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Abstract
Coupled dynamic analysis of a floating offshore wind turbine (FOWT) is predicted with in-house ITU-WAVE computational tool. The
hydrodynamic parameters are approximated with time marching of boundary integral equation whilst aerodynamic parameters are
solved with unsteady blade element momentum method. In addition, forces on FOWT due to mooring lines are predicted with quasi-
static analysis whilst hydrodynamic viscous effects are included with Morison equation. FOWT’s blades are considered as an elastic
structure whilst tower is considered as a rigid structure. The effects of steady wind speed on surge motion spectrum decrease the
spectrum amplitude over wave frequency ranges, but this effect is not significant. The duration of time domain simulation plays signifi-
cant role in the region of surge and pitch resonant frequencies. The numerical results of in-house ITU-WAVE computational code for
eigenfrequencies of blades, aerodynamics and hydrodynamics parameters are validated against other numerical results which shows
satisfactory agreements.

Keywords
Unsteady blade element momentum, transient wave Green function, quasi-static mooring analysis, Morison equation, dynamic inflow,
dynamic stall, aeroelasticity, motion spectrum

Introduction

The issue of global warming has resulted in growing pressure on governments in the world to exploit the renewable
sources for power generation to reduce the carbon dioxide emissions. Of these, wind energy is globally distin-
guished as a leading technology for non-polluting energy generation. As the wind energy industry has grown con-
siderably, electricity generated by wind power has shown a dramatic fall in cost (www.windeurope.org). As the
offshore environment has higher capacity factor than onshore due to steadier and stronger wind velocity, Floating
Offshore Wind Turbines (FOWT) in deep-water offshore environments has emerged as a forward-thinking appli-
cation of this technology for utilising unexploited large potential offshore wind resources for the large-scale gener-
ation of electricity. However, despite current progress, wind power still has some way to go before it fulfils its
potential as a large-scale supplier of electricity.

The design of FOWT requires the dynamic coupling of the aerodynamic, hydrodynamic, mooring and struc-
tural dynamics as a whole energy system. Of these integrated dynamic coupling, the aerodynamic loads are the
function of the relative wind velocity over aerofoils of blades. The relative wind velocity consists of the effects of
undisturbed wind velocity at hub height, induced velocity due to rotation of the wake and motion of FOWT (e.g.
blade rotation, local blade velocity due to the elastic deformation of the blade if the blades are not considered as a
stiff structure, translational and rotational velocity of floater). The unsteady aerodynamic forces in time domain
due to interaction between wind and wind turbine blades are modelled using different methods including simple
empirical approximation assuming known thrust coefficients (Utsunomiya et al., 2013), strips (unsteady Blade
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Element Momentum (BEM) method), panel methods, vortex methods or full Navier-Stokes approximations. The
unsteady BEM method couple the momentum theory with two-dimensional strip theory (Glauret, 1935) to predict
the aerodynamic loads at each strip. The unsteady BEMmethod is very fast and gives accurate prediction, and cur-
rently is used in many developed codes (FAST, SIMO-RIFLEX, HAWC2, ITU-WAVE). The three-dimensional
effects to consider the details of the flow characteristics around wind turbine blades are considered in inviscid vor-
tex (Milne-Thomson, 1966) and panel (Hess, 1975) aerodynamic methods. The restrictions over viscous effects are
achieved using viscous Computational Fluid Dynamics (CFD) methods (Make and Vaz, 2015). However, the vis-
cous CFD models will require a large effort for input preparation and post processing compared to unsteady BEM
or panel methods and are also very expensive computationally which are not suited for routine applications today.

The two and three-dimensional numerical methods are used to predict the hydrodynamic parameters due to the
interaction of floating systems with incident waves. The two-dimensional strip theory methods (Salvensen et al.,
1970) are used successfully in academia and industry due to accurate prediction of hydrodynamic parameters com-
pared to experimental methods. The strip theory methods consider the flow around the floating system two
dimensional and ignore the interactions between strips. In addition, strip theory methods do not predict the low
frequency region accurately which are predicted with unified theory methods (Breit and Sclavounos, 1986;
Kashiwagi, 1993). As the two-dimensional methods do not consider interactions between strips, the three-
dimensional methods using panels to describe surfaces of floating systems are used to overcome the shortcoming
of the two-dimensional methods taking interaction effects between discretised panels into account automatically.
Although three-dimensional viscous CFD methods could be used for accurate prediction of hydrodynamic para-
meters, they are computationally intensive and expensive for practical use. The computational time could be sig-
nificantly reduced using inviscid CFD methods known as three-dimensional panel methods which are suited
better for practical use and predict the hydrodynamic parameters accurately compared to experimental results
(Kara, 2021a, 2021b, 2022a). Of the panel methods, Rankine Panel methods (Kring and Sclavounos, 1991; Nakos
and Sclavounos, 1990; Xiang and Faltinsen, 2011) and wave Green function methods (Kara, 2000; King, 1987;
Liapis, 1986) are widely used in academia and industry due to their accurate predictions of the design parameters.
Rankine Panel methods require the discretion of both body surface and free surface to satisfy the body boundary
condition, free surface boundary condition and condition at infinity whilst wave Green function methods require
only discretisation of body surface to satisfy body boundary condition as the free surface boundary condition and
condition at infinity is satisfied automatically by Green function. The potential methods do not include the effects
of viscosity which can be considered through computationally inexpensive Morison equation (Nielsen et al., 2006)
together with three-dimensional potential methods. If the characteristic dimensions (e.g. length) of the floaters are
small compared to wavelength, the wave loads due to viscosity effects are an important wave loads for design pur-
pose and needs to be considered. In addition, viscosity effects play significant role in the case of the flow
separation.

Mooring lines as a station-keeping system is used to keep FOWT in position so that FOWT can perform its
intended functions safely. As there are no hydrostatic stiffness due to motion of FOWT in surge, sway and yaw
modes, mooring line stiffnesses are used to predict the natural frequencies at these modes. The accurate predic-
tions of the mooring line stiffnesses are also particularly important as they would directly affect the time simula-
tion of FOWT. Mooring stiffnesses, the tension forces induced by mooring lines and moments exerted by tension
forces can be predicted either quasi-static or full dynamic analysis (Al-Solihat and Nahon, 2016; Hall et al., 2014).
The quasi-static analysis, which is computationally very efficient, predicts stiffnesses, forces and moments analyti-
cally in static equilibrium. The quasi-static analysis assumes that the waves are linear, and platform and mooring
line velocities are also small. The fully dynamic analyses are required if the dynamic effects of hydrodynamic drag,
mooring line inertia and added mass due to disturbance of mooring lines, which are neglected in quasi-static anal-
ysis, are considerably important for the prediction of stiffness, forces and moments.

