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molecular species whereas two others (FM-2 and FM-4) 
displayed bi-modal and broad distributions, respectively: 
this demonstrates considerable molecular heterogeneity in 
these polysaccharides, consistent with previous observa-
tions of mannans and polysaccharides in general. These 
methods not only have applications for the characterization 
of mannans but for other biopolymers such as polysaccha-
rides, DNA, and proteins (including intrinsically disordered 
proteins).

Keywords AUC · Extended Fujita approach · MULTISIG · 
SEDFIT-MSTAR · Sedimentation

Introduction

Mannans are polysaccharides containing d-mannose, 
and are found as cell wall components in bacteria, fungi, 
(moulds and yeast) and plants. Pure mannan is uncommon 
in plants but it is one of the major components of the yeast 
cell wall together with glucan, chitin, and protein such as 
mannoprotein. Mannans have different kinds of structures 
in various organisms. Figure 1a describes the structure of 
plant mannan, which has a backbone of linear chains made 
up of β(1 → 4)-linked Mannopyrosyl (Manp) residues 
(Tombs and Harding 1998). Plant mannans occur in the cell 
walls as heteropolysaccharides, i.e., glucomannans, galac-
toglucomannans, and galactomannans (Ebringerova et al. 
2005). Generally, Candida spp. mannans have an α(1 → 6) 
linked backbone (Fig. 1b) substituted mostly at O-2 by dif-
ferent number of linear or branched side oligomannosyl 
chains composed of α(1 → 2), α(1 → 3) and α(1 → 6) 
links with or without terminal β(1 → 2) linkages (Shi-
bata et al. 1992, 1996, 2003, 2007). It was also reported 
that there are subtle variations in the linkage or number 

Abstract Polysaccharides, the most abundant biopoly-
mers, are required for a host of activities in lower organ-
isms, animals, and plants. Their solution characterization 
is challenging due to their complex shape, heterogeneity, 
and size. Here, recently developed data analysis approaches 
were applied for traditional sedimentation equilibrium and 
velocity methods in order to investigate the molar mass 
distribution(s) of a subtype of polysaccharide, namely, 
mannans from four Candida spp. The molecular weight 
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recently developed equilibrium approaches: SEDFIT-
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bution profiles. Additionally, sedimentation velocity data 
for all four mannans, analyzed using ls-g*(s) and Extended 
Fujita approaches, suggest that two of the fungal man-
nans (FM-1 and FM-3) have a unimodal distribution of 
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of mannose residues in side chains of Candida spp. man-
nan molecules (Nelson et al. 1991). C. tropicalis mannan 
is composed of an α(1 → 6)-linked backbone substituted 
only with β(1 → 2) linked and α(1 → 2) linked Manp units 
without α(1 → 3) linked ones observed in C. albicans man-
nan (Kobayashi et al. 1994; Suzuki et al. 1997). C. dublin-
iensis has been isolated from the HIV-positive individuals 
in the beginning of 1990 [(Pujol et al. 2004) and references 
cited therein] and later grouped separately from C. albi-
cans by Sullivan et al. (1995) Mannan from C. dubliniensis 
(Ližičárová et al. 2005), as well as mannan from C. parap-
silosis (Shibata et al. 1995), have very similar structures to 
that of C. albicans.

The anti-tumor activity of polysaccharides was reported 
by Diller (1947), followed by several other authors who 
suggested that mannans are potent anticancer agents 
(Mankowski et al. 1957; Bradner and Clarke 1959; 
Kamasuka et al. 1968; Oka et al. 1969; Suzuki et al. 1969; 
Ukai et al. 1983; Peng et al. 2003). It is also critical to 
characterize these polysaccharides because certain factors, 

such as polymer length (proportionally linked to molecular 
weight), can impact their potency, for example their anti-
genicity (Kabat and Bezer 1958).

This article is focused on the characterization of fungal 
mannans using analytical ultracentrifugation (AUC)—a 
well-established, matrix-free method for the determination 
of molar mass and sedimentation coefficients. In addition, 
recently presented analysis techniques have been utilized 
to determine the molar mass distribution of fungal man-
nans, along with providing distributions of sedimentation 
coefficients.

