.4.

The dynamic viscosity is, in turn, expressed in terms of temperature by Sutherland’s
law

µ = T 3/2 1 + C

T + C
, (2.4)

where the constant C represents the ratio between the Sutherland’s constant (set to
110.4 K) and the freestream reference temperature (T ∗∞ = 51.7K). The viscous stresses
are defined in terms of the velocity derivatives, under the assumption of a Newtonian
fluid, as

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

]
. (2.5)

We also need a relation linking the total energy (per unit mass) to the temperature,
which in non-dimensional form can be expressed as

E =
T

γ(γ − 1)M2
+

1

2

(
u2 + v2 + w2

)
. (2.6)

Finally, the system of equations is closed by the dimensionless equation of state for a
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perfect gas

p =
1

γM2
ρT . (2.7)

The system of equations in Cartesian coordinates is transformed into a system of
equations in curvilinear coordinates (ξ, η, ζ) as

∂Q̄

∂t
+
∂F̄j
∂ξj

= 0 . (2.8)

The relations between the vectors in curvilinear and Cartesian coordinates are expressed
by

Q̄ = JQ, F̄j = JFi
∂ξj
∂xi

, (2.9)

with J = det ||∂(x, y, z)/∂(ξ, η, ζ)|| being the Jacobian of the transformation matrix.

2.2. Code features

The code we use to carry out our DNS computations is the SBLI (Shock-Boundary-
Layer-Interaction) code, developed over a number of years at the University of Southamp-
ton. In order to perform the computations for compressible flows in the presence of shock
waves, the SBLI code uses a shock-capturing method, which is applied as a filter step
to the solution obtained through the base scheme at the end of each time integration
step. The base scheme is, in turn, based on a fourth-order central finite difference scheme
for space discretisation, including the same order boundary treatment (Carpenter et al.
1999) and makes use of an entropy-splitting method (Sandham et al. 2002) to improve the
nonlinear stability of the high-order central scheme. For time integration, a third-order
Runge-Kutta scheme is used. The shock-capturing scheme consists of a second-order TVD
(total variation diminishing)-type algorithm, with a particular compression method (Yee
et al. 1999), which restricts the artificial dissipation to the shock region, thus providing
minimum dissipation in the smooth regions. The scheme is supplemented with the Ducros
sensor (Ducros et al. 1999), which turns off the artificial dissipation in vortical regions
(i.e. the boundary layer). A favourable feature of this sensor is that it does not require
any a-priori knowledge of the shock position. The code works using MPI libraries, and
has been set up to run in parallel, by dividing the domain into a number of sub-domains,
and assigning each of them to a particular processor. Validations of the code can be
found in the work of De Tullio et al. (2013), where DNS results are compared with PSE
(Parabolised Stability Equations) results for the case of transition induced by a discrete
roughness element in a boundary layer at Mach 2.5, and in Cerminara (2017) for the
specific case of hypersonic flow over blunt leading edges. The latter included a grid study
based on the solution of the multi-frequency pressure fluctuation distribution along the
wall for a Mach 6 flow between three grid levels. This study confirmed the suitability of
the grid size used for the present problem.

2.3. Linear Stability Analysis

The linear stability analysis was performed using the NoSTRANA (Nonlocal Stability
and Transitional Analysis) code by Sansica (2015), whose validity was verified against the
results of the reference work of Malik (1990). The code solves the linearised Navier-Stokes
equations, based on a normal mode ansatz

q′(x, y, z, t) = q̂(y) · ei(αx+βz−ωt) , (2.10)
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in which q̂(y) represents the eigenvector, containing the eigenfunctions ρ̂(y), û(y), v̂(y),
ŵ(y), and T̂ (y), α is the streamwise wavenumber, β the spanwise wavenumber, and
ω is the angular frequency. For local linear stability analysis, we define y as the wall-
normal direction and z as the spanwise direction (parallel to the leading edge), with x
perpendicular to both of these. It should be noted that this is different to the co-ordinate
system defined later for the DNS, but we prefer not to over-complicate the notation here.
The linear system of partial differential equations reduces to a linear system of ordinary
differential equations

Lq̂ = ωKq̂ , (2.11)

where L is a matrix containing the y-dependent coefficients of the system, the wavenum-
bers α, β, and the y-derivatives of the components of the variable vector q̂; while K is a
diagonal matrix containing the terms arising from the time derivative of the complex
exponential function in equation 2.10. Sansica (2015) derives all the components of
the matrices L and K in the system of equations 2.11, and gives a description of the
Chebyshev discretisation method. The solution of this eigensystem provides eigenvalues
and corresponding eigenvectors. In the present work we focus on results from the temporal
formulation, in which real values for the streamwise and spanwise wavenumbers are
imposed and the eigenvalues ω are computed. The real part (ωr) represents the angular
frequency, while the imaginary part (ωi) represents the temporal growth rate. Temporal
growth rates can be transformed into spatial growth rates using Gaster’s relation

αi = −ωi/cg, (2.12)

where

cg =
∂ωr
∂αr

(2.13)

is the group velocity. The relation is exact for neutral modes and accurate for weak growth
rates of the kind seen in the present study. A confirmation of this will be provided later
in the paper.

2.4. Computational domain

The geometry consists of a cylinder-wedge shaped wall boundary, with a non-
dimensional nose radius of R = 1 and a half-wedge angle of 4◦, based on the wedge
probe investigated in Wagner et al. (2018). The main dimensions (normalised with the
nose radius) of the 3D computational domain, shown in Figure 1a, are Lx = 1000 along
the x-axis, Ly = 352 along the y-axis, and Lz = 55 along the z-axis. The grid size used
for the numerical simulations is Nx × Ny × Nz = 7920 × 150 × 100. The distribution
of the grid points in the wall-normal direction is controlled through a function that
provides clustering in the shock region and towards the wall, in order to solve the
captured shock wave and the boundary layer, as can be observed in Figure 1a. Figure
1b shows the computed Mach number field in a xy−plane. An iterative procedure is
used to fit the shape of the computational domain with the computed shock, in order to
reduce shock-grid misalignment. The grid points are also clustered in the x-direction to
provide higher resolution near the leading edge, to resolve the strong bow shock and the
local non-parallel effects in this region, and the streamwise variation of the wall-normal
grid point distribution is controlled to better resolve the developing boundary layer.
At x = (200, 400, 600), the 99% boundary-layer thickness is δ99 = (13.16, 15.68, 17.7)
and the number of grid points within the boundary-layer is (45, 37, 33) resulting in a
near-wall spacing to boundary-layer thickness ratio of (0.0057, 0.006, 0.007). The grid
design methodology is described in more detail in Cerminara (2017).
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(a) mesh

(b) Mach number field

Figure 1: View of the computational domain in a xy-plane (a), and computed Mach
number field (b). Note that the mesh has been plotted every 4 points in the y direction
and every 40 points in the x direction

A grid study is shown in figure 2, based on the solution at different x-positions of the
boundary-layer Mach number profile for two different grids. Grid 1 refers to a coarser
grid in the wall region, whereas grid 2 uses optimised grid stretching to provide higher
resolution in the near-wall region. Figure 2 shows that a good agreement is reached at
all the x-positions between the different grids.

To better assess the suitability of the grid an additional grid sensitivity study was
conducted based on results from linear stability analysis. In particular, we considered
two reference streamwise positions, namely x = 259 and x = 940. The former represents
the peak location of mode F in frequency f6 wall-pressure response (with reference to
figure 6), whereas the latter is a downstream location where mode F II (i.e. the fast mode
in its second excitation cycle) is dominant over the other internal modes in frequency f10
response.

The boundary-layer profile of the baseflow solution obtained from DNS at both the
above mentioned locations for each grid is used as input profile for the local LST analyses.
The result of the LST analyses will then provide the grid sensitivity of the eigenvalues
and eigenfunctions. The local streamwise wavenumber of the fast acoustic waves outside
of the boundary layer (i.e. α = 2πfn/(ut,e + ae)), at both the frequencies f6 and f10, has
been used as input in the LST study at each position, with ut,e and ae being the local
normalised wall-tangential velocity and speed of sound at the boundary-layer edge.

The results for the eigenvalue (i.e. the temporal growth rate, ωi) and the eigenfunctions
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Figure 2: Grid study between two grids without (grid 1) and with (grid 2) near-wall
optimised grid stretching, for different x positions

relative to the relevant fast modes at each location, namely mode F at x = 259 and mode
F II at x = 940, have been obtained and compared between the different grids. The results
of the grid sensitivity study are reported in tables 1 and 2 for the temporal growth rates,
and in figure 3 for the eigenfunctions of the streamwise velocity and the temperature.
Values of the ratio of the near-wall spacing to the boundary-layer thickness are also
reported.

