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Abstract: A series connection of SiC MOSFETs for kV blocking capability can enable more design
flexibility in modular multi-level converters as well as other topologies. In this paper, a novel gate
driver circuit capable of driving series-connected SiC MOSFETs for high voltage applications is
proposed. The primary advantage of the proposed design is that a single gate driver was used
to switch all the series devices. The circuit used switching capacitors to sequentially charge and
discharge device gate capacitances during switching and enable a negative turn-off voltage to avoid
device coupling from Miller-capacitive feedback effects. With the proposed gate driver design and
appropriate component values selection, avalanche breakdown due to voltage divergence during
switching transients could be avoided with only a minor imbalance in the top device. Simulations
and experimental measurements showed that the zero-current turn-off transition of all switches was
achieved, and this approved the validity of the design.

Keywords: series SiC MOSFET; driving circuit; high voltage

1. Introduction

In the recent years, wide-bandgap semiconductor devices have enabled more improve-
ments in applications in the power electronics field [1]. At the time when silicon (Si) devices
are coming close to the limitations of the material, the high switching speed offered by
silicon carbide (SiC) materials, alongside their high breakdown voltage and high thermal
conductivity make them superior to Silicon (Si). SiC MOSFET is a promising alternative in
medium- and high-voltage power electronics applications [2].

Existing commercial SiC MOSFETs are still commonly 1.2 and 1.7 kV. Some higher
voltage SiC switches are in the development stage and, if available commercially, they
would be costly [3,4]. According to the work in [5], series-connected SiC MOSFETs brings
a lower on-resistance which allows for higher current density than using a single high-
voltage device. Therefore, investigating the series connection of multiple SiC MOSFETs
does worth.

For series connection of MOSFET switches, the common driving method uses fully
separated drivers for each device equipped with its own isolated power supply [6]. Al-
though this method provides more control flexibility, it brings some challenges in terms of
compact designs for high power density applications [7]. An auxiliary voltage source was
required in [8] to provide enough power to drive the upper devices.

One way to drive the upper-side MOSFETs without an auxiliary power supply [8]
is by using capacitive coupling [9], where the lowest MOSFET acts as a master and the
upper ones as slaves. The concept uses the charge variation in the capacitor to produce
the driving signals for the upper MOSFETs. A floating self-driving circuit was developed
in [10,11] utilizing DC capacitors to support switching the high side of two series switches.
Another concern while driving series MOSFET devices is the off- state voltage balancing
during both the steady state and dynamic transition [12]. Uneven leakage current between
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series MOSFETs is the main reason behind the unbalanced voltage distribution. Equal
parallel resistors across series MOSFETs will not always guarantee a balanced voltage if the
leakage current is significant. An active control technique was proposed in [13] to achieve
dynamic sharing for series IGBTs. Ruchira et al. in [14] proposed a voltage-clamping
circuit to balance the voltages. In [15], a snubber circuit was presented to achieve adequate
voltage sharing during the transient across series-connected SiC MOSFETs. To mitigate
the false turn-on events and provide more gate immunity, a negative voltage, i.e., −5 V is
recommended to switch-off the MOSFET [7].

Active gate driving for IGBTs was proposed in [16] for both switching loss reduction
and voltage balancing of the series-connected IGBTs. A quasi-active gate control uses
a simple RC network to balance the voltage in [17]. A single-gate driver for series SiC
MOSFETs was designed for solid-state circuit breaker (SSCB) applications in [7,18] and the
design is simple and compact. Particularly for SiC MOSFETs, other designs of single-gate
drivers are reviewed in [19,20], where some of them depended on adding a more peripheral
circuit to shape the driving signal or to determine the slope to mitigate electromagnetic
interference (EMI) issues. A gate driver dedicated to SiC MOSFET modules is presented
in [21]. Usually, voltage gate driving is used for gate driving, however, in [22] a current-
source gate driver for SiC MOSFETs was developed, which contributed to less switching
losses, but the development was just for an individual switch. It is a competitive solution
for SiC MOSFETs where its gate capacitance is much less than for Si MOSFETs, for example.

In all previous studies, the component selection for voltage balance circuits has de-
pended on the test conditions and no generalized design has been developed. In addition,
most of the designs are not modular for duplication and use a different numbers of se-
ries MOSFETs.

The contribution of this paper is in presenting a new modular design of a single-gate
driving cell able to drive a stack of series MOSFETs with a systematic design rule. The cell
design was able to bias the MOSFETs gates at a negative voltage level. The design criteria
of all the components are stated with LTspice simulation validation. The driven MOSFETs
were able to switch voltages in the KV range with a switching transition less than 100 ns,
in addition to balancing the voltage among all MOSFETs at the off-state. Zero-current
switching (ZCS) was achieved during turn-off transition. The focus here was on SiC but
the design can be used for other MOSFETs technologies with some value amendments.
The experimental results of the designed prototype achieved coherent switching under
double-pulse testing with a clamped inductive load.

