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ABSTRACT Modelling functionalities of the brain in human-robot interaction contexts requires a real-time
understanding of how each part of a robot (motors, sensors, emotions, etc.) works and how they interact all
together to accomplish complex behavioural tasks while interacting with the environment. Human brains
are very efficient as they process the information using event-based impulses also known as spikes, which
make living creatures very efficient and able to outperform current mainstream robotic systems in almost
every task that requires real-time interaction. In recent years, combined efforts by neuroscientists, biologists,
computer scientists and engineers make it possible to design biologically realistic hardware and models that
can endow the robots with the required human-like processing capability based on neuromorphic computing
and Spiking Neural Network (SNN). However, while some attempts have been made, a comprehensive
combination of neuromorphic computing and robotics is still missing. In this article, we present a systematic
review of neuromorphic computing applications for socially interactive robotics. We first introduce the basic
principles, models and architectures of neuromorphic computation. The remaining articles are classified
according to the applications they focus on. Finally, we identify the potential research topics for fully
integrated socially interactive neuromorphic robots.

INDEX TERMS Cognitive robotics, neuromorphic engineering, socially interactive robotics, event-driven
computing, biologically-plausible computational intelligence.

I. INTRODUCTION
The biological intelligence of living beings has been an area
of focus to explore their capabilities of memorising, think-
ing, perceiving, and acting accordingly. Among all species,
humans have a remarkable capacity to make sound and
quick decisions in diverse situations, sometimes based on
vague and incomplete information. Humans perform complex
behaviours that are important for surviving in dynamic envi-
ronments. Advances in computational and behavioural neuro-
science and embodied cognitive systems provide a baseline to
integrate the interdisciplinary approaches for further techno-
logical progress in robotics. With increasing efforts of mim-
icking those functional and structural principles, roboticists
have researched how the brain, robot sensors, and actuators
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operate together to perform complex tasks in a real-world
environment [1]. To acquire more autonomy and operate
in the real world, robots should: 1) perceive their environ-
ments in real-time, 2) process sparse information with energy
efficiency and response latency, 3) behave under changing
conditions and acquire self-learning ability.

With the emergence of increasingly powerful comput-
ers and sophisticated sensing systems, machine learning
algorithms became increasingly capable and have achieved
success in several scientific and commercial applica-
tions. Recently, advances have been made in deep-learning
approaches based on the hierarchical nature of the human
vision system [2]. However, the current dominant machine
learning (ML) models in robots are far from performing
human-like tasks that require precise motor control, fast
reaction time and adaptation to external conditions. Besides
this, these ML models also lack scalability. Furthermore, the
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divergence between the human brain and current technology
can be exemplified by the fact that a hypothetical clock-based
computer running a ‘‘human-scale’’ brain simulation requires
approximately 12 Gigawatt of power. By contrast, the actual
brain works with just 20 Watt [3]. A major bottleneck that
severely limits the up-scaling of intelligent interactive agents
is the unnatural discretization of time imposed bymainstream
processing and sensing architectures [4], which are based on
arbitrary internal clocks. Clock frequencies must be increased
to deal with the continuous inputs of the real world. However,
very high frequencies prove unfeasible and make large-scale
applications of the current hardware inefficient.

To achieve such efficiency, living creatures process the
information using spikes, which help them to perceive and
act in the real world exceptionally well. A challenge for
human-like machine intelligence is to imitate the efficient
neuro-synaptic framework of the physical brain. This area of
focus has been investigated extensively in recent years and
many new technologies and methods are developed which
try to mimic the biological behaviour of the human brain
which consumes very less energy and acts very fast. One such
method is Neuromorphic computing. Neuromorphic com-
puting (also known as brain-inspired computing) is a mul-
tidisciplinary research paradigm that investigates large-scale
processing systems that support natural neuronal compu-
tations through spike-driven communication. Compared to
traditional approaches, key advantages of neuromorphic com-
puting are energy efficiency, execution speed and robustness
against local failures [5]. Currently, analog-programmable
non-volatile memory (NVM) devices such as phase change
memory (PCM) [6], resistive RAM (RRAM) [7], con-
ductive bridging RAM (CBRAM) [8], magnetic RAM
(STT-MRAM) [9] are the heart of these neuromorphic com-
puting devices. The gradual switching of the resistance level
in these devices are the key to neuromorphic computing
and robotics applications [10]. Moreover, the neuromorphic
design overcomes the distortion of the artificial discretization
of time by using asynchronous event-driven computing that
matches the temporal evolution of the external world [11].
Inspired by this event-driven type of information process-
ing, emerging hardware and software knowledge in the field
of neuroscience and electronics have made it possible to
design biologically-inspired machines by using Spiking Neu-
ral Networks (SNNs) to model cognitive and interactive
capabilities [12].

The interaction between humans and machines is of great
relevance for both the field of neuromorphic computing and
Robotics. Utilising neuromorphic technologies in robotics,
from perception to motor control, is a promising approach
to creating robots that can seamlessly integrate into society.
In neurorobotics (neuromorphic computing and robotics),
bio-inspired sensors are used to efficiently encode sensory
signals. It also adapts to different environmental condi-
tions by integrating inputs from multiple sensors and using
event-based computation to accomplish desired tasks [13].
Figure 1 is summarising the landscape of neuromorphic

FIGURE 1. Summary of neuromorphic computing and robotics landscape.
Hardware and software simulators use specific neuron and synaptic
models according to the desired applications.

computing and interactive robotics. Hardware and software
simulators use specific neuron and synapticmodels according
to the desired applications.

However, so far, a comprehensive review of the two fields
has not been performed. Researchers have focused on narrow
problems and proposed solutions that incrementally build on
the mainstream machine learning paradigm rather than radi-
cally change it. To foster future research on interactive neuro-
robotics, this article focuses on how neuromorphic computing
and SNNs can be used for interactive robotics and what
impact does it make when SNN models are used along with
neuromorphic hardware. We investigated the contributions
made in this field both theoretically and practically in terms
of hardware and software platforms for the development of
neurorobotics solutions. In the next section, we introduce
details of spiking neural networks, neuron and synapse mod-
els. Section III gives the methodology, criteria and discusses
the results of systematic research of the scientific literature on
neuromorphic computing and SNNs for interactive robotics.
In Section IV we present a comprehensive review of the
articles, which are grouped and discussed according to the
applications they focus on. Section V presents and briefly
discusses neuromorphic hardware, simulators and frame-
works that were used in the articles found in the systematic
review. Section VI is dedicated to an analysis of shortcom-
ings and possible future directions for research in this field.
Section VII gives our conclusions.

II. SPIKING NEURAL NETWORK (SNN)
Neural networks are usually classified into three generations
and all of them somehow mimic the multilayer architecture
of the human brain, but the behaviour of neurons differs
significantly among them [14]. In the first generation, the
output of a neuron is binary (0,1) and it is obtained by simple
thresholding of the weighted synaptic input. In 1943 McCul-
loch and Pitts showed that networks of artificial neu-
rons have the ability to do some mathematical and logical
computation [15].

