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Abstract—Covariance Model (CM) has been quite effective
in finding potential members of existing families of non-coding
Ribonucleic Acid (ncRNA) identification and has provided ex-
cellent accuracy in genome sequence database. However, it has
significant drawbacks with family-specific search. An existing
Hierarchical Agglomerative Clustering (HAC) technique merged
overlapping sequences which is known as combined CM (CCM).
However, the structural information will be discarded, and the
sequence features of each family will be significantly diluted
as the number of original structures increases. Additionally,
it can only find members of the existing families and is not
useful in finding potential members of novel ncRNA families.
Furthermore, it is also important to construct generic sequence
models which can be used to recognize new potential members
of novel ncRNA families and define unknown ncRNA sequence
as the potential members for known families. To achieve these
objectives, this study proposes to implement Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) to ensure the
CCMs have the best quality for every level of dendrogram
hierarchy. This study will also apply distance matrix as the
criteria to measure the compatibility between two CMs. The
proposed techniques will be using five gene families with fifty
sequences from each family from Rfam database which will be
divided into training and testing dataset to test CMs combination
method. The proposed techniques will be compared to the existing
HAC in terms of identification accuracy, sum of bit-scores, and
processing time, where each of these performance measurements
will be statistically validated.

Keywords—Covariance model; ncRNA identification; swarm
intelligence; hierarchical clustering

I. INTRODUCTION

Distinguishing many different classes of noncoding (nc)
ribonucleic acids (RNA) according to the performance of its
variety roles has been an prevalent area in bio-computational
technology [1], [2], [3], [4], [5]. For example, after the rela-
tionship between RNA structure and its function is discovered,
it is desirable to know the common structure of homologous
RNAs to find out the functional signatures. It is also desirable
to scan a genome looking for ncRNAs. Strategies employed in
protein coding gene identification are not commonly applicable
for ncRNAs. Therefore, the identification of ncRNA remains
an open problem in bioinformatics. However, two-bases are
not necessarily covary, since some point mutations, such as
G–C to G–U, are still considered as base pairing [6].

Thus, methods searching for covariation may miss valuable
information. The main drawback of covariance model (CM) is
the use of information of a specific gene family to gain in accu-
racy [7]. In areas of ncRNA identification, CM has been quite
effective in finding potential members of existing families and
has provided excellent accuracy in genome sequence database
[8], [9], [10]. Representation of multiple secondary structure
alignment using a hairpin loop based on an ordered tree are
constructed automatically from existing sequence alignments
or even from unaligned example sequence [11].

However, it also has considerable disadvantage, such as
computationally expensive and thus hindering its application
in practice [6], [12]. Apart from having problems with family-
specific search that includes large processing requirements,
ambiguity in defining which sequences form a family and
insufficient numbers of known sequences to properly estimate
model parameters are known to be a big challenge in identi-
fication of ncRNA. To improve CM performance, hierarchical
clustering, as the most frequently used mathematical technique,
tries to group genes into small clusters and to group clusters
into higher-level systems [13]. Hierarchical clustering provides
a series of nested partitions of the dataset. It splits the data
into a nested tree structure, where the levels of the tree show
similarity or dissimilarity among the clusters at different levels
[5], [7].

In regards to this issue, hierarchical clustering has been
known as a efficient and useful technique for analyzing genome
data and can be applied to group known ncRNA gene families
[13], [14], [15], [16]. Past researchers have applied hierarchical
clustering to support the identification process in combining
and clustering group of families [15]. Lessening the computa-
tional cost imposed by covariance model (CM) based non-
coding RNA (ncRNA) gene finding is desirable to search
the sequence data using a large number of ncRNA families
[14], [17], [18]. The main consideration of CM is searching
a gigabyte database of sequences for all known ncRNA gene
families, which will take quite a long time, and thus is not
practical [19], [22].

Hierarchical clustering has successfully reduced the search
time to find members from all original ncRNA families
using dot-bracket notations [13]. However, its performance
continuously declining when additional families of CMs are
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introduced into the CCM. This is because more structural
information will be excluded, and the sequence features of
each family will be significantly less apparent as the number
of original CMs increase [5]. Furthermore, it is not sufficiently
covering all the problem spaces. A swarm intelligence-based
hierarchical algorithm is proposed in this study to select base
pairs from two or more CMs of ncRNA families, such as
Particle Swarm Optimization (PSO) and Genetic Algorithm
(GA). The general idea is to select base pairs from one
sequence feature that has fewest conflicts with the base pairs
in another structure and construct new CCM structures, which
will increase the discernibility performance of the CCMs.
Thus, the paper is organized as follows: the next section
further describes the problem which motivated this study, while
Sections III and IV elaborate the proposed method and present
the results, respectively, followed by the discussion of the
results in Section V, and the last section concludes this work.

II. HIERARCHICAL CLUSTERING FOR COVARIANCE
MODEL

In the previous study conducted by [14], a technique was
introduced to reduce the search complexity when a target
genome is searched for more than one known ncRNA gene
family. The basic construct of the technique is to combine
different CMs into one single CM which captures part of
both sequence and structure features of each CM by selecting
randomly three sequences, known as cluster, from each family
by using hierarchical clustering. Hierarchical clustering is a
powerful and useful technique for analyzing genome data
because hierarchical clustering can generate a dendrogram
which helps organize the CCMs. Each non-leaf node of the
dendrogram is a CCM of its child nodes, and each leaf node
represents a single CM of a ncRNA gene family [5]. Fig. 1
shows an example of possible structure of a dendrogram.