2. The Proposed Driving Cell

Figure 1 shows the proposed basic driving cell for a SiC MOSFET that can be cascaded
with other cells to drive series SiC MOSFETs. As shown in the figure, the circuit consists
of basic passive components (2 resistors, 1 diode, 2 Zener diodes, and 1 capacitor) that
provide reliability to the design against variations in temperature, frequency, and voltages
spikes and do not include magnetic components that might produce EMI issues and add
complexity. The footprint and selection of these components could be optimized to achieve
a compact design. Figure 2 shows how three SiC MOSFETs can be driven by the cell. Each
cell can provide bipolar driving, gate protection, and on- and off- state voltage balancing.
The operation principle is described as follows:

2.1. Off-Steady-State Operation

Threshold voltages are lower in SiC MOSFETs compared to silicon MOSFETs and
IGBTs due to their incomplete p-type dopant post-anneal activation. For dopants to become
active, they must ionize and either donate their valence electrons (for n-type doping) or
accept electrons (for p-type doping). The wide bandgap characteristics of SiCs make this
difficult for p-type dopants. Since p-body doping is proportional to the threshold voltage,
this causes a lower threshold voltage. A negative gate-drive voltage is recommended to
achieve a stable and reliable off-state in SiC MOSFETs and prevent a false turn-on. In the
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proposed design, the supply voltage Vs was used to bias the Zener diodes, which resulted
in a negative voltage, which was, in our case, −5 V. Figure 3 shows the driving cell for two
SiC MOSFETs during the off-state where N is the order of the MOSFET.
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Figure 1. Proposed driving cell.

To bias the Zener diodes, a minimum current Iz(min) should pass through the network.
Each cell has two resistors (RB, RG) and two Zener diodes (DZL, DZH). In a proper steady
state, one will be forward biased while the other is reversed, resulting in a gate–source
voltage as follows:

VGS = −
(
VDZL + VDZH

)
(1)

For n number of series MOSFETs, Iz(min) should follow:

Iz(min) =
Vs − n ×

(
VDZL + VDZH

)
− Vo f f−drive

n × (RB + RG)
(2)

MOSFETs have different values of leakage currents, Ileakage, even when they are forced
to have a similar balanced VDS. To make the design robust against the uncertainty of
leakage current, the Iz(min) was set as,

Iz(min) > 10 Ileakage (3)

In case of dissimilarities of Ileakage of MOSFETs [7], and by considering the worst case
of one having Ileakage = 0 and the other having Ileakage as a maximum from the datasheet,
then the Iz(min) will be between 9 Ileakage < Iz(min) < 11 Ileakage. For our experimental tested
SiC MOSFET in this paper, SCT20N120, the maximum leakage drain current was 100 µA.
So, the design oriented Iz(min) to be 1 mA, which is enough the bias the Vishay Zener diodes
BZX55 series [23]. The maximum number of series MOSFETs can be obtained from (4). as a
function of other components values and Iz(min) as

n =
Vs − Vo f f−drive

Iz(min) × (RB + RG) +
(
VDZL + VDZH

) (4)

From MOSFET 1 to (n − 1), the voltage across each MOSFET, VDS will equal

VDS = Iz(min) × (RB + RG) +
(
VDZL + VDZH

)
(5)
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Figure 2. Cascaded driving cells.

However, for the MOSFET n,

VDS = Iz(min) × RB (6)

So, the maximum steady state imbalance between MOSFET n and the other MOS-
FETs is

∆VDS(max) = Iz(min) × RG +
(
VDZL + VDZH

)
(7)

Because the design targets high-voltage applications using hundreds to thousands of
volts, ∆VDS is considered to be negligible. Therefore, the maximum RB can be designed as

RB =
Vs − Vo f f−drive − n ×

(
VDZL + VDZH

)
− (n − 1)× Iz(min) × RG

n × Iz(min)
(8)
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2.2. Turn-On Transition

The analysis explained in this section for the voltage and current waveforms and
switching transitions was based on a clamped inductive load in the commonly used double-
pulse testing. Three SiC MOSFETs were assumed in this analysis to emphasize its modular
operation if more MOSFETs are stacked. The turn-on transition is divided into three main
stages. Figure 4 shows the current paths during the turn-on transition stages for the three
MOSFETs. Figure 5 illustrates the gate-to-source voltage (VGS), the drain-to-source voltage
(VDS), the drain currents (ID), and the gate resistance current (IRG) during the transition.

