
Predictive IoT temperature sensor

KALASHNIKOV, Alexander <http://orcid.org/0000-0003-1431-3836> and 
ELYOUNSI, Ali

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/31020/

This document is the Published Version [VoR]

Citation:

KALASHNIKOV, Alexander and ELYOUNSI, Ali (2022). Predictive IoT temperature 
sensor. Engineering proceedings, 27 (1). [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Citation: Elyounsi, A.; Kalashnikov,

A.N. Predictive IoT Temperature

Sensor. Eng. Proc. 2022, 27, 55.

https://doi.org/10.3390/

ecsa-9-13337

Academic Editor: Francisco Falcone

Published: 1 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Predictive IoT Temperature Sensor †

Ali Elyounsi and Alexander N. Kalashnikov *

Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK
* Correspondence: a.kalashnikov@shu.ac.uk
† Presented at the 9th International Electronic Conference on Sensors and Applications, 1–15 November 2022;

Available online: https://ecsa-9.sciforum.net.

Abstract: Temperature sensors are widely employed in control systems that maintain a required
temperature in a vessel or container irrespective of the temperature changes in the outer environment.
However, the limited power of the heater/cooler (the plant of the control system) might lead to
uncomfortable or even unacceptable deviations from the required temperature. This behavior can be
mitigated if the control system can have access not only to the present temperature in the vessel but
also to the forecasted environmental temperature. This situation occurs, among other situations, in
industrial vessels that require elevated temperatures during their operation but shut down out of
hours. To start heating these to the required temperature at the beginning of a working shift wastes
processing time until the required temperature is reached. It is more productive to turn on heating in
advance in order to get the vessel ready on time. In order to achieve fully autonomous automatic
operation, the sensor should have some intelligence and access to the temperature forecast, which
can be provided over the internet. Both these requirements can be met by employing a WiFi-enabled
microcontroller. We present the development of a predictive IoT temperature sensor based on the
ESP32 microcontroller, which uses the internet service to obtain the time and weather forecast and
upload temperature logs to a cloud server for convenient remote access and storage.

Keywords: predictive temperature management; IoT sensor

1. Introduction

Temperature sensors are used for a wide variety of industrial, scientific, medical and
domestic purposes, and they differ by design and/or operating principles to better suit
their given application. The global market size for these sensors was estimated at USD
6.3 billion in 2020, with a projected annual growth of 4.8% to 2027 [1]. They are frequently
employed in feedback control systems in order to maintain the required temperature of
an object irrespective of the temperature changes in the outer environment. For well-
insulated objects, the power of the heater/cooler does not need to be very high, as the
object can be brought to the required temperature without significant heat losses, albeit
slowly. However, the associated time delays might lead to, for example, production losses
if the object’s temperature is outside of the acceptable range for a manufacturing process.
If the heating/cooling requirements are known and/or can be predicted in advance, the
temperature of the object can be managed much more efficiently.

Recent advances in internet technologies, infrastructure and services made it possible
to develop automated management systems which provide the level of intelligence that
cannot be achieved by using low-cost computing at the edge alone. These services, in
addition to already ubiquitous cloud storage, include, i.a., Internet-of-Thigs (IoT), Industrial
Internet-of-Things (IIoT), time, weather forecast, mapping and other servers. As a result,
it became possible to engineer control systems with features that would be economically
unfeasible a few years ago because of their high capital and running costs. This paper
presents a detailed account of the development of a prototype industrial control system,
featuring a single WiFi-enabled microcontroller unit (MCU), which extensively uses internet

Eng. Proc. 2022, 27, 55. https://doi.org/10.3390/ecsa-9-13337 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/ecsa-9-13337
https://doi.org/10.3390/ecsa-9-13337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-1431-3836
https://ecsa-9.sciforum.net
https://doi.org/10.3390/ecsa-9-13337
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/ecsa-9-13337?type=check_update&version=1


Eng. Proc. 2022, 27, 55 2 of 7

services in order to cut off unnecessary energy use and associated costs for a process tank
heater. The reported development was initiated by a Sheffield area-based enterprise of a
small/medium size that qualified for development support under the auspices of the Digital
Innovation for Growth program [2]. The company provides electrochemical processing
services to their customers, which involves the use of heated water tanks. Many processes
must be conducted at elevated temperatures to ensure the conformity, consistency and
quality of outcome. The appropriate heating of some water tanks requires many hours and
should be completed by the start of a working day to avoid any waiting time.

