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Results and Discussion 
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15 Provide published estimates in a 

file format from which data can 

be efficiently extracted. 

Available through 

https://ghdx.healthdata.org/rec

ord/ihme-data/sub-saharan-

africa-hiv-prevalence-geospatial-

estimates-2000-2018 

16 Report a quantitative measure 

of the uncertainty of the 

estimates (e.g. uncertainty 

intervals). 

Results; Figure 4; Additional File 

3: Figs. S27-34 

17 Interpret results in light of 

existing evidence. If updating a 

previous set of estimates, 

describe the reasons for 

changes in estimates. 

Results; Methods 

18 Discuss limitations of the 

estimates. Include a discussion 

of any modelling assumptions or 

data limitations that affect 

interpretation of the estimates. 

Discussion; Methods 

  41 
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2 HIV data sources and data processing 42 

2.1 Seroprevalence surveys 43 

2.1.1 Data identification strategy 44 

We identified HIV seroprevalence surveys in sub-Saharan Africa (SSA) through a review of all surveys in 45 

the Demographic and Health Survey (DHS), AIDS Indicator Survey (AIS), Multiple Indicator Cluster Survey 46 

(MICS) series, and other surveys listed in the Global Health Data Exchange[1]; surveys included in the 47 

national HIV estimates files from UNAIDS[2]; and surveys listed in the US Census Bureau HIV/AIDS 48 

Surveillance Database[3]. For a survey to be considered for this analysis, we required that the survey 49 

reported HIV blood test results, sampled from the general adult population, and contained geographic 50 

information more refined than country level. For surveys with no microdata available we used reports if 51 

they included sample size, or uncertainty intervals from which sample size could be derived. Our desired 52 

age range was 15–59 years, but we also included survey reports that recorded prevalence for age spans 53 

within that range. The surveys used in this analysis are listed in Additional File 2: Table S1 and visualized 54 

in Figure 1. We additionally considered data sources identified through literature review; however, 55 

because data from these sources predominantly did not match our inclusion criteria related to age 56 

distribution (see section 2.1.3 below), we elected to exclude all literature review data from this model. 57 

Other survey data exclusions are detailed in Additional File 2: Table S2. 58 

2.1.2 Data processing for microdata 59 

To prepare survey microdata for analysis, we first subset the data to the age range of interest, 15–59 60 

years, and dropped any data that were not sex-specific. For data coded by gender rather than sex, we 61 

treated these data as if they were sex-specific rather than gender-specific. We then dropped rows for 62 

individuals explicitly listed as not tested or where the blood samples were marked as lost or rejected 63 

(insufficient sample volume, tip broken, etc.). Inconclusive and indeterminate test results were coded as 64 

a negative test result. After subsetting according to these conditions, we further dropped any microdata 65 

missing an HIV test result, survey weight, or geographic information or due to the GPS coordinates being 66 

located more than 10 km outside of the country border. Coordinates within 10 km of the country border 67 

were snapped to be approximately 1 km inside the nearest border of the specified country. 68 

We then aggregated the individual-level microdata into sex-specific five-year age bins (15–19, 20–24, 69 

25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59; hereafter termed ‘ages’) to the finest possible 70 

spatial resolution available, ideally a latitude and longitude pair representing the location of the survey 71 

cluster (point-level data). The interview date for each specific location was calculated as the median of 72 

the individual-level interview dates. Where point-level referencing was not available, we geolocated 73 
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survey microdata to the smallest geographical area (termed ‘polygon’) possible. Individual-level sample 74 

weights were used when calculating prevalence, and the effective sample size for each prevalence 75 

estimate was estimated via the Kish approximation[4], which accounts for differences in the underlying 76 

selection probability within a sample. 77 

2.1.3 Data processing for reports  78 

In instances where individual-level microdata were not available, we used summary reports, given that 79 

the estimates reported were similar in nature to what we would calculate from the microdata. We used 80 

the median months of the reported data collection periods as the interview dates to align with the 81 

extracted microdata. If sample sizes were not included in the report, we estimated them from the 82 

reported confidence intervals, assuming that a Normal approximation was used to generate 95% 83 

confidence intervals. In both instances, sample sizes were further adjusted by multiplying the median 84 

design effect (ratio of effective sample size to observed sample size) calculated in the microdata as 85 

described above. We only used reports with sex-specific estimates. Summary reports only provide 86 

estimates aggregated across age; we included only those that completely covered either some or all the 87 

5-year age bins within the 15–59 year age range being modeled. Because of their incongruity with our 88 

methods for modeling age-aggregated data (detailed in Additional File 1: Section 2.3), we did not include 89 

reports extending below 15 years or above 59 years, or any reports incompletely covering any of our 90 

ages. For example, we included reports covering age ranges such as 15–59 years, or 15–49 years, but 91 

excluded reports covering age ranges such as 15–64 years, or 18–24 years. 92 

2.2 Antenatal care (ANC) sentinel surveillance 93 

2.2.1 Data sources 94 

In addition to general population surveys, we used antenatal care (ANC) sentinel surveillance data, 95 

which measure HIV prevalence among pregnant females attending antenatal care clinics. Most of these 96 

raw data came from national Spectrum files that were developed by a country team of experts and 97 

compiled and shared by the UNAIDS secretariat[2]. These files include the HIV prevalence and sample 98 

size of ANC sentinel surveillance and routine testing for various sites and years. We only used the 99 

sentinel surveillance estimates for our analysis. 100 

We supplemented this data with ANC sentinel surveillance country reports. In general, the reports 101 

contained the same information as the Spectrum files, but there was some additional information in the 102 

reports and some discrepancies compared to the Spectrum files. The additional information included 103 

additional sites, additional years for given sites, and more precise prevalence estimates. In instances 104 
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where there were discrepancies for a given site-year, we elected to use the source where HIV 105 

prevalence was closest to the average prevalence of surrounding years for the same site.  106 

Four countries had a notably large number of discrepancies between the Spectrum files and the ANC 107 

reports. The Zambia Spectrum files recorded prevalence for the 15–39 years age range, while the 108 

reports recorded prevalence for the 15–44 years age range. In this case, we elected to use the Spectrum 109 

files because they had better data coverage in terms of number of site-years. There were also many 110 

discrepancies in Central African Republic, Côte d’Ivoire, and Zimbabwe; we were unable to identify a 111 

specific reason for these discrepancies and elected to use data from the Spectrum files only for these 112 

countries. We investigated the ANC reports to determine if site names in the Spectrum files represented 113 

hospitals, cities, or administrative subdivisions. We then used various mapping websites to find 114 

geographic information related to these sites. For hospitals and cities/towns that are less than 25 km2 in 115 

area, we used a central GPS coordinate, and for administrative subdivisions we used a polygon of the 116 

area. Some hospital sites had a city or town name rather than a hospital name. In those instances, we 117 

searched for a hospital in the given city or town and used that hospital’s GPS coordinates. If there were 118 

multiple hospitals in the area but they were less than 5 km apart, we used the GPS coordinates of the 119 

midpoint of the hospitals. If no hospitals were found in the area but the corresponding region was less 120 

than 25 km2 in area, we used the central GPS coordinate. Sites that could not be geolocated because 121 

none of these conditions were met were excluded from further analyses.  122 

2.2.2 Data processing 123 

To prepare the ANC data for analysis, we compiled the HIV prevalence and sample size data from the 124 

Spectrum files and the ANC reports, and the site geographic information – either GPS coordinates or 125 

polygons for administrative subdivisions – into one dataset. After thoroughly inspecting the data, we 126 

decided to exclude the following data from our analysis: 127 

• Hospital-level sites were dropped from Congo in 2011 (23 site-years) and Guinea-Bissau in 2003, 128 

2005, 2010, and 2014 (10 site-years) because the data aggregated by administrative subdivisions 129 

had better temporal coverage. 130 

• We dropped administrative subdivisions that were masked by a different level of administrative 131 

subdivisions (8 site-years), defaulting to the level that would give better temporal coverage. 132 

• We determined that 181 site-years were outliers based on inspection of site-level time trends 133 

and undue influence on model results, and these were dropped from the analysis. 134 
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• Data from sites that could not be geolocated were also dropped (96 sites). Additionally, in the 135 

Spectrum files, data from 12 site-years labeled as sentinel surveillance we suspect are actually 136 

routine testing, and we excluded these from the analysis. In some cases, ‘default’ sample sizes 137 

were reported for all sites and certain years in a given country (typically 𝑁 =  300). In cases 138 

where measured sample sizes were available for these affected sites in two or more other years, 139 

we replaced the ‘placeholder’ sample size with the site-specific median from across measured 140 

years. In cases where reported sample sizes were not available for other years, or where median 141 

values clearly conflicted with site-specific trends in sample size over time, the ‘placeholder’ 142 

sample size was retained. In the end, we adjusted sample sizes in this way for select data in five 143 

countries, five years, and 57 sites, equating to 11 country-years and 146 site-years in total. 144 

The ANC data included in this analysis are listed in Additional File 2: Table S2 and visualized in Figure 1. 145 