The floating systems including FOWT could be considered as rigid or elastic structures depending on how the
motion of the floating systems effects the pressure field around them. If the weakly coupling exists, the floating
systems are considered as rigid structures where the contribution of rigid body motion much higher than that of
elastic motion to the pressure field around FOWT. In this case, the analyses of structures, hydrodynamics and
aerodynamics are independent from each other and performed separately. However, in the case of fully coupled
analyses, elastic behaviour of floating system needs to be considered under aeroelasticity and hydroelasticity. The
aerodynamic and structural analyses where structure above mean sea level are strongly coupled in aeroelasticity
whilst hydrodynamic and structural analyses where structure below mean sea level are considerably coupled in
hydroelasticity. It is also considered that the eigenfrequencies due to elastic motion are much higher than the
range of the frequencies due to wind and wave loads in the case of weakly coupled analysis (Hansen et al., 2006;
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Kagemoto and Yue, 1993; Kara, 2015, 2021c; Ohkusu, 1974; Wolgamot et al., 2012). In addition, the stiffness of
the structures is much greater compared to restoring coefficients due to wave loading in the case of hydrodynamic
analysis and weakly coupling. The greater eigenfrequencies and structural stiffnesses imply that the contribution
of elastic motion to aerodynamic and hydrodynamic loadings is negligible in weakly coupled analysis. The fatigue
life and steady state global elastic vibration of the floating systems could be significantly affected due to fully cou-
pling of the structural, aerodynamic and hydrodynamic analyses where the eigenfrequencies of the elastic deflec-
tions of the floating structures are at the same range with the frequencies due to aerodynamic and hydrodynamic
loadings (Hansen et al., 2006; Kara, 2015, 2021b, 2021c).

In the present paper, National Renewable Energy Laboratory (NREL) offshore 5 MW baseline wind turbine
with spar-buoy platform is used to predict the wind power prediction directly in time domain. The dynamic analy-
sis couples the aerodynamic, aeroelasticity, hydrodynamics and mooring analyses in time domain. The aerody-
namic loads due to wind environment are predicted using unsteady BEM method whilst the aeroelastic behaviour
of the wind turbine blades are considered as Euler-Bernoulli cantilever beam. Mooring stiffness and forces on plat-
form due to mooring lines are approximated using the quasi-static analysis. Impulse Response Functions (IRFs) of
hydrodynamic radiation and diffraction forces (e.g. diffraction and Froude-Krylov) are predicted using the transi-
ent wave Green function (Kara, 2010, 2011, 2016b, 2020b, 2022a). The time marching of boundary integral equa-
tion is used to obtained IRFs which are then used for the time simulation of the coupled equation of motion to
approximate the acceleration, velocity and displacement of the coupled floating system. The present numerical
results of in-house ITU-WAVE for aero-hydro-elastic coupled floating system are compared with experimental
and other numerical results (Jonkman and Musail, 2010) for validation purpose.

Equation of motion of FOWT

Figure 1 shows the horizontal axis FOWT and the body-fixed coordinate system to describe the fluid behaviour
around FOWT and used to predict the aerodynamic and hydrodynamic loads. The coordinate system,~x=(x, y, z),
is a right-handed and fixed to the platform (or floater) on Mean See Level (MSL). The centre of the xy-plane on
z = 0 is selected as the origin of the coordinate system on the free surface in which forward, transverse and
upward directions represent x-direction, y-direction and z-direction respectively. The interaction of wind and inci-
dent wave with FOWT in Figure 1 cause the floating system to oscillate in its mean position.

Figure 1. Horizontal axis FOWTwith a spar buoy platform/floater.
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The dynamic behaviour of FOWT in equation (1), which couples aerodynamic, hydrodynamic and mooring
analyses, is presented with time domain equation of motion (Cummins, 1962). The motion of FOWT is caused by
applied external forces including first order diffraction forces, forces due to mooring lines, aerodynamic forces and
viscous forces. The motion of FOWT due to external forces are balanced with the inertia of FOWT, hydrostatic
restoring forces, hydrodynamic wave damping and stiffness of mooring lines. The oscillations of FOWT in mean
position generates waves that exist until the motion decays to zero. This behaviour is represented with convolution
integral in the left-hand-side of equation (1). The oscillations due to external forces also affect the pressure field
around FOWT causing forces and moments on floating system all subsequent times.

X6

k = 1

Mjk + ajk

� �
€xk tð Þ+ bjk _xk tð Þ+ CM

jk +Cjk + cjk

� �
xk tð Þ+

ðt

0

dtKR
jk(t � t) _xk(t)=FE

j (t) ð1Þ

where rigid-body translational modes of surge, sway and heave are given with j= 1, 2, 3 respectively whilst rota-
tional modes of roll, pitch and yaw are presented with j= 4, 5, 6 respectively. The displacement of FOWT is given
with xk(t) whilst _xk tð Þ and €xk tð Þ where dots represent the time derivatives with respect to displacement xk(t) are used
for velocity and acceleration respectively. The mass of floater, tower, nacelle and rotor blades are presented with
inertia Mjk matrix. The restoring coefficients matrices due to motion of FOWT and mooring lines are presented
with Cjk and CM

jk respectively. The instantaneous responses of FOWT to fluid motion are given with cjk, bjk and ajk

in equation (1) which are frequency and time independent matrices, and corresponding to displacement related
restoring forces, velocity related wave damping and acceleration related added mass at infinity respectively. The
time dependent forces are predicted using impulsive velocity such that KR

jk(t) accounting free surface effect of the
fluid response due to oscillations of FOWT is the radiation IRF and represents the forces in jth direction due to an
impulsive velocity in kth direction on FOWT. KR

jk(t) is the function geometry of floater and time (Ogilvie, 1964).
FE

j (t) in equation (1) is the total exciting forces and moments in time domain and given as

FE
j tð Þ=

ð‘

�‘

dtKD
j (t � t)z(t)+

XNM

i= 1

FM
ji (t)+FA

j tð Þ+FV
j tð Þ ð2Þ

The kernel KD
j tð Þ in equation (2) are the diffraction IRFs. The impulsive wave elevation with a uni-direction and

heading angle b (King, 1987) results in diffraction IRFs KD
j tð Þ which is the superposition of scattering and

Froude-Krylov IRFs. The diffraction force predicted using an arbitrary wave elevation at the origin of body-fixed
coordinate system in Figure 1 is obtained due to the incident wave elevation z(t). FM

ji (t) is the total forces and
moments due to mooring lines whilst NM (i= 1, 2, 3, . . . ,NM ) is the total number of mooring lines. FM

ji (t) is pre-
dicted using quasi-static analysis (Al-Solihat and Nahon, 2016). FA

j tð Þ is the aerodynamic forces and moments and
predicted by unsteady BEM method (Hansen, 2008) whilst FV

j tð Þ represents the viscous drag effects and predicted
by Morison equation (Morison et al., 1950). Once the inertia matrix, stiffness matrix, radiation forces due to wave
and total external excitation forces in equation (2) due to wave, wind, mooring and viscosity are known, the
coupled dynamic equation of motion of FOWT in equation (1) may be simulated with fourth order Runge-Kutta
method (Kara, 2016a, 2016c, 2017, 2018, 2020a).