With time, another concept came about when researchers
developed the backpropagation technique for multilayer per-
ceptron networks. This technique resolves the limitations of
prior neural perceptron technique and it is extensively used
in deep learning today. This second generation of neural
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FIGURE 2. Three generations of neural network. Starting from the
McCulloch Pitts (MP) neuron model in first generation then artificial
neural networks in second generation and spiking neural network in third
generation which mimic the behaviour of biological neuron.

networks is also known as Artificial Neural Networks
(ANNs). The main difference from the first generation of
neural networks is in the neuron output: in ANNs this can
be a real number, which is the result of the weighted sum
of all the inputs after being passed through a transfer func-
tion, usually sigmoidal. Weights are obtained as a result of
some machine-learning algorithm ranging from simple linear
regression to high-level classification.Modern computational
hardware is widely available to evaluate the novel concepts
of advanced neural networks, such as learning protocols and
inventive architecture.

First and second generations of neural networks have only
limited modelling capabilities of their biological counterparts
and, in particular, there is no time reference to electrical
signals that have been described in their biological neural
networks. Moreover, there is still limited research available
about biological processes. Processing real-time data, the
human brain offers an efficient signal processing in which
information is encoded in a number of features related to
spikes, including the specific times of events [16]. This idea
of simulating neural events led researchers to the develop-
ment of Spiking Neural Networks (SNNs), which are, so far,
the most biologically plausible models.

Figure 2 shows the overview of all three generations of neu-
ral networks (NNs). The first generation of neural networks
are based on McCulloch Pitts (MP) neuron model, which
shows that artificial neurons can perform basic computations.
In the 2nd generation of NNs continuous non-linearity func-
tion (e.g, Relu, Sigmoid, Tanh etc.) gives promising results
in applications like multi-class classification, detection, iden-
tification etc. Finally, spiking neural network, also called
the third generation of neural networks [17], imitates the
action of normal neurons in the brain. The neurons in brains
are excitable and produce action potentials, which are also
known as spikes. These spikes are basic currency of the
brain. They allow neurons to perform computation and to
communicate with other neurons. During a spike, a neuron
releases a neurotransmitter, a chemical that travels across
a synapse before reaching another neuron. Spiking neural
networks also operate on spikes; these are discrete events
taking place at specific times. SNNs take a spike train as input
and produce a spike train at the output. The state variable(s)
of a neuron in SNN can change based on the mathematical
model of a neuron. If the value of the neuron state variable
representing its membrane potential exceeds a predefined
threshold, the neuron will send a single impulse (spike) to
each post-synaptic neuron [14].

The major advantages of SNNs are the temporal plasticity,
reduced computational complexity, and ease of use of neural
interfaces [18]. In recent years, the popularity of SNN and
its models has increased and several models have been devel-
oped for image classifications and object recognition using
SNNs. The spiking neural networks are also suitable for a
diverse range of applications related to computer vision and
robotics, such as classification, clustering, pattern recogni-
tion, etc. There are many examples of converting data directly
from sensors [19], [20], [21], intelligent systems with con-
trolling manipulators [11], [22], and robots [23], [24] [25].
Moreover, performing detection and recognition tasks [26],
[27], [28], and processing numerical data with Neural Engi-
neering Framework (NEF) [29], [30], [31] can also be done
with SNNs.

A. LEARNING IN SPIKING NEURAL NETWORKS
The key concepts of spiking neural network operations do not
allow the use of classical learning techniques and methods
that are appropriate for a conventional neural network. There
are still several methods to train an SNN. For unsupervised
learning in SNNs, the most famous method is Spike-timing-
dependent plasticity (STDP) [32]. In STDP, the synaptic
weight is based on the difference in firing time of pre- and
post-synaptic neurons. When a pre-synaptic spike arrives
before the post-synaptic action potential leads to Long Term
Potentiation (LTP), whereas a pre-synaptic spike arrives after
post-synaptic spikes leads to Long-term Depression (LTD) of
the synapses. The change of the synapse plotted as a function
of the relative time of pre- and post-synaptic spikes is known
as STDP function or learning window. For supervised learn-
ing in SNNs, there are methods like back-propagation [33]
where the learning algorithms like SpikeProp [34] and Fre-
qProp [35], demonstrate how the network of spiking neu-
rons with a biologically plausible time constant can perform
complex non-linear classification tasks in temporal coding.
Another such method is ReSuMe [36], which is suitable not
only for movement control but also for other applications like
identification and modelling of non-stationary objects. There
are also a few models available for reinforcement learning in
SNN. One of them is the actor-critic model [37] which uses
temporal-difference learning by combining local plasticity
rules with global reward signals. This network is capable to
solve non trivial grid-world tasks with sparse rewards. There
is also a method for reinforcement learning in SNNs through
modulation of STDP [38]. This modulation is used as a global
reward signal that leads to reinforcement learning.

B. SPIKING NEURAL NETWORK ARCHITECTURES
Like other neural networks, SNNs architectures are majorly
divided into four groups [39].

1) FEED-FORWARD NEURAL NETWORKS
It is a classical neural network architecture in which data is
transmitted only in one direction, without any cyclic con-
nection, and processing can take place over many hidden

VOLUME 10, 2022 122263



M. Aitsam et al.: Neuromorphic Computing for Interactive Robotics: A Systematic Review

layers. In feed-forward neural networks, which are commonly
known as a multilayered network of neurons or Deep Neural
Networks (DNNs), information first enters the input node,
moves through hidden layers and finally, the results come
out through the output nodes. The network does not have any
connection to feed the information coming out at the output,
back into the network. The majority of modern artificial
neural network architectures, such as convolutional neural
networks (CNNs) and deep neural networks (DNNs) are feed-
forward [40]. In robotics, it is usually adopted for low-level
sensory acquisition, such as vision [41], olfactory [42] and
tactile sensing [43].

2) RECURRENT NEURAL NETWORKS (RNN)
Unlike feed-forward NNs, recurrent neural networks leverage
error correction. In simple words, in RNNs the output from
the previous step is fed as an input to the subsequent step.
A RNN is a recursive network with a certain structure, such as
a linear chain. This mechanism is used by living organisms to
process arbitrary input sequences using their internal memory
stored within RNNs. Besides this, a Liquid State Machine
(LSM) is also a type of recurrent network of spiking neurons
where internal connectivity parameters remain static during
the training process [44]. In robotics, RNNs are widely used
for speech recognition [45], control [1] and planning [46].