2.3 Polygon and age-aggregated data processing 146 

To incorporate observations geolocated to the polygon level as well as age-aggregated observations into 147 

our model, we disaggregated these data to mimic point and/or age-specific data. Specifically, we 148 

disaggregated each of these given observations to be location- and/or age-specific. For each polygon, 149 

we generated points at the centroid of each pixel falling within that polygon and replicated that 150 

observation’s HIV prevalence and sample size at the location of each centroid. Age-aggregated data 151 

were similarly disaggregated by replicating HIV prevalence and sample size once for each age covered in 152 

the given age-aggregated observation’s age range. In the cases of age-aggregated polygon data, these 153 

two processes were combined. Next, each of the disaggregated, location- and age-specific rows of data 154 

associated with a given aggregated observation were assigned weights (𝑤𝑗) proportional to the age- and 155 

sex-specific population at that location for the given year, derived from WorldPop[5]. For ANC data, ages 156 

and locations within an ANC observation were weighted by births rather than population. The number 157 

of births for a given age and location was calculated as the product of the location-, age-, and sex-158 

specific population again derived from WorldPop[5], and the national fertility rate, derived from GBD 159 

2019 estimates[6]. Weights per observation all summed to one. Age-specific point observations were 160 

each assigned a weight of one.  161 

To reduce the computational burden imposed by this method in terms of the large number of locations 162 

and ages generated, in cases where for at least one location and/or age (𝑗) within an observation,  163 

𝑤𝑗 <
1

2
⋅ 1/max (𝑗), 164 
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we successively dropped the lowest-weighted locations and/or ages in that observation, until a 165 

maximum of 1% of the observation’s weight was dropped. Remaining locations and/or ages within that 166 

observation were then reweighted to maintain a total observation weight of one. Age-specific point 167 

observations were each given a weight of one. This ultimately allowed us to retain ≥99% of our 168 

observation weight of while removing 42.2% of pixel-ages, greatly mitigating the computational burden 169 

on this model.  170 

3 Covariate and auxiliary data  171 

3.1 Pre-existing covariates 172 

Mirroring the previously published adult HIV prevalence model[7], this analysis included five pre-existing 173 

covariates: travel time to the nearest settlement of more than 50,000 inhabitants, total population, 174 

night-time lights, urbanicity, and malaria incidence. These variables were selected from among available 175 

gridded datasets for SSA because they are factors, or proxies for factors, that previous literature has 176 

identified to be associated (not necessarily causally) with HIV prevalence. The first four variables were 177 

included as measures or proxies for connectedness and urbanicity, as HIV historically spread through 178 

SSA along travel routes[8, 9] and is typically found to be higher in more urban compared to more rural 179 

locations. Malaria incidence was selected based on prior evidence relating higher malaria incidence 180 

rates to higher prevalence of HIV at the population level[10, 11]. Sources for these data are given in 181 

Additional File 2: Table S4. These covariates underwent spatial and temporal processing in preparation 182 

for their inclusion in analysis.  183 

Spatial processing involved resampling the input covariate raster to align the spatial resolution of the 184 

covariate to the 5 x 5-km resolution used in modeling. For covariates that were originally at a finer 185 

resolution, we resampled the raster by taking the neighborhood average (travel time to the nearest 186 

settlement of more than 50,000 inhabitants, night-time lights, and urbanicity) or sum (total population) 187 

of the finer covariate raster to produce one at a 5 x 5-km resolution. Malaria incidence was natively at a 188 

5 x 5-km resolution and thus did not require additional spatial processing.  189 

Temporal processing was required in instances where the original temporal resolution of the covariate 190 

was anything other than annual. To resolve from a coarser time period to an annual time period, we 191 

filled the intervening years with the value from the nearest neighboring year (urbanicity) or using an 192 

exponential growth rate model (total population). Night-time lights and malaria incidence were 193 

provided at a one-year temporal resolution and did not require interpolation. As travel time to the 194 

nearest settlement of more than 50,000 inhabitants was available only for a single representative year 195 
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(2015), this covariate was set to be unchanged over time. After interpolation, night-time lights and 196 

urbanicity were still missing the most recent years of the 2000–2018 analysis period, and in these 197 

instances, we filled out the end of the time-series carrying forward the most recent year without 198 

modification. 199 

3.2 Covariates constructed for this analysis  200 

3.2.1 Covariate selection criteria and definitions  201 

In addition to the five pre-existing covariates, we constructed eight additional covariates for this analysis 202 

that were updated from the previously published adult HIV prevalence model[7]. Numerous studies 203 

have been conducted in SSA on risk and protective factors for HIV infection, and these factors commonly 204 

include sexual behavior and factors that are thought to influence the transmission of HIV during sexual 205 

intercourse[12]. Potential covariates were informed by past literature and required to have a 206 

demonstrated association with HIV prevalence, though not necessarily a causal relationship. 207 

Furthermore, our selection of covariates depended on having adequate data coverage from data 208 

sources that could be readily extracted. In total, eight covariates were constructed:  209 

• Prevalence of male circumcision, including medical or traditional circumcision (‘male 210 

circumcision’); 211 

• Prevalence of self-reported STI symptoms (genital discharge and/or genital ulcer/sore) in the 212 

last 12 months (‘STI symptoms’);  213 

• Prevalence of marriage or living with a partner as married (‘in union’);  214 

• Prevalence of one’s current partner living elsewhere among females (‘partner away’);  215 

• Prevalence of condom use at last sexual encounter within the last 12 months (‘condom last 216 

time’);  217 

• Prevalence of sexual activity among young females (‘had intercourse’);  218 

• Prevalence of males reporting multiple sexual partners within the last year (‘multiple partners in 219 

year’); 220 

• Prevalence of females reporting multiple sexual partners within the last year (‘multiple partners 221 

in year’).  222 

The notion that male circumcision has a protective effect against acquiring HIV was first proposed in 223 

1986, and since then more than 30 cross-sectional studies have found the prevalence of HIV to be 224 

significantly higher in uncircumcised males, as well as numerous prospective studies that have shown a 225 

protective effect ranging from 48% to 88%[13]. In 2005, following the interruption of a randomized, 226 
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controlled trial of male circumcision in South Africa that showed a 60% protective effect of circumcision, 227 

WHO and UN agencies first acknowledged evidence of male circumcision’s protective effect[14]. 228 

Following these declarations, voluntary medical male circumcision clinics (VMMC) emerged as an HIV 229 

prevention strategy in 15 countries in Eastern and Southern Africa with high HIV prevalence and low 230 

levels of male circumcision[15]. Given male circumcision’s linkage to HIV in the scientific literature, many 231 

surveys record self-reported circumcision status. The modeling of male circumcision estimates in this 232 

study closely mirrors the methods recently published by Cork et al[16]. Here, we extend the analysis to 233 

include estimates for the year 2018, as well as additional countries included in this study but not in the 234 

previous work. 235 

Coinfection of HIV with viral and bacterial sexually transmitted infections (STIs), most notably herpes 236 

simplex virus type 2, is a well-studied mechanistic factor associated with higher risk of HIV 237 

acquisition[17]. STIs are thought to have been especially important risk factors during the early stages of 238 

the epidemic when infections were concentrated in high-risk groups, though researchers have since 239 

argued STIs are also critical in advanced stages[18]. Due to the association between STI prevalence, 240 

sexual behavior, and HIV, most survey series detail the self-reported presence of STI symptoms, 241 

facilitating its inclusion as an HIV covariate in this analysis.  242 

Marital status represents a structural factor that, while distal to HIV exposure, has been associated with 243 

the number and type of sexual partners, as well as with HIV status[19, 20]. It has been postulated that 244 

the relationship between an individual’s marital status and the number of sexual relationships regulates 245 

the protective effect of marriage on the risk of HIV infection[21]. Marital status is a readily available 246 

indicator in household surveys more generally.  247 

The frequency with which a partner has slept away from home during the past year is an indicator of the 248 

mobility of male partners, and studies have found that mobility confers an increased risk for HIV[22]. 249 

Part of the rapid spread of HIV in SSA has been attributed to occupations that consist of geographical 250 

mobility, especially truck drivers, who are identified as high-risk for acquiring and spreading HIV[23]. 251 

Many surveys ask females if their partner has lived away from home in the past year, and we use these 252 

responses as a proxy for occupational mobility.  253 

Condom use is a sexual behavior factor that is protective against acquiring HIV. Condoms are often 254 

presented as the most effective HIV prevention method of sexual transmission of the disease[24]. 255 

Though it is difficult to measure accurately how often condoms are used in sexual encounters, most 256 
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surveys report on the use of condoms in last sexual intercourse, a readily available proxy for overall 257 

condom use. 258 

An early age at sexual debut may be associated with the number of lifetime sexual partners, which is 259 

considered a key risk factor for contracting HIV[21]. Furthermore, early age at sexual debut has been 260 

shown to be associated with numerous other risk factors for HIV acquisition, such as STI prevalence and 261 

decreased condom use[25]. For young females, the initiation of sexual activity is the first important 262 

determinant of potential viral exposure, and delayed sexual debut has been associated with decreased 263 

risk of HIV acquisition[26]. Given these relationships between HIV and age of sexual debut, and the 264 

relative ease of acquiring self-reported sexual status, we constructed an indicator for whether young 265 

(ages 15–24) females have had intercourse.  266 

An individual’s number of sexual partners correlates with HIV risk, and past studies have found a 267 

relationship between the number of sexual partners and HIV prevalence[27]. The number of sexual 268 

partners is thought to have been an especially important factor in the early stages of an epidemic, 269 

though past research has determined it remains a key risk factor in advanced stages[18]. Surveys often 270 

ask males and females their number of partners in the past year, and we used these responses to 271 

construct a proxy for multiple concurrent sexual relationships. Separate covariates were constructed for 272 

males and females given the well-documented discrepancy in the number of partners reported by males 273 

as compared to females[28]. 274 

3.2.2 Covariate data  275 

3.2.2.1 Covariate data identification strategy  276 

We reviewed major survey series (Demographic and Health Surveys [DHS]; Multiple Indicator Cluster 277 