As can be seen, the near-wall resolution of grid 2 is about twice that of grid 1 at position
x = 259, and is almost triple that of grid 1 at position x = 940, thus highlighting
the effects of the above mentioned optimised grid stretching in the near-wall region.
We observe that the coarser grid provides a relative error in the temporal growth-rate
solution, with respect to the reference finer grid (grid 2), of about 0.87 % at position
x = 259, and about 11.3 % at position x = 940. The grid sensitivity study is further
assessed in figure 3, in which the eigenfunctions for the wall-tangential velocity and
temperature perturbations are plotted. For mode F at x = 259 the eigenfunctions vary
little between the grids. For mode F II at the position x = 940, both the two near-wall
peaks typical of mode F II are properly captured on the coarse grid, with the largest
disagreements near the boundary-layer edge. Considering that position x = 940 is close
to the end of the computational domain, and that the frequency of mode F II (f10)
is the highest in the frequency spectrum, the errors at this location are representative
of the worst case scenario. As such, considering that the receptivity process leading to
breakdown occurs much further upstream, the errors can be considered acceptable for
the purposes of the present study, in which all the simulations used the finer grid.

For the swept cases, with reference to the sketch in figure 4 and the illustration given
in figure 5, a sweep angle of Λ = 45◦, between the streamwise direction ξ of the flow
and the chordwise direction, perpendicular to the leading edge, is considered. At the
inflow, steady freestream quantities are specified, superimposed where appropriate with
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Grid ∆yw/δ99 α ωr ωi

Grid 1 0.0116 0.18865 0.2117 -0.0010765
Grid 2 0.006 0.18865 0.2119 -0.0010671

Table 1: Grid sensitivity result for the temporal growth rate: mode F at x = 259
associated to frequency f6, δ99 = 13.46

Grid ∆yw/δ99 α ωr ωi

Grid 1 0.026 0.26416 0.30925 -0.0009918
Grid 2 0.0096 0.26416 0.31062 -0.0008795

Table 2: Grid sensitivity result for the temporal growth rate: mode F II at x = 940
associated to frequency f10, δ99 = 19.22

time-dependent disturbances, as discussed in the next subsection. The reference velocity
U∞ is aligned with the streamwise direction ξ. At the solid surface, a no-slip condition
is applied to the velocity components, the temperature is set to the wall temperature
(T ∗w = 300 K). A symmetry condition is applied along the y = 0 line upstream of the
leading edge. At the outflow a zero gradient condition is applied along each grid line, while
in the spanwise direction a periodic boundary condition is applied. The initial condition
is taken as the freestream condition and the simulations are run for long enough to allow
any transient effect to wash through the domain.

2.5. Three-dimensional acoustic-wave model

The three-dimensional wave system consists of a main two-dimensional wave and
pairs of opposite-angle oblique waves of lower amplitude. The freestream perturbation
of the density as a function of time and Cartesian coordinates, for the case of multiple
frequencies, is expressed as

ρ′(x, z, t) =

M∑
m=0

N∑
n=1

Am cos (±βmz + φm,n) cos (αnx− ωnt+ ψn) , (β0 = φ0,n = 0) ,

(2.14)
where αn and βm are the wavenumbers, respectively, in the x and z directions, ωn is the
angular frequency, Am is the amplitude of each wave mode, φm,n and ψn are randomly
selected constant phase angles (an exception has to be made for m = 0, for which φm,n
is fixed to zero), N and M represent the total number of frequencies and (non-zero)
spanwise wavenumbers respectively, while the subscripts ‘m’ and ‘n’ indicate the mth

spanwise wave mode and the nth frequency respectively. In the present study N = 10,
indicating a spectrum of 10 different frequencies, and M = 2, with spanwise wavenumbers
given by βm = 2πm/Lz (with Lz = 55 being the length of the domain in the z direction).
N and M were chosen to capture the relevant unstable modes, relative to the range of
frequencies and wave angles, for the considered flow. Note that m = 0 provides a 2D wave
in the body reference system, as β0 = 0 and φ0,n = 0, namely a wave whose wave vector
is aligned with the x-axis of the body reference system. However, as x is perpendicular
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(a) Mode F (I) at the frequency f6, x = 259

(b) Mode F (II) at the frequency f10, x = 940

Figure 3: Grid sensitivity in terms of the eigenfunctions of the linear stability analysis.
Grid 1 and grid 2 are the coarser and the finer grid of the DNS baseflow solution,
respectively

(a) Top view of the surface on xz-plane (b) Wall profile on xy-plane

Figure 4: Sketch of a swept leading edge showing the orientation of the x axis in the
chordwise direction and the z axis in the spanwise direction, with the streamwise direction
ξ and the crossflow direction η shown for reference (a). Also shown is the surface profile
in the xy-plane at the leading edge (b)
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Figure 5: Illustrative example of an infinite swept leading edge (Λ = 45◦). The black lines
indicate the edges of the computational domain on the body surface in the xz-plane. The
contours are relative to a solution for the wall pressure fluctuations

to the leading edge, for swept cases such a wave mode (m = 0) represents an oblique
wave with respect to the streamwise direction, with an inclination angle equal to the
sweep angle (Λ) of the leading edge. An illustrative example of an infinite swept leading
edge and of the domain geometry is shown in figure 5. Here, the black lines represent the
edges of the computational domain on a xz-plane. Note that the x-axis is perpendicular
to the leading edge.

The wavenumber in the x-direction αn is linked to the angular frequency ωn through
the relation αn = ωn/(cosΛ± 1/M), with ωn = 2πfn, being fn the nth frequency of the
forcing spectrum. The term cosΛ± 1/M represents the dimensionless phase speed along
the x-axis of the freestream waves, where the plus sign indicates fast acoustic waves and
the minus sign stands for slow acoustic waves. Hence, an oblique acoustic wave travelling
with an inclination angle θxz with respect to the x-axis has a wavenumber α in the
x direction, equal to the corresponding wavenumber of the dominant 2D fast or slow
acoustic wave. The value of A0 determines the amplitude of the main 2D wave, while
the amplitude of each pair of oblique waves for m = 1, 2 is linked to that of the 2D
wave through the relation A1 = A2 = 1

2A0. For each non-zero spanwise wavenumber two
oblique acoustic waves with equal and opposite angles θxz are forced, and the amplitude
Am (for m = 1, 2) represents the sum of the amplitudes of the two opposite-angle waves,
such that each single oblique wave has an amplitude equal to 1

4A0.
The value of the inclination angle of the forced oblique waves in the xz-plane for each

spanwise wavenumber (m) and for each frequency (n) is given by

θm,nxz = ± arctan

(
βm
αn

)
. (2.15)

For the fast acoustic waves, the wave angle for the complete spectrum of oblique waves
spans a range from about 23◦ to 67◦, according to equation 2.15, whereas for slow acoustic
waves the range is from about 16◦ to 60◦. The most unstable oblique modes (e.g. the
oblique first modes) are included in these ranges, hence they can be captured by the
prescribed spectrum of streamwise and spanwise wavenumbers. Waves with a higher
wave angle (i.e. outside the considered ranges) are not expected to make a significant
contribution to the transition process.
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Finally, the vector of the conservative variables at the inflow boundary in the unsteady
3D computations is given by

QU =


ρ∞ + ρ′∞

(ρ∞ + ρ′∞)(u∞ + u′∞)
(ρ∞ + ρ′∞)(v∞ + v′∞)
(ρ∞ + ρ′∞)(w∞ + w′∞)
(ρ∞ + ρ′∞)(E∞ + E′∞)

 . (2.16)

Since the two opposite-angle waves travel in opposite directions along the z-axis,
their freestream z-velocity perturbation cancels, so that w′∞ = 0 identically. Also, the
freestream perturbation of the y-velocity component v′∞ is fixed to zero, as all the waves
are taken to travel in the direction parallel to the xz-plane. The dispersion relations
that link the velocity components, pressure and total energy fluctuations to the density
fluctuation are derived from the linearised Euler equations with the assumption of small
perturbations (Cerminara & Sandham 2015, 2017). These relations are as follows,

u′∞ =
1

M
ρ′∞ cos θxz , v

′
∞ = 0 , w′∞ = 0 , (2.17)

p′∞ =
1

M2
ρ′∞ , E′∞ =

1

M
ρ′∞

(
1

γM
+ cosΛ cos θxz

)
. (2.18)

These relations are consistent with those given in Egorov et al. (2006), as the same
normalisation for the pressure is used, i.e. p∞ = p∗∞/(ρ

∗
∞U

∗2
∞ ). Note that in other works,

e.g. in Zhong & Ma (2006), the normalisation of the pressure with the freestream pressure
leads to a different relation with the density fluctuation (i.e. p′∞ = γρ′∞).

