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Abstract
Polymer‐dispersed liquid crystal automated quantification system for vision through
polymer‐dispersed liquid crystal double‐glazed windows: Circuit implementation
(PDLC)‐windows played an essential role in providing a visual comfort for occupants in
commercial buildings recently. PDLC windows adjust the visible transparency of the
glazing to control the daylight accessed to internal environments. A former study pro-
posed an algorithm to quantify the vision through the PDLC glazing in terms of image
contrast. The quantification algorithm determines the minimum level of transparency that
maintains a comfortable vision through the window. This study introduced the imple-
mentation of a real‐time automated system that achieves the vision quantification process.
Firstly, system on‐chip was utilised to realise the quantification algorithm, including
contrast estimation. Secondly, the contrast determination action was re‐implemented
using MATLAB, Cortex‐A9 microcontroller, and Cyclone V field programmable gate
array field programmable gate array‐chip. The implemented systems were evaluated based
on the latency, throughput, power consumption, and cost.

K E Y W O R D S
Cortex‐A9 microcontroller, FPGA, PDLC glazing, smart windows, system on‐chip, vision quantification

1 | INTRODUCTION

Conventional windows in the external envelope of commercial
buildings are no longer passive elements. Numerous studies
proposed different modifications on the existed designs of
windows to be smart elements in buildings recently [1]. The
new forms add important roles to the windows to enhance the
living environment for the occupants. Modern windows are
feasible in renewable energy systems as they offer better
thermal and daylight performance [2–4]; in addition, the win-
dows are utilised for power generation in building‐integrated
photovoltaic windows [5].

For instance, Guo and Zhang [6] employed a multilayer
glazing window as a heat recovery device. The study utilised
the exhaust air from the internal environment to ventilate the
window and enhance the thermal performance. The study
realised an overall energy saving of 38.2%. A similar

methodology was applied by Lami et al. [7] to ventilate a
double‐glazed window in commercial buildings. The ventila-
tion process led to an energy saving of 83.1% and a declination
in the heat transfer coefficient of 3.82 to 2.36 W/m2 K
compared to the conventional double‐glazed windows. Kim at
el. [8] optimised the physical properties of an electrochromic
smart window for the highest possible energy saving. Solar
radiation through the window was reduced due to the shading
effect of the electrochromic glazing, resulting in a maximum
annual energy saving of 45% when the window was oriented to
the south. The thermal, daylighting, and electrical behaviour
performance of a semi‐transparent photovoltaic (STPV) win-
dow was investigated by Olivieri et al. [9]. The windows were
built from STPV modules that differ in visible transparency
(10%–40%) and solar heat gain coefficient (SHGC) (0.655–
0.734). The study concluded that the electrical generation ef-
ficiency was increased with the decreasing of the transparency;
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however, this led to a reduction in the illuminance of the in-
ternal environment.

The new features in smart windows required special algo-
rithms to accomplish their functions. To implement these al-
gorithms, special software and hardware are needed. For
example, Ismail et al. [10] used FORTRAN programming lan-
guage to implement a numerical code by using a PC. The code
was used to assess the thermal performance of three proposed
windows. However, other programming languages are more
efficient than FORTRAN such as an open‐source C‐language,
and it is widely used in modern embedded systems nowadays
[11]. Other studies employed MATLAB software tool [12] to
implement their developed algorithms. These algorithms
determine the transparency level of a polymer‐dispersed liquid
crystal (PDLC) windows [13] or to control the operation of
multilayer ventilated windows [14, 15]. But the industrial ap-
plications require standalone embedded systems [16] that
compensate the need for PC‐based software. For example,
Dobrojevic and Bacanin [17] utilised a Raspberry Pi‐based
embedded system [25] with Python programming language
[18] to control an intelligent home over Internet of Things (IoT).
Elkholy et al. [19] implemented a field programmable gate array
field programmable gate array (FPGA)‐based energy manage-
ment system for a three sources hybrid microgrid. The FPGA
system showed a high response against the changes of the load.
A grid interfaced solar photovoltaic (GIPV) system has been
developed by Kumar et al. [20] based on an ARM Cortex‐M4
core. The ARM core controls other peripheral entities such as
the voltage source converter and the DC‐DC boost converter to
realise the interface between the solar grid and PC.

However, in some applications when the processed data has
a relatively high size such as images or videos, then it is essential
to employ high processing speed embedded systems. Liu and
Feng [21] proposed a modified object edge detection (Zynq)
algorithm. The new algorithm was designed using a special SoC
FPGA‐based hardware platform. The proposed Zynq algo-
rithm exploits the hardware acceleration blocks on the FPGA
chips. Jaskolka et al. [22] emphasised the high capability of the
Raspberry Pi 3 SoC system to implement image and video
processing tasks, and it can replace the MATLAB‐based real-
isation method. In addition to its low cost, Raspberry Pi 3 uses
the freely available open‐source Python programming language.
Pereira [23] introduced four scenarios to implement an image
processing algorithm. The algorithm was dedicated to detecting
cracks task in buildings for civil applications. The scenarios
included realising the proposed algorithm using image pro-
cessing toolbox in MATLAB and without it, using PC‐based C/
C++ coding and Raspberry Pi‐3 implementation. The pro-
cessing time for the crack detection process was calculated in
different scenarios. The shortest execution time was when the
MATLAB image processing toolbox was employed. Wang [24]
proposed a neural network method for English vocabulary
translation. Relying on the FPGA Xilinx type chip raised the
accuracy of vocabulary detection to 98%, whereas the existing
accuracy for the FUZZY method is 92.35%.