3) HYBRID NEURAL NETWORK STRUCTURES
This type of hybrid SNN structure shows some neurons hav-
ing a feed-forward connection whereas others have recur-
rent connections. This type of hybrid structures are often
used for end-to-end training of SNNs for tasks like object
detection and pattern recognition [26]. Experiments with a
hybrid approach demonstrated promising results with less
computational cost [26].

4) HYBRID NEURAL NETWORK ARCHITECTURES
In these architectures SNNs interact with ANNs. This type
of Hybrid ANN-SNN can be trained without conversion;
it results in highly accurate networks which are also more
computationally efficient than their ANN counterparts [47].

C. SPIKING NEURAL NETWORK MODELS
SNNs are built on the mathematical description of biolog-
ical neurons. Usually, neuron models are expressed in the
form of differential equations. So far, many mathematical
descriptions of SNN models have been proposed, processing
inhibitory and excitatory inputs using internal state variables.
Here, we will discuss some of the most influential spik-
ing neuron models, majorly because of their simplicity and
widespread use in robotics applications.

1) HODGKIN-HUXLEY NEURON MODEL
The first bio-inspired neural model was developed by Sir
Alan Hodgkin and Sir Andrew Huxley in 1952 [48]. Their
mathematical model describes how action potentials in neu-
rons are initiated and how they propagate. This model is a

set of nonlinear differential equations that approximates the
electrical characteristics of neurons. They also explained the
ionic mechanisms underlying the initiation and propagation
of action potentials in giant axons of a squid. The following
differential equation of Hodgkin-Huxley model is relating the
change in membrane potential to the current flowing across
the membrane:

Cm
dVm
dt
+ Iion = Iext (1)

The Iext is an externally applied current. Cm is membrane
Capacitance whereas Vm is membrane Voltage. Here the
iconic current Iion is the combination of three components,
a sodium current, a potassium current and small leakage
current [49].

2) IZHIKEVICH NEURON MODEL
The Izhikevich neuron model [50] combines the biological
plausibility of the Hodgkin-Huxley model and computational
efficiency of the integrate-and-fire neuron (LIF) model. This
model reproduces spiking and bursting behaviour of known
types of cortical neurons [20]. There are only 2 state variables
and 2 parameters to tune in order to reproduce the complex
behaviour of cortical neurons [50].

This model can be represented as 2-D system of differential
equations [50]:

dVm
dt
= 0.04 V 2

m + 5Vm + 140− u+ Im (2)

dU
dt
= a(bVm − U ) (3)

where Vm is the membrane potential, U is the membrane
recovery variable Im is injected bias current or incoming
synaptic spikes. a and b are dimensionless variables that
tweak the neuron’s behaviour based on their values.

3) LEAKY INTEGRATED-AND-FIRE (LIF) NEURON MODEL
This is the most commonly used model because of its sim-
plicity. In the leaky integrated-and-Fire model, each cell has
a membrane potential Vm, with its capacitance Cm and a
leaky channel that allows current to flow across themembrane
with resistance Rm. The charge carriers travelling across the
membrane are driven by force voltage Ve. When the voltage
in the cell exceeds the threshold value Vth, an action potential
(impulse, action potential or spike) is generated. After the
spike occurs, the voltage is artificially dropped to the reset
value Vreset . After emitting a spike a neuron may have a
‘‘rest’’ period in which it may not be excited. This time
is usually known as ‘‘refractory period’’. The differential
equation describes how the membrane potential Vm changes
over time ( dVmdt ) in the face of an externally applied membrane
current Im is as follows:

Cm
dVm
dt
= −Gm(Vm − Ve)+ Im (4)

A simplified form of the last equation is:
dVm
dt
=
−(Vm − Ve)+ ImRm

τm
(5)
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Here Ve,Rm, τm are taken to be intrinsic properties of the
cell while Im is the external current and Vm is the membrane
potential [51].

D. SYNAPTIC PLASTICITY MODELS
After the selection of an appropriate neural model, the
synapse model should be decided to connect neurons inside
and among the layer of the spiking neural network. Initially
proposed by Hebb in 1949 [52], synaptic plasticity is a mech-
anism for learning and memory based on theoretical analysis.
Depending on the relationship between neural networks and
synaptic plasticity, they are roughly classified into two types:
spike-based and rate-based [1].

1) RATE-BASED
The most common model of synaptic plasticity that has been
proposed over many years is rate-based models. These mod-
els use a definition of firing rate that refers to an average of
spike-count over time [53]. Here the magnitude of synaptic
plasticity is assumed by the rate of pre- and post-synaptic
firing over the specific time period. This type of model is
typically used for converting conventional artificial neural
networks to spiking neural networks by using backpropaga-
tion [54], [55]. The ANN is trained with backpropagation
technique and then it is converted into an equivalent SNN
by relating the activation of ANN units and the firing rate
of spiking neurons. The relation between transfer function
of spiking neurons and the activation unit of ANN have
been thoroughly discussed in [56], [57], and [58]. Rate-based
models are successfully used in experiments of a robot-based
sensory and/or motor system [59].

2) SPIKE-BASED
A synaptic model with a spike-based learning rule was
developed in the early 1980s [60], [61]. Several experiments
showed that synaptic plasticity is influenced by the exact
time of individual spikes. The phenomenon, which has been
named Spike-Time-Dependent-Plasticity (STDP), alters the
synaptic weight based on the relative timing of pre- and
post-synaptic spikes: a causal relationship (pre- before post-
synaptic spike) causes the synaptic weight to increase, while
an anti-causal relationship (post- before pre-synaptic spike)
causes the opposite effect.

Bienenstock et al. [62] have created a theoretical learning
rule called the BCM rule. The basis of this algorithm is that
the instantaneous firing rate rather than individual spikes
(as for STDP) set the pattern of weight modifications.
Izhikevich and Desai [63] have proven an equivalence of
the BCM rule and the STDP spike-pair rule, opening both
to common theoretical treatment and adding flexibility in
specific model implementation choices.

In recent years the STDP learning rule has been success-
fully implemented in underlying neural learning mechanisms
in robotics within both simulated and real environments.
Equation 6 gives the precise mathematical definition of

FIGURE 3. 1) Records retrieved in each database: IEEE-Xplorer = 112,
Scopus = 594, Web of Science = 249. 2) This review considers paper from
2017 onward, so all publications before 2017 are removed. 3) By reading
the meta-data, we found 51 publications that were either focusing on
hardware implementation or didn’t consider robotics and SNNs. 4) While
screening, we labeled all the publications according to their focus, then
we excluded all the papers not related to robotics.

STDP learning rule.

STDP(1t) =

{
A+e−1t/τ+ , if 1t ≥ 0
−A−e1t/τ− , if 1t < 0

(6)

where A+ and A− represent the strength of potentiation and
depression, respectively. τ+ and τ− are positive and negative
time constants.