2.6. Simulated cases

A total of ten numerical simulations have been carried out, as detailed in Table 3.
The lower Reynolds number cases (at Re = 1400 based on the nose radius) are used
to confirm the leading-edge receptivity to fast acoustic waves and check the influence of
the disturbance amplitude A∞. The higher Reynolds number, Re = 5625, is within the
range of the Reynolds numbers considered in the transition experiments of Durant et al.
(2015). The receptivity to both fast and slow acoustic waves is studied, and for each case
both higher amplitude and smaller amplitude freestream disturbances have been applied,
so that four cases have been run overall at this Reynolds number in an unswept Λ = 0◦

configuration. A further four cases, comprising fast and slow freestream acoustic waves
at two different amplitudes, have been run at the same Reynolds number for the swept
configuration. For each case the Mach number is M = 6, the freestream temperature is
set to T ∗∞ = 51.7 K. These conditions are intended to simulate the freestream conditions
of a typical low enthalpy hypersonic wind tunnel.

Different frequencies are inserted in the freestream forcing, according to equation 2.14,
with each frequency being an integer multiple of f0 = 3.509× 10−3. The frequency f is
already in the form of a dimensionless Strouhal number, f = f∗R∗/U∗∞. The spectrum of
the forced frequencies spans from f1 = 5f0 to f10 = 14f0. The non-dimensional frequency
in its standard definition, Fs = 2πf∗µ∗∞/(ρ

∗
∞U

∗2
∞ ), can be obtained from Fs = 2πf/Re.

The chosen frequency spectrum is partly based on linear stability studies conducted
by De Tullio & Sandham (2015) for a flow at Mach 6 over a flat plate with a Reynolds
number comparable with our Re = 1400 case. In particular, at this Reynolds number, the
frequencies from f5 to f10 covers the range of the most unstable second mode frequencies.
At the higher Reynolds number case, for a nose radius representative of the experimental
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Table 3: Settings of the numerical simulations
Case Re A∞ Λ (◦) type

1 1400 5×10−3 0 Fast
2 1400 5×10−2 0 Fast
3 5625 5×10−3 0 Fast
4 5625 5×10−2 0 Fast
5 5625 5×10−3 0 Slow
6 5625 5×10−2 0 Slow
7 5625 5×10−3 45 Fast
8 5625 5×10−2 45 Fast
9 5625 5×10−3 45 Slow

10 5625 5×10−2 45 Slow

probe tested in Durant et al. (2015), i.e. R∗ = 1.2mm, this frequency range covers the
frequency range typical of the unstable travelling crossflow waves (f∗ < 35 kHz), which
is relevant for the swept wedge case. The amplitudes of v′∞ and w′∞ are identically
zero in the freestream, as the imposed acoustic waves propagate in the xz-plane with
a 2D component (namely a wave oriented along the x-axis) and two pairs of oblique
waves with the same amplitude and opposite angles (namely θxz and −θxz). The present
configuration of the freestream disturbance allows the use of multiple streamwise and
spanwise wavenumbers of the acoustic waves, which can be kept fixed while the sweep
angle is changed, so that changes in the response can be ascribed to the effect of sweep.
In a wider parametric study one would also want to vary the incidence and side angles
and choose a wider selection of spanwise wavenumbers.

For each frequency, the freestream amplitude of the 2D wave (based on the density) is
set to A0 = 2.5 × 10−2 in the high-amplitude case, and to A0 = 2.5 × 10−3 in the low-
amplitude case. As described in Section 2.5, each oblique wave is set with an amplitude of
1/4 that of the main 2D wave, resulting in an amplitude of 1/2 for each pair of opposite-
angle oblique waves, namely A1 = A2 = 1.25 × 10−2 and A1 = A2 = 1.25 × 10−3 for
high and low amplitudes respectively. Hence, the overall maximum amplitude of the wave
system (i.e. A∞ = A0 +A1 +A2) is A∞ = 5× 10−2 and A∞ = 5× 10−3 for high and low
amplitudes respectively. The corresponding rms of the high-amplitude signal composed
by the 2D and oblique wave modes are 2 % and 2.8 % for the density and pressure
fluctuations respectively.

While it is not possible to match inflow disturbances of this form to any experiment, it
can be noted that the overall magnitude (5%) of the the inflow wave system for the high
amplitude is of the same order as that measured by Masutti et al. (2012) (4.9%) for the
density fluctuations in the Mach 6 blowdown facility at VKI. Within this overall level, the
3D modes have an amplitude (0.625 %) similar to the levels reported by Parziale et al.
(2014), who measured density levels of 0.5 % for the Mach 5.5 flow in a T5 reflected-shock
tunnel, Duan et al. (2014), who computed a value of 0.39 % for the pressure fluctuations
radiated by a turbulent boundary layer in a Mach 2.5 flow, and Wagner et al. (2018),
who estimated a similar value of 0.48 % for the noise in a Mach 3 flow in the case of
dominant slow acoustic waves, using a combined experimental-numerical approach.
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Figure 6: Wall pressure fluctuation amplitude for fast acoustic waves, at the frequencies
f6 and f10. A∞ = 5× 10−3, Case 1, 2D wave (β = 0)

3. Results for the unswept wedge

In this section we focus on the receptivity and breakdown mechanisms in the unswept
configuration using DNS and LST. Figure 6 shows an example of the wall-pressure
variations obtained from DNS for Case 1 listed in table 1. The time-dependent pressure
has been Fourier-transformed in time and the amplitudes are shown for two of the
frequencies that were forced at the inflow. In both cases we see an initial growth as
disturbances penetrate into the boundary layer, followed by oscillatory behaviour, which
has previously (Cerminara & Sandham 2017) been attributed to a modulation process
based on the presence of multiple boundary layer modes, consistent with the findings of
Ma & Zhong (2005) and Zhong & Ma (2006). Our initial objective is to place the observed
receptivity process in the context of the mechanisms identified in the theoretical work
of Fedorov & Khokhlov (2001), Fedorov (2003) and Fedorov (2011), and the simulation
work of Zhong (2001), Ma & Zhong (2003a), Ma & Zhong (2003b), Ma & Zhong (2005),
Zhong & Ma (2006), and Zhong & Wang (2012). We will then consider the nonlinear
stages of the breakdown process at higher Reynolds numbers for both fast and slow
acoustic disturbances.

3.1. Formation of boundary layer modes

Local stability analysis, based on the temporal approach, has been carried out at
different streamwise locations, corresponding to the frequencies f6 and f10 shown in
figure 6, for two-dimensional disturbances (i.e. β = 0). The streamwise wavenumbers
for the LST analysis were computed from αn = 2πfn/(ut,e + ae), where ut,e and ae
are respectively the local wall-tangential velocity component and speed of sound at the
boundary-layer edge at each considered x-location. The considered phase speed for the
LST analysis corresponds to the local fast-mode phase speed, thus resulting in the local
streamwise wavenumber of the fast acoustic waves outside the boundary layer (i.e. the
local forcing) being used as input for the LST analysis at all the streamwise locations at
both the frequencies f6 and f10. Figure 7 shows the spectrum of the complex eigenvalues
at different positions along the wedge for the frequency f10. Moving from low to high
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values of ωr in the spectrum corresponds to moving from low to high phase speeds(i.e.
the output phase speeds of the LST analysis). The two horizontal branches of modes at
ωi ≈ 0 positioned at the left and right extremes of the graph represent the slow and fast
acoustic wave continuous spectrum respectively. The branch of modes positioned in the
middle of the graph, at approximately ωr = 0.26, represents the entropy/vorticity wave
continuous spectrum.

Performing the LST analysis at several x positions is equivalent to tracking the
movement of some discrete modes of interest. The evolution of the discrete modes helps,
in turn, to understand the corresponding trend of the numerical pressure distribution
shown in figure 6. In particular, at the streamwise location corresponding to the first peak
(x ≈ 150) in the curve of the pressure response, figure 7 shows the presence of a discrete
stable mode close to the continuous spectrum of the fast acoustic waves (the blue asterisk
symbol, indicating the position x = 143, with ωr = 0.294). This mode corresponds to
mode F, which is synchronised with the forced fast acoustic waves in the leading-edge
region, thus experiencing a resonance-induced amplification (Fedorov & Khokhlov 2001),
as shown by the numerical results. However, as is evident in figure 7, mode F gradually
moves away from the fast acoustic wave continuous spectrum, corresponding to a de-
synchronisation process. This results in a downstream decay of the wall response, due to
the decay of mode F, which decreases its phase speed (as it moves towards lower values
of ωr) and becomes more stable (moving towards higher negative values of ωi).