Stage 1 (S1): It was assumed that before this stage starts, all switches are off and the
shared supply voltage is Vs

n across each MOSFET and the VGS is at a negative value. A
turn-on signal is given by the gate driver to the first MOSFET, M(N). The gate voltage
starts rising, passing the threshold voltage while the MOSFETs are still in the off-state.
The voltage across MOSFET M(N), VDS M(N), is at a high voltage and the current ID M(N)

is zero. The gate current is dominated by the current through the resistor RG M(N) and
Figure 5 shows the current IRG M(N), which follows Equation (9).

Von−drive − IRG M(N) × RG M(N) − VGS M(N) = 0 (9)

The diode DM(N) is in the off-state as the voltage across the CB M(N) is still higher than
the drive voltage. The Zener diodes also will not operate as the drive voltage is lower than
the protection threshold (+22 V).
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Figure 4. Main current paths during turn-on while the circuit transitions from stage 1 (S1) to steady
state. Red path denotes the drain current and green path denotes the gate–source current.
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Stage 2 (S2): At the beginning of stage 2, the current ID M(N) starts to rise while the
voltage VDS M(N) of MOSFET M(N) starts to fall, bringing the source node of MOSFET
M(N + 1) to a lower voltage than the drain node, which is illustrated by an overshoot of
its voltage VDS M(N+1). The maximum volage can be estimated as

VDS M(N+1)max
= RB M(N+1) × ID M(N) (10)

where
ID M(N) = gm ×

(
VGS M(N) − VGS(th) M(N)

)
(11)

At the same time, the capacitor CB M(N) will have a new current path to discharge
through the gate-to-source capacitance of M(N + 1), allowing VGS M(N+1) to rise followed
by a rise in its current ID M(N+1) and a fall in its voltage VDS M(N+1). The discharging
current of capacitor CB M(N) is determined by the change in voltage at the source node
of M(N + 1) caused by the Rds(on) M(N) and the gate capacitance charge of M(N + 1), in
addition to the value of RG M(N+1). A basic illustration of the discharging circuit is shown
in Figure 6. The peak current through RG M(N+1) can be calculated by Equation (12) with
the assumption of the worst case of a complete change in VDS M(N) from VS/n to zero.

IG M(N+1)max
=
(

CB M(N)//CGS M(N+1)

)
×

VS/N

ton M(N)
(12)
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where ton is the turn-on switching time and n is the number of MOSFETs. Obviously, a
larger CB produces a higher peak current, which is required for charging CGS in a fast
manner. However, large capacitance leads to a longer time to balance the voltages at the
off-state and reach a steady state. Furthermore, it increases the switching loss when its cell
MOSFET is on through its Rds(on).
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Figure 6. Discharging circuit to turn on MOSFET M (N + 1).

Stage 3 (S3): Similar to stage 2, when MOSFET M(N + 1) is turned on, the voltage
at the source node of M(N + 2) drops. Consequently, the capacitor CB M(N+1) discharges
and the time constant is determined by the value of the path capacitances, RG M(N+2) and
RB M(N+1). Larger values of RG and RB increase the time of discharge, keep VGS steadier
and dissipate less power, but this will disturb the turn-off operation dynamics.

At steady state and when all MOSFETs are on, diode Ds M(N) is used to prevent
VGS M(N+1) from dropping because its gate capacitances will discharge through RG M(N+1)
and RB M(N). Therefore, Ds M(N) keeps supplying a minimal steady state current. A similar
case is for Ds M(N+1) in keeping VGS M(N+2) at sufficient gate voltage level. The current
through the diode in each cell (N) is calculated based on Equation (13)

IDs M(N) =
Von−drive − VDs × (n − 1)

RB M(x)
(13)

where VDs is the forward voltage drop across the diode Ds. Larger CB M(N) capacitance
provides a steadier VGS M(N+1), but it will deteriorate the turn-off time.

As is shown in Figure 4, the last driving cell for M(N + 2) has no supply diode Ds
because it will create a current path from the driver through Ds M(N, N+1, ...) to the top
drain node, which has a low voltage due to the MOSFETs being on. This will draw a
significant current and decrease the capability of the driver to keep all MOSFETs at the
on-state properly. For this reason, a “Capping Cell” was proposed, which has the same
structure but with no supply diode.

2.3. Turn-Off Transition

Figure 5 shows the transition during the turn-off, and it is divided into three stages.
Similarly, the current paths during each stage are shown in Figure 7.
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Stage 4 (S4): Before this stage, it was assumed that all MOSFETs are in an on steady
state and they are conducting the current from the top drain node to the bottom source node
through their on-state resistances. At this stage, a negative driving voltage is generated
by the driver, Vo f f−drive and is discharging the gate capacitance CGS M(N) through RG M(N).
The current through the resistance is as follows.