Methods

Four mannan samples, FM-1 (Candida tropicalis CCY 
29-7-6), FM-2 (C. dubliniensis CCY 29-177-1), FM-3 (C. 
albicans CCY 29-3-32), and FM-4 (C. parapsilosis CCY 
29-20-1) were prepared from the above-mentioned yeast 
strains obtained from Culture Collection of Yeast (Institute 

Fig. 1  Chemical structure of 
mannan from a plant sources 
and b fungal sources
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of Chemistry, Bratislava, Slovakia). The mannans were pre-
pared from fresh yeast biomass as described by Bystrický 
et al. (2003). Under the used strong alkaline conditions, 
nearly all covalently linked protein was split from the man-
noproteins. FM-3 contained 0.4 % nitrogen whereas FM-1, 
FM-2, and FM-4 only traces.

Sample preparation

Samples were dissolved in phosphate buffered saline (PBS, 
pH 7.0, I = 0.1 M), made with 0.05 M sodium chloride, 
and 0.05 M phosphate salts (dibasic sodium and potassium 
dihydrogen) in screw-capped tubes with constant stirring at 
low speed. During this period, the temperature was raised 
to 80.0 °C for 10 min to obtain maximum solubility. Stir-
ring continued overnight at room temperature at low speed. 
Samples were subsequently centrifuged at 10,000 rpm 
(11,600×g) for 15 min (Beckman L8-55 M Ultracentri-
fuge). Concentrations of stock solutions were measured 
using a differential refractometer (Atago DD-5, Jencons 
Scientific) and a refractive index increment of 0.171 ml g−1 
(Mueller et al. 2000).

Molar mass determination using sedimentation 
equilibrium

All mannan samples were subjected to sedimentation equi-
librium analytical ultracentrifugation (AUC-SE) experi-
ments using the Optima XL-I Analytical Ultracentrifuge 
(Beckman Instruments, Palo Alto, CA). Double-sector car-
bon-filled epoxy 12-mm path-length centerpieces, loaded 
into aluminium housings and sealed with sapphire win-
dows, were used to load solvent (90 μl), and sample (80 μl) 
at 1.0 mg ml−1. Cells were loaded into eight-hole titanium 
rotor (An50Ti) and placed in the centrifuge. Samples were 
centrifuged at 16,000 rpm (~20,600×g) at (20.0 ± 0.1) °C. 
Scans were taken using Rayleigh interference optics once 
every hour until equilibrium was achieved.

Data analysis was performed using two independent 
algorithms. SEDFIT-MSTAR (Schuck et al. 2014), which 
utilizes a smart-smooth method to fit the raw data curve, 
and M* function (Harding et al. 1992), to provide the 
weight average of the entire distribution of molar masses:

In Eqs. (1) and (2), r is the radial distance from the 
center of rotation, rm the corresponding value at the menis-
cus, J is the concentration in fringe displacement units, and 

(1)M∗(r) =
J(r)− J

kJm
(

r2 − r2m
)

+ 2k
r
∫

rm

(J(r)− J)r · dr

(2)k =
(1− vρ)ω2

2RT

Jm the corresponding value at the meniscus. ῡ is the partial 
specific volume, ρ is the solvent density, ω is the angular 
velocity of the rotor, R is the gas constant and T is the abso-
lute temperature.

MULTISIG was then used to fit the relative concen-
tration proportions of 17 molar masses, logarithmically 
spaced to achieve a tenfold range, to yield a molar mass 
distribution (Gillis et al. 2013). The total (fringe) concen-
tration at a set radial position is given by:

where Mi is the species molar mass, Jref is the reference 
concentration (typically the concentration at the consensus 
hinge point), and E is the baseline. MULTISIG/RADIUS 
was used to apply this procedure to radial positions along 
the column length of solution. Both methods were per-
formed in pro Fit™ (QuantumSoft, Switzerland).

Sedimentation velocity analysis

Sedimentation coefficient distributions of mannans were 
measured using sedimentation velocity (AUC-SV) in the 
analytical ultracentrifuge. Solvent (400 μl) and sample 
(390 μl, 1.0 mg ml−1) were loaded into similarly con-
structed cells as for AUC-SE. Cells were centrifuged in 
the Beckman Optima XL-I analytical ultracentrifuge at 
40,000 rpm (~130,000×g) at (20.0 ± 0.1) °C. Data were 
analyzed using least squares apparent distributions of 
sedimentation coefficients (ls-g*(s) vs. s) from SEDFIT 
(Schuck and Rossmanith 2000), and curve fitting mod-
ule MULTIG in pro Fit™ (QuantumSoft, Switzerland). 
Weight-average sedimentation coefficients (s) for particu-
lar components were corrected to standard solvent condi-
tions (density and viscosity of water at 20.0 °C) to yield 
s20,w (S), using SEDNTERP (Laue et al. 1992), and a ῡ of 
0.625 ml g−1 (Gray and Ballou 1971). The s20,w was meas-
ured at a range of concentrations (0.2–2 mg ml−1) for all 
samples and extrapolation performed for each to zero 
concentration to obtain s020,w to eliminate the effects of 
non-ideality.

