

Resource-Driven Product Family Design in Additive Manufacturing

LEI, Ningrong, YAO, Xiling, KI MOON, Seung and BI, Guijin

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/31081/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

LEI, Ningrong, YAO, Xiling, KI MOON, Seung and BI, Guijin (2014). Resource-Driven Product Family Design in Additive Manufacturing. In: 1st International Conference on Progress in Additive Manufacturing (Pro-AM 2014), Nanyang Technological University, Singapore, 26-28 May 2014.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Resource-Driven Product Family Design in Additive Manufacturing

NINGRONG LEI, XILING YAO, SEUNG KI MOON, GUIJUN BI

School of Mechanical and Aerospace Engineering, Nanyang Technological University, HW1-01-05 2A
Nanyang Link
637372, Singapore

Singapore Institute of Manufacturing Technology,71 Nanyang Drive 638075, Singapore

Introduction

Product family

- A group of related products (variants) derived from a set of common elements (platform) [1]
- Additive manufacturing (AM)
 - Manufacture products with complex geometry, ideal for customized product design [2]
- Resource-driven product family design in AM
 - Resource (material, manufacturing time, cost) as a key design consideration in product family design in AM
- [1] T. Simpson, Z. Siddique, and J. Jiao, "Platform-Based Product Family Development," in *Product Platform and Product Family Design*, T. Simpson, Z. Siddique, and J. Jiao, Eds., ed: Springer US, 2006, pp. 1-15.
- [2] R. Ponche, J. Hascoet, O. Kerbrat, and P. Mognol, "A new global approach to design for additive manufacturing," Virtual and Physical Prototyping, vol. 7, no. 2, pp. 93–105, 2012.

Overview of the proposed design framework

- Topology Optimization (TO)
 - TO algorithms distribute finite elements of material within a predefined space [3]
 - Solid Isotropic Material with Penalization (SIMP) approach [4]:
 - Power law of material properties
 - Objective: minimize structure compliance under loading
 - Constraint: total amount of material (volume fraction)

[3] M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods and applications / M. P. Bendsøe, O. Sigmund., ser. Engineering online library. Berlin; New York: Springer, 2003., 2003.

[4] M. Bendsøe, "Optimal shape design as a material distribution problem," Structural optimization, vol. 1, no. 4, pp. 193–202, 1989.

- Design for additive manufacturing (DFAM) rules and limitations
 - Process/machine-dependent
 - Minimum wall thickness, minimum hole diameter, maximum build envelope, etc.
 - Modify each variant design based on these rules and limitations

Cost analysis

- Manufacturing time and cost are measures of resource consumption of each variant in the product family
- Manufacturing time

$$t = t_{setup} + t_{preheat} + \sum_{i=1}^{n} t_i$$

Where:

 $t_{
m setup}$ = Machine setup time $t_{
m preheat}$ = Preheat time t_i = Time to build the i-th layer n = Total number of layers of one part

Cost analysis

▶ Total manufacturing cost of each variant in the product family

$$C = C_{material}M + C_{operation}t + C_{manpower} + C_{overhead}$$

Where:

 $C_{material}$ = Unit cost of material usage per gram M = Total mass of the material usage

 $C_{\text{operation}}$ = Machine operation cost per hour

t = Total time to build a part

 $C_{manpower}$ = Manpower cost in preparing the build as well as post-processing

Coverhead = Other overhead cost

- Cantilever beam: fixed at one end, load = 10N at the free end
- Design requirements: low compliance upon loading, light-weight
- Platform
 - A solid rectangular cantilever beam
 - ▶ Length = 200mm, height = 20mm, thickness = 10mm

- Variant generation Topology optimization (SIMP)
 - ▶ 10 variants, with different overall material consumption (measured in volume fraction): 10%, 20%, ... 100%

Case study

▶ FEA, using Calculix

- Simulate the maximum displacement at the free end
- A tradeoff is found between material consumption and structural strength

- Design for AM rules and limitations
 - Fused Deposition Modeling (FDM) process
 - Minimum allowable wall thick = 0.8mm → Beam NO. I (10% material) is not manufacturable
- Additive manufactured samples:
 - Beam NO.2 to NO. 10 were built by FDM
 - Material: Polylactic acid (PLA) thermoplastics

Layer	Fill density	Print speed	Track width	Nozzle	Platform
thickness	(%)	(mm/s)	(mm)	temperature (°C)	temperature (°C)
(mm)					
0.1	100	80	0.4	210	55

Nine beams of the family: (a) Sample NO. 2; (b) Sample NO. 3; (c) Sample NO. 4; (d) Sample NO. 5; (e) Sample NO. 6; (f) Sample NO. 7; (g) Sample NO. 8; (h) Sample NO. 9; (i) Sample NO. 10

Manufacturing time and cost of each variant in the product family

$$t = t_{setup} + t_{preheat} + \sum_{i=1}^{n} t_i$$

$$C = C_{material}M + C_{operation}t + C_{manpower} + C_{overhead}$$

Sample NO.	2	3	4	5	6	7	8	9	10
Material consumption	20%	30%	40%	50%	60%	70%	80%	90%	100%
Manufacturing time (min)	59	74	86	99	111	121	128	124	123
Cost (\$)	25.7	32.3	37.7	43.5	49.2	53.8	57.5	56.5	56.4

Case study

Manufacturing time and cost of each variant in the

Closing remark

- A resource-driven product family design framework in additive manufacturing
- Parts with complex geometry and material distribution can be manufactured by AM, which provides more freedom to product family design
- Tradeoff is found between product performance and resource consumption
- Resource consumption (material usage, manufacturing time, and cost) can be a consideration for selecting production plan

Future work

- Costing models for other AM processes
- More complex products, perhaps with assemblies

THANKYOU