At present, the company uses the setup presented in Figure 1. A domestic timer is
set at the end of a working day to switch on the heater after a guesstimated delay. When
the in-tank temperature exceeds that required for the process to be conducted, the next
working day, the thermal limit switch switches the heater off. The tank cools down until
the temperature crosses the lower threshold of the thermal switch, and the heater starts to
operate again.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 2 of 7 
 

 

featuring a single WiFi-enabled microcontroller unit (MCU), which extensively uses in-
ternet services in order to cut off unnecessary energy use and associated costs for a process 
tank heater. The reported development was initiated by a Sheffield area-based enterprise 
of a small/medium size that qualified for development support under the auspices of the 
Digital Innovation for Growth program [2]. The company provides electrochemical pro-
cessing services to their customers, which involves the use of heated water tanks. Many 
processes must be conducted at elevated temperatures to ensure the conformity, con-
sistency and quality of outcome. The appropriate heating of some water tanks requires 
many hours and should be completed by the start of a working day to avoid any waiting 
time. 

At present, the company uses the setup presented in Figure 1. A domestic timer is set 
at the end of a working day to switch on the heater after a guesstimated delay. When the 
in-tank temperature exceeds that required for the process to be conducted, the next work-
ing day, the thermal limit switch switches the heater off. The tank cools down until the 
temperature crosses the lower threshold of the thermal switch, and the heater starts to 
operate again. 

 
Figure 1. The existing control system and its modification for intelligent management. 

This arrangement generally results in the required temperature by the start of the 
working day, but because it relies on the guesstimated delay, it can be hit or miss. If the 
delay is set with a spacious margin that ensures the tank’s readiness, a substantial amount 
of energy can be wasted (Figure 2). If the delay is set with the view to minimize energy 
waste, production delays may be encountered. 

 
Figure 2. A typical heating curve with the heater switched on too early. Red bars show the time 
intervals when the heater had to be switched on to maintain the required temperature after the tank 
cooled off naturally, which wasted energy. 

Figure 1. The existing control system and its modification for intelligent management.

This arrangement generally results in the required temperature by the start of the
working day, but because it relies on the guesstimated delay, it can be hit or miss. If the
delay is set with a spacious margin that ensures the tank’s readiness, a substantial amount
of energy can be wasted (Figure 2). If the delay is set with the view to minimize energy
waste, production delays may be encountered.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 2 of 7 
 

 

featuring a single WiFi-enabled microcontroller unit (MCU), which extensively uses in-
ternet services in order to cut off unnecessary energy use and associated costs for a process 
tank heater. The reported development was initiated by a Sheffield area-based enterprise 
of a small/medium size that qualified for development support under the auspices of the 
Digital Innovation for Growth program [2]. The company provides electrochemical pro-
cessing services to their customers, which involves the use of heated water tanks. Many 
processes must be conducted at elevated temperatures to ensure the conformity, con-
sistency and quality of outcome. The appropriate heating of some water tanks requires 
many hours and should be completed by the start of a working day to avoid any waiting 
time. 

At present, the company uses the setup presented in Figure 1. A domestic timer is set 
at the end of a working day to switch on the heater after a guesstimated delay. When the 
in-tank temperature exceeds that required for the process to be conducted, the next work-
ing day, the thermal limit switch switches the heater off. The tank cools down until the 
temperature crosses the lower threshold of the thermal switch, and the heater starts to 
operate again. 

 
Figure 1. The existing control system and its modification for intelligent management. 

This arrangement generally results in the required temperature by the start of the 
working day, but because it relies on the guesstimated delay, it can be hit or miss. If the 
delay is set with a spacious margin that ensures the tank’s readiness, a substantial amount 
of energy can be wasted (Figure 2). If the delay is set with the view to minimize energy 
waste, production delays may be encountered. 