IRG M(N) =
Vo f f−drive − VGS M(N)(0)

RG M(N)
(14)

where VGS M(N)(0) is the initial voltage across the gate–source of MOSFET M(N). While
the current IRG M(N) rises, as shown in Figure 5, the gate voltage drops.

Stage 5 (S5): The gate voltage VGS M(N) drops to a level below the threshold voltage
and the voltage VDS M(N) starts rising while the current ID M(N) starts dropping, turning
off MOSFET M(N) completely. The ID through MOSFETs M(N + 1) and M(N + 2) is
commutated through the Zener diodes DZ M(N+1), the gate resistance RG M(N+1), and
the balance resistance RB M(N) to the source terminal, as shown in Figure 7. This current
will charge CB M(N), making the voltage across the MOSFET M(N) increase slowly to
realize ZCS. This current will also bias the Zener diode to produce a negative voltage
equal to VDZL M(N+1) across the CGS M(N+1). The applied voltage will start turning off the
M(N + 1) MOSFET. It is worth mentioning here that RB M(N+1) should be selected to pass
the minimum Zener current, Iz(min). It is important to keep the switching time as short as
possible to avoid higher dissipation when ID flows through the Zener diodes.

Stage 6 (S6): Similar to S5, after turning off M(N + 1) MOSFET, the current ID passes
through a series of Zener diodes, RG’s and RB’s, to the source node as shown in Figure 7.
This will bias the Zener diode DZL M(N+2) to turn off the (N + 2) MOSFET. Here, the
combination of RB’s should be able to pass the Iz(min) through all Zener diodes. The
balance capacitors achieve turn-off soft switching, which is crucial for applications such
as SSCBs.



Energies 2022, 15, 7768 10 of 20

3. Parameter Calculations
3.1. Parameter Calculation of RB

As shown in Equation (8), RB is responsible for proper Zener diode biasing during the
turn-off transition. A large value of RB limits the number of stacked SiC MOSFETs in series
due to inability to bias the Zener diodes for a particular source voltage. A small value of RB
limits the number of stacked SiC MOSFETs in series due to the significant power dissipation
at the off steady state if a high voltage is present across CB. Figure 8 shows combined plots
for the limitations brought by the Zener diode currents Iz(min) and Iz(max) on the number of
stacked MOSFETs when 10 kΩ ≤ RB ≤ 100 kΩ. In addition, it shows the power dissipation
brought by a resistor value for different numbers of stacked MOSFETs when n = [2 : 10].
The selected source voltage for these calculations was Vs = 2500 V. Obviously, at least four
stages, n = 4, are required to fulfil the Zener diodes biasing requirements. It is important
to assume that four MOSFETs have a total rating more than the operating Vs = 2500 V.
Otherwise, more cells are required. In our example, each MOSFET had a maximum voltage
of 1200 V and in total, this was 4 × 1200 V > 2500 V. If 5 W is selected as an example of a
maximum resistor power in the design due to size considerations, the red line in Figure 8
depicts the resistor values limits and shows that the best resistor value, denoted by the red
circle, for the least number of stages, was Rb ≥ 80 kΩ with n = 4.
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Figure 8. Balance resistor RB in relation with n and PRB .

A simulation was conducted for n = 4 and RB being set to three different values
(50, 80, and 100 kΩ) and the turn-on and turn-off times for each MOSFET were measured
and are listed in Table 1. For the tested case, the impact of RB on the ton and to f f was
negligible. However, it significantly increased the steady state off-time when RB increased.
Figure 9 shows the instantaneous power and voltage waveforms during the turn-off
transition when RB = 100 kΩ and 200 kΩ. The total turn-off time was slightly affected but
the power peak increased from 3.85 kW to 4.7 kW, which increased the total energy loss.

Table 1. Impact of changing RB .

Test Conditions: CB = 100 pF, Vs = 2500 V, n = 4
RB ton M(N) ton M(N+1) ton M(N+2) ton M(N+3) toff M(N) toff M(N+1) toff M(N+2) toff M(N+3) tss−off

50 kΩ 38 ns 32 ns 29 ns 33 ns 23 ns 23 ns 24 ns 24 ns 23 µs
80 kΩ 37 ns 32 ns 29 ns 33 ns 23 ns 23ns 23 ns 24 ns 36.5 µs

100 kΩ 36 ns 31 ns 28 ns 33 ns 20 ns 21 ns 22 ns 23ns 46 µs
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Figure 9. The simulated instantaneous power and voltage waveforms during turn-off transition 
when (a) 𝑅஻ = 100 kΩ and (b)  𝑅஻ = 200 kΩ. 
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3.2. Parameter Calculation of CB

As discussed previously, CB is responsible for charging the next stage MOSFET gate,
and the dynamics of charging the gate of MOSFET M(N + 1) is dominated by the turn-on
transition of MOSFET M(N) and how the voltage at the drain node drops to the source
node. Large values will delay the MOSFETs in balancing the supply voltage when they are
turned off. In addition, this increases the switching time and losses.