Surveys [MICS]; AIDS Indicator Surveys [AIS]; Malaria Indicator Surveys [MIS]; Performance, Monitoring, 278 

and Accountability Surveys [PMA]; Reproductive Health Surveys [RHS]; and Living Standards 279 

Measurement Surveys [LSMS]) to identify surveys in SSA that contained relevant variables. We 280 

supplemented this initial list of surveys with country-specific surveys identified in the Global Health Data 281 

Exchange[1] and with a cross-check of all surveys extracted for HIV prevalence. We included surveys that 282 

contain variables related to one or more of the covariate indicators (including any time restrictions 283 

inherent to the indicator definition) and contained geographic information at a subnational level. 284 

For all indicators except for ‘had intercourse,’ we required a survey to sample the general adult (ages 285 

15–49) population. This age range was chosen for the covariates primarily due to data availability. For 286 

‘had intercourse’, a survey only had to sample the general young female (ages 15–24) population to be 287 
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included. Because covariates were not modeled to be age-specific, more discerning age range 288 

requirements were not required of the surveys used in these models. 289 

Because of variations we identified in the way these questions were asked across surveys, we tracked 290 

the skip logic and question format for all surveys including STI symptoms and/or the sexual activity 291 

indicators. This helped us identify surveys for which the question format was so substantively different 292 

from others as to require special handling or exclusion (e.g., questions asked without a time restriction 293 

for indicators that require a response from the last 12 months). We excluded select surveys because of 294 

these irreconcilable question variations, incomplete sampling (e.g., a specific age range or 295 

subpopulation), or untrustworthy or outlier data (as determined by the survey administrator or by 296 

inspection). The surveys used for these covariates are listed in Additional File 2: Table S5. 297 

3.2.2.2 Covariate data processing for microdata  298 

To prepare the survey microdata for analysis, we first constructed final indicators from the raw variables 299 

included in the survey data: 300 

• For ‘STI symptoms,’ we constructed a symptoms indicator that was true if a respondent 301 

reported either genital discharge or a genital sore/ulcer in the last 12 months, missing if either 302 

individual symptom was missing, and false if both symptoms were reported in the negative.  303 

• For ‘in union,’ we constructed an indicator that was true for all respondents who reported being 304 

either currently married or living with a partner, false for any other marital status response, and 305 

missing if the marital status response was missing. 306 

•  For ‘multiple partners in year’, we used the reported number of sexual partners within the last 307 

12 months to construct a binary indicator that was true for any respondent reporting two or 308 

more partners and false for any respondent with 0 or 1 partners (including respondents who 309 

had never had intercourse).  310 

• The other indicators were extracted from the survey microdata in their final form and required 311 

no additional construction.  312 

For each indicator, we subset the data to the desired age range (15–24 years for ‘had intercourse’, 15–313 

49 years for all other indicators). For ‘STI symptoms’ we additionally restricted the sample to 314 

respondents who reported having had intercourse, while for ‘partner away’ we additionally restricted 315 

the sample to respondents currently ‘in union’. We dropped any rows with missing responses or sample 316 

weights. For indicators where we model males and females together (‘STI symptoms,’ ‘in union,’ 317 

‘condom last time’), we dropped any surveys that did not interview both males and females. Any 318 
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observations missing geographic information or with inconsistent geographic information (i.e., points 319 

more than 10 km from the nearest specified country border) were also dropped.  320 

Finally, we aggregated the weighted individual-level microdata for each indicator to the finest possible 321 

spatial resolution available. We did not collapse or model covariate data according to specific age-bins 322 

due to data limitations. As in Dwyer-Lindgren et al.[7], data for the covariate ‘multiple partners per 323 

year,’ was collapsed separately for males and females. ‘Male circumcision’ and ‘prevalence of sexual 324 

activity among young females’ included data exclusively for males or females, respectively, but for all 325 

other covariates, data were not collapsed to be sex-specific. Data were geolocated to latitude and 326 

longitude at the survey cluster level wherever possible, and to the smallest possible polygon available 327 

otherwise. As with the HIV prevalence data, we calculated the effective sample size for each spatial 328 

aggregation using the Kish approximation[4].  329 

3.2.2.3 Covariate data processing for reports  330 

For ‘male circumcision,’ we also included summary reports for surveys where individual-level microdata 331 

were not available. We followed the same methods for report data processing as reported in Cork et 332 

al[16]. We chose not to include summary reports for other covariates. For ‘STI symptoms,’ the estimates 333 

included in reports used a different construction of the variable than that which we built from the 334 

microdata, making the reports incompatible with the microdata. For the sexual activity indicators, we 335 

decided against summary report extraction due to the significant number of surveys we were able to 336 

extract at the microdata level and the scarcity of reports for most of these indicators. 337 

3.2.2.4 Covariate data processing for polygons  338 

As with HIV prevalence data, wherever possible, covariate data were matched to a specific latitude and 339 

longitude, and otherwise to the smallest areal unit (polygon) possible. The statistical model we 340 

employed for covariate modeling required point-referenced data, so data matched to polygons were 341 

resampled to generate pseudo-point data based on the underlying population distribution within the 342 

polygon. The methods for the resampling are consistent with those previously used in the geospatial 343 

modeling of many indicators, including adult HIV prevalence[7] and under-5 mortality[29]. Specifically, 344 

for each polygon-level observation, we randomly sampled 10,000 locations among grid cells in the given 345 

polygon with probability proportional to grid cell population. Grid cells were defined to be contained 346 

within the polygon if their centroid fell within the geographic boundary. We performed k-means 347 

clustering (with k set to 1 per 40 grid cells) on the sampled points to generate a reduced set of locations 348 

to be used in modeling based on the k-means cluster centroids. Weights were assigned to each pseudo-349 

point proportional to the number of sampled points contained in each of the k-means clusters, i.e., the 350 
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number of sampled points divided by 10,000. Each pseudo-point generated by this process was assigned 351 

the HIV prevalence observed for the polygon as a whole, and a sample size equal to the sample size for 352 

the polygon as a whole multiplied by the weight derived for each point.  353 

3.2.3 Covariate modeling  354 

Each of these covariates was estimated using a simplified version of the modeling framework used for 355 

HIV prevalence as described in Additional File 1: Section 4.2, closely mirroring the framework previously 356 

used to model adult HIV prevalence[7]. Notable differences from the age- and sex-specific HIV 357 

prevalence model reported in this paper included: 358 

• No covariates were included in the covariate geospatial models; 359 

• No corrections for data derived from ANC sentinel surveillance were included (as no such data 360 

were used in these models); 361 

• Covariate prevalence was modeled entirely at the disaggregated level (i.e., space- and time-362 

specific). This was possible for covariate models because prevalence was specified at the age-363 

aggregated level, and polygon data were resampled into pseudo-points; 364 

• Because the covariate models did not include age or sex dimensions, only the spatiotemporal 365 

Gaussian process term was included; 366 

• An unstructured error term (or ‘nugget effect’) for location 𝑠 and year 𝑡 was included; 367 

• A fixed effect on time was included. This was particularly important for ‘male circumcision’ for  368 

capturing the growing emphasis on voluntary medical male circumcision as an intervention for 369 

HIV prevention[16]. For other covariates, this effect captured general regional time trends; 370 

• Covariate models were fit in R-INLA[30]. Modeling in R-INLA was possible for the covariate 371 

models due to their more simplistic specifications relative to the age- and sex-specific HIV 372 

prevalence model.  373 

Therefore, these models were specified as follows: 374 

𝑌𝑗~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙( 𝑁𝑗 , 𝑝𝑗) 375 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑗) =  𝛽0 + 𝜷1𝒕 + 𝛾𝑐[𝑙] + 𝑍𝑗 +  ϵ𝑗  376 

𝛾𝑐[𝑙] ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2𝑐𝑜𝑢𝑛𝑡𝑟𝑦) 377 

𝑍𝑗 ∼ 𝐺𝑃(0, 𝛴𝑠𝑝𝑎𝑐𝑒 ⊗  𝛴𝑡𝑖𝑚𝑒) 378 

ϵ𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑛𝑢𝑔𝑔𝑒𝑡
2  ) 379 



   
 

17 
 

where: 380 

• 𝑁𝑗  is the number of individuals sampled and 𝑌𝑗 is the number of individuals who tested positive, 381 

or answered affirmatively among those sampled for the given covariate, for a given location and 382 

year (𝑗);  383 

• 𝑝𝑗  is the underlying prevalence for the given covariate for a given location and year 𝑗;  384 

• 𝛽0 is an intercept;  385 

• 𝜷1𝒕 is a fixed effect for a given year 𝒕; 386 

• 𝛾𝑐[𝑙] is a country-level random effect for country 𝑐 containing location 𝑙;  387 

• 𝑍𝑖 is a spatially and temporally correlated random effect for a given location and year 𝑗; 388 

• ϵ𝑖 is an independently distributed random effect for a given location and year 𝑗. 389 

All priors and hyper-priors were otherwise the same as those used for the same respective terms in the 390 

previously published adult HIV prevalence model[7]. Maps of each constructed covariate in 2000, 2005, 391 