The region x ≈ 250 − 500 is characterised by an oscillatory wall response in figure
6 (for frequency f10) that suggests a modulation process as mode F traverses the
entropy/vorticity wave continuous spectrum. Such a behaviour was previously observed
in Ma & Zhong (2003b), Ma & Zhong (2005), Zhong & Ma (2006) and Zhong & Wang
(2012), and described as a modulation between different competing modes, such as the
internal decayed mode F and the external mode of the forcing fast acoustic waves. At the
same time, another discrete mode, close to the slow acoustic wave continuous spectrum,
starts moving rapidly from very low values of ωi to higher values, becoming less stable
with increasing phase speed. This mode corresponds to mode S, which is excited due to
a synchronisation with the decaying mode F, after the latter has crossed the convected
wave continuous spectrum.

Upstream of x = 641 mode S corresponds still to the first (lower frequency) instability
mode, then for x > 641 mode S develops in a second (higher frequency) instability
mode (or Mack mode) (Mack 1984), which emerges as a consequence of the wavelength
exchange (or synchronisation) mechanism between mode F and mode S (Fedorov &
Khokhlov 2001; Fedorov 2003, 2011; Fedorov & Tumin 2011; Ma & Zhong 2003a,b,
2005; Zhong & Ma 2006; Zhong & Wang 2012). Further downstream, the Mack mode
shows a decreasing frequency (and phase speed), and becomes progressively less stable.
Downstream of x = 700 in figure 6, the f10 curve appears now much smoother than in the
previous modulation region, which indicates that there is a dominant mode in this region.
This mode grows as a consequence of a resonance, due to a (second) synchronisation with
the fast acoustic waves, consistent with the numerical results of Ma & Zhong (2003b),
Ma & Zhong (2005), Zhong & Ma (2006) and Zhong & Wang (2012). For this reason,
we refer to this mode as the second fast mode, or mode F II, combining both Fedorov’s
and Zhong’s notation (Fedorov 2011; Zhong & Wang 2012). The downstream evolution
of the second fast mode is represented by a short branch very close to the fast acoustic
wave continuous spectrum in the top right corner of figure 7.

Similar characteristics have been observed in the corresponding spectrum at the
frequency f6, with the difference that the evolution of the modes is delayed and extends
only up to approximately the position where mode F traverses the convected wave
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Figure 7: Spectrum of the eigenvalues at the frequency f10, 2D wave (β = 0)

continuous spectrum, as can be observed in figure 6. Thus, the evolution of the boundary-
layer modes at the higher frequencies is quicker than at the lower frequencies, and results
in the mode F - mode S wavelength exchange mechanism taking place closer to the
leading edge.

An alternative perspective on these processes is provided by figure 8, which shows a
comparison between the DNS and the LST phase speeds at both the frequencies f6 and
f10. Similar plots have been presented by Ma & Zhong (2003b), Ma & Zhong (2005),
Zhong & Ma (2006) and Zhong & Wang (2012). The phase speed from the DNS results
has been computed through the fast Fourier transformed wall pressure fluctuations, using
the relation for the streamwise wavenumber

α(x, f) = αr + iαi =
1

ip′w(x, f)

∂p′w(x, f)

∂x
, (3.1)

and then applying the relation cph = 2πf/αr. For both the frequencies, the numerical
phase speed (represented by blue and red solid lines for the frequencies f6 and f10
respectively) starts at a value of about 1.12 in the early nose region. This is slightly
lower than the local fast acoustic wave phase speed of about 1.16, which is attributed
to non-parallel effects in the early leading-edge region. For x > 100 both LST and DNS
follow the same decreasing trend and it can be concluded that the internal mode generated
at the leading edge is mode F.

Further downstream (for x > 200 at f10 and x > 400 at f6) an oscillatory behaviour
is seen in figure 8 that can be explained by mode F traversing the convected wave
continuous spectrum and entering a synchronisation process with the internal mode S.
Here, the numerical phase speed shows a rapid increase, and a second synchronisation
with the local fast acoustic waves is reached. Downstream of this synchronisation point
(x = 370 at the frequency f10, and x = 830 at the frequency f6), the numerical phase
speed no longer follows the LST result for mode F, but instead agrees very well with the
LST result for mode F II, as can be seen further downstream for the frequency f10 (for the
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Figure 8: Phase speed of the boundary-layer modes along the wall for the frequencies
f6 and f10. Comparison between DNS and LST results. The dotted horizontal blue
lines indicate the local phase-speed values of the fast and slow acoustic waves, and the
entropy/vorticity waves

lower frequency, f6, mode F II would be reached further downstream of the computational
domain outer edge). During the decay of mode F, when the phase speed drops below the
value of 0.9, strong oscillations of the numerical solution are observed, as a consequence
of the mode F phase speed approaching the phase speed of mode S, which results in an
initial growth of the latter, as shown by the LST curves representing mode S (blue and
red dash-dot curves with square symbols). These oscillations represent the modulation
process between the forcing fast acoustic waves and the decaying mode F, in the region
where the latter is synchronised with mode S. Downstream of the intersection point
between mode F and mode S LST phase speeds (i.e. the mode F - mode S synchronisation
point) at the frequency f10, the Mack mode is generated and develops downstream with
an initial decrease of the phase speed, as a continuation of the mode F branch, but with
increasing growth rate. These results are qualitatively in a very good agreement with the
results of Ma & Zhong (2005), Zhong & Ma (2006) and Zhong & Wang (2012).

A further comparison between the DNS and the LST results, including a more de-
tailed identification of the internal modes, is made by considering the eigenfunctions of
the different modes. Figure 9 shows the temperature T̂ and wall-tangential velocity û
eigenfunctions (normalised with the maximum inside the boundary layer as A/Amax)
for the frequency f6 at x = 259, which is the position from figure 6 where the first
peak of the wall pressure fluctuation amplitude is reached due to the resonance between
leading-edge fast-acoustic mode and mode F. At this position mode F is the dominant
mode inside the boundary layer, which is proved by the good agreement between the
DNS results for T̂ and û and the LST eigenfunctions for mode F. As can be seen, the
shape of mode F is characterised by a high peak near the wall. These results are also in
a good qualitative agreement with the numerical and LST results of Zhong (2001) for
the eigenfunctions of mode F. In the modulation regions the comparison between the
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Figure 9: Temperature and wall-tangential velocity eigenfunctions for the frequencies f6
at the position x = 259

DNS profiles and the eigenfunctions from the LST is not as good since no dominant
mode exists. In conclusion, the present numerical and theoretical results show the
main characteristics of Fedorov’s (Fedorov & Khokhlov 2001; Fedorov 2003) receptivity
mechanism for hypersonic boundary layers, and are in good qualitative agreement with
other theoretical and numerical studies available in the literature (Fedorov 2011; Ma &
Zhong 2005; Zhong 2001; Zhong & Ma 2006; Zhong & Wang 2012), for different flow
conditions.

3.2. Disturbance growth and breakdown mechanism

The DNS allows the transition process to be followed up to final breakdown to turbulence.
We start by illustrating the results of the 3D simulations for the cases at lower Reynolds
number with fast acoustic waves as freestream disturbances (case 1 and case 2 from table
3). Figures 10 and 11 show contours of the real part of the Fourier-transformed wall
pressure fluctuations at all the considered frequencies (from f1 at the top to f10 at the
bottom) for cases at lower (case 1) and higher (case 2) freestream disturbance amplitude
respectively. Moving from top to bottom in both figures, the effect of frequency on the
resonance mechanism can be seen, with the peak wall disturbance amplitude moving
towards the leading edge as the frequency is increased. In the lower amplitude case (figure
10) the wall disturbances appear to be dominated by a 2D mode through the whole length
of the computational domain. In contrast, in the higher amplitude case (figure 11) the 2D
mode seems to be the most amplified mode only in the leading-edge region and, once the
peak has been achieved, 3D modes (with non-zero spanwise wavenumber) emerge and
become the dominant structures further downstream. The solution in the nose region
(x = 0− 200) is similar between the two different amplitude cases at all the frequencies,
with the contour levels scaled by the same one order of magnitude as for the forcing. This
means that the solution can be reasonably considered as linear in the early region of the
computational domain. Further downstream, the solution becomes different between the
cases at different amplitude, meaning that nonlinear effects are no longer negligible. The
nonlinearity appears first in the form of long streaky structures that reduce the spanwise
coherence of the waves and are seen for all the considered frequencies.
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Figure 10: Real part of the Fourier transformed wall pressure fluctuations (p′w) at the
different forced frequencies. Case 1, A∞ = 5 × 10−3. The labels of the vertical (z) and
horizontal (x) axis have been purposely omitted

Figure 12 shows the trend of the wall pressure fluctuation amplitudes along the wedge
for the modes β = 0, 1, 2 at the frequency f2 for both high and low amplitude cases,
obtained through an FFT in time and in the spanwise direction. The wall pressure
fluctuation amplitudes for each mode are normalised with the value of the corresponding
freestream pressure fluctuation amplitude (i.e. as p′w/p