The existing technique applied the agglomerative approach
to cluster ncRNA genes [5]. After the clustering of ncRNA
gene families, the existing technique built the CCM for any
two CMs in the dendrogram that share a common parent
which combined the two selected CMs such that the new
CCM captured features of both original CMs. CMs are built
from multiple sequence alignment with annotated secondary
structure. Thus, the general idea of combining two CMs of the
existing technique was to select part of the multiple sequence
alignment columns of each CM and connect them together to
create a new multiple sequence alignment, which the new CM
is built from [5].

Since the multiple sequence alignment is annotated with
secondary structure, and each column of multiple alignment
corresponds to a secondary structure symbol, either a dot or a
bracket, indicating whether it is a paired base or not, combining
the multiple sequence alignment is equivalent to combining
the annotated secondary structure [18]. To combine secondary
structures, the key point is to determine how to select base
pairs from the two original secondary structures and put them
into the new structure. It is obvious that the algorithm cannot
just select all the base pairs from both original structures
and simply connect them together, since it will significantly
increase the complexity of the CM and make no difference to
searching with the two original CMs separately [4].

Fig. 1. A Sample of Hierarchical Clustering Result of Five ncRNA Families
from Rfam Database.

In most methods of hierarchical agglomerative clustering
(HAC), a measure of dissimilarity between clusters is required
to decide which clusters should be combined [20], [21].
In the existing technique [23], the members of the cluster
are ncRNA gene families, each of which is represented by
its secondary structure in dot-bracket notation. Dot-bracket
notation is widely used in describing RNA secondary structure.
It uses matching brackets to indicate paired bases and dots to
denote unpaired bases. This study defines a different distance
function that is particularly suitable to deal with the secondary
structure data in dot-bracket notation. However, there are two
definitions that need to be introduced [5].

Definition 1. Base pair conflict: Given two RNA secondary
structures, a base pair (m,n) from one secondary structure is
called base pair conflict if there exists a base pair (i, j) in the
other secondary structure such that m¡i¡n¡j, or i¡m¡j¡n.

Definition 2. Structure distance: Given two RNA secondary
structures, the structure distance between them is the aver-
age of the number of base pair conflicts in each secondary
structure.

The definition of base pair conflict is similar to the def-
inition of pseudoknots, but the difference is that base pair
conflict is for base pairs in two different structures while
pseudoknots is for those in one structure [14], [24], [25]. Since
CM cannot deal with pseudoknots which should be avoided in
the combined structure, only one of the two conflict base pairs
can be retained in the combined structure [5], [23].

Unlike the distance functions used in most clustering
algorithms that measure dissimilarity between observations,
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structure distance, the distance function applied in the existing
technique, is a measurement of compatibility of two RNA
secondary structures [5]. The smaller this value is, the more
compatible the two secondary structures are. The compatibility
between two secondary structures shows how much structural
information can be retained when they are combined. Since
the objective is to build a CCM that can capture as much
information as possible about both original CMs, two CMs
with more compatible secondary structure components would
be perfect to be combined. The basic process of HAC [5] is
as shown in Algorithm 1.

Algorithm 1 HAC Process
1: Start
2: Assign each ncRNA gene family to its own cluster, then

build the distance matrix by computing the structure
distance between each family.

3: Find the closest pair of clusters (the minimal element in
distance matrix) and combine their secondary structures to
create a new family, which corresponds to a non-leaf node
in the dendrogram, and then remove the cluster pair from
dendrogram.

4: Compute structure distance between the new cluster and
each of the old clusters.

5: Repeat steps 2 and 3 until there is only one cluster, which
corresponds to the root of the dendrogram.

6: End

Ref. [5] proposed three criteria that should be followed for
selecting base pairs from two secondary structures. First, the
set of selected base pairs should contain as many base pairs as
possible. Since the greater number of base pairs are selected,
the more secondary structure components are retained, which
also means the more likely a target sequence will be found
when searching the genome database. Second, the base pairs
selected from one CM should not conflict with those from
the other CM. This means there are no pseudoknots in the
combined secondary structure due to the reason that CM
cannot deal with pseudoknots. Third, each CM should have
roughly the same number of base pairs selected, which means
this study wants to make a balance between the two original
secondary structures.

A greedy algorithm to select base pairs from two secondary
structures to form a new secondary structure that satisfies the
above three criteria is outlined in Algorithm 2, which is termed
as Hierarchical Agglomerative Clustered Covariance Model
(HACCM) by [5]. The general idea is to select a base pair
from one structure that has fewest conflicts (pseudoknots) with
the base pairs in the other structure, which means selecting
this base pair will cause fewest deletions of base pairs in the
other structure, and such selection takes turns between the two
structures.