2010, and 2018 are displayed in Additional File 3: Figs. S1-8. 392 

3.3 Administrative boundaries  393 

For this analysis we used shape files from the Database of Global Administrative Areas (GADM)[31] to 394 

define country boundaries and first- and second-level administrative subdivisions. We manually updated 395 

known discrepancies.  396 

3.4 Gridded population  397 

The gridded population data used for this analysis were obtained from WorldPop[5]. Because WorldPop 398 

provides data at a 1 x 1-km spatial resolution at five-year intervals, we processed these data as 399 

described in Additional File 1: Section 3.1 to aggregate to a 5 x 5-km spatial resolution and interpolate to 400 

annual time periods. When we use population as a covariate, we use total population. In all other 401 

instances (as described in Additional File 1: Sections 2.3 and 4.4) we use age- and sex-specific 402 

population. 403 

4 Statistical model 404 

4.1 Covariate stacking  405 

Stacked generalization/regression, or stacking, is an ensemble modeling method that combines multiple 406 

prediction methods to increase predictive validity relative to a single modeling approach. This ensemble 407 

modeling method relies on a variety of sub-models that are then combined by a secondary learner to 408 

produce a meta-model that fuses multiple algorithmic methods to capture nonlinear effects and 409 
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complex interactions[32]. Our implementation of stacking largely follows the approach described by 410 

Bhatt and colleagues[33] and which was previously implemented for modeling adult HIV prevalence[7].  411 

Because the HIV-specific covariates were modeled at the age- and (largely) sex-aggregated level, we fit 412 

the stacker models at that same level, using HIV prevalence data aggregated across ages 15–49 years 413 

and both sexes. The age range 15–49 years was used in this case because of its predominant use in 414 

seroprevalence surveys compared to the 15–59 years range, allowing us to retain more data for use in 415 

stacking purposes. Polygon data were excluded from stacking models due to their incongruity with the 416 

configurations needed for the different sub-models. The ANC data were also excluded due to known 417 

sampling biases, which are described in the Additional File 1: Section 4.2. 418 

We fit three sub-models – a generalized additive model, boosted regression trees, and lasso regression – 419 

to the HIV survey data with the five pre-existing and eight constructed covariates as well as calendar 420 

year included as explanatory variables. We selected these three sub-models based on ease of 421 

implementation through existing software packages, the fundamental differences in their approaches, 422 

and a proven track record of predictive accuracy[33]. Sub-models were fit in R using the mgcv[34], 423 

xgboost[35], glmnet[36], and caret[37] packages.  424 

Each sub-model was fit using five-fold cross-validation to avoid overfitting, and hyper-parameter fitting 425 

was done to maximize predictive power. For each sub-model, we produced two sets of predictions: out-426 

of-sample and in-sample. Out-of-sample predictions for each model were generated by compiling the 427 

predictions from the five holdouts from each cross-validation fold, and in-sample predictions were 428 

generated by re-fitting the sub-models using all available data. The out-of-sample sub-model predictions 429 

were used as explanatory covariates when fitting the geostatistical model described below, and the in-430 

sample predictions were used when generating predictions from the geostatistical model in order to 431 

maximize data use. In both instances, the logit-transformation of the predictions was used to put these 432 

predictions on the same scale as the linear predictors in the geostatistical model. Maps of in-sample 433 

predictions from each stacker are presented in Additional File 3: Figs. S9-11. 434 

4.2 Geostatistical model  435 

4.2.1 Model description  436 

We modeled HIV prevalence using a generalized linear mixed effects model discretized by space, time, 437 

age, and sex. To simultaneously model our point and polygon observations, and our age-specific and 438 

age-aggregated observations, we modeled prevalence at the observation level (𝑖). However, prevalence 439 

was first specified at the space, time, age-, and sex-disaggregated level (𝑗): 440 
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 441 

𝑌𝑖~Binomial(𝑁𝑖 , 𝑝𝑖) 442 

logit(𝑝𝑗) =  𝛽0 + 𝜷1𝑿𝑗 + 𝑍1,𝑗 + 𝑍2,𝑗 + 𝑍3,𝑐[𝑗] 443 

𝑍1,𝑗 ∼ GP(0, 𝛴𝑠𝑝𝑎𝑐𝑒 ⊗  𝛴1,𝑡𝑖𝑚𝑒) 444 

𝑍2,𝑗 ∼ GMRF(0, 𝛴2,𝑡𝑖𝑚𝑒 ⊗ 𝛴2,𝑎𝑔𝑒 ⊗  𝛴2,𝑠𝑒𝑥) 445 

𝑍3,𝑐[𝑗] ∼ GMRF(0, 𝛴3,𝑐) 446 

where:  447 

• 𝑁𝑖  and 𝑌𝑖 are the number of individuals sampled and the number of individuals who are HIV+ 448 

among those sampled, respectively, at the observation level (𝑖);  449 

• 𝑝𝑖 is the underlying HIV prevalence at the observation level 𝑖;  450 

• 𝑝𝑗  is the underlying HIV prevalence at the fully disaggregated (i.e., location, year, age, and sex-451 

specific; 𝑗) level;  452 

• 𝛽0 is an intercept;  453 

• 𝑿𝑗  is a vector of logit-transformed stacked covariates at the disaggregated level 𝑗, and 𝜷1 is the 454 

corresponding vector of regression coefficients;  455 

• 𝑍1,𝑗 random effects correlated across space and time; 456 

• 𝑍2,𝑗 is a random effect correlated across time, age, and sex;  457 

• 𝑍3,𝑐[𝑗] is a country-specific (𝑐) random effect correlated across age. 458 

Descriptively, we modeled the number of HIV-positive individuals (𝑌𝑖) among a sample (𝑁𝑖) for a given 459 

observation 𝑖 as a binomial variable. The model first specified logit-transformed prevalence at the 460 

disaggregated level (𝑝𝑗) as a linear combination of a regional intercept (𝛽0), age- and sex-specific 461 

covariate effects (𝜷1𝑿𝑗), and random effects correlated across space, time, age, and sex 462 

(𝑍1,𝑗 , 𝑍2,𝑗 , 𝑍3,𝑐[𝑗]). The intercept captures the overall mean level of HIV prevalence, while the covariate 463 

effects capture the spatial and temporal variation in HIV prevalence that can be described as a function 464 

of spatial and temporal variation in the included covariates. The random effects correlated across space, 465 

time, age, and sex capture additional variation by location (within and between countries), time, age, 466 

and sex that varies smoothly over these dimensions. 467 

We then applied age-specific transformations related to fertility to 𝑝𝑗  (described below), calculated as: 468 
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𝑝𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑,𝑗 =
(𝑝𝑗 ⋅ 𝐹𝑅𝑅𝑗)

(𝑝𝑗 ⋅ 𝐹𝑅𝑅𝑗) + 1 − 𝑝𝑗
 469 

where:  470 

• 𝑝𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑,𝑗  is the underlying HIV prevalence at the disaggregated level 𝑗, transformed to 471 

account for age-specific differences in fertility within observation-level data derived from 472 

antenatal care clinic sentinel surveillance. For all other survey data, 𝑝𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑,𝑗  = 𝑝𝑗; 473 

• And 𝐹𝑅𝑅𝑗  is the fertility rate ratio between HIV+ and HIV- females at the disaggregated level 𝑗, 474 

used to correct for age-specific differences within observation-level (i.e., in this case, age-475 

aggregated) data derived from data derived from antenatal care clinic sentinel surveillance. For 476 

all other survey data, 𝐹𝑅𝑅𝑗  = 1;  477 

Finally, prevalence at the observation level (𝑝𝑖) was then specified as: 478 

𝑝𝑖 =  logit−1 (logit (∑(𝑝𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑,𝑗 ⋅  𝑤𝑗)) + (𝛽2 + 𝑈𝑠[𝑖]) ⋅ 𝐼𝐴𝑁𝐶 + 𝜖𝑖) 479 

𝑈𝑠[𝑖] ∼ Normal(0, 𝜎𝑠𝑖𝑡𝑒
2 ) 480 

𝜖𝑖 ∼ Normal(0, 𝜎𝑖
2) 481 

where: 482 

• 𝑤𝑗 is the weight applied to data at the disaggregated level. For point and age-specific data, 𝑤𝑗 = 483 

1; 484 

• 𝐼𝐴𝑁𝐶  is an indicator variable that is 1 for data derived from antenatal care clinic sentinel 485 

surveillance and 0 otherwise;  486 

• 𝛽2 is a fixed offset for observation-level data derived from antenatal care clinic sentinel 487 

surveillance;  488 

• 𝑈𝑖[𝑠] is a site-level random effect for data derived from antenatal care clinic sentinel surveillance 489 

for observation 𝑖 containing ANC site 𝑠; 490 

• and (𝜖𝑖) is an observation-level error term.  491 

Technically our polygon and age-aggregated data would follow a convolution of a mixture of binomial 492 

distributions. However, for computational efficiency we instead implement here a binomial 493 

approximation where for a given observation 𝑖:  494 

 

𝑌𝑖 ∼ Binomial(𝑁𝑖 , 𝑝𝑖) 
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 𝑝𝑖 =  ∑ 𝑤𝑗𝑝(𝑥𝑗)/ ∑ 𝑤𝑗
𝑗𝑗