′
∞). The wall response very close

to the leading edge does not show a significant difference between case 1 and case 2,
due to the nonlinear effects being relatively small in this region. In the second half of
the computational domain, in contrast, the large nonlinear effects in case 2 provide a
markedly different behaviour. In particular, the β = 2 mode decays to very low values
in case 1, whilst in case 2 it is strongly excited in the second half of the domain. Also, it
is evident that the rapid growth of the β = 2 mode starts at a position very close to the
point where the peak of the 2D mode F is reached, thus suggesting that the resonance
mechanism at the leading edge might play an important role in the excitation of 3D
boundary-layer disturbances. In fact, it is evident in figure 12 and also from comparison
between figures 10 and 11 that as soon as the disturbance amplitude reaches its maximum
value (corresponding to the peak of mode F resulting from the resonance mechanism) 3D
disturbances are generated and the response pattern in the high-amplitude case diverges
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Figure 11: Real part of the Fourier transformed wall pressure fluctuations (p′w) at the
different forced frequencies. Case 2, A∞ = 5 × 10−2. The labels of the vertical (z) and
horizontal (x) axis have been purposely omitted

from that in the low-amplitude case. This suggests that in the high-amplitude case, the
resonance mechanism increases the amplitude to values high enough to trigger nonlinear
effects that affects the wall response (and the associated breakdown mechanism) further
downstream. The associated flow structure is revealed by figure 13, which shows an
instantaneous contour of the wall-tangential velocity component (ut) for the j = 10 grid
line inside the boundary layer. It is evident that the excitation of the β = 2 mode at
the different forcing frequencies corresponds to the generation and downstream growth
of streaks in the streamwise direction inside the boundary layer. For the low Reynolds
number cases considered so far, these streaks do not break down within the computational
domain, so we turn next to the higher Reynolds number cases 3-6 from table 1.

The effect of amplitude and disturbance type is shown in Figure 14, where we plot
temperature contours for each of cases 3-6, for which Re=5625. It can be seen that streak
breakdown is reached for the high-amplitude fast acoustic wave case (case 4) at this higher
Reynolds number, with the transition process occurring downstream of x ≈ 550. At the
low disturbance amplitude, in contrast, for both fast (case 3) and slow (case 5) acoustic
waves, a 2D wave pattern can be observed, as discussed for the lower Reynolds number
case. For the fast wave case, however, the 2D waves appear more amplified than in the
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Figure 12: Extracted modes (β = 0, 1, 2) of the wall pressure fluctuation amplitudes at
the frequency f2, for case 1 and case 2

slow wave case, which is a result of the resonance mechanism for mode F at the leading
edge. Finally, the case of high-amplitude slow acoustic waves (case 6) in figure 14 shows
the appearance of 3D structures, consistent with the corresponding fast wave case, but
less amplified and with no breakdown.

In summary, these results for the unswept wedge demonstrate that the resonance
mechanism occurring at the leading edge in the presence of freestream fast acoustic
waves induces a high amplification of mode F, which can have important implications in
cases where nonlinear effects are not negligible. The resonant interaction between mode
F and the fast acoustic waves at high freestream amplitudes leads to significantly earlier
boundary-layer transition, compared to the case of slow acoustic waves.

For the specific case of hypersonic wind tunnels, it is known from previous studies,
e.g. Duan et al. (2014), Wagner et al. (2018), Cerminara et al. (2019), that slow acoustic
waves are likely to be the most dominant acoustic disturbance radiated from the turbulent
boundary layer on the nozzle wall. This does not mean, however, that fast modes are not
of interest. Another relevant source of disturbances is represented by entropy spottiness
that may come from the wind-tunnel reservoir. As the entropy waves, as well as the
vorticity waves, show a receptivity mechanism similar to that of the fast acoustic waves,
as described by Fedorov’s mechanism (Fedorov & Khokhlov 2001), (Fedorov 2011),
and proved numerically by Ma & Zhong (2005), an in-depth study of the breakdown
mechanism associated with fast acoustic waves is relevant for these types of non-acoustic
disturbances. Moreover, in agreement with several previous numerical studies, e.g. (Ma &
Zhong 2003a), (Balakumar 2009), (Egorov et al. 2006), the present study shows that the
fast mode, although stable, has growth factors higher than the slow mode in the leading-
edge region (upstream of the Mack mode excitation). Furthermore, it is important to
mention that fast acoustic waves may be important in other scenarios, e.g. in flight, where
structure vibrations supplement the noise generated from turbulent boundary layers.
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Figure 13: Instantaneous contour of the streamwise (tangential to the wall) velocity
component (ut) along the grid line j = 10 inside the boundary layer. Case 2, A∞ =
5× 10−2

(a)

(b)

(c)

(d)

Figure 14: Instantaneous temperature (T ) contours along the grid line j = 10 inside the
boundary layer. (a) Case 3: Fast acoustic waves, A∞ = 5×10−3, (b) Case 4: fast acoustic
waves, A∞ = 5× 10−2, (c) Case 5: slow acoustic waves, A∞ = 5× 10−3, (d) Case 6: slow
acoustic waves, A∞ = 5× 10−2
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(a) near leading-edge region

(b) zone of growth of the streaks

(c) downstream region

Figure 15: Fourier transformed response of the x-velocity component at the subharmonic
frequency f0 inside the boundary layer, along the j = 10 grid line. Case 9, A∞ = 5×10−3,
slow waves

4. Results for the swept wedge

Results presented in this section refer to the swept wedge case at the higher Reynolds
number (Re = 5625). An overview of the phenomena present in the simulations is
provided by figure 15, which shows contours of the x-velocity fluctuation amplitudes
in the wall-parallel plane at grid line j = 10 in three different flow regions, namely
near the leading edge, the growth zone of narrow streaks that are a peculiarity of this
flow, and the downstream region. The plots are shown for the (unforced) frequency
textcolorbluef0 = 3.509× 10−3, where the underlying physical processes are not hidden
by the imposed forcing. After some evidence for leading-edge-parallel structures arising
from a leading-edge receptivity mechanism for x < 25, a crossflow mode emerges, which is
dominant over most of the wedge surface. For x > 550, we then identify the formation of
very narrow streaks with an order of magnitude higher spanwise wavenumber compared
to the crossflow mode. We start the investigation of these phenomena by showing
numerical results, to present the transition scenario for fast and slow acoustic waves with
different amplitude. Then, we use flowfield data and 3D LST results, obtained at different
streamwise locations on the wedge surface, to study the boundary-layer instability and
breakdown processes.

4.1. DNS results

For the swept cases, pressure gradients normal to the freestream direction lead to a
laminar base flow that contains inflectional crossflow boundary-layer profiles. Figure 16
shows the variation of the wall pressure and the Mach number at the edge of the boundary



Transition Mechanisms in Hypersonic Flows with Freestream Acoustic Noise 25

(a) pressure distribution (b) Mach number distribution at the
edge of the boundary layer

Figure 16: a) Wall pressure variation and (b) Mach number variation at the boundary
layer edge in the chordwise (x) direction, for the unswept and swept baseflows

Figure 17: Crossflow boundary-layer profiles at several distances from the leading edge

layer along the chordwise direction (x), considering both the unswept and swept baseflow.
Due to the weaker shock wave induced by a non-zero sweep angle, the wall pressure is
lower in the swept wedge case, while the Mach number at the boundary-layer outer edge
is higher over the whole wedge length, compared to the unswept case. Figure 17 shows
examples of inflectional crossflow boundary-layer profiles at different distances from the
leading edge. The co-ordinate directions for the crossflow were defined in figure 4, with uη
denoting the velocity in the crossflow direction. Figure 18 shows a close-up of the Mach
number field in the leading-edge region, which highlights the shock stand-off distance as
well as the very thin subsonic region around the circular leading-edge profile.

An overview of the transitional flow is provided by figures 19 and 20, showing contours
of temperature inside the boundary layer for cases 7-10. The cases shown in figure
19 all have a similar breakdown mechanism, which appears more rapid in the high-
amplitude slow wave case. All the cases, even at the lower amplitude, show the start
of nonlinear breakdown to turbulence. In each case, transition appears to be related to
the formation and breakdown of streamwise-oriented streaks. The streaks are visible as
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Figure 18: Mean Mach number field in the leading-edge region

elongated structures of alternate high and low temperature, corresponding respectively
to low and high values of the streamwise velocity.

The case of fast acoustic waves at higher disturbance amplitude shown in figure 20 is
different to the others in several aspects. First, this is the case where transition occurs at
the earliest location, thus revealing that nonlinear effects related to the higher amplitudes
are prevalent for fast acoustic waves. Secondly, this case shows the presence of spanwise-
coherent structures up to x ≈ 450. This is consistent with the results obtained for
the unswept case, in which it was shown that the resonance of the 2D fast acoustic
modes in the leading-edge region is a powerful mechanism of amplification of the internal
waves, which can rapidly trigger transition at the higher amplitudes. A third noticeable
difference of the fast-wave case at high amplitude is that the streamwise streaks have
a much higher wavelength compared to the narrow streaks observed in the other cases.
This is consistent with the presence of an unstable crossflow mode.