Aerodynamic analysis

The aerodynamic parameters are predicted with two-dimensional aerofoils in Figure 2(b) in which it is assumed
that velocity components are calculated in the xy-plane and velocity in z-direction is considered zero. It is also
assumed that flow around the aerofoils is two-dimensional considering the velocity in streamwise are much greater
than spanwise velocity. In the context of two-dimensional analysis, unsteady BEM model (Glauert, 1935) is used
to predict the time series of the loads for time-varying input, pitch angle, thrust force, torque moment, power and
steady loads in a range of rotational speed and wind speeds. The momentum theory is coupled with blade element
model in unsteady BEM to calculate aerodynamic variables including the twist and chord distribution.

Aerodynamic loads on two-dimensional aerofoils. The relative wind velocity VR in equation (3) on an aerofoil, which is a
strip of a blade in Figure 2(b), consists of the undisturbed wind velocity V0, the induced velocity VI and the motion
velocity VM (VM =Vrot +VB +VP). The motion velocity VM consists of the rotational velocity Vrot, platform
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velocity VP and local blade velocity VB which consider the aeroelastic behaviour of the blade where the blade is
not considered a stiff structure (Hansen, 2008).

VR =V0 +VI � Vrot � VB � VP ð3Þ

Once the relative wind velocity VR in equation (3), which is of important to accurately predict as it affects the pre-
diction of all other aerodynamic parameters, is calculated with unsteady BEMmethod, it can be used for the deter-
mination of relative wind angle in equation (4) which is the angle between the relative wind velocity and rotor
plane in Figure 2(b).

tanf=
Vx

R

�Vy
R

ð4Þ

where Vx
R and Vy

R are the x- and y-components of relative wind velocity VR respectively. The relative wind angle f

in equation (4) is then used to predict another important parameter of the local angle of attack a in equation (5)
which requires accurate prediction and is the angle between relative wind velocity and cord line of the aerofoil in
Figure 2(b). The chord line is the straight line which connect the trailing edge and leading edge of aerofoil.

a=f� u,a=f� b+ up

� �
ð5Þ

The local pitch angle of the blade in equation (5) is given with u= up +b which is the angle between rotor plane
and chord line in Figure 2(b). The local pitch angle u consists of the twist of the blade b and pitch angle up. The
angle between the rotor plane and tip chord is the pitch angle up whilst the twist b is measured relative to the tip
chord. Once the angle of attack a is determined, the experimentally available lift Cl and drag Cd coefficients are
then predicted as a function of the angle of attack a. The known lift Cl and drag Cd coefficients are then used to
calculate the lift force L and the drag force D per unit length in equations (6) and (7) respectively.

L=
1

2
rV2

RcCl ð6Þ

D=
1

2
rV2

RcCd ð7Þ

where r is the air density whilst c is the chord length. The normal force FN and tangential force FT per unit length,
which are required for the calculation of thrust force and torque, are then predicted in equations (8) and (9)
respectively.

Figure 2. (a) Annular model and (b) wind velocity components seen locally and forces acting on an aerofoil.
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FN =Lcosf+Dsinf ð8Þ

FT =Lsinf�Dcosf ð9Þ

The rotor is turned with shaft torque which is delivered with the tangential load component FT in equation (9). In
addition, a solidity s(r) in equation (10) is the fraction of the annular area covered by blades in the control volume
in Figure 2(a).

s rð Þ= Bc(r)

2pr
ð10Þ

where r is the radial position of the control volume, c(r) is the local chord and B denotes the number of blades. The
normal force FN and tangential force FT per unit length are then used to predict the thrust force dT in equation
(11), torque dM in equation (12) and mechanical power dP in equation (13) on the control volume of thickness dr
in Figure 2(a).

dT=BFNdr ð11Þ

dM=rBFTdr ð12Þ

dP=vdM ð13Þ

where rotor’s angular velocity is given with v. The discontinuity of the pressure drops over rotor is provided with
a disc which is considered as a rotor. The pressure drops result in the thrust force dT in streamwise direction
which causes the windspeed to be reduced from upstream to downstream. The wake of the rotor is deflected due
to a normal velocity Vn

I (=Vx
I ) in the rotor plane which results from the pressure drop causing the thrust force

dT. Assuming only the lift force results in induced velocity VI which is in the opposite direction to the lift force in
Figure 2(b). The normal induced velocity Vn

I in x-direction (Bramwell, 1976) is given in equation (14).

Vn
I =Vx

I

� �
=

BLcosf

4prrF V0 +fgn(n � VI

�� �� ð14Þ

and tangential components Vt
I =Vy

I

� �
of induced velocity VI is given in equation (15)

Vt
I =Vy

I

� �
=

BLsinf

4prrF V0 +fgn(n � VI)
�� �� ð15Þ

where the unit vector n=(� 1, 0, 0) represents a vector in the thrust force dT direction. Assuming that there are
no interactions between annular elements, in other words, elements are free from radial dependency. In the case of
infinite number of blades with a rotor, the acting forces on each annular element are constant. The shortcoming of
infinite number of blades are overcame with Prandtl’s tip loss factor F in equations (14) and (15) (Glauert, 1935)
and is presented in equation (16) which result in a rotor to be considered with a finite number of blades. The vor-
tex behaviour in the wake of a rotor with a finite number of blades is different compared to a rotor with an infinite
number of blades.