This existing technique of [5] performs rather well, in
most cases, when not too many CMs are combined, where the
CCM can successfully represent members from all original
families and hardly provide any false alarms. However, its
performance gradually deteriorate as more families of CMs
are added into the CCM, since more structural information will
be discarded, and the sequence features of each family will be
significantly diluted as the number of original CMs increase

Algorithm 2 Pseudocode to Construct CCM using HACCM
[5]

1: Start
2: Generate a list of Nf gene families (each family consists

of five randomly selected clusters, one cluster from each
original family)

3: Calibrate the gene families using cmcalibrate tool from
Infernal package

4: while Nf > 0 do
5: Generate distance matrix between gene families
6: Select two nearest gene families
7: Construct CCM from two nearest families by using

base pair conflicts
8: Exclude the two families from future distance matrix

calculation
9: Calculate the TP, TN, FP, and FN from the bit-score

of the CCM using members of gene families
10: end while
11: End

[5]. Furthermore, the original technique is not sufficiently
covering all the problem spaces, which means the solution
provided may not be the best solution. The frequently used
strategy to explore wider problem spaces is by employing
evolutionary and swarm intelligence, where each member of
the swarm represents one possible solution. By adjusting the
number of unique members based on the resource availability,
the problem spaces can be further explored.

To achieve this objective, this study proposes to implement
swarm intelligence to ensure the CCMs have the best quality
for every level of dendrogram hierarchy. On the initialization
phase of the swarm intelligence technique, several possible
combinations of the CMs will be generated and considered as
a single member of swarm intelligence. The selected number
of sequences will be unique and the number of sequences for
these particles will vary to ensure the maximum coverage. This
study will also apply distance matrix as the criteria to measure
the compatibility between two CMs.

However, the difference between this study and the previ-
ous one is that the selected CCMs will be directly evaluated
by CM scoring model, which will be assigned as one of
the components of fitness value of the member of swarm
intelligence instead of producing the complete dendrogram
before evaluating the CM scoring model. The CM from the
best member in the current iteration will be then combined
with other CMs to generate the new CMs in the subsequent
iterations. Furthermore, this study aims to generate reliable
cluster pool by having proper selection approach to reduce
sequence features dilution in CCMs and to optimize the CCMs
selection models which is based on Hierarchical Agglomera-
tive Clustering using Swarm Optimization in finding potential
members of novel ncRNA. By the end of the optimization
process, this study will construct generic sequence models
which represent multiple families to identify unknown family
members of ncRNA.

III. PROPOSED SWARM INTELLIGENCE-BASED HACCM

This section discusses the tasks undertaken to develop the
proposed techniques by hybridizing them with swarm intelli-
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gence (SI) techniques, such as Particle Swarm Optimization
(PSO) and Genetic Algorithm (GA). In Algorithm 3, the
hybridization with SI techniques is primarily to prevent the
existing HACCM technique [5] selects the local optima and
forces it to reevaluate the candidates with the same merit in
every iteration to find the global optima.

Algorithm 3 Optimization Process using SI for HACCM
1: Start
2: Step 1
3: Generate balanced cluster pool based on minimum

number
4: Step 2
5: Generate similarity matrix between clusters
6: Find the closest pair of clusters using greedy algo-

rithm and combine it
7: Construct tree-based CCM structures
8: Step 3
9: Measure the fitness value of each combined clusters

using CM search score and confusion matrix
10: Step 4
11: Compare and get best hierarchical CM structure with

highest fitness value
12: Update clusters combination with PSO’s velocity

composite values
13: Step 5
14: Set threshold Fit = 1 or stagnant fitness for 5 iterations
15: Proceed to Step 2 if threshold not fulfilled
16: End

The fitness function for the PSO and GA should be
identified beforehand. Although there are several possible
performance measurements available, such as sensitivity or
recall, precision, F1-score, specificity, and accuracy, this study
prefer to use accuracy as the parameter of fitness function
because they do not solely rely on the true and false positives.
However, in case of the similar fitness value between two or
more PSO particles or GA individuals, other criteria should be
taken into consideration, which is the sum of bit-scores, which
is obtained by evaluating the CM using the cmsearch program
from Infernal package [3]. In this study, the sum of literal
value of bit-scores or similarity score of the families will be
used in the fitness function as the tiebreaker parameter. Thus,
the proposed fitness function of this study is given in Eq. 1.

Fi = α× Acci(t)−Acci(0)

Acci(0)
+ β × SSi(t)− SSi(0)

SSi(0)
, (1)

where Acci is the accuracy of ith member (particle in case
of PSO and individual in case of GA) in the tth iteration
(t = 0, 1, ...), and SSi is the sum of bit-scores from the
families of ith member, with Acci(0) and SSi(0) are the
accuracy and sum of bit-scores of the original HACCM, which
is inspired from the fitness function of HelixPSO for finding
RNA secondary structure [28], given in Eq. 2.

F = α× |S| ∩ |C|
|C|

+ β ×min

(
0,

E(S)

mfE

)
, (2)

where α and β in Eqs. 1 and 2 are the parameters used
to determine the importance of classification accuracy and the

Fig. 2. Optimization Process using PSO.

subset size, where α ∈ [0, 1] and β = 1−α. In this study, the α
is set to 0.9, while β is set to 0.1. By setting the accuracy and
sum of bit-scores of the current PSO particle or GA individual
relative to the original HACCM, the values of fitness value can
be guaranteed to not deviate too much to the original HACCM
performance.

A. PSO and HACCM Hybridization

In this study, Particle Swarm Optimization (PSO) [26],
[27] is selected as one of swarm intelligence techniques to
optimize HACCM. One of the main considerations taken for
selecting PSO is due to its simple yet effective implementation.
The main idea of Particle Swarm Optimized HACCM (PSO-
HACCM) is that fitness function of PSO is modified by im-
plementing confusion matrix-based performance measurement
techniques calculated from the results of bit-score obtained
from cmsearch of Infernal package. This is to allow the most
optimal interaction between PSO and HACCM, and thus allow
for wider search space exploration. Furthermore, there are
multiple instances of HACCM executed concurrently; each of
them is executed in PSO particle.