 
Figure 2. A typical heating curve with the heater switched on too early. Red bars show the time 
intervals when the heater had to be switched on to maintain the required temperature after the tank 
cooled off naturally, which wasted energy. 

Figure 2. A typical heating curve with the heater switched on too early. Red bars show the time
intervals when the heater had to be switched on to maintain the required temperature after the tank
cooled off naturally, which wasted energy.

This project aims to develop an automatic heater control system that would achieve
the required heated tank temperature at the start of a working day without excessive energy
consumption by utilizing ambient temperature forecast.



Eng. Proc. 2022, 27, 55 3 of 7

2. Project Requirements and Considerations

As there are approximately ten heated tanks around the company’s premises that
must be controlled, the customer requested the development of an independent controller
to simplify trial testing and deployment. The controller needed to save the temperature
logs in the internet cloud and onto an SD card, and it needed to be able to access internet
weather forecasts via the company’s Wi-Fi access point. It also needed to be made from
commercially available, off-the-shelf components that do not require the manufacture or
assembly of custom electronic boards. Lastly, the controller needed to be encased in a
material that was flexible and expandable.

Safety concerns: the heater should be switched off if the temperature exceeds require-
ments or if the controller loses power.

Security concerns: temperature logs have no notable value to the company or to
any actors with malicious intent. For this reason, operating via the company’s password-
protected access point is sufficient. The Wi-Fi credentials can be set externally after the first
power-up by using a suitable Wi-Fi password manager that is then stored in the controller’s
RAM. However, because the company’s premises are secure and the credentials are known
to onsite personnel, the option to permanently store the credentials in the flash memory of
the controller was instead selected.

3. Selection of the Hardware

Temperature measurements can be conducted by using a variety of sensors; thermo-
couples and resistance temperature detectors (RTDs) are the most common in industrial
environments. The former has an extended temperature range but a lower sensitivity. For
this reason, and because the customer had previously installed RTDs on-site, the Pt100 RTD
sensor was selected. It requires glue electronics to communicate data to a microcontroller
using either analog voltage or a digital interface. The latter option requires more wiring
but is considerably more robust and resilient to noise and was thus considered preferable.
We selected an Adafruit Pt100 RTD temperature sensor amplifier [3], which eases the use of
the MAX31865 integrated circuit that is dedicated to RTD handling [4]. Additionally, we
used a DS18B20 digital temperature sensor [5], a cheaper alternative that can be connected
to a microcontroller without the use of glue electronics.

The implementation of a Wi-Fi connection to obtain the weather forecast could be
carried out by using a microcontroller with a Wi-Fi gateway that is controlled either through
the use of AT commands or by acting as a serial to the TCP converter. However, there is
also a well-established line of Wi-Fi-enabled systems-on-chip (SoCs) that is manufactured
by Espressif and allows for the use of a single component for both the control and Wi-Fi
connection. Although the older-generation ESP8266 series is more established and generally
cheaper to deploy, the more recent ESP32 series offers significantly enhanced capabilities
that are useful for prototyping and low-volume replication [6].

M5Stack Basic Core [7] was selected because it provides access to a variety of ESP32
pins and allows for easy expansion by combination of the stackable modules. In particular,
we connected the output of the Adafruit Pt100 RTD temperature sensor amplifier to the
SPI pins of the ESP32 and the data pin of the DS18B20 sensor to an ESP32 GPIO pin. Both
sensors were powered by the 3.3 V source available on M5Stack Basic Core.

4. Selection of the Development Environment

ESP32 can be programmed using a variety of toolchains, including the Espressif IoT De-
velopment Framework ESP32-IDF (C/C++ compiler and linker), the Arduino environment
and MicroPython, which has become increasingly popular because its interpreting nature
does not require full code re-compilation after every change. The Arduino environment
was selected because of the availability of example codes, which covered all the identified
needs of this project. This choice was eventually confirmed by the straightforward process
of searching for solutions and workarounds when an added code snippet did not integrate
well with the developed firmware.