A first step towards the identification of the main wave modes involved in the re-
ceptivity process at different frequencies is made using a Fast Fourier Transform of the
wall pressure response, as was done in figures 10 and 11 in the previous section. Figures
21 and 22 show the Fourier transformed pressure fluctuation amplitudes at the forcing
frequencies f2 and f10 (representative of the low and high frequency response) and at the
different amplitudes, for fast and slow acoustic waves, respectively. The initial response to
fast acoustic waves is characterised by a dominant 2D wave pattern, for both frequencies
and both amplitudes. This is a result of the same resonance mechanism between the
forcing fast acoustic waves and the induced fast mode (or mode F) that was discussed in
detail in section 3. At the higher frequency, f10, the peak of the fast mode shifts closer to
the leading edge, within x = 100−300, whereas downstream of this region the amplitude
decreases, consistent with the de-synchronisation of mode F. In the high-amplitude case,
downstream of x = 400, the 2D mode is seen to be competing with another emerging
structure that is aligned with the mean flow direction. As a result of this modulation,
the wall response shows high amplitudes for a longer distance downstream, compared to
the case with low freestream disturbance amplitude. A similar structure is also present
in the leading-edge region, seen more clearly at the higher frequency, but also present at
the lower frequency.

In the case of slow acoustic wave forcing, shown in figure 22, the 2D mode does not play
the same role as in the fast wave case. At low frequencies a complex three-dimensional
pattern appears in the leading-edge region, suggesting the presence of several oblique
modes that can be more clearly distinguished further downstream. These low-frequency
modes decay downstream, and do not appear to be directly responsible for the sudden
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(a)

(b)

(c)

Figure 19: Instantaneous temperature (T ) contours along the grid line j = 10 inside the
boundary layer. (a) Case 7: Fast acoustic waves, A∞ = 5×10−3, (b) Case 8: fast acoustic
waves, A∞ = 5 × 10−2, (c) Case 9: slow acoustic waves, A∞ = 5 × 10−3, (d) Case 10:
slow acoustic waves, A∞ = 5× 10−2

(a)

(b)

Figure 20: Instantaneous temperature (T ) contours along the grid line j = 10 inside the
boundary layer. Case 8, fast acoustic waves, A∞ = 5×10−2. (a) near leading-edge region,
(b) downstream region
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(a) f2, A∞ = 5× 10−3

(b) f2, A∞ = 5× 10−2

(c) f10, A∞ = 5× 10−3

(d) f10, A∞ = 5× 10−2

Figure 21: Real part of the Fourier transformed wall pressure fluctuations (p′w) at the
frequencies f2 and f10, at low (case 7) and high (case 8) amplitude. Fast acoustic waves

breakdown to turbulence seen near x = 800. At the higher frequencies, the response near
the leading edge shows a 2D wave pattern that is strongly modulated by crossflow-like
modes, whereas further downstream oblique waves with higher spanwise wavenumber are
clearly present.

These numerical results of the wall response at the different frequencies reveal the
presence of at least three relevant modes that may play a determining role in the
transition process. These modes consist of 2D waves (wave fronts parallel to the leading
edge), waves aligned in the mean flow (ξ) direction (suggestive of crossflow instabilities),
and waves with wave fronts aligned in the crossflow (η) direction. The type of the
freestream acoustic waves, either fast or slow, determines which of the above mentioned
modes is dominant in a certain flow region. To further understand the flow behaviour we
next use LST to determine the most relevant unstable modes in the boundary layer.

4.2. Results from linear stability analysis

Profiles for analysis using LST are extracted from the computed solution for steady
laminar flow over the swept wedge. Figure 23 shows contours of the temporal growth
rate (ωi) taken at different x-locations along the wedge, as well as at different x-wise
and spanwise wavenumbers (α, β). With reference to figure 4, the wavenumbers α and β
are the wavenumbers in the xz-reference system, i.e. with axes oriented in the chordwise
and leading-edge directions. Hence, in this section, the wavenumber α will be defined
as the x-wise wavenumber (instead of streamwise wavenumber), to distinguish it from
the wavenumber in the main flow (i.e. streamwise) direction. The ranges of α and β
cover the freestream forcing waves, for example the x-wise wavenumbers corresponding
to the imposed frequency range are α = 0.126 − 0.353 and α = 0.2 − 0.57 for fast
and slow acoustic waves, respectively. The corresponding forcing spanwise wavenumbers
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(a) f2, A∞ = 5× 10−3

(b) f2, A∞ = 5× 10−2

(c) f10, A∞ = 5× 10−3

(d) f10, A∞ = 5× 10−2

Figure 22: Real part of the Fourier transformed wall pressure fluctuations (p′w) at the
frequencies f2 and f10, at low (case 9) and high (case 10) amplitude. Slow acoustic waves

are β = ±0.11 (or alternatively m = ±1) and β = ±0.22 (m = ±2) for both fast
and slow waves and at each forcing frequency. At all the considered locations (x =
100, 200, 300, 500, 700, 800) the region of dominant instability (i.e. positive ωi) can be
seen in figure 23 as the narrow elongated red regions with negative β. Within these
regions, increasingly negative β correspond to increasingly positive α with approximately
a constant ratio (β/α ≈ −0.83, i.e. θxz ≈ −40◦), i.e. there is a constant orientation of the
wave vector, which coincides with the local direction of the maximum crossflow inside the
boundary layer. The dominant unstable modes are travelling crossflow waves, which are
known to be associated with freestream disturbances (Li et al. 2014, 2016; Bartkowicz
et al. 2010) at low frequencies, such as those imposed in our simulations (f∗1 = 12.6kHz,
f∗10 = 35.3 kHz). The phase speed of the most unstable crossflow mode from LST, taken

in the direction of the wave vector (cph = ωr/
√
α2 + β2), is cph = 0.057 at x = 400,

and cph = 0.058 at x = 500, and the corresponding wavenumbers are α = 0.138 and
β = −0.11. The spanwise wavenumber coincides with the imposed m = 1 wavenumber,
whereas the x-wise wavenumber approximately corresponds to the lowest imposed α
for fast acoustic waves. The most unstable crossflow waves are travelling waves with a
significantly lower phase speed compared to the imposed freestream fast and slow acoustic
waves. The corresponding frequency is f = 0.0016, which is an order of magnitude lower
than our minimum imposed nondimensional frequency (f1 = 0.0175). In dimensional
units, the frequency of the most unstable crossflow mode, considering a reference nose
radius of R∗ = 1.2 mm, is f∗mode = 1.15 kHz, representing a subharmonic of the freestream
forcing.

For x > 200 the LST results show the presence of other instabilities. The first to
emerge is located at the low wavenumbers (α < 0.2), peaking at a small positive value of
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β, for example peaking at β = 0.1, α = 0.1 at x = 300. This corresponds to a first mode
instability (Reshotko 1976), with a wave orientation perpendicular to the crossflow mode.
The region of first mode instability is present at all the other locations downstream of
x = 200 along the wedge, but the associated growth rates are very low.

At the location x = 700 another unstable mode appears, with a growth rate lower than
the dominant crossflow mode, but higher than the first mode growth rate. This mode is
a higher frequency mode (i.e. higher wavenumber α), and corresponds to higher positive
β values. The values of α and β are approximately equal within this high-frequency
instability region, which means that these modes are inclined of an angle of about 45◦

with respect to the x-axis, i.e. they are effectively 2D modes in the mean flow reference
system (rotated by the sweep angle with respect to the geometry reference system), and
correspond to 2D second modes (Mack 1984). The phase speed of the modes in this region
is about cph ≈ 0.85− 0.87, which is consistent with the phase speed associated with the
Mack mode (Reshotko 1976; Ma & Zhong 2005; Zhong & Wang 2012). The corresponding
nondimensional frequency associated to these modes is about f = 0.06, which in for a
reference nose radius of 1.2 mm would give a dimensional frequency of 43 kHz. This would
explain the generally low growth rates (ωi values) of the second mode seen here. The
experiments about the second instability mode are usually performed over smaller nose
radii, e.g. 0.1 mm (Estorf et al. 2008; Wagner et al. 2018), as it is known that a sharper
leading edge provides higher growth rates for the Mack mode, as was shown for example
from Malik & Balakumar (2007) for a flat plate with different blunt nose radii. For a nose
radius lower than 0.5 mm, i.e. a sharp leading edge, this nondimensional frequency of 0.06
would correspond to a dimensional frequencies f∗ > 100 kHz, which then would include
the usual frequency range (100 − 300 kHz) associated with second-mode experiments
(Estorf et al. 2008) in hypersonic wind tunnels.