Results and discussion

Molar mass distribution

Mannan samples, both dialyzed and undialyzed, were 
probed for their molar masses using sedimentation equi-
librium. There was little observable difference in terms 
of their molar masses between dialyzed and undialyzed 

(3)

J(r) =

i=17
∑

i=1

Jref exp
{

0.5
(

0.5kMi1.15
(i−1)

(

r
2
− r

2
m

))}

+ E
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samples (data not shown), suggesting the sample was of 
high purity. Results presented below are from dialyzed 
samples.

SEDFIT‑MSTAR

SEDFIT-MSTAR fitted the raw fringe displacement data 
using the smart-smooth analysis (Fig. 2a–d) with results 
shown in Table 1. The grey lines represent the result of the 
fitted parameters. Residuals show no overall trend and do 
not deviate beyond 0.1 fringes in all samples. The natural 
logarithm of (baseline-corrected) fringe displacement (J) 
versus the square of the radius (Fig. 2e–h) shows a near-
straight line but with small positive curvature, particularly 
in FM-2. This indicates polydispersity. The differential 
of Fig. 2e–h yields Fig. 2i–l representing point-average, 

apparent Mw(r) as a function of the concentration c(r) 
across the cell. Positive slopes suggest polydispersity, espe-
cially in FM-2 (Fig. 2j) where values for the Mw(r) appear 
to fall significantly as zero concentration is approached. 
This result is consistent with results from ls-g*(s) analy-
sis suggesting a bimodal distribution; thus the lower radial 
positions in the cell would contain a high proportion of the 
low-molar-mass species.

The MSTAR algorithm yielded weight-average molar 
masses (Mw) ranging from 3.1 to 11.2 × 104 g mol−1 
through the extrapolation of the M*(r) to the base of the cell 
(Fig. 2m–p) and z-average molar masses (Mz) ranging from 
4.1 to 14 × 104 g mol−1. The ratio of Mz/Mw provides the 
polydispersity index (PDI) ranging from 1.2 to 1.3, typical 
for a polydisperse system. Consensus hinge points (CHP—
the point at which, during the approach to equilibrium, the 

Fig. 2  Output from SEDFIT-MSTAR of FM1-4 (left to right). a–d 
Fringe displacement (j) vs. radius with residual between raw data 
(hollow square) and fit (grey line); e–h natural logarithm of baseline-

corrected fringe displacement J vs. square radius; i–l differential of 
e–h yielding apparent molar mass vs. concentration; m–p M*(r) algo-
rithm extrapolating to cell base
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concentration does not change significantly over time; as 
well as an indication of the loading concentration of the 
sample) were measured as an internal check of the rigor of 
the MSTAR analysis. Hinge points are indicated in Fig. 2 
by dashed lines and results are presented, with the other 
results from MSTAR and c(M) analysis, in Table 1. CHP 
results do not deviate greatly from the MSTAR and c(M) 
results, suggesting that non-ideality had no significant 
impact on the overall analysis (Schuck et al. 2014).

MULTISIG

MULTISIG approximates the real solute distribution pre-
sent by a series of ‘concentration’ coefficients attached to 
terms in reduced molar mass value, which are logarithmi-
cally spaced, thus yielding a distribution (g(M) vs. M) (Gil-
lis et al. 2013). These are presented in Fig. 3. FM-2 and 
FM-4 both show two peaks, which is consistent with ls-
g*(s) distributions. Number, weight, and z-average molar 
masses, along with polydispersity indices, are shown in 
Table 2. Estimates are also made in Table 2 for peak molar 
masses and relative concentrations.