Eng. Proc. 2022, 27, 55 4 of 7

5. Selection of the IoT Service Provider

Currently, the Message Queuing Telemetry Transport (MQTT) protocol seems to
be the most used for Internet of Things (IoT) and Industrial Internet of Things (IIoT)
applications [8]. It features a (cloud/LAN) broker that listens constantly for packets from
data producers, stores them and then serves data consumers upon their request. This
allows both the producers and the consumers to experience disconnection or a loss of
power without losing data. A cloud broker eliminates the need for maintaining a local one,
which is convenient for a user without a dedicated infrastructure.

Despite the large number of Google search results for IoT service providers, most
proved incompatible with the requirements of this project. Some were too expensive, at the
yearly cost of EUR 500 or more for commercial applications (Blynk, Thingspeak, Google
Cloud, Particle IoT, Oracle IoT, Thinger, Ubidots, Pubnub and IBM Watson, to name a few).
Other options did not advertise a transparent pricing structure (e.g., email communication
was required for obtaining a quote from my Devices), some top providers would be unlikely
to help with development due to the low potential income stream (Microsoft Azure IoT,
Amazon IoT Core), some convoluted the process by splitting their operations between two
entities (i.e., Dweet for data producers and Freeboard for data consumers) and one quite
promising option went out of business (Phant).

In fact, we selected Adafruit IO [9] from the outset, as it ticked all the right boxes:
easy setup, capable free-tier account, USD 10 monthly fee for commercial use, extensive
documentation and a support forum. Later, when we encountered difficulties, we searched
for alternatives but found none. Throughout our use of Adafruit IO over several months, we
did not lose a single datum, observed 100% server uptime, enjoyed their online Graphical
User Interface (GUI) editor and easily located relevant documentation, when needed.

6. Firmware Structure and Functionality

The firmware development started by exploring examples and then integrated the
selected code snippets from the well-established Adafruit_MAX31865 (for RTD) and
OneWire/DallasTemperature (for DS18B20) Arduino libraries. The Network Time Protocol
(NTP) servers were accessed based on the code snippets from [10]. For weather forecasting,
we used a free service called Datapoint that is provided by the UK’s Meteorological Office
(Met Office) to businesses in the UK (it requires registration to obtain an access key and
location code) [11]. In order to prevent the device from hanging, we employed the ESP32
watchdog timer based on the code snippets from [12]. The Adafruit IO code was integrated
at the final stage, after familiarization with the provided examples. After the relatively
straightforward process of getting the code to work, the user interface (a.k.a. the dashboard)
was easily developed through use of Adafruit’s online dashboard editor (Figure 3).

As using the Adafruit IO Arduino API resulted in some complications, the Adafruit
IO REST API (via POST and GET HTTP requests) were employed instead. The developed
code was shared on the Adafruit IO support forum [13].

The device, when operating at full throttle, consumes around 0.11 A of current. During
the light sleep, M5Stack consumes less than 0.01 A, which results in a reduction of power
consumption by over ten times, as the sampling temperature and reporting results take
less than 5 s.

The loop Arduino function, therefore, takes temperature samples from the two tem-
perature sensors, sends the readings to the cloud, displays them on the local M5Stack color
LCD display, checks the position of the manual switch on the dashboard, determines if it
is necessary to update the RTC and weather forecast, clears the watchdog timer and then
enters the light sleep mode.

The time to switch the heater on is calculated by considering the heat losses through
the surface and the walls of the tank, the rated heater power and the difference between
the tank’s required and forecasted ambient temperatures.

The prototyped device is presented in Figure 4.



Eng. Proc. 2022, 27, 55 5 of 7
Eng. Proc. 2022, 4, x FOR PEER REVIEW 5 of 7 
 

 

 
Figure 3. Prototyped Adafruit IO dashboard showing historical graphs on the left and presenting 
values and the manual control switch on the right. The sampling rate was approximately 20 s. The 
graphs shown cover an interval of 30 days, which is user-selectable. By hovering a mouse pointer 
over any graph, the user can observe numerical values of the data of interest. 

As using the Adafruit IO Arduino API resulted in some complications, the Adafruit 
IO REST API (via POST and GET HTTP requests) were employed instead. The developed 
code was shared on the Adafruit IO support forum [13]. 