III. SYSTEMATIC REVIEW METHODOLOGY
For this systematic review, we have selected three databases
IEEE-Xplorer, Scopus and Web-of-Science. The keywords
which we searched selected according to our goal to identify
the scientific articles in the intersection of neuromorphic
computing and interactive robotics. To this end, we identified
two groups of keywords with similar meanings, respectively:
1) ‘‘neuromorphic computing’’, ‘‘spiking neural network’’
and ‘‘brain inspired computing’’; 2) ‘‘interactive robotics’’,
‘‘social robotics’’, ‘‘humanoid robotics’’. In group 2, we also
included ‘‘cognit*’’ to find cognitivemodels that may be used
to learn and implement interactive behaviour in agents and
robots. Finally, we use the pair ‘‘brain-inspired computing’’
AND ‘‘robot*’’, because we wanted to find alternative meth-
ods by using the ‘‘brain-inspired computing’’ keywords but,
when combined with the keywords of group 2, it resulted
in only 2 articles. We searched all these keywords in the
three databases as part of Title, Abstract and Keywords, and
downloaded the resulting publications for an initial screening.

We added this meta-data to Rayyan.ai [64], an online tool
for systematic review. The total number of articles we added
was 955. Initially, we removed all duplicates, reducing the
total count to 951. After that we decided to limit our system-
atic review to articles published on or after 2017. This reduced
the total publication count to 358. Finally, we labelled all
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FIGURE 4. Total number of publications per year retrieved with our
shortlisted keywords in all three databases, compared with
robotics-related publications.

remaining publications by searching our keywords in title,
abstract, and keywords. As this review focuses on socially
interactive robotics and neuromorphic computing, we
shortlisted publications presenting neuromorphic computing
techniques to implement a new behaviour for human-robot
interaction. In case of ambiguity in the metadata, we also
reviewed the body of the article. The review was done
independently by the three authors, articles were shortlisted
only if two authors agreed that the article was pertinent. The
number of publications that remain for review is reduced
to 60. Figure 3 summarises the paper selection procedure
using a PRISMA chart. Figure 4 shows the distribution per
year of the publications retrieved, compared with the number
of publications related to robotics which are considered for
this systematic review.

IV. NEUROMORPHIC CHIPS/WWWWW/SIMULATORS
AND FRAMEWORKS
In socially interactive neurorobotics, neuromorphic
hardware is one of the essential elements for the robot
to perform cognitive tasks. With recent advancements in
neuroscience and in the chip industry, new neuromorphic
hardware is introduced for the simulation of SNNs. In the
tables below, we will briefly discuss the neuromorphic chips
(Table 1), simulators (Table 2), and frameworks (Table 3)
we came across during our review. We also discuss the
robots (Table 4) used in our selected publications. There are
several other neuromorphic chips (e.g. TrueNorth [65], Brain-
drop [66], SyNAPSE [67], FACETS [68], NeuroMem [69],
NM500 [70], SynSense [71]), simulators (e.g: Genesis [72],
SpikeFun [73]) and humanoid robots (e.g. Pepper [24],
Nao [74]) which are not discussed here as they were not
used in any of the publications we reviewed. Some of
the general-purpose simulators such as Mayavi [75] and
CSIM [76] focus on simulating the environment for models,
instead of simulating SNN models. Unlike other simulators,
they do not have in-built neuron and/or synaptic models.
Besides this, we also found several articles where no neu-
romorphic hardware is used. Input signals are obtained by
sensors on the robot and SNN models are used as processing
layers. We discuss more it in the following Future Direction
section.

V. SNNs IN ROBOTICS APPLICATIONS
The use of SNNs in robotics introduces considerable com-
plexity with limited benefits when performing simple tasks.
In cognitive robotics, the goal is to understand the envi-
ronment and compute the output. Such an approach usually
returns useful insights for neural architectures and learned
behaviour, especially when dedicated neural hardware is
available. So far we have briefly discussed spiking neural
networks and their models. In this section, we dive deeper into
the applications of SNNs and neuromorphic computing in the
field of socially interactive robotics. Robots provide an inter-
esting testbed for SNNs, yet their application requires finding
solutions to many problems such as power consumption,
action duration, and output fidelity. Through our systematic
review, we found 5 major directions in which contributions
have been made. Before getting into the details of these appli-
cations, we summarise our analysis in Table 5 and Table 6.
Here, Table 5 shows the robots and hardware used in the
experiments, while Table 6 is about the software or simulation
platform used to conduct experiments. These tables guide
the reader through the type of robots and platforms that are
typically used in experiments related to neurorobotics.

A. SIGNAL ACQUISITION AND PROCESSING
APPLICATIONS
The implementation of robotic devices with intelligent sen-
sors has been recognized as an important ingredient in the
development of modern-day robots. A robot should plan and
execute a series of operations autonomously while adjust-
ing to the surrounding environment in real-time. Image seg-
mentation and identification is one of the major objectives
of a robot vision system. The features of the interesting
object must be obtained and compared with the reference
library for identification [120]. While much research has
been conducted on vision-based identification, the combina-
tion of vision and non-vision sensors promise improvements
in the speed of the recognition process. Rast et al. [28],
demonstrated the learning system using an iCub robot and
a SpiNNaker system to solve object identification tasks.
The SpiNNaker neuromorphic system [121] is a neural net-
work simulation platform, designed for real-time simulations.
The details of hardware and chip architecture are given by
Furber et al. [77]. The major goal of SpiNNaker is to
achieve real-time processing of real-world data. Meanwhile,
iCub is a research-grade humanoid robot with 53 degrees of
freedom typically used in developing and testing embodied
AI algorithms. The most common protocol used to commu-
nicate between iCub and host PC is called Yet Another Robot
Platform (YARP) [122].

Furthermore Rast et al. [28] made several enhancements
to the basic networks and showed how they can be used
to direct performance towards behaviourally relevant goals.
They observed the behaviourally relevant STDP appears to
contribute strongly to positive learning as compared to neg-
ative learning. Paper demonstrated the integration of neu-
romorphic chips and humanoid robots to show how such
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TABLE 1. Neuromorphic chips used in robotic applications.

TABLE 2. Brief description of simulator and platforms used in robotic applications.

TABLE 3. Description of frameworks we came across during our review.
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TABLE 4. Robots used in major applications.
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TABLE 5. Robots and hardware used in our major applications related to interactive robotics.

TABLE 6. Software/simulators and neuron models for all the applications.

a system can learn to recognize and attend to preferred
objects without relying on off-line training. SpiNNaker uses
External/Internal Event Input-Output (EIEIO) protocol [123]
which is the standard protocol of communicating AER data,

as well as general or device-specific commands between
heterogeneous platforms. Figure 5 shows the general block
diagram of the proposed system. In an extended publication,
Garcĺa et al. [95], showed how neuroanatomically grounded

VOLUME 10, 2022 122269



M. Aitsam et al.: Neuromorphic Computing for Interactive Robotics: A Systematic Review

FIGURE 5. General block diagram of iCub-SpiNNaker system. The I/O
from the robot is converted into YARP bottles. It is then processed by a
host-based EIEIO transceiver which converts the message into spikes to
transmit and receive from SpiNNaker.