Implementations of digital circuits can be evaluated in
different bases. The processing speed of a circuit reflects the

rate of data manipulation, and it can be measured in terms of
the latency or throughput. For instance, Ahmad et al. [25]
introduced a method to determine the cost of FPGA realisa-
tion for a given function. The study used the proposed method
to evaluate the FPGA implementation of different circuits
based on the latency and throughput. The experimental result
showed that the latency and throughput of four mathematical
operations were 2382 clock cycles and 0.178 mega inversions
per second, respectively. Paunski et al. [26] compared the
performance of different single board SoC systems for auto-
mated applications. The performance of Raspberry Pi‐3,
Rock64 and LattePanda was observed under the same opera-
tional conditions. LattePanda system showed the lowest power
consumption of 3.6 W while the power consumed by the
Raspberry Pi‐3 was 7.5 W. In addition, Rock64 system achieved
a face detection algorithm in 311 s; however, the same task was
executed in 757 s by the Raspberry Pi‐3 system.

Lami et al. [27] introduced a system to quantify the vision
through a polymer‐dispersed liquid crystal double‐glazed
window in commercial buildings. The study concluded that it
is possible to quantify the vision through windows glazing in
terms of image contrast [28, 29]. The experimental part of the
study included the procedures of vision quantification process.
Vision quantification process contains two main steps: Firstly,
16 digital images were taken; each image was taken at a
different level of visible transparency of the PDLC film. Then
the contrast for the images is determined individually. Sec-
ondly, the preferred vision level is derived from the contrast/
transparency curve based on the preferred vision ratio (PRV),
which was set by the user. A MATLAB‐based code was used to
estimate contrast values. The experiment was executed every
30 min during the daytime manually.

However, the proposed quantification process should be
addressed by a standalone automated system and does not
depend on a PC‐based software in practical applications. In
addition, the process should be executed spontaneously and
within a shorter time than 30min. Shortening the repetition time
is necessary to cover the variation of outdoor illumination in
real‐time. Therefore, this paper proposed an automated system
to handle the vision quantification algorithm. Firstly, an algo-
rithm was introduced to mimic the quantification process of the
previous work including contrast calculations [27]. Secondly, an
ARM System on Chip (SoC) system‐based was developed to
realise the proposed algorithm; the SoC system was tested
experimentally. Thirdly, the proposed contrast estimation task
was re‐implemented using alternative systems: MATLAB, ARM
Cortex‐A9 microcontroller, and Altera Cyclone V FPGA chip‐
based implementation. Fourthly, the performance of the
implemented systems was evaluated in different basis: latency,
throughput, clock consumption, power consumption, and cost.
This paper has the following contributions:

a. Introducing an implementation method for the proposed
vision quantification algorithm to fit practical applications
with more optimised execution time.

b. Assessment of the algorithm execution and producing
analytical comparison between different solutions
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2 | METHOD AND THE PROPOSED
SYSTEM

Since the purpose of this work is to realise the algorithm
proposed by Lami et al. [27], firstly it is essential to go through
the following steps that are employed to achieve the quantifi-
cation process:

1. An image processing model is responsible for determining
the contrast of a set of 16 images that were manually
captured through the PDLC‐window. Each image was taken
at a certain level of visible transparency for the PDLC film.

Contrast computation was relied on the RMS contrast
technique [30], as illustrated in Equations (1) and (2):

RMS Contrast¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M ∗ N

XM−1

i¼0

XN−1

j¼0
Iij − I
� �2

v
u
u
t ð1Þ

Where:

M and N are the column and row numbers of an image I
respectively
Iij is the pixel value which lies in the ith column and the jth
row, and
I is the average brightness of all pixels of the image I and
it can be estimated in Equation (2) in the range of [0, 1]:

I ¼
1

M ∗ N

XM∗N−1

i¼0

Ii ð2Þ

2. A mathematical model in charge of computing the voltage
level is required to drive the PDLC film. This will maintain
a certain level of visible transparency based on a preferred
vision ratio (PVR) set by the user.

The contrast values obtained by the image processing
model is sketched against the corresponding voltage as shown
in Figure 1. As depicted in the figure, contrast values were
drawn at ac voltage values: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 120, 140, 160, 180 and 200 in volt. Some important points
on the curve were defined as below:

� Cmin and Cmax are the minimum and maximum contrast
values, respectively.