This study uses the sum of bit-scores value to be assigned
as the particle position. Meanwhile, the fitness value must be
identified beforehand since there are several possible confusion
matrix-based performance measurement techniques, however
this study found the accuracy. Each particle will examine
diverse set of CM family clusters, and thus produce unique
results, this is because the examined CM family clusters set
and its results are recorded, to prevent different particles from
examining the same set multiple times.

Apart from the modification to the fitness function, the
particle velocity update strategy is also modified which is
shown in Fig. 2. Like original PSO, the velocity of the PSO vi
in the (t+1)th iteration is affected by inertia ratio Ii, cognitive
acceleration ratio Ci, and social acceleration ratio Si, although
is it slightly modified such that

vi(t+ 1) = Ir + Cr + Sr, (3)

Ii = I × vi(t), (4)

Ci = C × rand()× (pi − xi(t)), (5)

Si = S × rand()× (pbest − xi(t)), (6)

where I , C, and S are the inertia weightage, cognitive
acceleration coefficient, and social acceleration coefficient,
respectively. In this study, the constants I is set to 0.729844
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while C and S is set to 1.49618 [29]. Since the particle is made
up Nf clusters, the implementation of these ratios is that there
will be maximum ⌊ Ir×Nf

vi(t)
⌋ numbers of clusters are reselected

from clusters pool, maximum ⌊Cr×Nf

vi(t)
⌋ numbers of clusters

are reselected from the particle’s personal best, and maximum
⌊Sr×Nf

vi(t)
⌋ numbers of clusters are reselected from the global

best particle. The algorithm of PSO-HACCM is illustrated in
Algorithm 4.

Algorithm 4 The Pseudocode to Construct Hybrid PSO and
HACCM

1: Start
2: Set number of particles Np = 3
3: Set number of iterations Nt = 100
4: for i = 1...Np do
5: Generate particle Pi, which is the CCM
6: Calculate initial sum of bit-scores of CCM as position

Xi

7: Calculate fitness value Fi

8: Calculate inertia ratio Ii, cognitive acceleration ratio
Ci, and social acceleration ratio Si

9: Initialize velocity Vi = Ii + Ci + Si

10: Select global best Gbest based on maximum fitness
value

11: end for
12: for t = 1...Nt do
13: for i = 1...Np where Pi! = Gbest do
14: NumInert = Ii ∗Nf/Vi

15: NumCog = Ci ×Nf/Vi

16: NumSoc = Si ×Nf/Vi

17: Randomly select n1 ≤ NumInert clusters from
cluster pool

18: Randomly select n2 ≤ NumCog clusters from
Pbest

19: Randomly select n3 ≤ NumSoc clusters from
Gbest

20: Generate hierarchical CCM from new clusters
21: Update Xi, Fi, Ii, Ci, Si, and Vi

22: end for
23: Select new Gbest
24: if FGbest

== 1 OR is stagnant after 5 iterations then
25: Stop iteration
26: end if
27: end for
28: End

B. GA and HACCM Hybridization

In this study, Genetic Algorithm (GA) [31] is selected as
another swarm intelligence techniques to optimize HACCM.
The main idea of GA-based HACCM (GA-HACCM) is similar
to PSO-HACCM, where the fitness function of GA is modi-
fied by implementing well-known performance measurement
techniques based on the results of bit-score calculation. This
is also to allow the most optimal interaction between GA and
HACCM, and thus allow for wider search space exploration
based on the modified parameters of the optimization process
in Fig. 3.

Similarly, there are multiple instances of HACCM executed
concurrently; each of it is executed in GA individual. Each

Fig. 3. Optimization Process using GA.

individual Ii will examine different set of CM family clusters,
and thus produce unique results, this is because the examined
CM family clusters set and its results are recorded, to prevent
different individuals examine the same set multiple times.
However, unlike PSO-HACCM, there are not much changes
modification required to hybridize GA and HACCM. The
algorithm of GA-HACCM is illustrated in Algorithm 5.

Algorithm 5 The Pseudocode to Construct Hybrid GA and
HACCM

1: Start
2: Set number of individuals Ni = 3
3: Set number of iterations Nt = 100
4: for i = 1...Np do
5: Generate individual Ii, which is the CCM
6: Calculate initial sum of bit-scores of CCM as Xi

7: Calculate fitness value Fi

8: Select global best individual Gbest based on fitness
value

9: end for
10: for t = 1...Nt do
11: for i = 1...Ni where Ii! = Gbest do
12: if Randomly selected for crossover then
13: Crossover with Gbest using roulette-wheel se-

lection
14: Randomly mutate n chromosomes of Ii using

new clusters from pool
15: Generate hierarchical CCM from new clusters
16: Update Xi and Fi

17: end if
18: end for
19: Select new Gbest
20: if FGbest

== 1 OR is stagnant after 5 iterations then
21: Stop iteration
22: end if
23: end for
24: End

IV. EXPERIMENTAL SETUP

With the goal stated in the section above, an extensive
and rigorous empirical comparative study is designed and
conducted. In this section, a detailed description of the ex-
perimental method is provided.

A. Dataset Collection and Preparation

This study obtained the dataset from Rfam database,
the most commonly used database that store ncRNA gene
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Fig. 4. Steps of Data Collection and Preparation.