MULTISIG/RADIUS

Whilst MULTISIG fits 17 discrete species at a selected 
radial position (in this investigation, the CHP, i.e., the 
point in the curve where the concentration does not change 
over the approach to equilibrium), MULTISIG/RADIUS 
provides this estimate at 20 points along the range of the 
cell. The baseline was fixed based on ten iterations from 
the previous MULTISIG analysis. Results yielded num-
ber, weight, and z-average reduced molar masses plotted 
against the concentration range of the cell and a 3D contour 
plot of g(M) vs. M vs. concentration range (Fig. 4). Num-
ber, weight, and z-average molar masses produced similar 
trends to those found from SEDFIT-MSTAR (Fig. 2i–l), 
which is unsurprising since these plots should provide 
equivalent information, despite being independently cal-
culated. The contour plot indicates that the twin-peak 

distributions found in FM-2 and FM-4 are present through-
out the cell context with little change in relative strength—
with the exception of FM-2, which has a low proportion 
of the high-Mw species at the top of the cell. This can be 
explained by the high g force depleting the high-Mw com-
ponent at the meniscus. PDI (z/w) is also consistent to 
within a reasonable margin of error compared to SEDFIT-
MSTAR values, although a direct comparison is difficult 
due to the peak-identifying nature of MULTISIG and the 
whole-solution evaluation from SEDFIT-MSTAR.

Weight averages present themselves directly in-between 
the two peaks of FM-2 and FM-4, whereas they lie closer to 
the main peaks present in FM-1 and FM-3; however, they are 
slightly skewed towards small amounts of smaller (FM-3) or 
larger (FM-1) material. It is unclear whether these smaller 
or larger species are indicative of impurities or algorithmic 
anomalies, however the averages are similar to those found 
from the independent SEDFIT-MSTAR analysis approach.

Sedimentation coefficient distribution

The ls-g*(s) profiles for FM-1, FM-2, FM-3 and FM-4 
are shown in Fig. 5, at approximately 2 mg ml−1, as nor-
malized distributions. The profiles indicate that FM-1 and 
FM-3 yielded a single distribution at ~4 S with a small 
degree of larger material in the high-sedimentation range 
(up to 20 S). FM-4 peaks at ~4 S and has a larger propor-
tion of faster-sedimenting material, particularly at 11 and 
14 S. FM-2 yielded a two-peak distribution at ~4 and ~9 S.

The concentration for each component was re-calculated 
based on the initial loading concentration, and amount of 
mannan fraction present, and used to calculate the s020,w 
(S) from s20,w. Extrapolations were performed using the 
reciprocal sedimentation coefficients as shown in Fig. 5 as 
before (Patel et al. 2006, 2008). The Gralen coefficient, (ks) 
was calculated according to Eq. (4) (Rowe 1992) and pre-
sented in Table 3.

(4)
1

s20,w
=

1

s020,w
(1+ ksc)

Table 1  Weight average 
and z-average molar mass 
estimates from AUC-SE of 
fungal mannans using SEDFIT-
MSTAR

Loading concentrations were approximately 1 mg ml−1. Polydispersity index (PDI) measured as a ratio of 
z-average and w-average from SEDFIT-MSTAR c(M) fit
a From the Consensus Hinge Point (CHP) method
b From extrapolation of M*(r) to the cell base (Eq. 1, Fig. 2) and SEDFIT-MSTAR fit

Sample ×10−3 w-average molar 
massa (g mol−1)

×10−3 w-average molar 
massb (g mol−1)

×10−3 z-average molar 
massb (g mol−1)

PDIb (z/w)

FM-1 30.2 31.5 41.6 1.32

FM-2 83.3 112 140 1.25

FM-3 56.1 54.8 64.7 1.18

FM-4 58.5 59.6 71.6 1.20
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Fig. 3  MULTISIG output of a FM-1; b FM-2; c FM-3; and d FM-4, including 17 discrete molar mass values. Arrows represent weight-average 
of peak(s)

Table 2  Output from MULTISIG of fungal mannans measured at a loading concentration of 1 mg ml−1

Averages (n, w, z) and polydispersity index (PDI, z/w) produced from both the overall distribution (‘Total’) and from individual peaks. Standard 
error of the mean represented by parentheses

Sample Peak Fraction (%) ×10−3 n-average molar  
mass (g mol−1)

×10−3 w-average molar  
mass (g mol−1)

×10−3 z-average molar  
mass (g mol−1)

PDI (z/w)

FM-1 1 97 28.8 29.7 30.3 1.02

Total 100 29.5 (±0.2) 32.3 (±0.1) 39.2 (±0.0) 1.22

FM-2 1 81 48.5 50.8 52.8 1.04

2 19 162 163 163 1.00

Total 100 56.3 (±1.0) 67.2 (±0.2) 101 (±0.0) 1.39

FM-3 1 80 69.0 70.4 71.5 1.02

Total 100 54.2 (±0.6) 62.3 (±0.1) 67.6 (±0.0) 1.09

FM-4 1 82 49.1 50.8 52.3 1.03

2 28 96.9 97.6 98.3 1.01

Total 100 57.1 (±0.2) 64.2 (±0.0) 72.3 (±0.0) 1.13



241Eur Biophys J (2017) 46:235–245 

1 3

Figure 6 shows that FM-1 (a) and FM-3 (c) have one 
component whereas FM-2 (b) and FM-4 (d) had two dif-
ferent components, based on distributions in Fig. 5. It 
can be observed that these mannan samples show little 

dependence of concentration on sedimentation coefficients 
over the small concentration range studied. The second 
peak from FM-4 showed no definite trend, thus the values 
were averaged (gradient = 0) to yield s020,w and no ks esti-
mated because of the very low concentration range.