� (vth; Cth) is the threshold contrast point where Cth is the
threshold contrast value at which contrast values start satu-
rating and vth is the corresponding voltage. The threshold
contrast value was determined by Equation (3):

Threshold Contrast Cthð Þ ¼ 0:707 Cmax − Cminð Þ ð3Þ

To estimate the voltage vPVRð ) for the PDLC film that
provides a preferred visible transparency, two points on the
contrast curve should be known (Ca; vaÞ and (Cb; vbÞ; the
two points lie directly before and after the preferred point
(Cpvr; vpvrÞ. The quantification algorithm should track the
latter point based on the preferred vision ratio (PVR) that is set
by the user. The range of PVR starts from 0 (provide minimum
allowed visibility through the window), while the maximum
value of PVR is 1 (provide maximum available visibility
through the window). However, the instantaneous value for
the PDLC film (vPVR) was estimated by Equation (4):

F I GURE 1 Contrast curve
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vPVR ¼ vb

− vb − vað Þ
Cb − PVR Cmax − Cthð Þ þ Cthð Þ

Cb − Ca

� �� �

……0

≤ PVR < 1

ð4Þ

This study relies on the workflow as shown in Figure 2.
Suitable hardware and software were prepared to implement
the quantification action. The proposed algorithm will be
introduced in the next sections; a system on‐chip (SoC) system
was utilised to implement the quantification algorithm. On the
other hand, three alternative methods were employed to
implement the quantification process: MATLAB‐based, mi-
crocontroller MC‐based, and field programmable gate array
technique FPGA‐based implementation methods. Finally, the
performance of the realised systems was evaluated and
compared comprehensively.

The proposed quantification algorithm is shown in Figure 3.
The quantification algorithm proposed by the previous study
(Lami et al. [27]) has multiple stages: image capturing, contrast
computation, estimation of PDLC voltage, and repetition time
estimation. However, the previous study did not have whole
parts of the proposed algorithm in one chart to show how the
system can work to achieve it. Instead, the previous study exe-
cutes different step manually. In addition, the previous study did
not add the repetition time step. Therefore, the present study
gathered all the mentioned parts of the quantification process
and added the repetition time stage as shown in Figure 3. Since
the whole process should be executed within a specific time (Tr)
periodically, the algorithm starts by storing the current time (t1).
Then a group of images should be taken and stored in a storage
area. The main controller instructs a PDLC power driver to
generate the first voltage level (0 V) as mentioned earlier. After
setting the ordered voltage, a high‐definition HD camera takes
one shot through the PDLC window and store it at a memory
storage device. The controller instructs the power driver to
generate the next voltage level, and the camera will take another
shot through the window. The operation is repeated for the

remaining images. Finally, the 16 images should be stored at the
memory of the system; each image is taken at a certain voltage
level as mentioned earlier.

The next part of the process is responsible for contrast
computation. The stored images should be fetched individually
to the RAM, where the controller can access and process them.
The controller extracts the RGB data of the images and com-
putes the contrast according to Equations (1) and (2). At this
stage, image processing implementation has been accomplished;
the system now determines all the 16 (contrast/voltage) points
on the contrast curve as explained earlier in Figure 1.

The next action is estimating the voltage required to drive
the PDLC film to maintain the preferred transparency based
on the PVR ratio. The controller first determines the milestone
points on the contrast curve and then determines the corre-
sponding voltage according to the Equations (3) and (4). The
voltage level is then derived by the controller to be sent to the
PDLC power driver; the voltage level could be a binary code
that reflects the preferred voltage value estimated by Equa-
tion (4). The power driver will encode it and generate the
request voltage for the PDLC film. Finally, it is important to
record the elapsed time at this step (t2 − t1). Then the system
decides to wait for (Tr − elapsed time) to complete the full
cycle (Tr) before re‐executing the quantification algorithm.

3 | EXPERIMENTAL SETUP

An experiment with four scenarios has been executed to realise
the circuitry for the quantification process controller. The
following is a demonstration of the experimental scenarios,
including purpose, design, hardware, and software setup.

3.1 | Scenario 1: System on‐chip SoC‐based
controller

A SoC‐based system Raspberry Pi‐3 (RPi‐3) was deployed to
realise the quantification process in Figure 3. Therefore, the

F I GURE 2 Workflow
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hardware and software were prepared as shown in Table 1.
The Raspberry Pi‐3 board [31] provides an open source SoC
system managed by Linux. The quantification algorithm in
Figure 3 was interpreted into a Python code to be executed by
the SoC system. The Python code controls the peripheral
devices to achieve the proposed process. The images were
taken by an HD camera, which is compatible with the SoC
system. The voltage level decided by the SoC system is a 10‐
bit digital signal. In other words, the range of the PDLC AC

voltage is divided into (210 or 1024) level. The digital signal
(SoC decision) is sent to an ATmega328P‐based microcon-
troller (Arduino board). The latter microcontroller is
responsible for generating a pulse‐width‐modulated (PWM)
signal based on the received decision. The PWM signal is
forwarded to the power driver to generate the preferred
voltage level for the PDLC film. A PC was used to monitor
the operating system of the SoC system. Figure 4 depicts the
setup of scenario 1.