The overall growth in amplitude of an instability wave can be quantified using the
N -factor (Crouch & Ng 2000), defined by

N = log

(
A(x)

A(x0)

)
=

∫ x

x0

−αi(x)dx , (4.1)

in which the spatial growth rate −αi is approximated from ωi using Gaster’s relation
(Gaster 1962), which can be expressed as

ωTi
αSi

= −∂ωr
∂αr

= −cg . (4.2)

In the above equation the superscripts T and S stand for temporal and spatial, respec-
tively, whereas the term cg is known as the group velocity. Figure 24 shows the computed
N -factors for the most unstable crossflow mode from LST compared with the N -factors
of different Mack modes taken in their unstable region. A logarithmic scale is used along
the N axis in order to show the difference between the N -factor levels of the crossflow
and Mack modes. As can be seen, the amplification (N) factors of the Mack modes
resulting from the LST, shown in a form to outline part of the envelope of maximum
amplification factors in figure 24, are very small compared to those of the crossflow mode,
thus suggesting that the unstable Mack modes are not responsible for transition. Nor is
the unstable first mode expected to be important, since its growth rate is an order of
magnitude lower than the crossflow mode.

The validity of Gaster’s relation for the considered flow is assessed by direct comparison
between the approximated spatial growth rates (αi) obtained from Gaster’s relation and
those obtained by a spatial linear stability analysis. The comparison has been made at
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(a) x = 100 (b) x = 200

(c) x = 300 (d) x = 500

(e) x = 700 (f) x = 800

Figure 23: Temporal growth rate (ωi) from linear stability analysis at different x locations
on the wedge

two x locations, namely x = 400 and x = 500, in which the temporal LST results indicate
the presence of crossflow instabilities. At both locations, the most unstable mode has been
considered, as Gaster’s relation is known to be valid only for modes with growth rate
close to zero. The results of this comparison are tabulated in table 4. Results for both
temporal and spatial approaches are shown at both the locations. The most unstable
mode found at these locations is a crossflow mode with x-wise and z-wise wavenumbers
α = 0.138 and β = −0.111. The corresponding wavenumbers in the reference system
aligned with the freestream flow direction (streamwise, ξ) and the crossflow (η) direction
are αξ = 0.019 and βη = −0.1761. In table 4 the streamwise wavenumber in the flow
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Approach x αξ,r ωr ωTi αSi cph cg

T 400 0.019 1.04×10−2 1.64×10−3 -2.127×10−3 0.55 0.77
S 400 0.019 1.04×10−2 - -2.086×10−3 0.54 0.77
T 500 0.019 1.06×10−2 1.66×10−3 -2.121×10−3 0.56 0.78
S 500 0.019 1.06×10−2 - -2.087×10−3 0.558 0.78

Table 4: Comparison temporal and spatial approach. Assessment of Gaster’s transform

reference system is given, whose real part is indicated as αξ,r. The term ωr represents
the real part of the frequency obtained from the temporal approach, which is used as
input in the spatial approach. The streamwise phase speed cph (i.e. the phase speed of
the mode in the ξ direction) represents the ratio between ωr and αξ,r, and is an output
in both the temporal and spatial approaches. The spatial growth rate αSi is the output
of the spatial analysis and is approximated by equation 4.2 using the temporal approach.
As can be seen, the spatial growth rates from the spatial LST and Gaster’s transform
are very similar at both the locations. The relative error between the two values is 1.9 %
at x = 400 and 1.6 % at x = 500. These results, obtained for the most unstable mode,
confirm the validity of Gaster’s transform as well as the suitability of the temporal LST
for the present case.

No other modes have been found in LST. In particular no linear instability modes
were found for the chordwise and spanwise wavenumbers of the narrow streaks that
are seen in the flow visualisations in figure 19. Thus these features are not associated
with a primary flow instability. Nor are they obviously a secondary instability of a finite
amplitude crossflow mode. The result of the crossflow mode are streamwise vortices and
lifted streaks that would be expected to support well known secondary streak instabilities,
for example of the sinuous or varicose type (Andersson et al. 2001; ?; Li et al. 2014).
In order to understand the final stages of transition we need find the origin and growth
mechanism of the narrow streaky flow features. This will be the subject of the following
section.

4.3. Streak-induced breakdown mechanism

The wavenumbers associated with the narrow streaks are about one order of magnitude
higher than the forced wavenumbers of the freestream noise. They are not the result of a
local primary flow instability and we are not aware of any published secondary instability
mechanisms that lead to streaks with much higher spanwise wavenumber, but oriented
in the same direction as the primary instability. Understanding the origin and growth
of the mode associated to the narrow streaks requires a more in-depth analysis of the
DNS results in the upstream region. Figure 25 shows 3D views of the u′ and v′ velocity
components in the flow region where the narrow streaky structures appear and rapidly
grow. Figure 25b gives a good impression of the underlying wave system in the region
x = 480 − 620. In this region there is a change taking place from structures parallel
to the leading edge towards more oblique structures. The corresponding u-component
of the fluctuations, figure 25a, shows very pronounced narrow streaks that are present
even at the start of this image and hence do not appear to be connected to the change
in orientation of the underlying waves. Nor is a numerical source likely. A lack of flow
resolution with a high-order code of the type used here gives oscillations with wavelength
twice the grid spacing when the flow is under-resolved. However, with approximately
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Figure 24: N-factors of the most unstable crossflow mode and Mack modes at different
α and β wavenumbers

seven wavelengths across the span and 100 grid points, we already have better than 12
points per wavelength of the narrow streaks and no evidence of any under-resolution of
the local flow features.

To pin down the origin of the narrow streaks, figure 26 shows the temperature contours
in the region x = 300−750 inside the boundary layer at different j grid lines. Downstream
of x = 500, narrow streaks (m ≈ 7− 9) start to be evident, and downstream of x = 650
their amplitude reaches very high levels. The streaks form in a limited region within
the boundary-layer that is close to the maximum crossflow velocity. For example j = 15
corresponds to yn ≈ 5 at x = 600 in figure 17.

The origin of the localised region in y in which the m = O(10) mode develops can be
deduced from figure 27, showing cross-sections of the streamwise vorticity fluctuations
at two different x stations. At the upstream station, x = 400, the vorticity shows two
narrow layers of positive and negative vorticity, one on top of the other. The location
at y = 32, corresponding to a wall-normal distance of yn = 3, locates this feature at
the inflection point of the crossflow profiles shown in figure 17. At x = 525 spanwise
oscillations have started to form and it is clearly the roll-up of the streamwise vorticity
that leads, via a lift-up mechanism, to the narrow velocity streaks seen in figure 25.
If we take the thickness of the layer as approximately 2 and the velocity difference as
0.05 from the crossflow profiles on figure 17, the local shear layer Reynolds number is
approximately 500, which is sufficient for the roll-up of the shear layer to develop via
an essentially inviscid mechanism. Figure 28 shows the eigenfunctions of streamwise,
vertical and crossflow velocity components as well as temperature of the most unstable
crossflow mode (α = 0.138, β = −0.11), from LST at the location x = 400. As can be
seen, the crossflow mode fluctuations peak at approximately the same location of the
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(a) u′

(b) v′

Figure 25: Surface views of the chordwise and wall-normal velocity component
fluctuations. Case 9

thin vorticity fluctuation layer seen in figure 27 (the location of the inflection point of
the crossflow profile), i.e. yn ≈ 3 − 4, thus confirming that the thin vorticity layer is
a feature associated with the crossflow instability. A further confirmation is given by
figure 28b, which depicts the profile of the streamwise vostricity fluctuations computed
from the eigenfunctions of the velocity components in figure 28a. The vorticity profile
shows a narrow layer of oscillations, with maximum located at the peak location of the
eigenfunctions, consistent with the narrow vorticity fluctuation layer seen in figure 27.

Having identified the m = O(10), corresponding to β = O(1), mode as responsible
for the roll-up of the thin vorticity layer associated with the crossflow mode, the final
part of the puzzle is to find its origin, since this mode is not present in the freestream
forcing. By performing a Fast Fourier Transform in space at different x stations close
to the leading edge, it is possible to verify which higher wavenumbers are generated,
and their relative amplitude. Figure 29 shows the spanwise wavenumber spectrum of
the x-velocity fluctuation amplitudes inside the boundary layer (along the j = 10 grid
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Figure 26: Temperature fluctuation contours inside the boundary layer, at different j-grid
lines. Case 9

line). The spatial Fast Fourier Transform has been performed in the spanwise direction
for the Fourier transformed (in time) signal at the fundamental frequency f0. There
is also a pronounced amplification of a higher (unforced) wavenumber, m = 6, which
decays at higher distances from the leading edge (x = 250, 500), and then increases again
further downstream (x = 600). Other lower peaks are observed at the higher distances
for increasing wavenumbers.