TABLE I. SUMMARY OF TRAINING AND TESTING DATASET PREPARATION

Family Number of Se-
quences

Number of
Selected
Sequences

Number of
Unselected
Sequences

RF00007 51 51 0
RF00015 137 51 86
RF00020 131 51 80
RF00029 86 51 35
RF00050 144 51 93

families from various species [30]. This database is a col-
lection of ncRNA families represented by manually curated
sequence alignments, consensus secondary structures and an-
notation gathered from corresponding taxonomy and ontology
resources. The summary of the process of collecting and
preparing the dataset is as shown in Fig. 4.

In this study, five sets of ncRNA gene families were
selected to test CMs combination method. The selected gene
families have roughly similar average length so that their CM
combination would not have bias towards either of them. Thus,
the number of selected sequences will be set to the minimum
number of sequences available, which is fifty-one sequences.
This study proposes to randomly divide the selected sequences
within one family into groups of three sequences for each
gene families by following steps of dataset collection and
preparation in Fig. 4 then generate a balanced cluster pool
from selected sequences for each family, while the rest of the
unselected sequences will be used to form the testing dataset
and validate the proposed technique. The process to construct
from the generic CCM using existing and proposed techniques
is as shown in Algorithm 6, while the summary of the training
and testing dataset is shown in Table I.

Algorithm 6 The Pseudocode for the Dataset Preparation
1: Start
2: Set number of families Nf = 5
3: Identify minimum number sequences Ns for each family
4: Set number of sequences per cluster Nsc = 3
5: Set number of clusters per family Nc =

FLOOR(Ns/Nsc)
6: Generate cluster pool containing Nc clusters by randomly

selecting sequences for each family
7: Set unselected sequences as testing dataset
8: End

Each family obtained from Rfam database is stored in one
plain-text file. Each file consists of multiple lines, where each
line represents the known ncRNA sequence from that family.
There are two data contained in each line separated with tab

space: the first data is the name of the sequence, while the
second data is the ncRNA sequence. The unique pattern of
each family is stored in the last line of the plain-text file.
Apart from the plain-text file, it is also possible to visualize
the ncRNA sequence in the Rfam database.

After the ncRNA family dataset has been successfully
obtained from Rfam database, the dataset must be prepared and
processed so that it can be used by the tools in the Infernal
package. Prior to processing by Infernal package tools, the
dataset must be stored in .CM file format, which is constructed
from .STO file format. The data format in .STO file format is
almost similar to the format obtained from Rfam database,
with only minor differences, such as the first line of the file in
.STO file format must be annotated with # STOCKHOLM 1.0
syntax and the gene family pattern of .STO file format is only
limited to the dot-bracket notation, which consists of left-angle
bracket (<), right-angle bracket (>), and dot symbol (.).

As mentioned earlier, the dataset must be stored in .CM
file format. To generate .CM file format, cmbuild program
from Infernal package must be used. After the .CM file is
generated, it is also necessary to calibrate the data using
cmcalibrate program so that the dataset can be used by other
programs in Infernal package. However, calibrating the dataset
to .CM format takes a rather long time; thus, this study needs
to adjust the parameters of cmcalibrate program to reduce
the calibration time. The cmcalibrate is executed without the
forecasting capability, which estimates the execution time by
running a small sample of data, reduced its tail loss probability
to 10-2 instead of the default 10-15, and the sample size to
0.5 MB instead of the default 1.6 MB.

B. Experimental Design

The quality of the proposed technique must be validated
using various performance measurement criteria, because eval-
uating the performance of learning algorithms is a fundamental
aspect of machine learning. In this study, the performance
measurements for evaluating the performance of the exist-
ing and proposed techniques are the sum of bit-scores, the
processing time, and the value of confusion matrix-based
performance measurement technique. Despite there are several
confusion matrix-based performance measurement techniques
available, such as sensitivity, specificity, precision, F1-score,
accuracy, prevalence, phi coefficient, Fowlkes–Mallows index,
informedness, markedness, and a few others, this study will
only focus on the accuracy as the primary performance mea-
surement by comparing the most commonly used techniques.
The sum of bit-scores and processing time are considered
as supplementary performance measurements to support the
results of the primary measurement.

The bit-score indicates the performance measurement for
selected ncRNA sequence. The bit-score is obtained from the
cmsearch program from Infernal package, and it is used to
measure the probability of similar sequence to be found on
a given set on covariance model gene family. The processing
time can be measured directly while executing the existing and
proposed techniques in the clean room environment.

The proposed ncRNA search model techniques are de-
veloped to construct generic sequence models which can be
used to recognize new potential members of novel ncRNA
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Fig. 5. Summary of Statistical Validation

families. Therefore, it is important to construct a performance
measurement to assess this capability. However, since it is
practically difficult to obtain the novel and unknown sequences
of ncRNA to assess the existing and proposed techniques, this
study instead proposed a scenario to simulate this situation.

The scenario of identifying the unknown ncRNA sequences
is similar to identifying a set of testing instances by using
supervised learning method. By using the datasets mentioned
earlier, a portion of the data from the datasets must be set aside
to form the testing dataset and the remaining data will be used
to form the training dataset, which will be used to construct
the CCM. After the CCM has been completely constructed,
the testing dataset will be used to validate the CCM, where
the result is either the sequence can be found or not found
in the combined covariance model. The result will be used to
validate the generic sequence models.