F=
2

p
cos�1 e�

B R�rð Þ
2rsinf

� �
ð16Þ

where the rotor’s radius is given with R presented in Figure 2(a). When the axial induction factor, a, becomes
larger than approximately a= 0:4, the simple momentum theory breaks down. The fractional decrease of
upstream velocity on the surface of blade is presented with the axial induction factor, a. Glauert correction fac-
tor fg in equations (14) and (15) (Glauert, 1935) for high values of axial induction factor, a, is introduced to
overcome this shortcoming. Glauert correction factor fg in equations (14) and (15) in the turbulent wake state
and is given in equation (17).

fg =

1 for ał ac

ac
a 2� ac

a

� �
for a.ac

8<
: ð17Þ
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ac is around 0.2 and determined with equations (18) and (19)

if ał ac a=
1

1+K
ð18Þ

if a.ac a=
1

2
2+K 1� 2acð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(K 1� 2acð Þ+ 2)2 + 4(Ka2

c � 1)

q� 	
ð19Þ

where K= 4Fsin2f=sCn in which normal force coefficient is given with Cn =FN=
1
2

rV2
Rc. Equations (18) and

(19) are the functions of relative wind angle f, relative wind velocity VR and angle of attack a and need to be
solved iteratively until the prediction approaches to a defined tolerance value. It is assumed that the time step Dt
in time domain simulation is small which implicitly means that when the induced velocity VI components is
updated for new values to predict the tangential Vt

I component in equation (15) and normal Vn
I component in

equation (14), the values at previous time step can be used for convergence of the induced velocity VI components
. As the induced velocity VI changes relatively slowly in time, this is an acceptable assumption.

Dynamic inflow prediction. The unsteady performance of FOWT results in the instationary behaviour of the aerody-
namic loads on blades and other parts of FOWT. The instationary effects result in the dynamic inflow and insta-
tionary profile aerodynamic. The dependence of the sectional aerodynamical forces on the time varying angle of
attack a including the effects of the shed vorticity are accounted with the instationary profile aerodynamics. The
ratio of the chord to the effective velocity seen by the blade section, c= v � rð Þ, determines the characteristic time
scale of profile aerodynamic which vary approximately 0.01 second at the tip and 0.2 second at blade for a wind
turbine with diameter D of the order 50 m. On the other hand, the wake induced unsteadiness of the flow in the
rotor plane is affected with the dynamic inflow. The influence of the time varying trailing wake vorticity on the
inflow velocity in the rotor plane is accounted with the dynamic inflow. D=V0 represents the characteristic time
scale of the dynamic inflow which is in the order of 5–10 seconds. The time scale of the profile aerodynamic is one
to two orders of magnitude smaller than that of the dynamic inflow which can be considered as quasi-steady phe-
nomena having a time scale large compared to that of profile aerodynamic (Snel and Schepers, 1995).

The vectorial sum of the instantaneous free stream velocity V0, motion velocity VM and the velocity induced by
the wake of FOWT, VI, is used to predict the velocity field of rotor plane as presented in equation (3). The induced
velocity VI is to be modelled as dynamic inflow. The trailing vorticity and shed vorticity are the part of the time
dependent wake vorticity. The effect of vorticity on the angles of attack a in the wake determines the strength of
shed and trailing vorticity. The interaction of vorticity and angles of attack can be attributed to the lifting line the-
ory of Prandtl (van Holten, 1976). The trailing vorticity results in the dynamic inflow. The present dynamic inflow
model is applied using unsteady BEM equations with contribution from a time derivative of intermediate induced
velocity Vint

I and final induced velocity VI to take the time delay into account before the equilibrium of the aerody-
namic loads in equations (14) and (15). Two first order differential equations in equations (20) and (21) in the pres-
ent study are used to model the dynamic inflow to filter the induced velocities (Øye, 1991).

Vint
I + t1

dVint
I

dt
=V

qs
I +k � t1

dV
qs
I

dt
ð20Þ

VI + t2

dVI

dt
=Vint

I ð21Þ

where k= 0:6 is a constant, Vqs
I the quasi-static value found using equations (14) and (15). The intermediate

induced velocity is given with Vint
I whilst the final filtered induced velocity is given with VI. A vortex method is

used to calibrate the time constants t1 and t2 with equations (22) and (23).

t1 =
1:1

(1:0� 1:3a)

R

V0

ð22Þ

t2 = 0:39� 0:26
r

R

� �2

 �

t1 ð23Þ
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Equations (20) and (21) are solved analytically assuming that the right-hand sides are constant. The backward dif-
ference is used to predict the right-hand-side of equation (20) in equation (24) where Vqsi

I is obtained by the solu-
tion of equations (14) and (15).

H=V
qsi

I +k � t1

V
qsi

I � V
qsi�1

I

Dt
ð24Þ

The intermediate induced velocity Vinti

I is then obtained by solving equation (20) analytically in equation (25)

Vinti

I =H+ Vinti�1

I �H
� �

e
�Dt

t1 ð25Þ

The final filtered induced velocity Vi
I is obtained solving equation (21) analytically in equation (26),

Vi
I =Vinti

I + Vi�1
I � Vinti

I

� �
e
�Dt

t2 ð26Þ

Capturing the time behaviour of the power and loads requires the application of a dynamic filter for the induced
velocity Vi

I when the thrust is changed by pitching the blades.

Dynamic stall prediction. The impulsive forces are replaced with added mass assuming incompressible flow as Mach
number are lower than 0.3 for FOWT. In addition, it is also assumed that the leading-edge separation for the rela-
tive thick aerofoils having thickness of no less than 15% used on wind turbine blades is not dominant. These
assumptions lead Theodorsen theory (Theodorsen, 1935) which takes lift under attached flow conditions into
account, and under stalled flow conditions only trailing edge separation is considered.

The atmospheric turbulence, tower passage, yaw/tilt misalignment and wind shear result in the constant changes
of the wind seen locally on a point on the blade. The angle of attack a changes dynamically during the revolution
due to this direct impact. A time delay, which is proportional to the chord divided by the relative velocity seen at
the blade section, would happen due to the effect of changing the blade’s angle of attack. The separation of flow
from boundary layer whether partly separated or attached over aerofoils affects the response of the aerodynamic
loads. Theodorsen theory (Theodorsen, 1935) for unsteady lift and aerodynamic moment can be used to predict
the time delay in the case of attached flow. A separation function fs (Øye, 1991) can be used to model the dynamic
stall, in the case of trailing edge stall at increasing angles of attack a, where the separation starts at the trailing edge
and gradually increases upstream. The attached flow, compressibility effects and leading-edge separation are taken
further into account with the Beddoes–Leishman model (Leishman and Beddoes, 1989) which also corrects the
drag and moment coefficients. The dynamic aerofoil data is mostly affected with trailing edge separation although
the linear region can also contribute (Hansen et al., 2004). It is important to notice that non-existent vibrations of
flapwise can be computed if a dynamic stall model is ignored Øye (1991). The separation function fs describes the
degree of stall for trailing edge stall in equation (27).