 

where we take 𝑤𝑗 to be the population density proportion at pixel-age 𝑗 (i.e., location and age 𝑥𝑗) for 495 

the polygon and/or age range for observation 𝑖, and ∑ 𝑤𝑗𝑗 = 1. We expected increased variance in our 496 

estimates given this modeling framework compared to a model with equal data coverage that used only 497 

point and age-specific data; however, given the limited availability of point and age-specific data, 498 

sensitivity analyses (see Additional File 1: Section 4.3 and Additional File 3: Figs. S13-15) demonstrate 499 

the larger benefit to our model in terms of reducing bias and error provided by the inclusion of 500 

aggregated data. We chose this method for including aggregated data rather than the polygon 501 

resampling method previously used to model adult HIV prevalence[7] among other indicators because 502 

polygon resampling is less robust[38], isn’t able to account for variation in the spatial covariates or 503 

spatial field within polygon data sources, and uses an ad-hoc method for down-weighting the sample 504 

size of the resampled points. Also, the new method enabled us to disaggregate data not only over space 505 

but also by age, and allowed us to account for ANC-related bias at both age-aggregated and age-506 

disaggregated levels.  507 

HIV prevalence as measured by sentinel surveillance of antenatal care (ANC) clinics is known to be 508 

biased as a measure of HIV prevalence in the general adult population because it captures pregnant 509 

females who attend ANC only, as compared to all adult females[39, 40]. This bias may be either positive 510 

or negative: the fact that all pregnant females are sexually active tends to elevate their risk of having 511 

acquired HIV prevalence compared to the general female population (some of whom are not sexually 512 

active), while HIV-related sub-fertility tends to reduce the prevalence of HIV+ females among the 513 

population of pregnant females[41, 42]. Additionally, HIV-related sub-fertility tends to vary across 514 

ages[43]; however, ANC data reported at the age-aggregated level does not account for these 515 

differences. Further, we do not expect the sampling bias within age- and spatially aggregated ANC 516 

observations to correspond with underlying populations, as we do for survey data. Nevertheless, ANC 517 

data have better temporal and spatial coverage in many countries than survey data alone (Figure 1). We 518 

therefore incorporated ANC data to capitalize on this additional data coverage, but also attempted to 519 

correct for the known biases in multiple ways.  520 

First, to account for age-specific differences in the fertility rate ratio of HIV+ and HIV- females, we 521 

corrected prevalence estimates from ANC clinics at the disaggregated level according to age-specific 522 

fertility rate ratios, calculated according to age-specific and HIV-status-specific fertility estimates from 523 
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GBD 2019[6]. Fertility rate ratios were calculated at the national level, except for in Ethiopia, Kenya, 524 

Nigeria, and South Africa, where estimates were available at the first administrative level. 525 

Second, because we expect sampling prevalence for ANC data disaggregated over space and age to vary 526 

according to age- and location-specific ANC clinic visitation rates, rather than according to the 527 

distribution of the underlying population, we calculated the 𝑤𝑗 values for disaggregated ANC data to 528 

reflect this. Specifically, we used the number of births in a given year, location, and age as a proxy for 529 

ANC visitation rate, and weighted disaggregated ANC data accordingly. Births were calculated by 530 

multiplying the local population of females in the given year and age (based on local estimates from 531 

WorldPop[5]) by the national fertility rate for that year and age (based on national-level estimates from 532 

GBD 2019[6]).  533 

Third, we accounted for ANC-related bias at the observation level. In instances where data in our model 534 

were derived from ANC sentinel surveillance (𝐼𝐴𝑁𝐶  = 1), our model allows for this bias via a fixed term 535 

(𝛽2) that captures the overall mean bias, and a site-specific random effect (𝑈𝑖[𝑙]) that captures local 536 

differences in the extent of this bias. This approach is conceptually like previously described approaches 537 

for spatial modeling using non-randomized (and therefore potentially biased) data and randomized 538 

survey data[44, 45]. Although the bias associated with ANC sentinel surveillance may also vary over time 539 

in addition to varying spatially, we felt there was insufficient data to estimate both spatial and temporal 540 

variation in this bias, and so the bias associated with ANC sentinel surveillance was assumed to be time-541 

invariant over the period of this analysis. 542 

The spatially and temporally correlated random effect (𝑍1𝑗) was modeled as a Gaussian process with 543 

mean 0 and a covariance matrix given by the Kronecker product of a spatial Matérn covariance function 544 

(𝛴𝑠𝑝𝑎𝑐𝑒) and a temporal first-order autoregressive (AR1) covariance function (𝛴𝑡𝑖𝑚𝑒). The Matérn 545 

covariance function is given by: 546 

𝛴𝑠𝑝𝑎𝑐𝑒 =  𝜎2
21−𝑣

𝛤(𝑣)
⋅ (𝜅𝐷)𝑣 ⋅ 𝐾𝑣(𝜅𝐷) 547 

In this analysis 𝑣 (the smoothness parameter) was fixed at 1. A penalized complexity (PC) prior was used 548 

for the Matérn covariance function and specified via two hyper-parameters: the spatial range, 𝜌𝑠 (where 549 

𝜌𝑠  =  √8𝜈
𝜅⁄  and is equal to the distance at which correlation is approximately 0.1; the subscript 𝑠 for 550 

space is used as to not confuse with the other correlation parameters, below), and marginal standard 551 

deviation, 𝜎. PC priors shrink towards a more simplistic base model – in this case, one where the 552 
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marginal variance is 0 and the spatial range is infinite – and are specified via setting the tail probabilities 553 

on each hyper-parameter[46, 47]. We followed the guidance provided by Fugulstad et al., who 554 

recommend selecting priors that satisfy 𝑃(𝜎 >  𝜎0) =  0.05 and 𝑃(𝜌𝑠 >  𝜌𝑠0
) =  0.05, where 𝜎0 is 555 

between 2.5 to 40 times the expected true marginal standard deviation and 𝜌𝑠0
 is between 1⁄10 to 1⁄2.5 556 

of the expected true range[48]. Specifically, we set: 557 

𝜎0 = 5;  𝑃(𝜎 >  𝜎0) =  0.05 558 

𝜌𝑠0
= 0.01 𝑟𝑎𝑑𝑖𝑎𝑛𝑠;  𝑃(𝜌𝑠 >  𝜌𝑠0

) =  0.05 559 

Separate 𝜎 parameters were specified for each 𝑍𝑗  term included in the model; each was assigned the 560 

same prior as above. Individual 𝜎 parameters were also included for the observation-level error term 561 

(𝜖𝑖) and the ANC random effect (𝑈𝑠[𝑖]), with respective priors set as: 562 

𝜎 = 3;  𝑃(𝜎 >  𝜎0) =  0.05 563 

Additionally, for all 𝑍𝑗  terms included in the model, the AR1 covariance function is associated with 564 

different parameters accounting for correlations in time, age, and sex—𝜌𝑡, 𝜌𝑧, and 𝜌𝑥, respectively. 565 

Unique 𝜌 parameters were identified in each of their respective appearances in the model. For example, 566 

because an AR1 temporal covariance function was incorporated into the covariance matrices for 𝑍1,𝑗, 567 

and 𝑍2,𝑗, we fit two separate 𝜌𝑡 parameters (𝜌1,2,𝑡). We nevertheless used the same following hyper-568 

prior for all 𝜌𝑡, 𝜌𝑧, and 𝜌𝑥  parameters, which corresponds to a prior mean of 0.76 with a 95% range of -569 

0.17 to 0.97: 570 

log (
1 + 𝜌

1 − 𝜌
) ~ Normal(2, 1.22) 571 

Finally, priors for fixed effects were set as:  572 

𝛽0~ Normal(0, 32) 573 

𝛽1~ Normal(0, 32) 574 

𝛽2~ Normal(0, 32) 575 

4.2.2 Model fitting and prediction 576 

This model was fit in Template Model Builder (TMB)[49], package in R version 3.6.1. We used the 577 

stochastic partial differential equations (SPDE) approach[50] to approximate the continuous 578 

spatiotemporal Gaussian random field (𝑍1,𝑗). We constructed a finite elements mesh for the SPDE 579 

approximation to the Gaussian process regression using a simplified polygon boundary (Additional File 3: 580 
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Fig. S41). We used a spatial mesh that was constructed on the S2 domain which allowed distance to be 581 

calculated along a sphere instead of using Euclidean distance between latitude and longitude 582 

coordinates. We set the inner mesh triangle minimum edge length to 35 km, the maximum triangle 583 

length to 500 km, with the mesh extending 500 km past the region’s boundary. We used maximum a 584 

posteriori (MAP) inference, using a maximum likelihood estimation with an augmented optimization 585 

objective (log-likelihood function) which incorporated prior distributions for all model parameters. 586 

Estimated model parameters are listed in Additional File 2: Table S6.  587 

Due to computational constraints and to allow for regional differences in the relationship between 588 

covariates and HIV prevalence as well as the strength of auto-correlation across space, time, age, and 589 

sex in HIV prevalence, separate models were fit for four regions (Additional File 3: Fig. S12). Specifically, 590 

we used the regional classifications for SSA from the Global Burden of Disease (GBD) study[51] which 591 

group countries by location and epidemiological profile. We made small modifications to this 592 

classification, grouping Sudan as part of the Eastern SSA region rather than the North Africa and the 593 

Middle East region. We also dropped Cape Verde, Comoros, São Tomé and Príncipe, and Mauritania 594 

from these modeling regions due to data missingness. 595 

After fitting each model, we generated 1,000 draws of all model parameters from the approximated 596 

joint posterior distribution using a multivariate-normal approximation. For each draw 𝑠 of the model 597 

parameters, we constructed a draw of  598 

𝑝𝑗
(𝑠)