F I GURE 3 The proposed quantification algorithm
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TABLE 1 Experimental setup
Scenario Item Specifications

1 SoC system CPU Quad core ARM Cortex A‐53 (1.5 GHz)

RAM 1 GB DDR2 SDRAM

Hard disk External SD card (16 GB)

Operating system Linux

Programing language Python 3

HD camera Module Raspberry Pi 5 Megapixel camera

Resolution Up to 2592 � 1944

Power driver Module Triac‐based AC dimmer

Rating AC current 16 A, 600 V

Microcontroller ATmega328P‐ based MC Arduino UNO

2 Software WINDOWS‐based MATLAB version 2022

Programing language MATLAB‐based programing language

Operating system 64‐bit WINDOWS 10

PC Intel quad Core i7 2.2 GHz, 8 GB RAM

3 Microcontroller Dual core ARM Cortex‐A9 microcontroller (50 MHz)

Software ARM Development Studio IDE 2022.1

Programing language ‘C’

4 FPGA chip Altera Cyclone V

Software Quartus Prime 21.1 (Lite Edition)

Programing language VHDL

Abbreviation: FPGA, field programmable gate array.

F I GURE 4 Experimental setup for scenario 1

3.2 | Scenario 2: MATLAB‐based contrast
estimator

In this scenario, a MATLAB code has been prepared to
implement only the contrast computation section in the pro-
posed quantification process. The code starts by reading the
RGB data of the images and compute the contrast individually.
Table 1 demonstrates more details about the hardware and
software setup of scenario 2.

3.3 | Scenario 3: Microcontroller‐based
contrast estimator

In this scenario, an ARM Cortex‐A9 microcontroller has been
utilised to realise the contrast estimator part in the proposed
quantification algorithm. The microcontroller is a built‐in
Altera Cyclone V FPGA chip. The microcontroller relates to
a client via a bare‐metal bus [32]. The ARM Development
Studio IDE software (in the client side) mediates between the
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programming code and the microcontroller. A code was
written using the well‐known ‘C’ programming language to
execute the contrast action. Figure 5 and Table 1 show more
details about the setup of scenario 3.

3.4 | Scenario 4: FPGA‐based contrast
estimator

In scenario 4, the field programmable gate array technique was
employed to build the contrast estimator circuit. Altera
Cyclone V provides 41,910 configurable logic blocks (CLBs),
which were utilised to construct the contrast estimator. The
FPGA design is managed by the Quartus software [33].

The estimator circuit shown in Figure 6 was prototyped by
the FPGA chip to determine the contrast value for one image
at a time. The design relies on the contrast Equations (1) and
(2). The intellectual properties (IPs) in the library of Quartus
software were used in the design. The top‐level design of the
estimator circuit was described using Very High Scale Inte-
grated Circuit Hardware Description Language (VHDL) [34].
The detailed timing diagram is depicted in Figure 6. The
contrast estimation process starts by resetting the output of all
components in the circuit. Once the accumulator (ACC1)
determines the summation of the Equation (2)

(I ¼ 1
M∗N

PM∗N−1

i¼0
Ii), the divider (DIV1) circuit divides the

summation value by the number of pixels times three (3MN).
At this stage, the average brightness I of the input image I has
been computed. This step requires (3MN) clock cycles to
accumulate the RGB data for all pixels, in addition to one

clock for the division operation. The term (
PM−1

i¼0

PN−1

j¼0
Iij − I
� �2

)

in Equation (1) is determined by the accumulators (ACC2 and
ACC3), the divider (DIV2), the subtractor (SUB) and the
multiplier circuits. For every pixel, the average pixel brightness
(Iij) is estimated by accumulating the RGB data for a particular
pixel (by ACC2); then it is divided by three (by DIV2). The

average brightness of all pixels (I) is subtracted from the
average brightness of the current pixel Iij by the subtractor
(SUB). The computed difference of the current pixel is
squared by the multiplier (MUL). The squared difference
Iij − I
� �2

for all pixels is accumulated by the accumulator
(ACC3). This step requires eight clock cycles for one pixel;
hence, it consumes (8MN) clock cycles. The accumulated
output of (ACC3) is divided by the number of pixels (M ∗ N)
by the divider (DIV3). Finally, the RMS contrast value is ob-
tained by finding the square root for the output of (DIV3) by
the square root circuit (SQRT). It is assumed that the clock
signals for different entities are produced by a separate clock
distribution circuit. Each entity in the FPGA circuit is trig-
gered by a clock signal at appropriate times to achieve the
mathematical computation sequence of Equations (1) and (2).
The number of consumed clocks were shown in the timing
diagram of Figure 6 for different stages in terms of column M
and row N of the image. The clock distribution circuit receives
a universal clock signal from the clock source on the FPGA
chip.

4 | RESULTS AND DISCUSSION

The objectives of this section are:

1. Demonstrating and comparing the experimental results of
the implemented scenarios mentioned in Table 1.

2. Investigating the feasibility of the implemented systems in
terms of latency or processing‐speed, throughput, power
consumption, and the cost.