The performance measurements are conducted fifty times
to ensure the statistical consistency of the results using the
datasets mentioned earlier. These performance measurements
are validated using various statistical validation techniques
available in jamovi statistical package software. The summary
of the statistical validation is depicted in Fig. 5.

V. RESULTS AND DISCUSSION

This section provides the results of the comparative study
used to identify the most suitable technique to improve the
quality of original HACCM proposed by [5]. Table II presents
the descriptive test results for the accuracies and the sum of bit-
scores of the best member from 50 executions using 3 members
for each technique, as well as the total processing time to
complete these 50 executions.

Based on the results shown in Table II, the PSO-HACCM
produces the best accuracy, sum of bit-scores, and processing
time compared to the original HACCM and GA-HACCM.
The percentage of the differences between the PSO-HACCM
compared to the GA-HACCM and original HACCM is shown
in Table III.

The PSO-HACCM results shown in Table III are higher
than other techniques are due to its cognitive and social
accelerations capabilities, which are not present in the original

TABLE II. DESCRIPTIVE TEST RESULTS

Descriptive Technique Accuracy Sum of Bit-
Score

Processing
Time

Valid cases
HACCM 50 50 50
PSO-HACCM 50 50 50
GA-HACCM 50 50 50

Missing cases
HACCM 0 0 0
PSO-HACCM 0 0 0
GA-HACCM 0 0 0

Mean
HACCM 82.8% 316 391
PSO-HACCM 91.0% 359 357
GA-HACCM 86.2% 330 392

Median
HACCM 80.0% 313 391
PSO-HACCM 90.0% 362 355
GA-HACCM 85.0% 325 391

Mode
HACCM 80.0% 302 328
PSO-HACCM 95.0% 306 314
GA-HACCM 85.0% 243 310

Standard
deviation

HACCM 4.97% 37.4 31.4
PSO-HACCM 4.95% 45.8 21.1
GA-HACCM 5.11% 37.7 42.2

Variance
HACCM 0.247% 1400 987
PSO-HACCM 0.245% 2098 447
GA-HACCM 0.261% 1422 1780

Range
HACCM 25.0% 178 148
PSO-HACCM 15.0% 173 109
GA-HACCM 25.0% 200 229

Skewness
HACCM 1.26 0.177 0.142
PSO-HACCM -0.0263 -0.224 0.847
GA-HACCM 0.329 0.394 0.735

Kurtosis
HACCM 2.65 0.126 -0.151
PSO-HACCM -1.38 -0.546 1.49
GA-HACCM 0.544 0.867 1.76

TABLE III. DIFFERENCES BETWEEN TECHNIQUES

Compared
Technique

Accuracy Sum of Bit-Score Processing Time
Value % Value % Value %

HACCM 4.8% 10.2%
higher 43 13.6%

higher 34 8.7%
faster

GA-HACCM 8.2% 5.6%
higher 29 8.8%

higher 35 8.9%
faster

TABLE IV. PRELIMINARY SHAPIRO–WILK W TESTS OF NORMALITY

Criteria Technique Statistic df Sig.

Accuracy
HACCM 0.823 50 < 0.001
PSO-HACCM 0.816 50 < 0.001
GA-HACCM 0.897 50 < 0.001

Sum of
bit-scores

HACCM 0.975 50 0.364
PSO-HACCM 0.966 50 0.159
GA-HACCM 0.979 50 0.522

Processing
time

HACCM 0.981 50 0.574
PSO-HACCM 0.957 50 0.064
GA-HACCM 0.959 50 0.083

HACCM and GA-HACCM. However, to validate whether the
difference between PSO-HACCM, GA-HACCM, and original
HACCM is statistically significant, in-depth comparison of
these techniques must be conducted. The results summarized
in Table II are then validated to determine the significance
of PSO-HACCM and GA-HACCM compared to original
HACCM using either ANOVA or Kruskal–Wallis H test,
because it is suitable for comparing the means from more than
two distinct groups of data. However, before either ANOVA
or Kruskal–Wallis H test is conducted, all techniques must be
tested for normality to determine whether its data is normally
distributed. Table IV presents the result of Shapiro–Wilk W
tests of normality.

Table IV presents the results from Shapiro–Wilk W test of
normality. It is concluded that the accuracies of PSO-HACCM,
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TABLE V. KRUSKAL–WALLIS H TEST RESULTS FOR THE ACCURACY

Chi-Square df Asymp. Sig.
50.9 2 < 0.001

TABLE VI. POST-HOC TEST RESULTS FOR THE ACCURACY

Compared Measurements W p
HACCM vs PSO-HACCM 9.42 < 0.001
HACCM vs GA-HACCM 5.29 < 0.001

PSO-HACCM vs GA-HACCM -6.07 < 0.001

TABLE VII. SHAPIRO–WILK W TESTS OF NORMALITY FOR
ASSUMPTION CHECKS OF THE SUM OF BIT-SCORES AND PROCESSING

TIME

Criteria W Sig.
Sum of bit-scores 0.993 0.655
Processing time 0.972 0.004

TABLE VIII. TEST OF HOMOGENEITY OF VARIANCES OF THE SUM OF
BIT-SCORES AND PROCESSING TIME

Criteria Levene Statistic df1 df2 Sig.
Sum of bit-scores 1.87 2 147 0.157
Processing time 9.80 2 147 < 0.001

GA-HACCM, and original HACCM techniques are not nor-
mally distributed since p < 0.05, therefore non-parametric test
such as Kruskal–Wallis H test should be conducted instead.
On the other hand, the sum of bit-scores and processing time
criteria for these techniques are normally distributed, and thus
the ANOVA can be conducted for testing the score of these
techniques.