Cl = fsC
inv
l að Þ+ 1� fsð ÞCfs

l að Þ ð27Þ

where fs = 1 represents fully attached flow, fs = 0 is used for fully separated flow. The lift coefficient of inviscid
flow without any separation is given with Cinv

l whilst that of fully separated flow is given with Cfs
l . The linear region

of the static aerofoil is used to predict Cinv
l with extrapolation (Hansen et al., 2004) where Cfs

l and fsts are also pre-
dicted. fsts is the value of fs that reproduces the static aerofoil data in equation (27) assuming the static value will be
always achieved with fs.

dfs
dt

=
fsts � fs

t
ð28Þ

Equation (29) is obtained by integrating equation (28) analytically:

fs t+Dtð Þ=fsts + fs tð Þ � fsts
� �

e�
Dt
t ð29Þ

t =A � c=VR is used to predict the time constant t in equation (29) where A is a constant value equalling 4.0. The
static value is trying to be approximated by aerofoil data with angle of attack a changing in time in dynamic stall
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model. This implies that in the case of increasing the angle of attack a from below to above stall, some of the invis-
cid (unstalled) value Cinv

l are contained in the unsteady aerofoil data. This also means that the development of
boundary layer from one state to another needs time.

Wind loads on FOWT tower. The average wind factor CTw is used to approximate the wind load FTw in equation (30)
on tower of FOWT (Matsukuma and Utsunomiya, 2008).

FTw =
1

2
CTwrV0 zð Þ2DTw zð Þ ð30Þ

where the wind velocity at height z above mean sea level is given with V0 zð Þ whilst the diameter of the tower at the
height z is given with DTw zð Þ. The power law is used to predict the vertical variation of the wind velocity V0 zð Þ in
equation (31).

V0 zð Þ=V0 Hð Þ z

H

� �n

ð31Þ

where the hub height between hub and mean sea level is presented with H whilst the height from mean sea level
being z. The amount of velocity shear changing in the range of 0.1 and 0.25 is represented with n (Hansen, 2008).

Dynamic structural analysis. The prediction of the deflections and velocities of FOWT’s blades in the time domain
requires the structural analysis. The time dependent aerodynamic loads calculated with unsteady BEM method in
sections 2.1.1–2.1.3 are then used to predict the dynamic structural response of FOWT’s blades. The structural and
aerodynamic models are highly coupled and must be solved together in the case of an aeroelastic analysis. The time
domain equation of motion including generalised mass matrix, Mg, damping matrix, Bg and stiffness matrix, Kg

for a discretised mechanical system is given in equation (32)

Mg€x tð Þ+Bg _x tð Þ+Kgx tð Þ=Fg tð Þ ð32Þ

where the generalised force vector associated with the external loads are given with Fg tð Þ. The acceleration, veloci-
ties and displacements (deformations) are approximated assuming linear stiffness and damping in equation (32).
The number of degrees of freedom is represented with the number of elements in deformations x(t). A linear com-
bination of a few basis functions corresponding to the eigenmodes with the lowest eigenfrequencies is used to
describe a deflection shape with modal shape functions describing the deflection of the rotor blades for a FOWT.
The aeroelastic behaviour of the blades in the present study are presented with first three eigenmodes (e.g. two
flapwise and one edgewise). It is known that the numerical results with three eigenmodes are in satisfactory agree-
ment with measurements which indicate the validity of the assumption (Øye, 1996). The linear combination of
mass Mg and stiffness Kg matrices using Rayleigh damping Bg are used to predict the structural damping in equa-
tion (33).

Bg =a1Mg +a2Kg ð33Þ

where a1 = 0:0 and a2 = 0:03 are constants that are related to mass and stiffness matrices respectively (Cheng
et al., 2017). Fourth order Runge-Kutta method (Kara, 2021a, 2021b, 2022a) is used to solve the equation of
motion in time domain in equation (32).

Hydrodynamic analysis

The hydrodynamic loads on the floater of FOWT are predicted using a combination of the time dependent
Morison’s equation and potential flow theory. The time and frequency independent restoring coefficients are pre-
dicted on the mean position of the platform. The inviscid effects of the hydrodynamic diffraction and radiation
forces (Kara, 2021b, 2022a, 2022b, 2022c) are considered with the convolution integrals which are the part of the
three-dimensional transient boundary integral equation whilst the viscous effects are taken using Morison equa-
tion into account (Morison et al., 1950).
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Time domain boundary integral equation and its solutions. The time dependent boundary integral equation in equations
(34) and (35) is used to solve the initial boundary value problem after applying potential theory and Green theo-
rem over the time domain wave Green function. The solution of the initial boundary value problem requires to
satisfy the condition at infinity, free surface boundary condition, body boundary condition and initial condition.
The transient wave Green function ~G P,Q, t� tð Þ satisfy the free surface boundary condition, condition at infinity
and initial conditions automatically. This results in only body boundary condition to be satisfied numerically for
the solution of the time dependent boundary integral equation (Wehausen and Laitone, 1960). The source strength
s P, tð Þ is obtained by solving the boundary integral equation in equation (34) with time marching scheme (Kara,
2021b)

1

2
s P, tð Þ+ 1

4p

ðð
Sb tð Þ

dSQ

∂

∂nP

1

r
� 1

r
0


 �
s Q, tð Þ=� ∂

∂nP

u P, tð Þ

� 1

4p

ðt

t0

dt

ðð
Sb tð Þ

dSQ

∂

∂nP

~G P,Q, t � tð Þs Q, tð Þ � U 2
0

4pg

ðt

t0

dt

þ
tð Þ

dh n1

∂

∂nP

~G P,Q, t � tð Þs Q, tð Þ ð34Þ

and time dependent potential u P, tð Þ over floater

u P, tð Þ=� 1

4p

ðð
Sb tð Þ

dSQ

1

r
� 1

r
0


 �
s Q, tð Þ � 1

4p

ðt

t0

dt

ðð
Sb tð Þ

dSQ
~G P,Q, t � tð Þs Q, tð Þ

� U 2
0

4pg

ðt

t0

dt

þ
tð Þ

dhn1
~G P,Q, t � tð Þs Q, tð Þ

ð35Þ

where 1
r � 1

r
0

� �
is the time independent Rankine part whilst ~G P,Q, t� tð Þ is the memory (or transient) part

~G P,Q, t� tð Þ representing the effect of the free surface in time due to the disturbances of the floater. The diagonal

and off-diagonal elements of the influence (or interaction) matrix are predicted with Rankine parts 1
r � 1

r
0

� �
where

distances between field point P(x, y, z) and source (or integration) point Q(j, h, z) are given with

r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� j)2 +(y� h)2 +(z� z)2

q
whilst distances between image source point and field point are given with

r0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� j)2 +(y� h)2 +(z+ z)2

q
. Rankine parts 1

r � 1
r
0

� �
are predicted with analytical integration over each

quadrilateral element (Hess and Smith, 1964). The predictions of Rankine part are calculated using the relative
positions of the field and integration points for r whilst it is field points and image integration points for r0. In the
case of large values of r and r0, a monopole expansion is used whilst it is a multi-pole expansion for intermediate
values. In the case of small values of r and r0, the exact solution is used.