Table 2 shows how higher CB values increased the steady state time at the off-state. It
increased the turn-on time by 45% and the turn-off time by 100%. The value of CB = 20 pF
provided the shortest time. However, even with a shorter on-transition, the instantaneous
power and VDS waveforms had high peaks during the on-transition, as shown in Figure 10,
which might exceed the MOSFET rating and incur a high value of dVDS

dt . The top device
needs to be avalanche-rugged to withstand this voltage and additional losses from repetitive
avalanches might break it down. During turn-off, the Eo f f−loss Total was the highest because
it had a high instantaneous power peak, as shown in Figure 11. The figure also shows the
non-uniform voltage dynamics compared with the case of CB = 100 pF, where less power
peaks, uniform dynamics among all MOSFETs and soft switching were achieved. Therefore,
the selection of CB is a trade-off between the turn-on voltage overshoot, steady state and
the switching loss.

It is worth mentioning that the peak voltage of MOSFET 4, in Figure 10, could be
reduced significantly by selecting a higher value of CB compared with the other cells. This
allowed a smoother turn-on for MOSFET 4 as the capacitor absorbed the load current while
the voltage increased. Figure 12a shows the turn-on transition when CB = 500 pF for the
M (N + 3) cell while keeping the others with a value of CB = 20 pF. The peak voltage was
then within 1.1 kV. However, this sacrificed the settling time during the off-time as shown
in Figure 12b and consequently the switching frequency. The designer might tailor this
value according to the application.
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Figure 10. Simulated instantaneous power and voltage waveforms during turn-on transition when 𝑅஻ = 80 kΩ and (a) 𝐶஻ = 20 pF , (b) 𝐶஻ = 100 pF. 
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It is worth mentioning that the peak voltage of MOSFET 4, in Figure 10, could be 

reduced significantly by selecting a higher value of 𝐶஻ compared with the other cells. 
This allowed a smoother turn-on for MOSFET 4 as the capacitor absorbed the load current 
while the voltage increased. Figure 12a shows the turn-on transition when 𝐶஻ = 500 pF 
for the M(N + 3) cell while keeping the others with a value of 𝐶஻ = 20 pF. The peak voltage 
was then within 1.1 kV. However, this sacrificed the settling time during the off-time as 
shown in Figure 12b and consequently the switching frequency. The designer might tailor 
this value according to the application. 

6.996µs 6.998µs 7.000µs 7.002µs 7.004µs 7.006µs 7.008µs 7.010µs 7.012µs 7.014µs 7.016µs 7.018µs 7.020µs 7.022µs 7.024µs
-0.3KV

0.0KV

0.3KV

0.6KV

0.9KV

1.2KV
-4KW

-3KW

-2KW

-1KW

0KW

1KW

2KW

3KW

4KW

5KW

6KW

7KW

8KW

9KW

V(vd1) V(Vd2,Vd1) V(Vd3,Vd2) V(Vd4,Vd3)

V(Vd1)*Ix(U3:D) V(Vd2)*Ix(U4:D) V(Vd3)*Ix(U1:D) V(Vd4)*Ix(U5:D)

6.996µs 6.998µs 7.000µs 7.002µs 7.004µs 7.006µs 7.008µs 7.010µs 7.012µs 7.014µs 7.016µs 7.018µs
-0.3KV

0.0KV

0.3KV

0.6KV

0.9KV

1.2KV
-4KW

-3KW

-2KW

-1KW

0KW

1KW

2KW

3KW

4KW

5KW

6KW

7KW

8KW

9KW

V(vd1) V(Vd2,Vd1) V(Vd3,Vd2) V(Vd4,Vd3)

V(Vd1)*Ix(U3:D) V(Vd2)*Ix(U4:D) V(Vd3)*Ix(U1:D) V(Vd4)*Ix(U5:D)

OFF-State

ON-State

OFF-State

ON-State

7.4kW

3.27kW

22ns17ns

Po
w

er
 (W

)
D

ra
in

-S
ou

rc
e 

V
ol

ta
ge

 (V
)

MOSFET 4

MOSFET 1

MOSFET 4

Time (µs) Time (µs)
(a) (b)  

Figure 11. Simulated instantaneous power and voltage waveforms during turn-off transition when 𝑅஻ = 80 kΩ  and (a) 𝐶஻ = 20 pF , (b) 𝐶஻ = 100 pF. 