The Kruskal–Wallis H test results for the accuracy
of PSO-HACCM, GA-HACCM, and original HACCM
are shown in Table V, with the post-hoc results using
Dwass–Steel–Critchlow–Fligner pairwise comparison is shown
in Table VI. Meanwhile, the assumption checks and test
of homogeneity of variances for the sum of bit-scores and
processing time of PSO-HACCM, GA-HACCM, and original
HACCM are shown in Tables VII and VIII, respectively.

Based on the results shown in Table V, there are
a statistically significant effect of three techniques
[H(2) = 50.9, p < 0.001]. Post-hoc comparisons using
Dwass–Steel–Critchlow–Fligner pairwise comparison on each
pair of groups which is shown in Table VI indicated that there
is a statistically significant difference between the accuracy
of HACCM and PSO-HACCM (W = 9.42, p < 0.001),
HACCM and GA-HACCM (W = 5.29, p < 0.001), and
PSO-HACCM and GA-HACCM (W = −6.07, p < 0.001).

On the other hand, based on the results shown in Tables
VII and VIII, the sum of bit-scores is normally distributed
and there is homogeneity of variances for the sum of bit-
scores between groups of techniques, therefore the assumption
of ANOVA has been validated, and thus, the Fisher’s test
must be conducted and Tukey HSD post-hoc tests must be
used consequently. On the contrary, the processing time is not
normally distributed and there are no there are homogeneity
of variances for the processing time between groups of tech-
niques, therefore the assumption of ANOVA has been violated,
and the Kruskal–Wallis H test must be conducted instead.

TABLE IX. FISHER’S TEST ANOVA RESULTS OF THE SUM OF
BIT-SCORES

F df1 df2 Sig.
15.0 2 147 < 0.001

TABLE X. POST-HOC TEST RESULTS USING TUKEY HSD TEST FOR THE
SUM OF BIT-SCORES

Compared Techniques Mean Difference t-value df Sig.
HACCM vs PSO-HACCM -43.3 -5.35 147 < 0.001
HACCM vs GA-HACCM -13.5 -.167 147 0.222

PSO-HACCM vs GA-HACCM 29.8 3.68 147 < 0.001

TABLE XI. KRUSKAL–WALLIS H TEST RESULTS FOR THE PROCESSING
TIME

Chi-Square df Asymp. Sig.
35.3 2 < 0.001

TABLE XII. POST-HOC TEST RESULTS FOR THE PROCESSING TIME

Compared Measurements W p
HACCM vs PSO-HACCM -7.72 < 0.001
HACCM vs GA-HACCM -0.04 0.999

PSO-HACCM vs GA-HACCM 6.80 < 0.001

Thus, the ANOVA for the sum of bit-scores of PSO-
HACCM, GA-HACCM, and original HACCM are shown in
Table IX with the post-hoc results using Tukey HSD and
Games–Howell are shown in Table X for the sum of bit-
scores, while the Kruskal–Wallis H test results for the pro-
cessing time of PSO-HACCM, GA-HACCM, and original
HACCM are shown in Table XI, with the post-hoc results
using Dwass–Steel–Critchlow–Fligner pairwise comparison is
shown in Table XII.

Based on the results shown in Table IX, there is a
statistically significant effect of the sum of bit-scores be-
tween PSO-HACCM, GA-HACCM, and original HACCM
techniques [F (2, 147) = 15.0, p < 0.001] at the p < 0.05
level. Post-hoc comparisons using the Tukey HSD test shown
in Table X indicated that the mean score for the sum of
bit-scores of PSO-HACCM is statistically significantly bet-
ter than HACCM [t(147) = −5.35, p < 0.001] and GA-
HACCM [t(147) = 3.68, p < 0.001], while there is no
statistically significant difference between HACCM and GA-
HACCM [t(147) = −0.167, p = 0.222].

Meanwhile, based on the results shown in Table XI,
there are a statistically significant effect of three techniques
[H(2) = 35.3, p < 0.001]. Post-hoc comparisons using
Dwass–Steel–Critchlow–Fligner pairwise comparison on each
pair of groups which is shown in Table XII indicated that the
mean score for the processing time of PSO-HACCM is statis-
tically significantly better than HACCM (W = −7.72, p <
0.001), and GA-HACCM (W = 6.80, p < 0.001). These
statistical test results of accuracy, sum of bit-scores, and
processing time confirm that PSO-HACCM technique is indeed
improving the performance of the original HACCM.

To further validate the performance of the proposed tech-
niques, these techniques should be validated by simulating
the identification of unknown ncRNA sequences using the
combined covariance model constructed by these techniques.
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TABLE XIII. DESCRIPTIVE TEST RESULTS OF THE IDENTIFICATION
ACCURACY