The free surface effect due to the interaction of the platform with incident wave, and due also to the oscillations

of the platform are presented with the memory part of Green function, ~G P,Q, t� tð Þ=
2
Ð ‘

0
dk

ffiffiffiffiffiffi
kg
p

sin(
ffiffiffiffiffiffi
kg
p

t� tð Þ)ek z+ zð ÞJ0(kR) where g is the gravitational acceleration whilst the wave number is given

with k. The zero order Bessel function is presented with J0(kR) whilst the distances on the free surface between

source points Q(j, h, z) and field points P(x, y, z) are given with R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� j)2 +(y� h)2

q
. The memory part of

Green function ~G P,Q, t� tð Þ is first analytically solved and is then numerically integrated over each discretised
quadrilateral element of the floater using two dimensional 2 3 2 Gaussian quadrature (Kara, 2000; King, 1987;
Liapis, 1986). The prediction of the time domain boundary integral equation in equations (34) and (35), which is
computationally expensive due to the time marching of these equations, is dictated by the transient part of Green

function ~G P,Q, t� tð Þ and its derivatives. Therefore, it is important to use the accurate and computationally effi-
cient analytical and numerical prediction methods. Due to convergence issues of the analytical solutions of the

transient wave Green function ~G P,Q, t� tð Þ which are the functions of space parameter m=� (z+ z)=r0, and

time parameter b=
ffiffiffiffiffiffiffiffi
g=r0

p
t� tð Þ, more than one analytical methods are required. The used five analytical
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methods include asymptotic expansion, asymptotic expansion of complex error function, power series expansion,
Bessel function, Filon quadrature.

The source strengths s P, tð Þ, which represent the flow behaviour around the floater in time, is obtained by sol-
ving the time dependent boundary integral equation with time marching scheme in equation (34). The calculated
source strengths s P, tð Þ are then used to predict the time dependent potentials u P, tð Þ in equation (35) whilst the
gradient of the potentials ru P, tð Þ may be used to find the fluid velocities around the floater. The same equation
may be used to solve the diffraction and radiation force parameters for which body boundary conditions are input
and known in advance on the right-hand-side of equation (34) for the solution of the source strengths s P, tð Þ in
time assuming that the source strengths s P, tð Þ over each quadrilateral panel of the floater are constant. The con-
tinuous singularity distributions in the boundary integral equation in equation (34) is replaced with unknown finite
number of the source strengths s P, tð Þ by discretising the floater surface. The linear algebraic equation for the pre-
diction of the source strengths s P, tð Þ is obtained by satisfying the boundary integral equation in equation (34) at
each collocation point of quadrilateral element of the floater.

Morison equation. In the case of flow separation in severe sea states, the hydrodynamic loads from potential theory
need to be supported with viscous effects which is taken with Morison’s equation on cylindrical structures into
account. If the diameter D is small compared to the wavelength l (D=l\1=5), the flow separation induced viscous
drag, radiation induced added mass and incident wave induced excitation can be calculated with Morison’s equa-
tion (Morison et al., 1950). The transverse hydrodynamic force per unit length with fluid velocity of _u(t) is given by

dFV
j tð Þ= 1

2
CdrD _uj tð Þ � _xj tð Þ

� �
_uj tð Þ � _xj tð Þ
�� ��+ 1+Cað Þr pD2

4
€u tð Þ � Car

pD2

4
€x tð Þ ð36Þ

where the fluid density being r, diameter of the cylinder D, drag coefficient Cd and added mass coefficient Ca. First
term in equation (36) represents a quadratic viscous drag, second term represents the fluid-inertia excitation force
and third term represents the added-mass. The added mass coefficient Ca is predicted with Ca =A11=rV where A11

is the added mass at infinite frequency in the surge direction which is approximated with current potential panel
method. The quadratic viscous drag coefficient Cd is the function of Reynold’s number Re (Robertson et al., 2012).
Morison’s equation may be also used to predict the viscous forces on large volume structures taken only the quad-
ratic viscous drag term in equation (36) into account.

Mooring analysis. The mooring system needs to be designed in a way that it would not affect FOWT’ motion and
thus the energy conversion from kinetic energy of wind to electricity. In practice, the natural frequencies induced
by spring constant of mooring system are chosen in the order of approximately five times lower than incident
wave frequencies to avoid the effect of mooring system on first-order motions. The mooring line stiffness matrix is
obtained due to the exerted forces on FOWT by mooring lines which are proportional to motion of the floating
systems. As there are no restoring (or hydrostatic) stiffnesses in the motion of surge, sway and yaw modes of
motions of floating systems, the natural frequencies at these modes are predicted using mooring line stiffness
matrix elements together with mass and added mass. The number of mooring lines and configurations as well as
mooring line lengths and tensions have effects on the prediction of the mooring line stiffness matrix. The orienta-
tion and displacement of FOWT are considered with an exact nonlinear analysis to derive mooring line stiffness
matrix (Al-Solihat and Nahon, 2016). The present mooring line stiffness matrix is applicable to different type of
the mooring configurations including slack and taut suspended mooring lines, and slack mooring lines resting on
the seabed.

Numerical results and discussions

The present paper uses a 5 MW reference wind turbine (Jonkman et al., 2009) for the numerical predictions of the
aerodynamic, aeroelastic, hydrodynamic parameters and motion characteristics of FOWT. Figure 3(a) shows free
decay time domain simulation of spar buoy surge mode with initial vertical displacement of 21 m whilst the free
decay simulation of heave mode with initial vertical displacement of 5 m is presented in Figure 3(b). The free decay
simulations in surge and heave modes are obtained using equation (1) where the external forces FE

j (t) in equation
(1) to excite the floater do not exist and considered zero. The present in-house ITU-WAVE free decay simulation
numerical results in surge and heave modes are compared with those of Jonkman and Musail (2010) for validation
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purpose which shows satisfactory agreements. It is important to conduct free decay test as the natural periods of
the floater can be directly determined with free decay test at any mode of motion. In addition, the correct wave
damping that is produced by the floater can be also checked through free decay test which plays significant role
for the decay of the motions at any modes.