The device, when operating at full throttle, consumes around 0.11 A of current. Dur-
ing the light sleep, M5Stack consumes less than 0.01 A, which results in a reduction of 
power consumption by over ten times, as the sampling temperature and reporting results 
take less than 5 s. 

The loop Arduino function, therefore, takes temperature samples from the two tem-
perature sensors, sends the readings to the cloud, displays them on the local M5Stack color 
LCD display, checks the position of the manual switch on the dashboard, determines if it 
is necessary to update the RTC and weather forecast, clears the watchdog timer and then 
enters the light sleep mode. 

The time to switch the heater on is calculated by considering the heat losses through 
the surface and the walls of the tank, the rated heater power and the difference between 
the tank’s required and forecasted ambient temperatures. 

The prototyped device is presented in Figure 4. 

Figure 3. Prototyped Adafruit IO dashboard showing historical graphs on the left and presenting
values and the manual control switch on the right. The sampling rate was approximately 20 s. The
graphs shown cover an interval of 30 days, which is user-selectable. By hovering a mouse pointer
over any graph, the user can observe numerical values of the data of interest.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 6 of 7 
 

 

 
Figure 4. Controller’s prototype at the testing stage. 

7. Summary and Conclusions 
We detailed the development of a prototype intelligent control system, including 

considerations for the relevant hardware, the development environment, the internet ser-
vices used (NTP, weather forecast, cloud MQTT servers) and the results of the develop-
ment. 

In particular, the system made use of the following technologies and services: 
NTP servers for obtaining accurate time references; 
Adafruit IO’s MQTT servers, acting as a broker between the data producer (the ESP32 

MCU) and the data consumer (the end user); 
Adafruit IO’s dashboard and layout editor for designing the graphical user interface 

for the end user; 
UK Met Office’s Datapoint for obtaining the location- and time-specific weather fore-

cast; 
Adafruit’s Arduino application programming interface calls were replaced with 

HTTP’s more robust GET and PUT commands. 
The required hardware includes only parts that are available off-the shelf. 
The prototype allows the water tanks to achieve and maintain the required tempera-

tures, excess energy consumption is curtailed and absolutely no guesstimation is in-
volved. 

Author Contributions: Conceptualization, A.N.K.; methodology, A.N.K.; software, A.N.K.; valida-
tion, A.E.; formal analysis, A.E.; investigation, A.E.; resources, A.E.; data curation, A.E.; writing—
original draft preparation, A.N.K.; writing—review and editing, A.N.K.; visualization, A.E.; super-
vision, A.N.K.; project administration, A.E.; funding acquisition, A.E. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 4. Controller’s prototype at the testing stage.



Eng. Proc. 2022, 27, 55 6 of 7

7. Summary and Conclusions

We detailed the development of a prototype intelligent control system, including con-
siderations for the relevant hardware, the development environment, the internet services
used (NTP, weather forecast, cloud MQTT servers) and the results of the development.

In particular, the system made use of the following technologies and services:
NTP servers for obtaining accurate time references;
Adafruit IO’s MQTT servers, acting as a broker between the data producer (the ESP32

MCU) and the data consumer (the end user);
Adafruit IO’s dashboard and layout editor for designing the graphical user interface

for the end user;
UK Met Office’s Datapoint for obtaining the location- and time-specific weather

forecast;
Adafruit’s Arduino application programming interface calls were replaced with

HTTP’s more robust GET and PUT commands.
The required hardware includes only parts that are available off-the shelf.
The prototype allows the water tanks to achieve and maintain the required tempera-

tures, excess energy consumption is curtailed and absolutely no guesstimation is involved.

Author Contributions: Conceptualization, A.N.K.; methodology, A.N.K.; software, A.N.K.; valida-
tion, A.E.; formal analysis, A.E.; investigation, A.E.; resources, A.E.; data curation, A.E.; writing—
original draft preparation, A.N.K.; writing—review and editing, A.N.K.; visualization, A.E.; supervi-
sion, A.N.K.; project administration, A.E.; funding acquisition, A.E. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Ali Elyounsi gratefully acknowledges the support for his studies from the
Libyan Embassy.