Descriptive Technique Accuracy

Valid cases
HACCM 50

PSO-HACCM 50
GA-HACCM 50

Missing cases
HACCM 0

PSO-HACCM 0
GA-HACCM 0

Minimum
HACCM 40.0%

PSO-HACCM 66.67%
GA-HACCM 32.16%

Maximum
HACCM 99.61%

PSO-HACCM 91.76%
GA-HACCM 90.20%

Mean
HACCM 67.6%

PSO-HACCM 76.6%
GA-HACCM 66.%

Median
HACCM 67.4%

PSO-HACCM 75.3%
GA-HACCM 67.4%

Mode
HACCM 67.4%

PSO-HACCM 73.7%
GA-HACCM 60.4%

Standard
deviation

HACCM 12.3%
PSO-HACCM 6.21%
GA-HACCM 11.9%

Variance
HACCM 1.52%

PSO-HACCM 0.39%
GA-HACCM 1.41%

Range
HACCM 59.6%

PSO-HACCM 25.1%
GA-HACCM 58.0%

Skewness
HACCM 0.0769

PSO-HACCM 0.465
GA-HACCM -0.379

Kurtosis
HACCM 0.226

PSO-HACCM -0.658
GA-HACCM 0.526

TABLE XIV. PRELIMINARY SHAPIRO–WILK W TESTS OF NORMALITY
OF THE IDENTIFICATION ACCURACY

Technique Statistic df Sig.
HACCM 0.989 50 0.917

PSO-HACCM 0.955 50 0.055
GA-HACCM 0.980 50 0.534

The identification will be using the testing dataset discussed in
Section IV which has been set aside prior to the construction
of the generic sequence models that simulates the identification
of unknown ncRNA sequences. The result of this identification
simulation is summarized in Table XIII.

Based on the summarized results in Table XIII, it can be
seen that the mean accuracy of PSO-HACCM is higher com-
pared to the GA-HACCM and original HACCM. This is due
to PSO-HACCM successfully constructed the generic sequence
models which can be used to recognize potential members of
novel ncRNA families. To determine the significance of the
PSO-HACCM results presented in Table XIII compared to GA-
HACCM and original HACCM, another statistical validation
using ANOVA or Kruskal–Wallis H test must be conducted.
As mentioned earlier, all techniques must be tested for normal-
ity to determine whether its data is normally distributed. Table
XIV presents the result of Shapiro–Wilk W tests of normality
for these techniques.

Based on the results presented in Table XIV, it is con-
cluded that the identification accuracies of PSO-HACCM,
GA-HACCM, and original HACCM techniques are normally

TABLE XV. SHAPIRO–WILK W TESTS OF NORMALITY FOR
ASSUMPTION CHECKS OF THE IDENTIFICATION ACCURACY

W Sig.
0.988 0.222

TABLE XVI. TEST OF HOMOGENEITY OF VARIANCES RESULTS OF THE
IDENTIFICATION ACCURACY

Levene Statistic df1 df2 Sig.
6.82 2 147 0.001

TABLE XVII. ANOVA RESULTS OF THE IDENTIFICATION ACCURACY

Test F df1 df2 Sig.
Fisher’s 13.6 2 147 < 0.001

TABLE XVIII. POST-HOC TEST RESULTS OF THE IDENTIFICATION
ACCURACY

Compared Techniques Mean Difference t-value df Sig.
HACCM vs PSO-HACCM -9.07 -4.31 147 < 0.001
HACCM vs GA-HACCM 0.784 0.373 147 0.926

PSO-HACCM vs GA-HACCM 9.851 4.685 147 < 0.001

distributed since p ≥ 0.05, and thus the ANOVA can be
conducted for validating the identification accuracy of these
techniques. The assumption checks and test of homogeneity
of variances for the identification accuracy of PSO-HACCM,
GA-HACCM, and original HACCM are shown in Tables XV
and XVI, respectively.

Based on the results shown in Tables XV and XVI,
the identification accuracy is normally distributed and there
is homogeneity of variances for the identification accuracy
between groups of techniques, therefore the assumption of
ANOVA has been validated and the Fisher’s test results must
be considered and Tukey HSD post-hoc tests must be used
consequently. The ANOVA for the identification accuracy of
PSO-HACCM, GA-HACCM, and original HACCM is shown
in Table XVII with the post-hoc results using Tukey HSD is
shown in Table XVIII.

Based on the results shown in Table XVII, there is a
statistically significant effect of the identification accuracy
between PSO-HACCM, GA-HACCM, and original HACCM
techniques [F (2, 147) = 13.6, p < 0.001] at the p < 0.05
level. Post-hoc comparisons using the Tukey HSD test shown
in Table XVIII indicated that the mean score for the identifi-
cation accuracy of PSO-HACCM is statistically significantly
better than HACCM [t(147) = −4.31, p < 0.001] and GA-
HACCM [t(147) = 4.685, p < 0.001], while there is no
statistically significant difference between HACCM and GA-
HACCM [t(147) = 0.373, p = 0.926].

From the comparative performance measurements and sta-
tistical validations conducted throughout this section, it can
be concluded that PSO-HACCM is indeed performing better
compared to the original HACCM as well as GA-HACCM,
thanks to its generic sequence model construction.

VI. CONCLUSION

The comparison of accuracy, sum of bit-scores, and pro-
cessing time have been conducted between original HACCM,
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PSO-HACCM, and GA-HACCM to demonstrate the capability
of the proposed techniques in constructing generic sequence
models, which can be used to recognize potential members of
novel ncRNA families. Performance measurement results show
that proposed PSO-HACCM performs better than the original
HACCM and the proposed GA-HACCM technique, in terms of
optimization performance, identification accuracy, sum of bit-
scores, and processing time. This finding opens up the possibil-
ities of future works, such as leveraging Graphical Processing
Unit (GPU) to speed the computation process, explorations of
other swarm intelligence techniques, and inclusion of more
gene families for the dataset.
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