SNNs for visual attention can be extended with word learning
capabilities. After the completion of learning, the robot was
able to call the name of the object when visual input was
present.

As significant research has been conducted to under-
stand the processing of multi-sensory information, neuro-
scientists, psycho-physicists, and psychologists suggested
models explain how information from different sensors is
integrated in order to perceive the environment. The term
convergence-zone was proposed by Damasio [124], which is
one of the plausible models that explain the mechanism of
the multi-modal human perception process. Inspired by this,
Al-Qaderi and Rad [22] proposed a multi-modal perceptual
system for social robotics. Unlike the majority of studies in
machine perception which deal with uni-model sensory sys-
tems, they proposed a multi-model system which uses con-
cepts from fading memory [21], binding criteria [125], cell
assemblies [52], and top-down influences [126]. To access
the performance of their system they selected Pioneer 3DX
which is a popular research mobile platform. They equipped
the robot with an RGB camera, Kinect sensor, directional
microphone, and sonar sensor. Experimental results proved
that multi-model perceptual systems perform better than uni-
modal systems.

B. PATTERN RECOGNITION APPLICATIONS
Visual or pattern recognition is a fundamental component for
most robotic systems operating in the real world. A large
variety of tasks related to human-robot interaction require
visual or pattern recognition. Therefore, a lack of success-
ful recognition is often an impediment to applying robotics
systems to real-world situations. In particular, in cognitive
robotics visual or pattern recognition is a building block of
complex systems including many other components such as
pose estimation, grasping and manipulation [127]. So far,
this problem has received comparatively little attention and
was usually dealt with through methods that require strict
supervision during the training phase, such as uncluttered
views of the objects or meta-data about object position or
orientation towards the camera.

Fanello et al. [27] proposed some improvements in the
robot visual perception capabilities with a limited amount
of constraints. They modified state-of-the-art coding-pooling
pipelines for visual recognition to improve the represen-
tation while maintaining real-time performance. Recently,
Mansouri-Benssassi and Ye [118] tried to explore all the
major applications of bio-inspired SNNs with unsupervised
learning using STDP for facial expression recognition. They
pre-processed the images with Laplacian of Gaussian (LoG)

FIGURE 6. Left figure: represents the SNN workflow for facial expression
recognition. a) is a raw image b) image with LoG filter and Poisson spike
train creation with convolution layer. c) Excitatory layer. d) Inhibitory
layer [118]. Right Figure: a) Teaching phase where learner visualize the
target action. b) In turn-taking phase, learner extract the nonverbal
information. c) In Trial phase. learner confirms the target action [98].

filters to detect the edges and contours of the facial image.
After that a spike train is created using a Poisson distribution
where the firing rate is directly proportional to the input
pixels’ intensity. Lastly, they adopt the online STDP [128]
to perform unsupervised learning, see Figure 5 (left). The
proposed approach was evaluated on two publicly available
facial expression datasets and achieved better accuracies to
some of the popular methods like Histogram of Oriented
Gradients (HOG) features or CNN. In another publication by
Al-Qaderi and Rad [96], the multi-modal perceptual sys-
tem was introduced for efficient facial recognition. The
experiments were conducted in real-world scenarios where
a robot has to recognize the face of the user while moving
around.

Besides this, experiments have been conducted to recog-
nize the motion of the human being in real-time by using
SNNs and clustering of direction vectors to analyse the
nonverbal information and construct a cognitive system to
recognize the target motion and acquire actions [98]. This
instructed learning is done in three phases. First is the teach-
ing phase where a teacher is sharing the cognitive environ-
ment and the learner visualises and confirms the target action.
In the turn-taking phase the learner extract the nonverbal
information, and in the final stage, the learner imitates the
action. Figure 6 (right) shows the block diagram of this
instructed learning.

In another process, proposed by Cyr and Theriault [99],
robots learn the relationship between left/right and horizon-
tal/vertical visual stimuli, regardless of the location of the
image or their specific pattern composition. Here, different
patterns were shown to the robot, and the correct recogni-
tion along with appropriate movement was expected from
it. Experiments also show that with the different rewarding
rules, SNN can adapt its behaviour in real-time.

Similarly, Cyr, Thériault, and Chartier [30] propose
a 2-bit task (XOR) with visual compound binary images
as input and the left/right action for the output. Here the
robot can adapt its behaviour from learning other simpler
associative rules during runtime. Furthermore, the impact on
the neural architecture was also explored when passing from
a 2-bits to a 3-bits task.
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FIGURE 7. The Spike Source Localization (SSL) architecture. Sound signals
are received at the left and right receiver of a robot. These sound inputs
are decomposed into several frequencies with Gammatone Filterbanks.
After that, it is fed to Spiking Neural Networks and then to Feed-Forward
neural network for classification. This classification layer produces an
output angle that is used to control the motor [19].

C. SPEECH RECOGNITION APPLICATIONS
Speech recognition is the ability of a machine or robot to
identify words and phrases in language and convert them
into machine convenient language. In most common cases
of speech recognition in robots, the voice command is taken
through a microphone then processed in a computer, and
finally sent back to the robot for action. Sometimes it is
hard to recognize speech efficiently due to the noise envi-
ronment, to solve this problem Davila-Chacon, Liu, and
Wermter [19] propose the embodied embedded cognition
approach to improve Automatic Speech Recognition (ASR)
systems for robots in noisy environments. Sound Source
Localization (SSL) was used to locate the direction of the
sound source accurately in a short time. Figure 7 represents
the SSL architecture. In this approach, before doing an ASR
task, the robot orients itself toward the angle where the
signal-to-noise ratio (SNR) of speech is maximised for one
microphone. Here a spiking neural network was applied to
calculate the sound signal angle. The system was tested both
on the iCub robot and Soundman, and its performance was
measured and used as a baseline for the iCub robot head.
The result of this test shows that the proposed ASR with SSL
can considerably improve the accuracy of speech recognition
in a humanoid robot. Moreover, in the proposed approach
where SSL directed the orientation of the robot and selected
the appropriate channel as input to the ASR system, showed
better results. This was unlike other approaches, where sound
signals for both channels (left and right) are averaged before
feeding to the ASR system. In the future, speech recognition
can also be used as the bootstrapping mechanism to train
neural layers as it can perform auditory grouping in frequency
and time domain [19].

In another approach, a robot (iCub) was used to perform
vestibulo-ocular reflex (VOR) tasks, which applied a spiking
cerebellar model comprising an adaptive real-time control
loop [100]. It operates as a feed-forward controller that inte-
grates several neural models, certain neural topology and
characteristics. The cerebellar model effectively adapts the
reflex for a robot by using STDP which generates the eye
motor commands to compensate for the head movement of
the iCub robot.