The blades of FOWT are considered as an elastic structure and aeroelastic analysis is applied considering blades
as a cantilever beam (Hansen, 2008). The first three eigenmodes of first flapwise, first edgewise and second flapwise
eigenmodes, which are predicted using free vibration without the effects of the external applied loads, are presented
in Figure 4(a) to (c) respectively. In addition, the first three eigenfrequencies, which are obtained with iterative
solutions converging to the lowest eigenfrequencies, are also presented in Figure 4(d). The predicted in-house ITU-
WAVE numerical results are compared with those of Jonkman et al. (2009) for the validation of the present numer-
ical results which show satisfactory agreement.

Figure 5(a) to (c) show mean rotor thrust force, torque moment and generated rotor power from wind kinetic
energy of the wind respectively with respect to in a range of mean wind speed whilst the time domain simulation of

(a) (b)

Figure 3. Spar buoy free decay time domain simulation test: (a) surge response and (b) heave response.

(a) (b)

(c) (d)

Figure 4. Eigenmodes and eigenfrequencies: (a) first flapwise eigenmodes, (b) first edgewise eigenmodes, (c) second flapwise
eigenmodes and (d) eigenfrequencies.
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rotor thrust force, torque and power are presented in Figure 5(d) at rated wind speed of 11.4 m/s. The present
numerical results of the in-house ITU-WAVE computational tool are obtained using aerodynamic analysis that is
presented in section 2.1.1–2.1.3. It can be observed from Figure 5(d) that the time domain simulation length is long
enough to avoid transient effects on predicted aerodynamic parameters and only last half of the time domain simu-
lations as presented in Figure 5(d) is used to predict the mean values of rotor thrust force, torque and power in a
range of wind speeds. The present numerical results of ITU-WAVE computational tool and those of Jonkman
et al. (2009) show satisfactory agreement in Figure 5(a) to (c). It is assumed in the present numerical predictions
that the rotor speed and wind speeds are linearly dependent in the region of cut-in wind speed of 3 m/s and rated
wind speed of 11.4 m/s. This assumption also results in to have constant tip-speed ratio and optimum conversion
efficiency between wind and power output. It can be also observed from Figure 5(b) that rotor torque increases
quadratically with respect to wind speed in the region of cut-in speed and rated wind speed whilst rotor power
increase cubically at the same region in Figure 5(c).

Figure 6 shows the time domain simulation of the aerodynamic parameters of angle of attack (a), lift coeffi-
cient (Cl), drag coefficients (Cd) and pitching moment (Cm) for the aerofoil at blade tip and rated steady mean
wind speed of 11.4 m/s. The present ITU-WAVE numerical results of the aerodynamic parameters are obtained
using aerodynamic analysis that is presented in section 2.1.1–2.1.3. As it can be observed from Figure 6, all aero-
dynamic parameters achieved the steady state condition after 5 seconds whilst the transient effects are died out
just after approximately 1 second. It is known that HAWT works best at lower angle of attack (a) and present
result of approximately a= 6:50 of angle of attack complies with this assumption. It is also correct that the per-
formances of HAWT is greater for maximum wind power generation in the case of at the ratio of maximum lift-
drag coefficient. It can be observed from Figure 6 that the present numerical results achieve maximum lift-drag
ratio as lift coefficient is around 1.0 whilst drag coefficient is closer to zero for aerofoil at blade tip.

Figure 7(a) and (b) show the time domain simulation of generalised motions and forces at rated mean wind
speed of 11.4 m/s including first and second flapwise modes in x-direction and first edgewise mode in y-direction.
The generalised motions and forces in Figure 7(a) and (b) are obtained with the time domain simulations of equa-
tion (32). When the contribution of first flapwise mode with second flapwise mode for force and motion in Figure

(a) (b)

(c) (d)

Figure 5. (a) Mean thrust force, (b) mean torque, (c) mean rotor power and (d) time domain simulation of thrust force, torque and
power at rated wind speed of 11.4 m/s.
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7(a) and (b) is compared, it can be observed that the effect of second flapwise mode is negligible compared to first
flapwise mode. It is also correct that the contribution from first edgewise mode to generalised motion and force in
y-direction is negligible compared to first flapwise mode in x-direction. It can be concluded from Figure 7(a) and
(b) that three modes to get accurate numerical results for generalised motions and forces are enough as the contri-
bution of higher modes would not have significant effects. The time domain simulation shows that after initial
transient behaviour, the generalised motions and forces are achieved the steady state condition after 5 seconds.

Figure 8 shows surge motion spectrum with and without steady wind speed effect with respect to absolute wave
frequency. In the case of surge motion spectrum without steady wind speed, the equation of motion in equation (1)
with hydrodynamic analysis including time domain boundary integral equation, Morison equation, mooring anal-
ysis of section 2.2 is used to predict surge motion spectrum whilst surge motion spectrum with steady wind speed

Figure 6. Time domain simulation of aerodynamic parameters of angle of attack, lift coefficient, drag coefficient and pitching
moment at rated steady mean wind speed of 11.4 m/s.

(a) (b)

Figure 7. Generalised motions and forces in time at rated wind speed of 11.4 m/s: (a) motions and (b) forces.

Figure 8. Surge motion spectrum with JONSWAP wave spectrum Hs = 4:2m and Tp = 10:5s with and without wind effect at
heading angle b= 00.
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also includes the aerodynamic analysis of section 2.1. The steady wind speed of V = 8m=s is used in the present cal-
culation. The spar buoy floater with diameter at mean water level D= 6:5m, diameter at bottom D= 9:4m, draft
T = 120m and water depth of 320m in Figure 1 is used to predict surge motion spectrum at wind and wave heading
angle of 00. FOWT is allowed to have motion in only surge mode whilst other modes of motions are restricted.
The wave characteristics are described with JONSWAP wave spectrum (Faltinsen, 1990) with significant wave
height Hs = 4:2m and peak period Tp = 10:5s. The first order diffraction forces, viscous forces with Morison equa-
tion, forces due to mooring lines and steady aerodynamic wind force in the case of effect of steady wind speed are
the external forces on the right-hand-side of equation (1) in the present time domain simulation. The response
around v ffi 0:6rad=s represents the wave frequency response whilst the response around v ffi 0:05rad=s shows
surge resonant response. When the effects of with and without steady wind speed on surge motion spectrum are
compared, it can be observed that steady wind speed effect decreases the amplitudes of incident wave frequency
response whilst it increases the amplitude of surge resonant responses slightly and shift it towards lower incident
wave frequencies.