Figure 10. Simulated instantaneous power and voltage waveforms during turn-on transition when
RB = 80 kΩ and (a) CB = 20 pF, (b) CB = 100 pF.

Table 2. Impact of changing CB .

CB tss−off ton Total toff Total Eon−loss Total Eoff−loss Total

20 pF 13 µs 48 ns 17.8 ns 878.42 µJ 131.85 µJ

50 pF 20 µs 55 ns 20.4 ns 908.87 µJ 102.46 µJ

100 pF 26 µs 61.3 ns 23.6 ns 1077.84 µJ 78.09 µJ

150 pF 37 µs 67.5 ns 31.23 ns 1247.21 µJ 71.97 µJ

200 pF 53 µs 70.4 ns 35 ns 1362.59 µJ 65.65 µJ

Energies 2022, 15, x FOR PEER REVIEW 12 of 20 
 

 

44.97µs 44.98µs 44.99µs 45.00µs 45.01µs 45.02µs 45.03µs 45.04µs 45.05µs 45.06µs 45.07µs 45.08µs
-0.3KV

0.0KV

0.3KV

0.6KV

0.9KV

1.2KV

1.5KV

1.8KV

2.1KV

2.4KV

2.7KV
-4KW

0KW

4KW

8KW

12KW

16KW

20KW

24KW

28KW

32KW

36KW

40KW

V(vd1) V(Vd2,Vd1) V(Vd3,Vd2) V(Vd4,Vd3)

V(Vd1)*Ix(U3:D) V(Vd2)*Ix(U4:D) V(Vd3)*Ix(U1:D) V(Vd4)*Ix(U5:D)

44.97µs 44.98µs 44.99µs 45.00µs 45.01µs 45.02µs 45.03µs 45.04µs 45.05µs 45.06µs 45.07µs 45.08µs
-0.3KV

0.0KV

0.3KV

0.6KV

0.9KV

1.2KV

1.5KV

1.8KV

2.1KV

2.4KV

2.7KV

3.0KV
-4KW

0KW

4KW

8KW

12KW

16KW

20KW

24KW

28KW

32KW

36KW

40KW

44KW

V(vd1) V(Vd2,Vd1) V(Vd3,Vd2) V(Vd4,Vd3)

V(Vd1)*Ix(U3:D) V(Vd2)*Ix(U4:D) V(Vd3)*Ix(U1:D) V(Vd4)*Ix(U5:D)

OFF-State

ON-State

OFF-State

ON-State
Po

w
er

 (W
)

D
ra

in
-S

ou
rc

e 
V

ol
ta

ge
 (V

)

31.65kW

61.3ns

39.5kW

2.1kV2.3kV

48ns

MOSFET 1

MOSFET 4

MOSFET 4

Time (µs) Time (µs)
(a) (b)  

Figure 10. Simulated instantaneous power and voltage waveforms during turn-on transition when 𝑅஻ = 80 kΩ and (a) 𝐶஻ = 20 pF , (b) 𝐶஻ = 100 pF. 

Table 2. Impact of changing 𝐶஻. 𝑪𝑩 𝒕𝒔𝒔ି𝒐𝒇𝒇 𝒕𝒐𝒏 𝑻𝒐𝒕𝒂𝒍 𝒕𝒐𝒇𝒇 𝑻𝒐𝒕𝒂𝒍 𝑬𝒐𝒏ି𝒍𝒐𝒔𝒔 𝑻𝒐𝒕𝒂𝒍 𝑬𝒐𝒇𝒇ି𝒍𝒐𝒔𝒔 𝑻𝒐𝒕𝒂𝒍 20 pF 13 μs 48 ns 17.8 ns 878.42 μJ 131.85 μJ 50 pF 20 μs 55 ns 20.4 ns 908.87 μJ 102.46 μJ 100 pF 26 μs 61.3 ns 23.6 ns 1077.84 μJ 78.09 μJ 150 pF 37 μs 67.5 ns 31.23 ns 1247.21 μJ 71.97 μJ 200 pF 53 μs 70.4 ns 35 ns 1362.59 μJ 65.65 μJ 
It is worth mentioning that the peak voltage of MOSFET 4, in Figure 10, could be 