D. MOTOR CONTROL APPLICATIONS
The goal of many studies in this field is to develop a robot
that can mimic human cognitive and motor behaviour. From
doing simple tasks like pointing in different directions to
performing advanced learning tasks, movements, grasping
and touching actions in robotics have several applications.
The method was proposed to generate and control pointing
motions for a robot using a spiking neural network. The
SNN learns a base motor primitive for pointing at targets
(left, right, up, down). The network was able to combine
multiple motor primitives to control a robot in real-time
to reach a specific point. The performance of the network
was evaluated with the help of a humanoid robot (HoLLiE).
The board plane with targeted points was placed in front
of the robot and the robot has to produce motion towards
a target point. The major benefit of this approach is that
it is not dependent on the specific kinematic structure
of the robot and can be used with different robots [31].
Figure 8 shows the overall architecture of the process. Here
the activation pattern is produced by the motion generation
layer for four correction primitives and the motion command
is given to the motor control system. Similar work is done by
Mirus et al. [129]. Here the mobile robot is capable of moving
around and detecting objects in an unknown environment.

A different study by Batres-Mendoza et al. [23] presents
the development of the real-time locomotion systems for the
Hexapod robot using bio-inspired computing. The improved
Quaternion based Signal Analysis method (iQSA) method
based on quaternion algebra is used for processing and clas-
sification [130]. Here the data was collected from 120 users
to create a decision rule for the iQSA method. The proposed
system has three major parts: the first is a signal acquisi-
tion through a Brain-Computer Interface (BCI), which trans-
lates electrical signals from the brain into computer input.
In the second step, this acquired data is analysed and pro-
cessed through the iQSA method. Finally, a SNN is used to
mimic the Central Pattern Generator (CPG) [131] behaviour
to control robot movements. CPGs are a specialised neural
network that is capable of creating rhythmic patterns with-
out the use of sensory input. These patterns allow us to
coordinate and control repetitive activities, such as chew-
ing, swimming, walking, and running. Figure 9 presents the
block architecture of a system. The system was implemented
in real-time for performance evaluation. The experimental
results show that the robot was able to replicate the gait pat-
tern generated through the user’s mental activity with a slight
delay.

Similarly, Lele et al. [101] used CPG and coupled it with
Dynamic Vision Sensor (DVS) for a prey-tracking scenario
in the close-loop robotic system. Here the legs of a Hexapod
robot are controlled by a network of spiking neurons. There
are six neurons, each controlling one leg, and each spike
of these neurons causes movements in the corresponding
leg. For the learning of various gaits, a supervision-based
weight adaptation algorithm is proposed. The result shows
that a maximum of three gaits can be programmed using this
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FIGURE 8. Brief block diagram of the motion generation approach.
It contains three major components: first, the motion generation layer
produces circular activity that creates activation patterns for primitives.
Second, the motor control layer has arm base primitive and arm
correction primitives for pointing motion and to point to target,
respectively. Third, the target layer takes the relative distance between
target and base point for selective excitation to activate the correction
primitives.

FIGURE 9. Communication architecture between the Brain-Computer
Interface (BCI) and the Hexapod robot. The EEG signals are acquired
through the Emotive Epos headset. This is then transferred to the iQSA
module to determine robot movements. Finally, commands are given to
the robot locomotion module via Bluetooth [131].

algorithm with high energy efficiency when implemented on
modern neuromorphic hardware.

Alongside with the above-discussed methodologies, the
movement of a robotic arm has also remained an area of
focus. The model proposed by Zahra, Navarro-Alarcon, and
Tolu [104] shows how the controller based on cellular-level
guides the motion of the robot arm with real-time data from
sensors. The model is inspired by the biological features of
the cerebellum, by monitoring the firing rate and pattern of
the different groups of neurons in it. This model contains two
layers of neurons: one input, one output, with all-to-all con-
nections between them, to provide transformation between
two correlated spaces. The network correlates the spatial
velocity in the two layers, it acts as a differential map, so the
concept of Differential Mapping Spiking Neural Network
(DMSNN) is utilised. For learning the STDP is put to use.
Themodel was testedwith theUR3 universal robot, where the
elbow and shoulder joints are controlled to test the manipula-
tion of the end actuator to a specific position. The experiment
shows that such a model can reduce error in a certain direc-
tion with fast convergence of learning. Moreover, it can be
developed further for real-time adaptive robot control in mul-
tiple challenging environments and applications [132], [133].
In addition, another study showed a similar architecture
where a virtual robot controlled by a specific SNN could
independently learn simpler associative rules [30]. Additional
to this, Tieck et al. [107] showed the concept of soft-grasping
to control a robotic arm with SNN. The robotic arm is able to
grasp objects of different sizes, stiffness and shapes without
calculating complex contact point planning or inverse kine-
matics. This approach required only one example of each
grasping motion to train the primitive and it can be used
on different robots having similar features of the human
hand. In another experiment, they used sEMG signal to acti-
vate motion reflexes on a robotic hand. The trained network
can classify the sEMG signals and detect finger activation.

FIGURE 10. The basic block diagram of the prosthetic control through a
Brain-Computer Interface (BCI). As shown, the brain provides the EEG
signals to the FeNeuCube framework which, in turn, gives instructions to
the controller. Finally, the controller forwards the control command to
prosthetic hand [85].

The reflexes of the finger aremodelledwithmotion primitives
and mapped to a robot kinematics [108], [109].

There are also applications of neurorobotics in the field
of medical science. For example, Kumarasinghe et al. [85]
presented the proof of concept study for prosthetic control
with the Brain-Computer Interface (BCI). They used finite
automata theory and a NeuCube evolving SNN architecture.
The prosthetic hand was designed to perform tasks such as
grasping and touching. Figure 10 shows the basic architecture
of the proposed BCI. Here the learning is happening in two
stages: the first stage uses an STDP unsupervised learning
rule where evolving synaptic connections are formed accord-
ing to the difference between pre- and post-synaptic neurons.
With this approach, SNN cube will activate the same group
of neurons when a similar input stimulus is provided. The
second stage uses a supervised learning paradigm to update
the connection weight between output and hidden layers.
The framework (FaNeuRobot) integrates the evolving spiking
neural network model of the brain with finite automata that
tells the neuromuscular behaviour of forearm muscles and
flexor during movement.