The Raspberry camera was attached to the SoC system and
fastened securely in front of the window. The power driver was
connected to the SoC system, and its output was connected to
the PDLC film. Before executing the Python code, the time
required by the SoC system to take one image was investigated
as shown in Figure 7. This time is necessary to know as it is

F I GURE 5 Experimental setup for scenario 3
and 4
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considered as a delay which should be added to the overall
latency of the system. The following steps were followed to
define the period for each step:

1. To capture one image, the SoC system generates the code
that reflects the required voltage level and sends it to the
power driver. The power driver needs a time to adjust its

F I GURE 6 FPGA‐based contrast estimator circuit and the timing diagram. FPGA, field programmable gate array

8 - LAMI ET AL.



output according to the requested level. A separate exper-
iment was performed to examine the time response of the
power driver. A well calibrated AC voltage sensor was
prepared to observe the output of the power driver. While
the output is at 20 V, the power driver was requested to
generate a 50 V (20V and 50V were arbitrary chosen); the
power driver responds as shown in Figure 8. The time
response revealed that the output was jumped to 50 V
within 20 msec.

2. Regarding the time response of the PDLC film against
input voltage change, it can rely on the previous research
examination of this topic. Pozhidaev et al. [35] concluded
that the transition time of a PDLC film from opaque to
translucent state is 10 msec approximately.

3. A Python code was prepared (in a separate experiment) to
inspect the time taken by the camera module to take an
image. The same SoC system and camera module of the
experiment were used. The test showed that the camera
needs 531 msec to take one image. This time includes image
capturing and saving the image in a particular directory on
the memory of the SoC system.

Consequently, it can be concluded that the SoC system
required 561 msec (20 msec + 10 msec + 531 msec) to capture
one image or approximately 8.98 s for 16 images. This time will
be considered as a latency in addition to latency due to the
other tasks of the proposed quantification algorithm.

After running the Python code of scenario 1, the SoC
system executed the quantification process; 16 1080 � 960
images were taken and stored at the memory. The image
group was used for contrast computation in this scenario as
well as the other scenarios. The obtained contrast values were
applied to the mathematical model of the quantification
process to generate the preferred voltage level. The PVR
ratio was set to an arbitrary value. Finally, the power driver
fed the PDLC film the preferred voltage according to the
SoC decision. The throughput of the experimental systems
can be estimated based on the size of input data and the
latency.

Throughput of vision quantif ication SoC system

¼
Data size
Latency

ðbit per secÞ
ð5Þ

The input data in all the experimental scenarios is 16 im-
ages. The experimental systems deal with the RGB data of the
images. Thus,

Input data size¼ 3KMN ðbitÞ ð6Þ

Where M and N are column and row numbers of the
image pixels, and K is the number of bits per colour; in this
case, K ¼ 8 as the input images are 8‐bit‐coloured images.

F I GURE 7 Time to capture one image

F I GURE 8 Time response of the power driver
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The Python code was suitably organised to observe the
time consumed by different steps while executing the pro-
gramme. The result was as follows:

� Image capturing and storing (at SoC memory) time = 8.98 s.
� Image fetching (from the hard disk to the RAM) = 0.12 s.
� Contrast computation time = 451.69 s.
� Estimating voltage level for the power driver = 0.02 s.
� Approximately 0.86 Mb/sec throughput.

According to the second scenario, the 16 images that were
taken by the camera in the first experiment (scenario 1) were
stored at the hard disk of a Windows‐based PC. The location
of the image group was properly set in the MATLAB code so
that the programme can access them during the execution. The
MATLAB software utilised dual CPU cores from the PC
processing resources while running the programme. The code
included a ‘TIC‐TOC’ instructions to estimate the execution
time for the contrast calculation section. The programme
consumed 2.98 s to compute the contrast values of the images.
The recorded throughput of the system is 133.6 Mb/sec.

For the third scenario, the images taken in the first scenario
were applied to the ARM A9 microcontroller system for
contrast computation. The storage directory of Images was
stored was included in the ‘C’ code to be accessed by the
programme. The code also included instructions to estimate
the time consumed for contrast calculation. A USB blaster link
was initiated between the ARM development studio IDE
software (PC side) and the on‐chip CPUs (on Cyclone V
FPGA board). The code was compiled by a ‘C’ compiler to
generate the source code to be executed by the microcon-
troller. The running of the code showed that the contrast
computation action consumed 8.36 s. The observed
throughput was 47.62 Mb/sec.

Regarding the fourth scenario, a new FPGA Cyclone V
chip‐based project was created in Quartus prime software. The
hardware of the digital circuit of Figure 6 was described using
VHDL language. Intellectual properties were imported from
the library of Quartus software to implement the circuit. A
VHDL code was written as a top‐level design that contains the
detailed description of the wiring between different entities of
the circuit. The off‐chip memory in Figure 6 was excluded
from the FPGA design, as it is located outside the FPGA chip.
The RAM holds the RGB data of the 16 images obtained from
scenario 1. The off‐chip memory (an SD RAM) and the FPGA

chip are existing on a ‘Cyclone V FPGA board’. The project
was compiled, and the following facts were extracted from the
Quartus software about hardware resource utilisation:

� Configurable logic block utilisation: 2493 out of 41,910
(≈6%).

� Digital signal processing block utilisation: 3 out of 112
(≈3%).

� Clock source utilisation: on‐chip clock source (50 MHz).