There is little difference between extrapolated values of 
native and reciprocal sedimentation coefficients and similar 

Fig. 4  MULTISIG/RADIUS output of a FM-1; b FM-2; c FM-3; and d FM-4. 17 discrete molar masses along 20 points of the cell. Number 
(square), weight (circle), and z-average (triangle) molar masses overlaid

Fig. 5  Normalized ls-g*(s) vs. sedimentation coefficient of fungal 
mannans at highest concentration (~2 mg ml−1)

Table 3  Summary of sedimentation velocity analysis of fungal man-
nan samples, including sedimentation coefficients corrected for sol-
vent conditions and extrapolated to infinite dilution

Values in parentheses represent standard error of the mean (S) or 
regression (ks)
a Peak 2 of FM-4 was averaged (mean), no linear regression was esti-
mated

Sample Peak Fraction (%) s
0
20,w

 (S) ks (ml g−1)

FM-1 1 100 5.6 (±0.4) 470 (±140)

FM-2 1 53 5.3 (±0.2) 10 (±200)

2 47 9.1 (±0.1) 29 (±70)

FM-3 1 100 3.3 (±0.1) 137 (±65)

FM-4 1 92 4.3 (±0.1) 60 (±23)

2 8 12.8 (±0.5) N/Da
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errors. Values ranged between 3 and 6 S, for the smaller 
peak. Gralen coefficients differed more between the two 
methods and generally yielded higher error in the recipro-
cal regression. The single-peak samples were in the 100 
range—118–310 ml g−1, whereas the two-peak samples 
were in the tens range—14–56 ml g−1. This indicates that the 
single-peak samples have a higher non-ideality than the two-
peak systems, however the Gralen coefficients for FM-2 and 
FM-4 may be affected by the Johnston-Ogston effect (1946).

Molar mass distributions from the extended Fujita 
approach

Combining information from AUC-SV (sedimentation coef-
ficients) and AUC-SE (molecular weights) allow for the cal-
culation of power-law scaling factors. The slope of a double 
logarithmic plot of sedimentation coefficients against molar 
mass yields the Mark–Houwink–Kuhn–Sakurada (MHKS) 
sedimentation shape factor b (Eq. 5).

where κs is an intercept constant (not to be confused with the 
Gralen coefficient, ks). This factor ranges between ~0.15 for a 
‘rod’ to ~0.67 for a ‘sphere’ and 0.5 is a ‘random coil’. A pre-
viously published study showed that the MHKS shape factor 
was 0.43—this equates to a random coil, but on the ‘stiffer’ 
end of the scale (Pavlov et al. 1992). The inset of Fig. 7 shows 
results from this investigation plotted on a double-logarith-
mic scale. These data points include individual peaks from 
FM-2 and FM-4, with peak average molar masses obtained 
from MULTISIG. The gradient was 0.446 (±0.154), with a 
κs of 4.11 (±3.38) × 10−2, which is well within experimental 
error of the literature value of 0.43, corresponding κs of 5.09 
(±0.01) × 10−2. The agreement of the b from Pavlov et al. 
(1992) and the present study justifies the assumption we have 
made that Mw,app measured at 1.0 mg ml−1 is ~Mw.