=  logit−1 (𝛽0
(𝑠)

+ 𝛽1
(𝑠)

𝑋𝑗 +  𝑍1,𝑗
(𝑠)

+  𝑍2,𝑗
(𝑠)

 + 𝑍3,𝑐[𝑗]
(𝑠)

) 599 

𝐼𝐴𝑁𝐶  is set to 0 for the purposes of generating estimates, so draws of 𝛽2 and 𝑈𝑖  are not incorporated 600 

when generating draws of 𝑝𝑗. Additional processing of the output from the multivariate-normal 601 

approximation is required for the spatial-temporal random effect (𝑍1,𝑗
(𝑠)

) prior to constructing 602 

𝑝𝑗
(𝑠)

according to the equation above. Specifically, for 𝑍1,𝑗
(𝑠)

, draws are generated initially only at vertices 603 

of the finite element mesh, so we project from this mesh to each pixel-year combination desired for 604 

prediction, i.e., the centroid of each grid cell on a 5 × 5-km grid as well as all years from 2000 to 2018. At 605 

the end of this process, we have 1,000 draws of 𝑝𝑗
(𝑠)

 for each grid cell and year combination. 606 
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4.3 Model validation  607 

4.3.1 Validation strategy  608 

We used five-fold out-of-sample cross-validation in order to assess the performance of the modeling 609 

framework described above with respect to predicting HIV prevalence. We first split all location- and 610 

age-specific data into five groups using spatial and temporal stratification[52]. Temporal folds were 611 

created by stratifying across years such that each fold contains approximately 1/5 of the data for each 612 

year. Spatial folds were constructed we used a modified quadtree algorithm to spatially aggregate data 613 

points. This algorithm recursively partitions two-dimensional space, alternating between horizontal and 614 

vertical splits on the weighted data sample size medians. The depth of recursive partitioning is 615 

constrained by the target sample size within a partition and the minimum number of clusters or pseudo-616 

clusters allowed within each spatial partition. The minimum sample size was set according to data 617 

availability in each region—the minimum sample size was set at 425 for Central SSA and Southern SSA, 618 

and 500 for Eastern SSA and Western SSA. These partitions were then allocated to one of five folds for 619 

cross validation. This resulted in five groups that are approximately equal in terms of the total effective 620 

sample size. We then fit the model described above five times, excluding each of the five holdout data 621 

groups in turn. All ANC data were included in all models and were not used to assess model 622 

performance given the known biases in these data. Due to difficulties in comparing age-aggregated and 623 

polygon data to age- and location-specific results, polygon and age-aggregated survey data were 624 

excluded from use in assessing model performance and were therefore used in all models.  625 

After fitting the model five times, the data withheld from each model were matched with predictions 626 

from that model, and then these data-prediction pairs were compiled across all five models, resulting in 627 

a complete dataset of out-of-sample predictions corresponding to all location- and age-specific data 628 

included in the analysis. HIV prevalence estimates based on single survey clusters are generally quite 629 

noisy due to very small sample sizes and are consequently insufficient as a ‘gold standard’ for evaluating 630 

the model predictions[29]. To address this issue, we aggregated both the observed data and the 631 

corresponding age- and sex-specific out-of-sample predictions within countries and within first- and 632 

second-level administrative subdivisions, by calculating a weighted mean of each using the effective 633 

sample sizes as the weights. Then, across all data-estimate pairs, we calculated two summary measures: 634 

the mean error (ME, a measure of bias) and the root-mean square error (RMSE, a measure of total 635 

variance). 636 

In addition, for each data-estimate pair, we constructed 95% prediction intervals from the 2.5th and 637 

97.5th percentiles of 1,000 draws from a binomial distribution corresponding to each of the 1,000 638 
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posterior draws of HIV prevalence with 𝑝 equal to HIV prevalence in a given posterior draw and 𝑁 equal 639 

to the effective sample size for the data point. We then calculated coverage as the percentage of data-640 

estimate pairs where the data point was contained within this 95% prediction interval. Finally, to 641 

complement the out-of-sample predictive validity metrics, we calculated in-sample predictive validity 642 

metrics using the same process but matching each data point to predictions from a model fit using all 643 

data.  644 

4.3.2 Sensitivity analyses  645 

We used this validation strategy to assess model performance of the final model compared models of 646 

adult prevalence, as well as a number of alternatives related to data inclusion and model 647 

specification[53].  648 

4.3.2.1 Adult prevalence sensitivity 649 

We assessed the performance of our age- and sex-specific model compared to an adult-level HIV 650 

prevalence model, that is, one for combined sexes and ages 15–49 years. In these comparisons, we 651 

validated the results of the age and sex model not only at the age- and sex-disaggregated level, but also 652 

for estimates re-aggregated to the adult level (see Additional File 1: Section 4.3.3). The adult prevalence 653 

model we tested mirrored the age- and sex-specific model as closely as possible; all survey microdata 654 

and reports for ages 15–49 years were included, as well as all ANC data. All parameters from the age- 655 

and sex-specific model were retained in the adult prevalence model, except those that pertained to age 656 

and sex correlations (i.e., 𝑍2,𝑗 and 𝑍3,[𝑐]𝑗). To replace the country-level variation provided in the age- and 657 

sex-specific model by the country-specific age correlation term (𝑍3,𝑐[𝑗]), we instead included a country-658 

level random effect, 𝛾[𝑐]𝑗 . Logit-transformed disaggregated prevalence logit(𝑝𝑗) was therefore specified 659 

as: 660 

logit(𝑝𝑗) =  𝛽0 + 𝛽1𝑋𝑗 + 𝑍1,𝑗 + 𝛾[𝑐]𝑗  661 

𝑍1,𝑗 ∼ GP(0, 𝛴𝑠𝑝𝑎𝑐𝑒 ⊗  𝛴1,𝑡𝑖𝑚𝑒) 662 

Observation-level adult prevalence (𝑝𝑖) was calculated using the same equation from age- and sex-663 

specific prevalence estimation, differing only in that the transformation related to age-specific fertility-664 

rate ratios (𝐹𝑅𝑅) was not applied. 665 

To assess our decision to employ novel methods for including polygon data in our model rather than the 666 

previously utilized polygon resampling technique[7, 54], we also compare our results to those of an 667 

adult prevalence model built using polygon resampling. We elected to test polygon resampling in an 668 
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age-aggregated model due to the age- and sex-specific model’s heavy reliance on age-aggregated data, 669 

which is processed in effectively the same manner as the polygon data. We therefore avoid this conflict 670 

by testing resampling in the adult prevalence model. In total this resulted in the comparison of four 671 

models and corresponding sets of results: 672 

1. The final age- and sex-specific model, with age- and sex-specific results; 673 

2. The final age- and sex-specific model, results re-aggregated to the adult level; 674 

3. Results for an adult prevalence model, employing the novel polygon processing system as in the 675 

final model; 676 

4. Results for an adult prevalence model, employing the previously published polygon resampling 677 

system.  678 

Comparisons of adult prevalence when modeled versus re-aggregated can be seen in Additional File 3: 679 

Fig. S16. The results of this sensitivity analyses can be found in Additional File 3: Fig. S13. The re-680 

aggregated adult estimates were outperformed by the modeled adult estimates in some respects, but 681 

not in others. For example, our mean error calculations were much closer to zero (indicating less bias) 682 

for modeled adult prevalence compared to re-aggregated estimates. This may ultimately be a product of 683 

our process for re-aggregating age- and sex-specific estimates—these calculations are heavily influenced 684 

by local population structure. We also calculated consistent overestimations for 95% coverage for the 685 

age- and sex-specific model, indicating some overestimation of our uncertainty intervals compared to 686 

modeled adult prevalence. Meanwhile RMSE tended to be substantially lower for the re-aggregated 687 

estimates (indicating lower variance). The in- vs. out-of-sample results also tended to be more similar 688 

within the re-aggregated estimates compared to other models, although this also varied by region. 689 

Some necessary differences in data and model configuration likely contributed to these differences. 690 

Further investigation of the influences on these differences will be an important future direction in this 691 

line of research. 692 

4.3.2.2 Data sensitivity 693 

To assess the contribution of our different data sources, we tested additional models with the following 694 

subsets of the data: 695 

1. Survey data only (no ANC data);  696 

2. Point and age-specific data only (no polygon or age-aggregated data). 697 
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The results of this sensitivity analyses can be found in Additional File 3: Fig. S14. We found the 698 

performance of these models using smaller data subsets to be very region-specific. For example, when 699 

ANC data were excluded, mean error in Eastern and Southern SSA tended to be closer to zero (i.e., less 700 

biased) compared to when these data were included. When all polygon and age-aggregated data were 701 

excluded, Eastern SSA was still less biased, but in this case out-of-sample Southern SSA performed worse 702 

than when all data were included. Central and Western SSA, on the other hand, performed dramatically 703 

worse in terms of mean error when ANC as well as all polygon and age-aggregated data were excluded. 704 

Survey data were severely limited in Central SSA in particular, so it is not surprising that estimates in this 705 

region were highly dependent on ANC data. These results were similar for our other validation metrics. 706 

Given that Eastern and Southern SSA have relatively better spatial and temporal survey data coverage 707 