Referring to the timing diagram of the FPGA design in
Figure 6, the number of consumed clock cycles for the contrast
computation of one image is as follows:

Clock cycles for Contrast computation
¼ ð11MNþ 4Þ clock cycle

ð7Þ

Where M and N are column and row numbers of the
image pixels. Then the latency of the FPGA contrast estimator
is as follows:

Latency of FPGA contrast estimator¼
11MNþ 4

FCLK
ð8Þ

As the taken photos in all scenarios have a resolution of
(1080 � 960) and the circuit used the 50 MHz (0.02 µsec cycle
time), the latency of the FPGA contrast estimator is (0.228 s).
As a result, the throughput is 109.14 Mb/sec. However, the
results of the implemented scenarios have been listed in
Table 2.

The following sections will evaluate and compare the
implemented systems in the experimental scenarios according
to the obtained result. Different point of views will be dis-
cussed to point out the pros and cons of each system.

4.1 | Latency

The experimental result of the Raspberry Pi‐3 SoC system
shows that the contrast determination process consumed
451.69 s. In other words, it caused 98% of the whole pro-
gramme’s latency. The observed execution time to run the
whole algorithm is 7.68 min, However, this latency will not
meet the practical requirements when the preferred repetition

TABLE 2 Results summary

Implementation method

For 16 images For 1 image
SoC system MATLAB Cortex‐A9 MC FPGA

Contrast
computation (s)

451.69 s 2.98 8.36 0.228

Throughput (Mb/s) 0.86 133.6 47.62 109.14

Other facts Time for other parts of
the algorithm = 9.12 s

‐‐‐ ‐‐‐ Configurable logic block utilisation
(6%) DSP block utilisation (3%)

Abbreviation: FPGA, field programmable gate array.
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time (Tr) of the quantification process is less than it. Therefore,
an alternative solution should be considered to reduce vision
quantification running time. Since the effective delay was in
contrast estimation, the implemented ‘contrast estimation
systems’ in the remaining scenarios will be examined to resolve
this issue.

MATLAB implementation provided an effective reduction
in the latency of 2.98 s. Consequently, the quantification pro-
cess will be accomplished within (Tr = 12.1 s) compared to
(Tr = 460.81 s) in the case of the Raspberry Pi‐3 SoC system.
On the other side, the ARM Cortex‐A9 bare‐metal imple-
mentation gives a powerful performance. The latency was
dropped to 3.8% compared to the Raspberry Pi‐3 SoC system.
This offers a reduction in the quantification process time to
(Tr = 17.48 s). The fourth scenario depicted a decline in the
contrast computation to 0.228 s, and it is 1981 times faster
than the SoC system in the first scenario. In conclusion, the
less latency system the higher processing speed system in the
FPGA contrast estimator.

4.2 | Throughput

The throughput of a system is reversely proportional to its
latency. Hence, the less latency, the more the throughput. For
example, the utilised SoC system showed the least throughput
of 0.86 Mb/sec among other systems as it works with the
highest latency. In contrast, the maximum throughput that
occurred is 109.14 Mb/sec by the FPGA implementation
technique at minimal latency. However, the presented FPGA
design achieves the contrast computation for one image only.
In the following sections, the possibility of using the residual
resource in the chip to achieve the contrast computation for
the 16 images will be discussed. Therefore, the throughput and
other design parameters of the FPGA circuit will be redeclared
later.

4.3 | Power consumption

To evaluate the power consumption of the presented experi-
mental systems, they can be classified into two groups. The
Raspberry SoC system in scenario 1, and the PC‐based MAT-
LAB system in scenario 2 can be identified as computers. While
the ARM Cortex‐A9 microcontroller and the FPGA system are
considered as non‐computers, previous studies showed that the
power consumption of normal PCs is greater than that for
Raspberry SoC systems. For instance, Bekaroo and Santokhee
[36] investigated the power consumption of different kinds of
computers; the computers under examination were performing
a number of tasks. They concluded that a laptop computer
consumes 17.68 W which is four times more that the con-
sumption of the Raspberry SoC system. On the other hand,
former studies concluded that the power consumption of the
FPGA‐based DSP implementation is less than DSP processors.
For example, Bai et al. [37] implemented a DSP algorithm by
using an Altera FPGA chip and another method by using a DSP

processor from Texas Instruments [38]. They concluded that
the FPGA‐based system consumed 2.4 less power that the
commercial DSP processor.

4.4 | Cost

The cost of the implemented experimental systems is greatly
varied. For instance, the Raspberry Pi SoC systems have the
least cost with only $35 [39]. Numerous studies classified the
FPGA chips as a low‐cost implementation method for their
DSP applications [40, 41]. However, the contrast estimator
systems in scenarios 3 and 4 were implemented by the Altera
cyclone V SoC development kit. The latter development kit
costs $1795 from official organisations [42]. Regarding MAT-
LAB implementation, since it is essential to use the software
and the hardware permanently, the cost will be inflated.
However, MATLAB's perpetual licence costs $2350 from the
official websites [43]. Moreover, the cost of a normal PC will
be added to the cost of MATLAB implementation. In
conclusion, the best ranking of the experimental scenarios
based on the cost is Raspberry Pi‐3 system, Cyclone V (sce-
narios 3 and 4), and MATLAB implementation.