The wavenumber m = 11 is present at a low amplitude peak at the early location
x = 20, suggesting that it forms inside the boundary layer near the leading edge. The
frequency of the most unstable crossflow mode (f = 0.0016) is half the fundamental
frequency f0 of our simulations. Thus, the closest frequencies to the frequency of the
most unstable mode are those most responsible for the growth of the m = O(10) modes.
Due to limited computational resources, we are not able to process the m = O(10) modes
at the low frequency of the most unstable mode, but only at the lowest frequency we can
extract from the numerical results, i.e. the fundamental frequency f0, for which m = 11
is found to be the dominant high-wavenumber mode, as seen in figure 29. The spatial
variation of the m = 6 and m = 11 modes is shown on figure 30. The initial amplification
at the leading edge is followed by a decay after which the amplitude of the modes grows
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(a) x = 400

(b) x = 525

Figure 27: Cross sections of the streamwise vorticity fluctuations (ω′ξ) at different x
locations. Case 9

(a) Eigenfunctions (b) Vorticity fluctuation from eigen-
functions

Figure 28: Eigenfucntions of the crossflow instability mode and corresponding vorticity
fluctuations at the x = 400 location. Case 9
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Figure 29: Spectrum of the Fourier transformed amplitudes of the x-velocity fluctuations
along the j = 10 grid lines, in the domain of the spanwise wavenumbers, at different x
positions. The spectrum has been computed at the frequency f0. Case 9

Figure 30: Streamwise distribution of the Fourier transformed x-velocity fluctuations,
along the j = 10 grid lines, at the frequency f0 and at high spanwise wavenumbers. Case
9

in the region x = 350 − 500, followed by a more pronounced growth downstream of
x = 500, where the streaks are seen to grow. In this latter region, the growth of the mode
β11 is more rapid than that of m = 6, which causes m = 11 to become the dominant
wavenumber associated with the streaks. Thus, the spectrum of figure 29 shows that
higher wavenumbers are generated in the early leading-edge region. The growth of the
narrow streaks appears to be due to a transient growth mechanism associated to the
roll-up of the narrow streamwise vorticity layer (as previously described), whose length
scale is comparable with the wavelength of the narrow streaks.

The generation mechanism of the smaller wavelengths at the leading edge can be
discussed with reference to thesketches shown in figures 31 and 32, which illustrate
some potentially relevant phenomena involving the acoustic waves in the shock layer.
Figure 31 shows a top view of the xz-plane at the location of the minimum shock
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Figure 31: Sketch of the wave system characterising the shock layer region

Figure 32: Sketch of wave scattering at the leading edge on a xy-plane

stand-off distance, indicated by ∆ = 0.55, whereas figure 32 shows the scattering of
the incident acoustic waves from the rounded leading edge (in a xy-plane). Due to the
presence of the shock, there is a complex wave system in the shock layer, characterised by
wave refraction, reflection and scattering from the leading edge. The incident freestream
waves are refracted downstream of the shock, with mechanisms described in McKenzie &
Westphal (1968), and propagate towards the wall with different orientations. The leading
edge, in turn, can reflect the waves back to the shock (Cerminara & Sandham 2017), and
scatter the waves in all directions. If we consider the multiple reflection process, the shock
layer can be seen as a wave guide of thickness equal to the stand-off distance, which then
promotes the formation of waves with wavelength comparable to the wave guide thickness.
The scattering mechanism is particularly sensitive to the surface radius of curvature (in
this case the wedge nose radius), and is more effective when a large difference between
the wavelength of the incident waves and the body radius of curvature exists, which leads
to the generation of scattered waves with wavelength comparable with the nose radius.
This (speculative, but in our view plausible) wavelength and frequency conversion process
would result in the generation of waves with significantly smaller wavelength compared
to the wavelengths imposed in the freestream, as observed for example in figure 15a and
warrants further investigation.
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5. Conclusion

A set of ten direct numerical simulations have been performed for a Mach 6 flow over
a wedge in an unswept and a swept (45◦ sweep angle) configuration, for different types of
freestream acoustic waves, i.e. fast and slow waves, and different amplitudes, orientations
and frequencies of the forcing. The objective is to investigate the physical mechanism
of receptivity at the leading edge and the associated mechanisms of breakdown and
transition in several scenarios. A circular leading edge is considered, where a well known
wavelength conversion mechanism broadens the wavelength spectrum of our imposed
disturbances, generating different wavelengths, which play an important role in the
transition process. By studying the complete receptivity-transition process starting from
freestream disturbances over a body with a resolved leading edge, we expect to find new
important features of the transition mechanism that are poorly visible or not measurable
in transition experiments, or that are not captured in other typical numerical studies
in which either i) disturbances are directly imposed within the boundary layer, or ii)
the leading edge is not included in the computational domain, or iii) only the early
leading-edge receptivity to freestream waves is studied. Linear stability analyses have
been performed in support of the numerical simulations, to identify the local linear
instabilities that are present in the boundary layer at the different flow conditions.

The study is initially performed for the unswept wedge case, at two Reynolds numbers
based on the nose radius. A linear stability analysis of the baseflow has assessed the well
known Fedorov’s receptivity mechanism at the leading edge to fast and slow acoustic
waves, revealing the presence of the fast mode (mode F), the slow mode (mode S),
and the Mack mode, as well as the wavelength exchange mechanism between mode F
and mode S at their synchronisation point. The numerical simulations have confirmed
the presence of a strong amplification of mode F at the leading edge, due to a resonance
mechanism with the freestream fast acoustic mode, as well as a modulation process taking
place in the decay region of mode F, between different competing modes, including the
external forcing and the excited slow mode in this region. Moreover, further downstream
a second resonance mechanism with the fast acoustic waves is captured, with excitation
of mode F II (using Zhong’s notation). The results from LST and DNS agree qualitatively
very well with the reference theoretical studies of Fedorov, and the reference numerical
studies of Zhong, when low amplitude disturbances are considered. When high amplitude
disturbances are imposed in the freestream, the numerical results show that the picture
of the generated instabilities shifts significantly from the linear case, and the transition
mechanism is significantly different for fast and slow acoustic waves. In particular, it is
found that the high disturbance amplification induced from the resonance mechanism for
the fast mode at the leading edge leads to nonlinear generation of an instability mode
corresponding to streamwise streaks, which at a higher Reynolds number grow rapidly
and break down. For high amplitude disturbances, fast acoustic waves induce an earlier
transition process compared to slow acoustic waves.

The swept wedge case shows in general more complex features compared to the unswept
case, due to the additional role played by crossflow instabilities in the leading-edge
region. Linear stability analyses show the presence of travelling crossflow instabilities and
other modes pertaining to the classes of first and second mode instabilities, which have
very different growth rates and appear at different distances from the leading edge. The
crossflow instability represents the dominant instability mode over the whole length of the
wedge. Consistent with the unswept wedge case, earlier bypass transition is reached when
high-amplitude fast acoustic waves are considered, as a result of the initial disturbance
amplification induced by the resonance mechanism for the fast mode at the leading edge.
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In this case, this mechanism provides a nonlinear destabilisation of the primary crossflow
instability waves generating in the leading edge region, followed by rapid growth and
breakdown. The process that leads to breakdown in all the other cases show different
features to the high-amplitude fast-wave case. In particular, very narrow streaks oriented
in the streamwise direction are observed, which are aligned with the primary crossflow
instability waves, and show a very rapid growth leading to streak breakdown, with the
appearance of secondary streak instabilities.

An in-depth study of the origin and growth mechanism of these structures has con-
firmed that the narrow streamwise streaks are associated with the presence of high
spanwise wavenumber (an order of magnitude higher than the primary crossflow mode)
modes, m = O(10), that are generated at the leading edge, as well as the presence of
a narrow streamwise vorticity fluctuation layer located near the inflection point of the
crossflow boundary layer profiles, whose length scale is comparable with the wavelength
of the m = O(10) modes. The narrow vorticity layer has been shown to be generated by
the primary crossflow instabilities, and the growth of the high wavenumber modes has
been found to be associated to the lowest fundamental frequency, which is an unstable
crossflow mode. A transient growth mechanism has been found to be the source of the
m = O(10) mode growth, occurring through destabilisation and roll-up of the narrow
vorticity layer. The source of the m = O(10) modes in the leading-edge region is proposed
as a mechanism of wave refraction, scattering and wall-shock-wall reflection occurring at
the leading edge within the shock layer, and influenced by the very small length scale of
the shock stand-off distance.

The present results provide new insights into the complex leading-edge receptivity-
transition mechanism with freestream acoustic noise in hypersonic flows. As part of this, a
plausible wavelength-conversion mechanism has been conjectured to explain the presence
of disturbance wavelengths significantly shorter than those comprising the freestream
forcing. A more detailed investigation of this process should be undertaken, as this may
be a missing piece of the overall transition mechanism.
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