(5)s020,w = κsM
b or M =

(

s020,w

κs

)
1
/b

Fig. 6  Extrapolations of integrated peaks from sedimentation velocity measured using linear regression (grey line) of native and reciprocal sedi-
mentation coefficients against concentration of a FM-1; b FM-2; c FM-3; and d FM-4
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The extended Fujita approach is a method for yielding 
molar mass distributions from g(s) distributions from AUC-
SV (Harding et al. 2011). The original method assumed 
that the macromolecule was a random coil, which meant 
that the sedimentation coefficient was directly proportional 
to the square root of the molar mass:

Harding et al. (2011) extended this approach to all con-
formational types using the general power relation (Eq. 6). 
To transform a distribution of sedimentation coefficients 
g(s) vs. s to a distribution of molar masses f(M) vs. M the 
following transformation equations are used:

where

In this instance, ls-g*(s) analysis performed by SED-
FIT can be used to substitute g(s) in these equations, 
with b and κs calculated from the double logarithmic 
plot of sedimentation coefficient and Mw. Using Eq. (5) 
to modify the abscissa and Eqs. (7) and (8) to modify to 
ordinate, the (normalized) f(M) vs. M plots are shown in 
Fig. 7. The distributions show a reduction in peak height 
for FM-2 peak 2 compared to ls-g*(s) from AUC-SV, but 
correlates more with the g(M) vs. M distribution from 
MULTISIG AUC-SE. Peak 2 for FM-4 is also reduced, 
which is less consistent with MULTISIG AUC-SE, which 

(6)s020,w = κsM
0.5 or M =

(

s020,w

κs

)2

(7)f (M) = g(s)
ds

dM

(8)
ds

dM
= bκ1/ bs s(b−1)/ b

is likely an over-simplification of species present in solu-
tion. FM-1, FM-2, and FM-4 all showed overlapping peaks 
around 2–3 × 104 g mol−1 with broad distributions leading 
to ~1.5 × 105 g mol−1, consistent with information from 
AUC-SE.

Polydispersity indices calculated from these distribu-
tions were significantly higher than those for MUTLISIG 
and SEDFIT-MSTAR, with approximately 50–60 % higher 
estimations for z/w. The extended Fujita approach is based 
on κs, which was calculated with a high standard error 
(4.11 (±3.38) × 10−2, ±82 %) from Fig. 7 inset. From 
Eq. (8), it is shown that κs has a large influence on the cal-
culation of ds/dM and thus on the spread of the distribu-
tion. The high apparent polydispersity from f(M) can there-
fore be attributed to this high error in the κs value obtained 
from Fig. 7 inset. Although, in this instance, the extended 
Fujita approach provided a poor estimation of polydis-
persity, it did yield accurate estimates for molar mass and 
heterogeneity.

Non‑ideality

On the subject of non-ideality, concentration dependence 
was directly measured using AUC-SV to yield ks values, 
which showed very low non-ideality for all four mannans. 
AUC-SE did not directly measure concentration depend-
ence, however SEDFIT-MSTAR does provide indications 
where non-ideality significantly impacts the result. For 
example, discrepancies between consensus hinge-point and 
extrapolated M*(r) values, poor c(M) fits and negatively 
sloping point-average plots would all indicate the presence 
of significant levels of non-ideality—however they were 
not observed in the samples analyzed in this investigation. 
There would also be a poor correlation between the MHKS 
value obtained from the literature and these mannans. We 
can therefore say with confidence that there is a negligi-
ble effect of non-ideality present, but the values we report 
are likely to be slight under-estimates from the true values, 
although not significantly so.

Conclusions

Four fungal mannan samples were probed for their molar 
mass and sedimentation coefficients using well-established 
techniques in the field of polysaccharide characterization.

The two independent analysis techniques used for AUC-
SE (SEDFIT-MSTAR and MULTISIG) showed very good 
agreement. The obvious advantage for MULTISIG was 
the ability to yield molar mass distributions, particularly 
insightful for FM-2 and FM-4, as well as reliable values for 
Mn and Mz, but at a cost of processing time (typically, a set 
of 20 fits can take between 20 and 30 min). Compared to 

Fig. 7  Extended Fujita approach (normalized f(M) vs. M) for FM-1, 
FM-2, FM-3, and FM-4. Inset is Mark–Houwink–Kuhn–Sakurada 
plot of six peaks from AUC-SV and AUC-SE (MULTISIG)
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this, SEDFIT-MSTAR is a much faster analysis method (a 
fit taking no more than 10 s) providing reliable and accurate 
weight and z-average molecular weights but with limited 
information of molar mass distribution. Combining infor-
mation from AUC-SE and AUC-SV provided conformation 
information consistent with previously established results.

These methods (MSTAR, MULTISIG, extended Fujita) 
have shown a rapid assay for determining the molecular 
weight distribution of mannans, although they can also be 
adapted for use with other biopolymer solutions, including 
polysaccharides, DNA, and proteins—particularly relevant 
for the characterization of intrinsically disordered proteins. 
The significance of this assay is the characterization of a 
polydisperse, heterogeneous biopolymer with significance 
in various healthcare applications.
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