Another interesting study focuses on solving movement
issues for disabled and elderly people. In most of the
existing systems, a user has to control the robot manually
which could be difficult for the elder or disabled people.
Obo et al. [106] presented a multi-modal interface to con-
trol the robot remotely. Besides this, a cognitive platform to
control robots based on the concept of the perception-action
cycle is also proposed. Here a spiking neural network is used
for spatio-temporal modelling of the interaction between the
environment and the user. A self-organised neural network
based on an unsupervised learning paradigm is used in this
system. They developed a seat with pressure sensors on it
and the robot movement is dependent on the user’s movement
while sitting on the seat. Beside this, a stationary eye-tracker
(Tobii Eye Tracker 4C) is attached to retrieve the gaze and
head pose. Figure 11 shows the summarised proposed system
architecture which has twomajor parts, the perceptual system
and the action system. The experimental results show that
the teleoperation system can change the sensitivity of the
interface according to the operation.
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TABLE 7. Learning mode, rule and paradigm in each application.

FIGURE 11. shows the summarised system architecture of the system.
It has two major parts: 1) the perceptual system, where the information
of environmental map find a use to detect the space where a robot can
move around. Moreover, the self-organized neural network is utilized to
extract perceptual information. 2) the action system, behavioural features
in teleoperating are extracted and commands are given to motor control.
Based on the perception-action cycle, SNN is used for spatio-temporal
modelling.

E. COGNITION AND LEARNING APPLICATIONS
Biological systems generally have a memory, which is
defined as the ability to preserve, learn and reproduce past
adaptive states. As discussed earlier, synaptic plasticity is an
important mechanism of memory and learning on a cellu-
lar level. Several mathematical models exist that can sim-
ulate cognitive maps, where synaptic plasticity yields the
emergence of spatial memory in SNNs. Spatial memory in
robots is used for storage and retrieval of information that is
used to plan a route to a desired location and to remember
where an object is located or where an event occurred [102].
In this subsection instead of discussing the classifications of

FIGURE 12. The network for real-time mapping with Loihi chip. Here
robot and LiDAR are providing inputs to the SNN for mapping [113].
b) The basic block diagram of the prosthetic control through a
Brain-Computer Interface (BCI). As shown, the brain provides the EEG
signals to the proposed FeNeuCube framework which, in turn, gives
instructions to the controller. Finally, the controller forwards the control
command to prosthetic hand [85].

learning [1] we discuss the contributions related to spatial
memory, learning and using that learning to predict the next
action for social robots. Table 7 details learning mode, rule
and paradigm in each application.

Spatial mapping is an important component for developing
Simultaneous Localization and Mapping (SLAM) in social
robots. Tang and Michmizos [113] presented an algorithm
that solves the navigation problem for robots by learning
the environment using a specialised neural network. This
biology-inspired network is integrated with the Loihi neu-
romorphic chip which interacts with the Robot Operating
System (ROS) in real-time, see Figure 12. The robot is
equipped with a 360-degree LiDAR sensor. Here the SNN
uses Winner-Take-All (WTA) structure and heterosynaptic
competitive learning for place field generation and dentritics
for reference frame transformation. The algorithm gave an
accurate environmental map by using error-free odometer
signals from the Gazebo simulator.
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Cyr and Theriault [99] used the concept of operant condi-
tioning for a robot to learn the spatial map through reinforce-
ment and punishment. The robot can learn the relationship
between different visual stimuli irrespective of their pattern or
location on the images. The final results show that when the
rewarding rule is changed, the SNN can adapt its behaviour in
real-time. They also presented two exploration strategies in a
virtual robot controlled by a SNN. A virtual robot controller
simulates the thigmotaxis (the movements of one organism
either towards or away from the stimulus) and boldness
(the propensity to engage in risky behaviour) behaviours.
The network performed visual learning tasks solved through
an operant conditioning procedure [115], [134]. Similarly,
another article presents learning in robots where SNN can
implement several variations of learning through classical
conditioning with positive or negative reinforcement. The
SNN model is implemented on Field-Programmable Gate
Array (FPGA) and a Synapto-Dendritic Kernel Adapting
Neuron (SKAN) model is used for neural delay [112].

The publication by Zharinov et al. [103] showed the model
of spatial memory implemented on SNN. This model was
then tested on a robot moving in an environment with neu-
tral and harmful regions. Here the dynamics of the neural
population determines the movement of a robot. The STDP
learning rule rearranges the SNN coupling and forms spatial
memory according to the surroundings. After training, the
robot learns to avoid the harmful region. A similar approach
was presented by Lobov et al. [102] where the robot has to
explore the surroundings and after the training is completed,
it should determine where the harmful region is and avoid
moving to that region. The proposed network can remap
neutral and harmful regions when the dangerous zone moves
to another place. Thus, the robot adapts to the changing
world. Discussing memory, another model was presented for
associative memory in the form of SNN. A mobile robot
was used to demonstrate how neuromorphic hardware can
reduce energy consumption with the same computing power
when implemented on a Loihi neuromorphic chip [111].
Moreover, associative learning tasks were also performed to
investigate the abstract relation of the sameness/difference
(SD) model in bio-inspired robots. The model uses artificial
SNN as the robot’s brain-controller and STDP as a learning
rule. The experimental results show that robots can learn in
different scenarios depending on their previous action and
applied reinforcing rules [116]. Improvements are also made
in the working memory of robots using SNNs with dynamic
synapses. The proposed model was able to refine, overwrite
or resist the change in the duration and configuration of
incoming stimuli. They showed how local changes in the
environment can be accounted for short or long-term changes
in synaptic plasticity. The online unsupervised learning with
the STDP learning rule is used for working memory of robots
so it can perform tasks in evolving environments [105].

Besides this, work has been done in the direction of
episodic memory for robots, where a robot can perform more
versatile cognitive tasks like exploration, localization, and

FIGURE 13. Block diagram for a functional overview of the Neurorobotics
platform. With the design/editing feature, users can conduct neurorobotic
experiments using the brain model and robot body which can interact in
a dynamic environment. These experiments are simulated and the results
can be displayed in an interactive fashion.

navigation [110]. For example, if the robot has to make and
serve milk tea. For this task, the robot needs to be familiar
with the environment through a cognitive map and episodic
memory to perform tasks in an appropriate order. Based on
the idea of behaviour-based robotics, an algorithm is devel-
oped that can robustly perform navigation and exploration
tasks. Additionally, another limitation for self-learning in
robotics is also explored which is related to having a sense of
time. The brain-inspired spatial cognitive system is developed
that integrates episodic memory and cognitive map. This
system helps the robot to recognize and remember differ-
ent locations while storing the correct sequence to perform
tough tasks. The algorithm was presented to overcome the
fundamental issue of designing the topologies and parameters
for the SNN. It was evaluated with a simple sensory-motor
decision task using evolutionary computation. They showed
how some variations in topology and parameters can affect
the behaviour of a system. In the experiments, the complexity
of the task increased gradually so that the algorithm could
evolve with it [42]. This approach can be used in different
learning tasks for social robotics where the robot is in a con-
tinuous changing environment [135]. Addition to this Huang,
Wu, and Qiao [114], shows how emotion plays an important
role in participating in value calculation, as an important
intrinsic motivation of decision making. The Turtlebot-3 used
the model-based decision making approach with emotional
intrinsic rewards to solve continuous control problems. Sim-
ilarly another research illustrated the proof of concept for
biologically-plausible socio-emotional robots. The robot was
able to execute an amygdala model to determine emotional
state from visual input. The model was processed by using
SpiNNaker, Loihi and Braindrop neuromorphic chips [119].