(Figure 1), it is expected that these regions would be more robust to the loss of ANC and other 708 

aggregated data. It is clear that while these unconventional data sources provide tremendous insight in 709 

the absence of better survey data coverage, more work is needed to reduce bias associated with their 710 

inclusion. 711 

4.3.2.3 Statistical configuration sensitivity 712 

To assess our final chosen statistical configuration, we assess the utility of each term included in the 713 

model by testing models excluding individual parameters. This resulted in six additional models: 714 

1. No interaction between the space and time correlation terms;  715 

2. No interaction between the time, age, and sex correlation terms;  716 

3. No interactions whatsoever between the space, time, age, and sex correlation terms; 717 

4. No country-specific age correlation term; 718 

5. No observation-level error term; 719 

6. No stackers. 720 

In cases where interactions between terms were removed, the individual terms were retained if not 721 

included elsewhere in the model. For example, for the model where the interaction between space and 722 

time correlations was removed, and additional “space-only” correlation term was included, but because 723 

the time correlation was still accounted for in the time-age-sex interaction, no additional time 724 

correlation was included. The results of this sensitivity analyses can be found in Additional File 3: Fig. 725 

S15. We note that in a number of respects, our final chosen model did not out-perform those excluding 726 

some of our chosen parameters (Additional File 3: Fig. S15). For example, the out-of-sample RSME 727 

values for our final model in many cases were higher than those for other tested models. We believe 728 
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this may be partially driven by the fact that our validation analyses are conducted exclusively for our 729 

point and age-specific data. Given the heavy reliance of this model on polygon and age-aggregated data, 730 

we believe that these sensitivity analyses provide an incomplete assessment of our model performance. 731 

In in-sample testing, our final model did outperform other models with regards to RMSE, though we 732 

acknowledge this does not speak to our ability to predict to sparsely sampled location-years. We also 733 

found that in inclusion of some terms, such as the country-specific age effect, 𝑍3,𝑐[𝑗] and the 734 

observation-level error term helped to reduce bias and smooth trends at the national level, which may 735 

not be reflected in these validation metrics. With additional data and computing power, it is probable 736 

that this model would benefit from additional and more complex interactions. However, given the 737 

resources currently available to us, we are confident that our final model represents the best possible 738 

option at this time. 739 

4.3.3 Comparisons to adult prevalence estimates 740 

As this age- and sex-specific HIV prevalence model serves as a follow-up to a previously described 741 

analysis of adult (ages 15–49 years) HIV prevalence[7], it was important that we compare the estimates 742 

from this model to one mirroring its predecessor. To make this comparison effectively, it was necessary 743 

that we re-aggregate our age- and sex-specific results to the ‘adult’ level. We therefore calculated HIV 744 

prevalence for adults ages 15–49 years by summing our final age- and sex-specific PLHIV estimates 745 

across males and females age groups 15–49 years, for each grid cell and year, and dividing those by cell- 746 

and year-specific population estimates summed across the same age groups. Both PLHIV and population 747 

estimates were derived during the post-estimation process, described below in Additional File 1: Section 748 

4.4. In select grid cells where the population was estimated to be zero, prevalence was weighted by the 749 

second administrative-level population age and sex structure. For a description of the calculation of 750 

second administrative-level estimates, see Additional File 1: Section 4.4. For sensitivity analyses, re-751 

aggregated estimates were compared to location-specific survey microdata collapsed across all adults 752 

ages 15–49 years, the same data used to validate modeled adult prevalence. For a comparison of these 753 

results re-aggregated across sexes and age groups to HIV prevalence estimates modeled across adults, 754 

see Additional File 3: Figs. S13 and S16.  755 

4.4 Post-estimation  756 

4.4.1 Aggregation to first- and second-level administrative subdivisions  757 

In addition to estimates of HIV prevalence on a grid, we also constructed estimates of HIV prevalence for 758 

first- and second-level administrative subdivisions. These estimates were derived by calculating 759 

population-weighted averages of HIV prevalence for each grid cell or fractional grid cell within a given 760 
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first- or second-level administrative subdivision for a given age, sex, and year. Grid cell fractions were 761 

assigned at the second-level administrative subdivision shape to determine what fraction of the area of 762 

each grid cell fell within each administrative unit. Since all second-level subdivisions nest within first-763 

level subdivisions, which in turn nest within countries, this strategy assigned the cell fractions to an 764 

administrative area at each level of the administrative hierarchy. We assumed that population density 765 

within each cell was uniform, and for cells that were split across multiple subdivisions, allocated the 766 

WorldPop population estimate in proportion to area. This process was carried out separately for each 767 

modeling region, so cells that cross international borders that are also regional borders were allocated 768 

in their entirety to the country that contained the centroid of the grid cell. This was carried out for each 769 

of the 1,000 posterior draws at the grid cell level, generating 1,000 posterior draws for each 770 

administrative subdivision. Final estimates and uncertainty intervals for each subdivision at each level of 771 

the administrative hierarchy were derived from the mean, 2.5th percentile, and 97.5th percentile of 772 

these draws, respectively.  773 

4.4.2 Calibration to Global Burden of Disease 2019  774 

To take advantage of the more epidemiologically structured modeling approach and additional national-775 

level data used by GBD 2019, we performed post-hoc calibration of our estimates to the GBD 776 

estimates[43]. Using the assignment of cells and cell fractions to the administrative hierarchy described 777 

above, we first scaled the grid cell-level WorldPop estimates[5] to match the corresponding GBD 778 

population estimates[6] for each country, year, age, and sex. To do so, for each country, year, age, and 779 

sex, we defined a population raking factor as the ratio of the GBD population estimate to the sum of the 780 

WorldPop population estimates for all cells and fractional cells within the country, and then multiplied 781 

the WorldPop population estimates for all cells and fractional cells within the country by this raking 782 

factor.  783 

We then similarly adjusted our HIV prevalence estimates. Specifically, for each country, year, age, and 784 

sex, we defined a prevalence ‘raking factor’ as the ratio of the GBD prevalence estimate to the 785 

population-weighted mean of estimates for all cells and fractional cells within the country, and then 786 

multiplied each HIV prevalence draw for all cells and fractional cells within the country by this raking 787 

factor. At this point, the prevalence estimates for cells that had been fractionally allocated to multiple 788 

countries were recombined by calculating a weighted average, with weights determined by the relative 789 

area of each fraction. Final calibrated estimates for each grid cell were calculated as the mean of the 790 

scaled draws, and 95% uncertainty intervals were calculated as the 2.5th and 97.5th percentiles of the 791 
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scaled draws. The impact of this calibration procedure is depicted in Additional File 3: Figs. S17 and S18, 792 

which compares the pre-calibration estimates to the post-calibration estimates.  793 

4.4.3 Calculating people living with HIV (PLHIV)  794 

We estimated the number of people living with HIV (PLHIV) in each grid cell, year, age and sex by 795 

combining estimated population and HIV prevalence after calibration to GBD 2019 estimates as 796 

described above. Specifically, for each cell and fractional cell, we multiplied the estimated population by 797 

each of the 1,000 prevalence draws to generate 1,000 draws of PLHIV. Fractional cells were then 798 

recombined by summing PLHIV for each draw within each cell. Final point estimates and uncertainty 799 

intervals for PLHIV were calculated as the mean, 2.5th percentile, and 97.5th percentile of these draws, 800 

respectively. 801 

5 References 802 

1. Global Health Data Exchange | GHDx. Available at: http://ghdx.healthdata.org/. (Accessed: 16th June 803 
2020) 804 

2. UNAIDS. National HIV estimates file. 2019. 805 
https://www.unaids.org/en/dataanalysis/datatools/spectrum-epp. 806 

3. The United States Census Bureau. HIV/AIDS Database. 2019. https://www.census.gov/programs-807 
surveys/international-programs/about/hiv.html. Accessed 16 Jun 2020. 808 

4. Wiegand H. Kish, L.: Survey Sampling. John Wiley & Sons, Inc., New York, London 1965, IX + 643 S., 31 809 
Abb., 56 Tab., Preis 83 s. Biom Z. 1968;10:88–9. 810 

5. WorldPop. WorldPop Dataset. 2020. http://www.worldpop.org.uk/data/get_data/. 811 

6. GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life 812 
expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a 813 
comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet. 814 
2020;396:1160–203. 815 

7. Dwyer-Lindgren L, Cork MA, Sligar A, Steuben KM, Wilson KF, Provost NR, et al. Mapping HIV 816 
prevalence in sub-Saharan Africa between 2000 and 2017. Nature. 2019;570:189–93. 817 

8. Tatem AJ, Hemelaar J, Gray RR, Salemi M. Spatial accessibility and the spread of HIV-1 subtypes and 818 
recombinants. AIDS. 2012;26:2351–60. 819 

9. Gray RR, Tatem AJ, Lamers S, Hou W, Laeyendecker O, Serwadda D, et al. Spatial phylodynamics of 820 
HIV-1 epidemic emergence in east Africa. AIDS Lond Engl. 2009;23:F9–17. 821 

10. Abu-Raddad LJ, Patnaik P, Kublin JG. Dual Infection with HIV and Malaria Fuels the Spread of Both 822 
Diseases in Sub-Saharan Africa. Science. 2006;314:1603–6. 823 



   
 

32 
 

11. Cuadros DF, Branscum AJ, Crowley PH. HIV–malaria co-infection: effects of malaria on the 824 
prevalence of HIV in East sub-Saharan Africa. Int J Epidemiol. 2011;40:931–9. 825 

12. Auvert B, Buvé A, Ferry B, Caraël M, Morison L, Lagarde E, et al. Ecological and individual level 826 
analysis of risk factors for HIV infection in four urban populations in sub-Saharan Africa with different 827 
levels of HIV infection. AIDS. 2001;15:S15. 828 

13. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, et al. Male circumcision for HIV 829 
prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet Lond Engl. 830 
2007;369:643–56. 831 

14. World Health Organization. WHO | UNAIDS statement on South African trial findings regarding male 832 
circumcision and HIV. 2005. https://www.who.int/mediacentre/news/releases/2005/pr32/en/. 833 

15. Sgaier SK, Reed JB, Thomas A, Njeuhmeli E. Achieving the HIV prevention impact of voluntary 834 
medical male circumcision: lessons and challenges for managing programs. PLOS Med. 835 
2014;11:e1001641. 836 

16. Cork MA, Wilson KF, Perkins S, Collison ML, Deshpande A, Eaton JW, et al. Mapping male 837 
circumcision for HIV prevention efforts in sub-Saharan Africa. BMC Med. 2020;18:189. 838 

17. Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection 839 
increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal 840 
studies. AIDS. 2006;20:73–83. 841 

18. Chen L, Jha P, Stirling B, Sgaier SK, Daid T, Kaul R, et al. Sexual Risk Factors for HIV Infection in Early 842 
and Advanced HIV Epidemics in Sub-Saharan Africa: Systematic Overview of 68 Epidemiological Studies. 843 
PLoS ONE. 2007;2:e1001. 844 

19. Glynn JR, Caraël M, Auvert B, Kahindo M, Chege J, Musonda R, et al. Why do young women have a 845 
much higher prevalence of HIV than young men? A study in Kisumu, Kenya and Ndola, Zambia. AIDS. 846 
2001;15:S51. 847 

20. Johnson K, Way A. Risk Factors for HIV Infection in a National Adult Population: Evidence From the 848 
2003 Kenya Demographic and Health Survey. JAIDS J Acquir Immune Defic Syndr. 2006;42:627–36. 849 

21. Pettifor AE, van der Straten A, Dunbar MS, Shiboski SC, Padian NS. Early age of first sex: a risk factor 850 
for HIV infection among women in Zimbabwe. AIDS Lond Engl. 2004;18:1435–42. 851 

22. Coffee MP, Garnett GP, Mlilo M, Voeten HACM, Chandiwana S, Gregson S. Patterns of Movement 852 
and Risk of HIV Infection in Rural Zimbabwe. J Infect Dis. 2005;191 Supplement_1:S159–67. 853 

23. Bwayo J, Plummer F, Omari M, Mutere A, Moses S, Ndinya-Achola J, et al. Human Immunodeficiency 854 
Virus Infection in Long-Distance Truck Drivers in East Africa. Arch Intern Med. 1994;154:1391–6. 855 

24. Davis KR, Weller SC. The effectiveness of condoms in reducing heterosexual transmission of HIV. Fam 856 
Plann Perspect. 1999;31:272–9. 857 



   
 

33 
 

25. Duncan ME, Peutherer JF, Simmonds P, Young H, Tibaux G, Pelzer A, et al. First coitus before 858 
menarche and risk of sexually transmitted disease. The Lancet. 1990;335:338–40. 859 

26. Stöckl H, Kalra N, Jacobi J, Watts C. Is Early Sexual Debut a Risk Factor for HIV Infection Among 860 
Women in Sub-Saharan Africa? A Systematic Review. Am J Reprod Immunol. 2013;69:27–40. 861 

27. Carswell JW, Lloyd G, Howells J. Prevalence of HIV-1 in east African lorry drivers. AIDS. 1989;3:759–862 
62. 863 

28. Brown NR, Sinclair RC. Estimating number of lifetime sexual partners: Men and women do it 864 
differently. J Sex Res. 1999;36:292–7. 865 

29. Golding N, Burstein R, Longbottom J, Browne AJ, Fullman N, Osgood-Zimmerman A, et al. Mapping 866 
under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development 867 
Goals. The Lancet. 2017;390:2171–82. 868 

30. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using 869 
integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol. 2009;71:319–92. 870 

31. GADM database of global administrative areas. 2018. https://gadm.org/ (accessed May 6, 2018). 871 
Accessed 6 May 2018. 872 

32. Breiman L. Stacked regressions. Mach Learn. 1996;24:49–64. 873 

33. Bhatt S, Cameron E, Flaxman SR, Weiss DJ, Smith DL, Gething PW. Improved prediction accuracy for 874 
disease risk mapping using Gaussian process stacked generalization. J R Soc Interface. 2017;14. 875 

34. Wood SN. Generalized additive models: an introduction with R, second edition. CRC Press; 2017. 876 

35. Chen T, He T. xgboost: eXtreme gradient boosting. :4. 877 

36. Friedman JH, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate 878 
descent. J Stat Softw. 2010;33:1–22. 879 

37. Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, et al. caret: classification and 880 
regression training. 2020. 881 

38. Marquez N, Wakefield J. Harmonizing child mortality data at disparate geographic Levels. 882 
ArXiv200200089 Stat. 2020. 883 

39. Gouws E, Mishra V, Fowler TB. Comparison of adult HIV prevalence from national population-based 884 
surveys and antenatal clinic surveillance in countries with generalised epidemics: implications for 885 
calibrating surveillance data. Sex Transm Infect. 2008;84 Suppl 1:i17–23. 886 

40. Marsh K, Mahy M, Salomon JA, Hogan DR. Assessing and adjusting for differences between HIV 887 
prevalence estimates derived from national population-based surveys and antenatal care surveillance, 888 
with applications for Spectrum 2013. AIDS Lond Engl. 2014;28:S497–505. 889 



   
 

34 
 

41. Kongnyuy EJ, Wiysonge CS. Association between fertility and HIV status: what implications for HIV 890 
estimates? BMC Public Health. 2008;8:309. 891 

35. Zaba, B. & Gregson, S. Measuring the impact of HIV on fertility in Africa. AIDS12 Suppl 1, S41-50 892 
(1998). 893 

43. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 894 
countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. 895 
Lancet. 2020;396:1204–22. 896 

44. Giorgi E, Sesay SSS, Terlouw DJ, Diggle PJ. Combining data from multiple spatially referenced 897 
prevalence surveys using generalized linear geostatistical models. J R Stat Soc Ser A Stat Soc. 898 
2015;178:445–64. 899 

45. Diggle PJ, Giorgi E. Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings. J 900 
Am Stat Assoc. 2016;111:1096–120. 901 

46. Franco-Villoria M, Ventrucci M, Rue H. A unified view on Bayesian varying coefficient models. 902 
ArXiv180602084 Stat. 2019. 903 

47. Simpson D, Rue H, Riebler A, Martins TG, Sørbye SH. Penalising Model Component Complexity: A 904 
Principled, Practical Approach to Constructing Priors. Stat Sci. 2017;32:1–28. 905 

48. Fuglstad G-A, Simpson D, Lindgren F, Rue H. Constructing Priors that Penalize the Complexity of 906 
Gaussian Random Fields. J Am Stat Assoc. 2019;114:445–52. 907 

49. Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM. TMB: Automatic Differentiation and Laplace 908 
Approximation. J Stat Softw. 2016;70:1–21. 909 

50. Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov 910 
random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B Stat Methodol. 911 
2011;73:423–98. 912 

51. Murray CJ, Ezzati M, Flaxman AD, Lim S, Lozano R, Michaud C, et al. GBD 2010: design, definitions, 913 
and metrics. The Lancet. 2012;380:2063–6. 914 

52. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, et al. Cross-validation strategies for 915 
data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017;40:913–29. 916 

53. Waller LA. Estimate suggests many infant deaths in sub-Saharan Africa attributable to air pollution. 917 
Nature. 2018;559:188–9. 918 

54. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al. Mapping 123 million 919 
neonatal, infant and child deaths between 2000 and 2017. Nature. 2019;574:353–8. 920 

 921 


	1 Compliance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER)
	2 HIV data sources and data processing
	2.1 Seroprevalence surveys
	2.1.1 Data identification strategy
	2.1.2 Data processing for microdata
	2.1.3 Data processing for reports

	2.2 Antenatal care (ANC) sentinel surveillance
	2.2.1 Data sources
	2.2.2 Data processing

	2.3 Polygon and age-aggregated data processing

	3 Covariate and auxiliary data
	3.1 Pre-existing covariates
	3.2 Covariates constructed for this analysis
	3.2.1 Covariate selection criteria and definitions
	3.2.2 Covariate data
	3.2.2.1 Covariate data identification strategy
	3.2.2.2 Covariate data processing for microdata
	3.2.2.3 Covariate data processing for reports
	3.2.2.4 Covariate data processing for polygons

	3.2.3 Covariate modeling

	3.3 Administrative boundaries
	3.4 Gridded population

	4 Statistical model
	4.1 Covariate stacking
	4.2 Geostatistical model
	4.2.1 Model description
	4.2.2 Model fitting and prediction

	4.3 Model validation
	4.3.1 Validation strategy
	4.3.2 Sensitivity analyses
	4.3.2.1 Adult prevalence sensitivity
	4.3.2.2 Data sensitivity
	4.3.2.3 Statistical configuration sensitivity

	4.3.3 Comparisons to adult prevalence estimates

	4.4 Post-estimation
	4.4.1 Aggregation to first- and second-level administrative subdivisions
	4.4.2 Calibration to Global Burden of Disease 2019
	4.4.3 Calculating people living with HIV (PLHIV)


	5 References