Figure 9 presents the effect of the duration of the time domain simulation on surge motion spectrum with
JONSWAP wave spectrum. It is assumed in Figure 9 that there is no wind effect on FOWT which is free in surge
and pitch modes whilst the motions are restricted in other modes of the motions. In the case of 1 hour and 30 min-
utes time domain simulations, although the incident wave frequency response around v ffi 0:6rad=s can be clearly
observed which is due to wave load on floater, the surge resonant response around v ffi 0:05rad=s and pitch reso-
nant response around v ffi 0:16rad=s on surge motion spectrum are not clearly felt. However, when the duration
of the time domain simulation is increased to 2 hours, the response of the surge resonant and pitch resonant on
surge motion spectrum can be clearly seen in Figure 9. It may be noticed that pitch mode has effect on surge
motion spectrum. This is due to the coupling of surge motion with pitch motion.

As it can be observed in Figure 10(a), the generated rotor power achieves the steady state condition around
2.1 MW. Power spectrum is presented in Figure 10(b), which is the spectral representation of Figure 10(a) in

Figure 9. Effect of duration of time domain simulation on surge spectrum with JONSWAP wave spectrum Hs = 4:2m and
Tp = 10:5s without wind effect at heading angle b= 00.

Figure 10. Wind power generation with JONSWAP wave spectrum Hs = 4:2m and Tp = 10:5s, steady wind speed of V = 8m=s
at heading angle b= 00: (a) power and (b) power spectrum.
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frequency domain for the same wave and wind conditions. It can be observed from Figure 10(b) that wave fre-
quency response happens around incident wave frequencies of v ffi 0:6rad=s and v ffi 0:5rad=s whilst surge and
pitch resonant responses happen at incident wave frequencies of around v ffi 0:05rad=s and v ffi 0:16rad=s

respectively.
The force and moment on mooring lines with wind and heading angle of b= 00, JONSWAP wave spectrum

and steady wind speed in surge and pitch modes are presented in Figure 11(a) and (c) respectively. The force and
moment on mooring line 1 and line 3 equal each other due to symmetry of lines with respect to heading angle of
b= 00 as shown in Figure 11. It can be also observed that surge forces and pitch moment achieve steady state con-
dition over time. Figure 11(b) and (d) show the surge force and pitch moment spectrums. The effects of wave fre-
quency at around peak frequency (v ffi 0:6rad=s), surge (v ffi 0:05rad=s) and pitch (v ffi 0:16rad=s) resonance

Figure 11. Force and moments on mooring lines with JONSWAP wave spectrum Hs = 4:2m and Tp = 10:5s, steady wind speed
of V = 8m=s at heading angle b= 00: (a) surge force, (b) surge force spectrum, (c) pitch moment and (d) pitch moment spectrum.

Figure 12. Surge force and force spectrum on mooring lines with JONSWAP wave spectrum Hs = 4:2m and Tp = 10:5s, steady
wind speed of V = 8m=s at heading angle b= 00: (a) surge force and (b) surge force spectrum.

16 Wind Engineering 00(0)



frequencies can be observed clearly in Figure 11(b) and (d). The amplitude of mooring line 1 in both surge and
pitch modes is greater than mooring line 2 and line 3. It is also clear that the influence of wave frequency compared
to surge and pitch resonant frequencies to the surge force and pitch momentum spectrum is greater whilst the
effects of surge resonant frequency is greater than pitch resonant frequency both in surge force and pitch moment
spectrums.

Figure 12(a) shows the surge force on mooring line due to only surge motion with steady wind speed of
V = 8m=s and JONSWAP wave spectrum at wind and heading angle b= 00 whilst the surge force spectrum on
mooring lines is presented in Figure 12(b). When Figures 11(b) and 12(b) are compared, the amplitudes of surge
force spectrum on mooring lines considerably reduced in the case of effect of only surge mode in Figure 12(b). It
can be also observed in Figure 12(b) that effect of surge resonant frequency around v ffi 0:05rad=s is greater com-
pared to that of wave frequency around v ffi 0:6rad=s. As the pitch mode of motion is restricted, there is no
response around v ffi 0:16rad=s in Figure 12(b) which is pitch resonant frequency. The amplitude of the surge
force spectrum on mooring line 1 is greater than that of mooring lines 2 and 3 which have the same spectrum due
to the symmetric configurations of mooring line 2 and line 3 with respect to wind and incident wave heading angle
b= 00.

Figure 13(a) and (b) shows the blade tip deflection and blade tip deflection spectrum respectively with steady
wind speed of V = 8m=s and JONSWAP wave spectrum. FOWT is free in surge mode whilst it is restricted in
other modes of motions. The effect of wave frequency around v ffi 0:6rad=s on blade tip deflection spectrum can
be observed clearly in Figure 13(b) whilst the surge resonant response around v ffi 0:05rad=s does not have signifi-
cant response amplitude.

Conclusions

ITU-WAVE in-house computational tool is used to predict the aerodynamic, aeroelastic, hydrodynamic para-
meters and wind power generation with FOWT. The hydrodynamic diffraction and radiation force variables
including free decay tests are predicted with the solution of the time domain boundary integral equation and
Morison equation which is used to approximate the viscous effect. The aerodynamic parameters are predicted
with unsteady BEM method which also include the effects of the dynamic stall and dynamic inflow. The aeroelas-
tic behaviour of FOWT’s blades are considered with the first three elastic modes. In addition, the forces on the
wind turbine tower, which is considered as a rigid structure, are predicted with average wind factor.

The effects of wave and steady wind on motion spectrum show that although the steady wind contributes to
the motion spectrum, its influence is not greatly changing the behaviour of the motion spectrums. The influences
and effects of wave frequency, and surge and pitch resonant frequencies on motion spectrums, mooring lines spec-
trums and blade tip deflection spectrum depend considerably on the duration of the time domain simulation. The
numerical experiences also show that the numerical results need over 2 hours simulation time to feel the effect of
the surge and pitch resonant frequencies on motion spectrums whilst the influence of the wave frequency needs
much less simulation time.

Figure 13. Blade tip deflection with JONSWAP wave spectrum Hs = 4:2m and Tp = 10:5s, steady wind speed of V = 8m=s at
heading angle b= 00: (a) blade tip deflection in time and (b) blade tip deflection spectrum.
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The present in-house transient ITU-WAVE predicted numerical results are validated against other numerical
results including the eigenfrequencies of wind turbine blades which is considered as an elastic cantilever beam. In
addition, the achieving steady state results of thrust force, torque moment and rotor power are also validated with
other numerical results which show satisfactory agreements. The aerodynamic parameters with time domain simu-
lation are predicted by taking only last half of the time domain simulation into account to avoid the transient
effects. The free decay tests of pitch and surge modes are also validated with other published numerical results
which are also in good agreements with other numerical results.
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