reduced significantly by selecting a higher value of 𝐶஻ compared with the other cells. 
This allowed a smoother turn-on for MOSFET 4 as the capacitor absorbed the load current 
while the voltage increased. Figure 12a shows the turn-on transition when 𝐶஻ = 500 pF 
for the M(N + 3) cell while keeping the others with a value of 𝐶஻ = 20 pF. The peak voltage 
was then within 1.1 kV. However, this sacrificed the settling time during the off-time as 
shown in Figure 12b and consequently the switching frequency. The designer might tailor 
this value according to the application. 
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Figure 11. Simulated instantaneous power and voltage waveforms during turn-off transition when 𝑅஻ = 80 kΩ  and (a) 𝐶஻ = 20 pF , (b) 𝐶஻ = 100 pF. 
Figure 11. Simulated instantaneous power and voltage waveforms during turn-off transition when
RB = 80 kΩ and (a) CB = 20 pF, (b) CB = 100 pF.
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Figure 12. Simulated MOSFETs voltages and capping capacitor current when (a) 𝑅஻ = 80 kΩ  and 𝐶஻ = 20 pF for the capping cell, (b–d) 𝐶஻ = 500 pF for the capping cell. 

3.3. Parameter Calculation of 𝑅ீ 
Figure 13 shows the inclusion of stray inductances within the driving circuit. 𝐿௚௦ 

represents the gate inductance induced by the printed circuit board tracks and terminal 
lengths. 𝐿௦௦ represents the lamped source and drain inductance of adjacent MOSFETs. 
The path capacitances and inductances will resonate if 𝑅ீ  does not provide enough 
damping. By neglecting 𝑅஻, due to its large value and 𝑅ௗ௦ି௢௡ because it is not a design 
parameter that can be fixed, and it is also very small, the damping factor of the circuit is: 

𝜉 = 𝑅2ீ × ඨ 𝐶௚௦𝐿௚௦ + 𝐿௦௦ (15)

To prevent oscillation, 𝜉 should be greater than 1, therefore, 𝑅ீ is selected to sat-
isfy. 

Figure 12. Simulated MOSFETs voltages and capping capacitor current when (a) RB = 80 kΩ and
CB = 20 pF for the capping cell, (b–d) CB = 500 pF for the capping cell.

3.3. Parameter Calculation of RG

Figure 13 shows the inclusion of stray inductances within the driving circuit. Lgs
represents the gate inductance induced by the printed circuit board tracks and terminal
lengths. Lss represents the lamped source and drain inductance of adjacent MOSFETs. The
path capacitances and inductances will resonate if RG does not provide enough damping.
By neglecting RB, due to its large value and Rds−on because it is not a design parameter
that can be fixed, and it is also very small, the damping factor of the circuit is:

ξ =
RG
2

×
√

Cgs

Lgs + Lss
(15)

To prevent oscillation, ξ should be greater than 1, therefore, RG is selected to satisfy.

RG > 2 ×
√

Lgs + Lss

Cgs
(16)

Furthermore, it is worth mentioning here that the RG value should not be selected to
be large because it will increase the switching loss and slow down the MOSFET switching in
addition to disturbing the Zener diode biasing at turn-off. Usually, resistors can withstand
high peak currents for short times, i.e., during turn-off transitions.
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Figure 13. The stray inductances in the driving circuit.

3.4. Parameter Calculation of Ds

The supply diodes provide a continuous charge for the balance capacitors CB during
the turn-on steady state for all MOSFETs. In the proposed topology, the diodes are con-
nected in series. Therefore, the final voltage at each cell drops with the increase in cell
number. If we assume that each MOSFET needs at least 2 × VGS(th) to keep it in a proper
conduction with minimal RDS(on), then the maximum number of cascaded cells will follow:

n <
Von−drive − 2 × VGS(th)

VDS(max)
(17)

where VDS is the forward voltage drop across the supply diode. For the used diode in the
experimental setup, i.e., the US1M diode, the voltage drop was 1.7 V at a current of 1 A and
the VGS(th) for the MOSFET was 3.5 V and Von−drive = 20 V. Therefore, n ≤ 7. By replacing
the diode with a low voltage drop, the number of possible cascaded cells will increase.

4. Simulation Verification

LTspice was used to simulate three stacked MOSFETs in series. The modelled SiC
MOSFET was C2M1000170D. Wolfspeed provided the spice model. A double-pulse test
(DPT) with a clamped inductor load was simulated. The circuit is shown in Figure 14
and the simulation values are shown in Table 3. The source voltage was chosen to be
Vs = 350 V to mimic the experimental setup, which had a maximum voltage of 350 V due
to the available sources.

Table 3. Parameters for the tested setup.

Component Value Component Value

Vs 1200 V DZL 6.8 V

LLoad 1800 µH DZH 22 V

DFW STPSC1206 Ds
US1M ULTRA-FAST

700 V, 1 A

CB 300 pF RG 1.5 Ω

RB 10 kΩ MOSFETs SCT20N120 SiC
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The DPT waveforms are shown in Figure 15 including the gate–source voltages, the
drain–source voltages, drain currents, and instantaneous power. The results depicted a
balanced voltage sharing at the off steady state. In addition, it showed consistent dynamics
of voltage and current among all the MOSFETs. The maximum voltage during the turn-on
transition was 320 V.