The ARM Cortex‐A53 microcontroller (used in SoC sys-
tem of scenario 1) has advanced capabilities more than the
Cortex‐A9 microcontroller (used in scenario 3). For instance,
the quadcore 64‐bit data bus in A53 MC versus the dual‐core
32‐bit data bus in A9 MC [44, 45]. However, the results
showed that ARM A9 MC achieved a contrast estimation
process with less latency and higher throughput compared to
A53 MC. To investigate the behaviour of A53 MC in the SoC
system, the CPU utilisation was monitored during the pro-
gramme execution. It was found that the Linux operation
system allocated only one CPU to execute the Python pro-
gramme, while other cores were employed to run other tasks
of the SoC system. On the other hand, all available resources
of ARM A9 MC were dedicated to handle contrast computa-
tion. In contrast, former studies emphasised that the Raspberry
Pi SoC system is not the most efficient choice to achieve
mathematical tasks [26].

In digital circuits, latency and power dissipation are directly
proportional to the number of clock signals applied to the gate
of CMOS transistors as cited in former studies [46, 47]. To
calculate the number of clock cycles consumed in the pre-
sented experimental systems, the clock frequency (FCLK) and
the latency should be known. Then,

Clock consumption¼ Latency ∗ FCLK ð9Þ

Relying on Equation (9) and the given experimental results,
the contrast computation consumed 691:2 ∗ 109, 6:56 ∗ 109,
418 ∗ 106, and 11:4 ∗ 106 clock cycles in scenarios 1–4,
respectively. In other words, the more clock consumption for a
particular function the more the latency and power dissipation.
Therefore, there was a decline in the performance of the sys-
tem in the case of SoC and MATLAB, and ARM A9 MC
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implementation. An essential difference is recognised between
FPGA implementation and other methods in the clock con-
sumption tactic. Experimental scenarios 1–3 employed a mi-
crocontroller or a microprocessor to achieve the contrast
computation action. The mathematical process was interpreted
into instructions. The CPU requires one or more clock cycles
to complete one instruction. As a result, the number of clock
cycles will be inflated. In contrast, FPGA implementation
utilised the available configurable logic blocks on the chip to
achieve the contrast estimator circuit. The 11:4 ∗ 106 clock
cycles that were consumed by the FPGA circuit were required
to accomplish the summation loops in Equations (1) and (2).
This led to a minimal number of clock cycle utilisations and the
least latency and power consumption [48].

The configuration capability in an FPGA chip architecture
allows us to apply the preferred designs on it in Ref. [49]. In
addition, once an FPGA chip is configured, the chip acquires
the features of hardware implementation. In other words, the
latency of an implemented system is determined by the delay of
the input/output paths in FPGA chips [50], typically in
nanoseconds or less. In contrast, the latency of software
implementation methods is determined by the number of
clocks required to execute the implemented algorithm, such as
in microcontrollers, PCs, and SoC systems; typically a high
delay compared to hardware implementation [26]. Therefore,
FPGA can serve the implementation of image processing tasks
more than other methods as emphasised in the literature. Mo,
Z. et al. [51] implemented an odour recognition algorithm that
mimics human nose. They used the Raspberry Pi 3 SoC sys-
tem, PCs with different kinds of processors, and the FPGA
technique. The SoC system consumed 4.6 ms to execute the
algorithm. For PC implementation, the best case was 2.1 ms
using i7‐10875H processor. However, the FPGA system
showed an exceptional performance with 57.3 µs. According to
the literature, FPGA implementation is the most efficient
method when it is used in complex computation algorithms.
The deviation in the performance between FPGA and other
implementation methods in the literature is comparable to the
result of the present study. The latency of the proposed system
was declined from 451.69 s in the SoC system to only 0.228 s
in the FPGA system.

A hardware acceleration technique can be accomplished in
FPGA chips to achieve more reduction on the latency. De-
signers use the available hardware resources on the chip to
build a circuit in parallel paths. The parallel designs are used in
DSP applications to increase the computation efficiency [52].
This technique can be applied to the presented FPGA circuit
of scenario 4. The circuit determines the contrast for one
image and only 6% of the area of the chip was utilised. Hence,
the circuit can be repeated 16 times in parallel; each circuit
estimates the contrast of one image. The RGB data and timing
signals will be applied to all circuits simultaneously. Thus, the
overall latency will not change (0.228 s) while the throughput
will be multiplied to 16 times (1.75 Gb/sec).

Further parallelism can be done on the presented FPGA
circuit. The two summations in Equations (1) and (2) caused

the effective percentage of the latency in the circuit. If the

summation (
PM∗N−1

i¼0
Ii) is executed in N parallel branches, then

the N accumulator and N divider will be needed. Consequently,
the latency of the summation will be dropped N times. Simi-
larly, the latency of the other summation can be reduced and
mitigate the overall delay. However, the hardware resources of
the utilised Altera Cyclone V FPGA chip (41,910 logic block)
may not be adequate to implement this action. Alternatively, an
FPGA chip with bigger hardware resources should be adopted
to accommodate the additional components.