As mentioned earlier, developing brain-inspired networks
that mimic the complex structure of the brain is a very dif-
ficult task. Collaboration between a researcher from biology,
neuroscience and computer science helps to design somewhat
biologically realistic models of the brain on SNN. To over-
come this complexity, the Neurorobotics Platform was intro-
duced to easily establish communication between available
brain and body models. It is a web-based environment where
brain models can connect to a detailed simulation of robot
bodies [136]. There are built-in experimental sequences,
environments, conditions, robots and brain-body connectors
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FIGURE 14. An overview figure of the landscape of neuromorphic computing and robotics. It shows major hardware, software, neuron
models and applications. The red boxes in chips column shows that they are not used in robotic applications yet.

to help users with less programming background [3]. This
project is part of the EU flagship Human-Brain Project
(HBP). The functional overview of the Neurorobotics plat-
form is presented in Figure 13.

Figure 14 is an expanded form of Figure 1. It shows the
sensors and chips in the hardware section. Here the red outline
boxes show that the chip is not used in robotics applica-
tions yet. The software section contains a list of simulators,
frameworks and platforms. It also shows the neuron models
typically used in robotics applications.

VI. FUTURE DIRECTION
In the previous sections, contributions and advancements in
SNN-based social robotics have been reviewed in terms of
their focused applications. This section focuses on the critical
analysis of reviewed articles. We discuss the shortcomings
in this area and what are the major areas on which future
research should focus.

Humanoid robots: Although many experiments are con-
ducted in the area of neuromorphic computing for robotics,
most of them are very basic when it comes to cognitive
tasks [105], [110], [99]. Usually, they focus on robots mov-
ing around a dedicated environment, constructing the spa-
tial map, or storing some information in its memory block.
Few pieces of research considered human involvement in
the experiments for detection and identification but they lack
human-robot interaction in social context. Besides this, none
of the experiments were done with a humanoid robot. So,
there is still a need to conduct experiments with a humanoid
robot where the robot also interacts with humans instead of
just interacting with the environment.

Neuromorphic Chips: As we can see in Table 4, only two
types of neuromorphic chips are used in our reviewed papers.
Experiments with Intel’s Loihi chip are mostly related to
improving the memory or spatial mapping while experiments
with the SpiNNaker architecture are focused on behavioural

learning and visual attention. In the experiments with SpiN-
Naker, the neuromorphic chip is not attached to the robot.
The SpiNNaker system receives inputs from the sensors in the
robot via the EIEIO protocol for processing and returns action
commands. On the other hand, experiments with the Loihi
chip don’t contain humanoid robots. In most of the reviewed
articles a turtlebot is used, which is equipped with multiple
sensors and a Loihi chip. This shows that there are still
several open options like using other available neuromorphic
chips and conducting experiments in more complex scenarios
where the humanoid robot has to make decisions in real-time.

Hardware:Many experiments conducted in our reviewed
articles use non-spiking sensors (e.g. web camera is used
instead of a retina camera [127]). These sensors send the
signal to the processing unit, which converts it to spikes and
feeds them to the neuromorphic hardware. This process could
get faster and energy efficient if neuromorphic hardware is
used instead, which is an important requirement when it
comes to social robotics.

Personalization: Another challenge faced by the social
neurorobotics field is about personalising the robot. This can
only be done through interdisciplinary research of roboticists
and neuro-scientists. Usually, roboticists use simplified brain
models to make real-time simulations, while neuro-scientists
work on detailed brain models which are difficult to embed
into the real world due to their high complexity. The com-
munity needs more solutions like the Neurorobotics Platform
which provides adequate tools to model highly detailed envi-
ronments, virtual robots, and complex neural networks for
both roboticists and neuro-scientists.

Generalised Framework: None of the reviewed articles
offers a general-purpose framework that could offer function-
alities of training and modelling. Besides this, the available
algorithms to convert ANNs to SNNs [137], [138], [57], [58]
are still in preliminary stages because accuracy of converted
SNN models is much lower than ANNs [139]. The nature of
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this situation is that training SNNs for deep networks is noto-
riously difficult. In the future, advancements in these ANNs
to SNNs conversion algorithms are required. Moreover, spe-
cialized mechanisms for SNN models performance analysis
are lacking. There is a need for better mechanisms to evaluate
the computational capabilities such as power consumption
and speed, which are of vital importance for social robotic
applications.

Ethics: Lastly, some aspects are rarely considered till now,
such as ethical aspects in social neurorobotics. The devel-
opment of social neurorobotics is still in its early stages,
which makes it an ideal candidate for proactive and antic-
ipatory ethical reflection. The major concern is trust and
safety when it needs to be decided whether to use the robot
in a social environment or not. Another aspect that might
affect the adaptability of social neurorobotics is data privacy.
Where and how data from the sensors of robots is being
processed and how to share this data with another robot
in a socially interactive environment. Therefore, research is
needed to ensure that the development of neurorobotics is
ethical, desirable, and socially acceptable.

VII. CONCLUSION
The neuromorphic computing approach has shown great
promise for achieving human-like robotic intelligence in
terms of computation, speed, and energy efficiency. This will
be greatly beneficial in building robots that can exhibit realis-
tic human-like social interaction. To support further research
toward socially interactive neuromorphic robotics, this arti-
cle delivered a systematic literature review of neuromorphic
computing methods and tools that can be applied to improve
socially interactive robotics. It first introduced the biological
justification of SNNs along with their general architectures.
After that, we presented mainstream neuron and synapse
models that are used to design SNNs. The reviewed arti-
cles were distributed according to the application or prob-
lem they are trying to solve and we highlighted five major
areas of application (signal acquisition and processing, pat-
tern recognition, speech recognition, motor control, cognition
and learning). Finally, the most relevant neuromorphic chips,
simulators, frameworks, and robots are discussed in the view
of their application to socially interactive robotics. Most of
the reviewed articles focus on improvements of the existing
techniques for one of the specific applications rather than
exploring their full integration to build more capable systems.
Only a few pieces of research demonstrated social interac-
tion between robots and humans in real-world scenarios, but
robots had several limitations and were able to interact only
in a closed-loop fashion. Besides this, the lack of universal
training methods and conversion mechanisms for neuromor-
phic models is also a major challenge for the development
of human-like social interactions in neurorobots. To this end,
we remark that more interdisciplinary collaborations, espe-
cially between roboticists and neuroscientists, are needed to
fully develop the merge between neuromorphic computing
and social robotics.
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