Figure 16 shows how the supply diodes Ds shaped the gate voltages. Figure 16a is
the normal proposed topology with populated supply diodes for each driving cell except
the capping cell. The results in Figure 16b are shown for the design without any supply
diodes. The balance capacitors kept discharging and this might have driven the MOSFETs
to a linear region. Figure 16c is when the capping cell supply diode was populated, and it
shows how the voltages were clipped differently with a difference between each cell equal
to the Zener diode (6.8 V).
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As shown and discussed, the single gate-drive approach proposed switches the series-
connected SiC-MOSFETs in a sequential manner. To compensate for the transient switching
speed differences among the individual SiC-MOSFETs, some adjustments to the values of
auxiliary capacitors could be made.

Figure 17 shows how the capping cell-balance capacitor, CB, affected the transient time
and the voltage peak. Figure 17a shows a similar balance capacitor for all cells (300 pF),
while in Figure 17b, the capping cell capacitor is reduced alone to 100 pF. A faster response
was achieved but with a higher turn-on voltage peak for the MOSFET M(N + 2). The
selection of CB also impacted the maximum switching frequency. Therefore, a trade-off
should be considered here.
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ducted test was a DPT with a load inductance of 1800 µH and the freewheeling diode was 
a STPSC1206 Schottky silicon carbide diode. The PCB boards were designed in a modular 
manner and could be soldered together to stack different numbers of MOSFETs. The 
power supply was a 350 V DC source with a bulk capacitor array. The detailed experi-
mental setup components are listed in Table 3. Micsig differential voltage and current 
probes were used with a 100 MHz bandwidth. The DPT signals were produced by a mi-
crocontroller. 
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5. Experimental Results

The proposed topology was built and tested experimentally to validate the design.
The circuit was as shown in Figure 14, and the experimental setup is shown in Figure 18.
The setup was composed of three series SCT20N120, 1200 V, 20 A MOSFETs. The conducted
test was a DPT with a load inductance of 1800 µH and the freewheeling diode was a
STPSC1206 Schottky silicon carbide diode. The PCB boards were designed in a modular
manner and could be soldered together to stack different numbers of MOSFETs. The power
supply was a 350 V DC source with a bulk capacitor array. The detailed experimental setup
components are listed in Table 3. Micsig differential voltage and current probes were used
with a 100 MHz bandwidth. The DPT signals were produced by a microcontroller.

Figure 19a shows the experimental results for the DPT. Obviously, the proposed circuit
was able to turn on and off the three series MOSFETs successfully. Each MOSFET shared
an almost equal voltage during the turn-off steady state. The differences were due to
the voltage drop across the Zener diodes. The gate voltages were supplied by a negative
voltage when they were off.
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Figure 19b shows a zoomed-in view of the turn-on transition. The maximum voltage
of MOSFET M(N + 2) was 227 V, which was similar to the simulation results. The total
turn-on transition was 96 ns, while the turn-off transition was 87 ns, as shown in Figure 19c.
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The oscillation was caused by the stray inductance. The results confirmed the analysis
and design.

The main advantage of this gate-drive strategy is that a single gate driver is required
to switch more than one device since the energy stored in the balance capacitors are used
to charge and discharge the gate capacitances in subsequent devices. This is unlike other
designs that require each device in a series configuration to be driven by a dedicated
gate driver. The design also provides flexibility in mitigating higher voltage stresses on
MOSFETs by the proper selection of the switching capacitors.

The voltage blocked for each device will be, as a maximum, the ratio of the DC link
voltage and the number of devices (VDC/n). The ratio of this voltage to the intrinsic break-
down voltage of the device (VDC/VBRn) will determine the headroom for each device and,
hence, the additional voltage each device can block under voltage imbalance conditions. If
a small capacitor is used for the capping cell, more MOSFETs can be considered to further
distribute the switched voltage while switching.

6. Conclusions

In this paper, a modular switching capacitor-based driving cell was proposed to drive
series SiC MOSFETs. The proposed circuit did not require any active components and could
be driven by a single gate driver. The proposed driving cells were able to provide negative
voltages during the off-states and sufficient charge during the on-transition. The analysis
of the proposed topology validated its modular aspects and highlighted its limitations
and criteria of component selection. The balance capacitor was key for the settling time
and voltage overshoot adjustments. LTspice simulations for three and four MOSFETs were
conducted. The experimental prototype for three MOSFETs in series approved the validity
of the design with a less than 100 ns transition and coherent switching. The potential of this
topology can be applicable for high-voltage circuit breakers and high-stressed MOSFETs in
power supplies.
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