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Markets and Markets. Temperature Sensor Market by Product Type (Thermocouples, RTDs, Thermistors, Temperature Sensor

ICs, Bimetallic, Infrared, and Fiber Optic Temperature Sensors), Output, End-User Industry, and Region—Global Forecast to 2027.
2020. Available online: https://www.marketsandmarkets.com/Market-Reports/temperature-sensor-market-522.html (accessed
on 8 December 2022).

2. Digital Innovation for Growth (DIfG). Available online: https://www.shu.ac.uk/business/support/start-ups-smes/digital-
innovation-for-growth (accessed on 8 December 2022).

3. Adafruit PT100 RTD Temperature Sensor Amplifier. Available online: https://www.adafruit.com/product/3328 (accessed on 8
December 2022).

4. MAX31865 RTD-to-Digital Converter (Datasheet). Available online: https://datasheets.maximintegrated.com/en/ds/MAX318
65.pdf (accessed on 8 December 2022).

5. DS18B20 Programmable Resolution 1-Wire Digital Thermometer. Available online: www.maximintegrated.com/en/products/
sensors/DS18B20.html (accessed on 8 December 2022).

6. ESP32 vs. ESP8266—Pros and Cons. Available online: https://makeradvisor.com/esp32-vs-esp8266 (accessed on 8 Decem-
ber 2022).

7. ESP32 Basic Core IoT Development Kit (Product Page). Available online: https://shop.m5stack.com/collections/m5-core/
products/basic-core-iot-development-kit (accessed on 8 December 2022).

8. MQTT: The Standard for IoT Messaging. Available online: https://mqtt.org/ (accessed on 8 December 2022).
9. What Is Adafruit IO? Available online: https://learn.adafruit.com/welcome-to-adafruit-io/what-is-adafruit-io (accessed on 8

December 2022).
10. Getting Date and Time form NTP Server Using ESP32. Available online: https://lastminuteengineers.com/esp32-ntp-server-

date-time-tutorial/ (accessed on 8 December 2022).
11. Met Office Data Point. Available online: https://www.metoffice.gov.uk/services/data/datapoint (accessed on 8 December 2022).

https://www.marketsandmarkets.com/Market-Reports/temperature-sensor-market-522.html
https://www.shu.ac.uk/business/support/start-ups-smes/digital-innovation-for-growth
https://www.shu.ac.uk/business/support/start-ups-smes/digital-innovation-for-growth
https://www.adafruit.com/product/3328
https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf
https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf
www.maximintegrated.com/en/products/sensors/DS18B20.html
www.maximintegrated.com/en/products/sensors/DS18B20.html
https://makeradvisor.com/esp32-vs-esp8266
https://shop.m5stack.com/collections/m5-core/products/basic-core-iot-development-kit
https://shop.m5stack.com/collections/m5-core/products/basic-core-iot-development-kit
https://mqtt.org/
https://learn.adafruit.com/welcome-to-adafruit-io/what-is-adafruit-io
https://lastminuteengineers.com/esp32-ntp-server-date-time-tutorial/
https://lastminuteengineers.com/esp32-ntp-server-date-time-tutorial/
https://www.metoffice.gov.uk/services/data/datapoint


Eng. Proc. 2022, 27, 55 7 of 7

12. How to Enable Hardware WDT on ESP32 Using Arduino IDE. Available online: https://iotassistant.io/esp32/enable-hardware-
watchdog-timer-esp32-arduino-ide/ (accessed on 8 December 2022).

13. Using POST to Add Data Points to a Feed. Available online: https://forums.adafruit.com/viewtopic.php?f=56&t=177055
(accessed on 8 December 2022).

https://iotassistant.io/esp32/enable-hardware-watchdog-timer-esp32-arduino-ide/
https://iotassistant.io/esp32/enable-hardware-watchdog-timer-esp32-arduino-ide/
https://forums.adafruit.com/viewtopic.php?f=56&t=177055

	Introduction 
	Project Requirements and Considerations 
	Selection of the Hardware 
	Selection of the Development Environment 
	Selection of the IoT Service Provider 
	Firmware Structure and Functionality 
	Summary and Conclusions 
	References