To sum up, Figure 9 summarises the behaviour of the
proposed system in this work. The Raspberry Pi‐3 SoC system
showed a poor calculation efficiency with high latency and
power dissipation. However, if it can achieve the quantification
algorithm within the repetition time (Tr), then it can be chosen
due to the low cost. The MATLAB and Cortex‐A9 MC
implementation methods showed a closed performance with a
few seconds latency. Cyclone V FPGA chip implementation
had an exceptional behaviour with the least latency and highest
throughput. Moreover, the proposed vision quantification al-
gorithm can be achieved with the least repetition time
(Tr ¼ 9:14 sec) with the FPGA design.

Among the presented systems in this work, FPGA
showed the best performance in terms of latency, throughput,
and power dissipation. Furthermore, it meets the requirement
of quantification of vision through PDLC‐windows. However,
the performance of the proposed systems will be declined if
the input data size is extended. Currently, the processed data
is 8‐bit colour images with a resolution of (1080*960). When
it is required to increase an image size (for more contrast
accuracy, for example 1920*1080 and 16‐bit colour images),
additional computational complexity will be necessary. Simi-
larly, the system should handle further mathematical opera-
tions if the number of images (to sketch the contrast curve) is
increased.

A moving cloud can shade the building within few seconds.
In this case, the PDLC visibility is not a match with the new
condition unless the proposed system responds in real‐time.
The system reaction towards the outdoor change is by
amending the PDLC excitation via the vision quantification
algorithm. Therefore, the repetition time Tr should be as
shortest as possible to cover the outdoor illumination condi-
tion instantaneously. If the presented FPGA vision quantifi-
cation system is applied, then the proposed algorithm will be
repeated in Tr ¼ 9:14 sec.

If an unexpected object moves in front of the glazing while
in the image‐capturing step of the quantification process, it will
lead to an unfamiliar form of the contrast curve. As a result,
the outcome of quantification operation will be impacted
effectively. This drawback can be averted by adding an in-
spection stage in the quantification process. An inspector will
be necessary to test contrast values by comparing them with
the standard pattern of the contrast curve. If the difference is
greater than a threshold level, then the quantification proced-
ures should be restarted. However, the inspection stage can
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add more latency to the system and reduce the overall
computational efficiency.

If one of the proposed systems is employed in a com-
mercial building, the visible transparency of the glazing will be
changed from a transparent to an opaque condition every time
the quantification algorithm is being executed, that is, within a
time of (Tr). However, this will create an uncomfortable visual
experience for the occupants, especially if the repetition time is
short. To overcome this situation, the quantification algorithm
can be run on a test window positioned in a non‐occupied area
in the building. The decision of the controller will be publicised
to the building's glazing.

Since the proposed systems quantify the vision through
PDLC glazing in terms of visible transparency, it is possible to
quantify the vision through other types of glazing. Therefore,
the proposed systems are applicable for smart windows that

offer changeable optical properties [53, 54]. This provides a
real‐time assessment of vision quality for a better visual linking
between the occupants and external views.

5 | CONCLUSION

To conclude, this study introduced different implementation
methods for a visible transparency controller for PDLC win-
dows in commercial buildings. The automated controller exe-
cutes a formerly proposed vision quantification algorithm in
real‐time. A set of images were taken for a view through a
PDLC window by the controller. The main objective of the
realised system is to analyse the vision contrast of the images
and estimate the suitable voltage for the PDLC film. The
voltage level determines the visibility through the PDLC

F I GURE 9 Result summary
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window based on user preferences. In addition, the automated
system determines the minimum level of glazing visibility that
sustains a visual comfort towards the external scenes. The main
outcome of this work can be illustrated in the following:

1. The study emphasised that the processing cost and power
consumption of the Raspberry Pi‐3 SoC system is high, and
it may not be eligible to handle the proposed quantification
algorithm.

2. MATLAB and ARM Cortex‐A9 MC implementations
showed a closed contrast computation efficiency of 2.98
and 8.36 s, respectively. However, the power and clock cycle
consumption are relatively high.

3. ARM Cyclone V FPGA‐chip implementation is the most
efficient system with a latency of 0.228 s and low power
consumption.

4. The minimum repetition time for the proposed quantifi-
cation algorithm was achieved by the ARM Cyclone V
FPGA system of Tr ¼ 9:14 sec.

In commercial buildings, using the implemented automated
system determines the comfortable visible band for smart
windows. The proposed system is applicable not only to PDLC
windows but also can be used with other kinds of smart glazing
whenever there is a need to assess vision quality through the
glazing. In addition to earlier research on smart windows, the
real‐time observability and controllability of the proposed
system optimise the visual comfort in internal environments of
commercial buildings. In future work, a complete FPGA
implementation will be considered. The digital camera and
PDLC power driver systems can be interfaced with the FPGA
chip. In addition, the delay of the camera and PDLC driver is
high (8.9 s) compared to contrast computation by the FPGA
chip (0.228 s); therefore, if alternative high response devices
are used, the overall system latency will be mitigated. Moving
scenes through the PDLC‐window will be considered in the
next step. A peripheral system will be created to detect the
instantaneous changes in the views. The latter system will
analyse the correlation between repetitive images to insure a
standard form of contrast curve.
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