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Abstract. Recently, we have validated a three-dimensional, single framework multi-
component lattice Boltzmann method, modified to generate vesicles (rather than drops)
[“Three-dimensional single framework multicomponent lattice Boltzmann equation
method for vesicle hydrodynamics,” Phys. Fluids 33, 077110 (2021)]. This approach
implements an immersed boundary force distribution, characterised by bending rigid-
ity, surface tension, preferred curvature and conserved membrane area, in which work
we successfully validated isolated vesicle flows against other methodologies and ex-
periment. Like most immersed boundary algorithms, our method relies on numerical
computation of high-order spatial derivatives and an intricate body force density. The
next step is to verify that it has sufficient numerical stability to address the anticipated
application of high volume fraction flows of highly deformable objects in intimate in-
teraction. It is this in silico verification - of both the class of fluid object attainable and
the stability of the later in strong, straining and shearing flows which is at issue, here.
We extend our method to simulate multiple variously deflated vesicles and multiple
liquid droplets still within a single framework, from which our fluid objects emerge as
particular parameterisations. We present data from simulations containing up to four
vesicles (five immiscible fluid species), which threshold verifies that simulations con-
taining unlimited fluid objects are possible [“Modeling the flow of dense suspensions
of deformable particles in three dimensions,” Phys. Rev. E 75, 066707 (2007)]. These
data also assure the ability of our immersed boundary forcing to preserve the char-
acter and integrity of fluid objects in interactions characterised by large local velocity
gradients (intimate squeezing, shearing and elongational straining). Throughout, we
take interfacial or membrane area, A, as a proxy for stability and physical veracity.
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1 Introduction

Advances in novel computational fluid dynamics (CFD) methodology hold-out the mean-
ingful prospect of complex, three-dimensional time-dependent simulations of fluid ob-
jects, such as vesicles, cells and other suspended, neutrally buoyant entities, which de-
form when they advect, i.e., exhibit intimate coupling to any motion of the embedding,
or background fluid. Of course, the complexity of what we designate fluid objects is
variable, spanning for example:

– Deflated vesicles (i.e., erythrocytes), which have locally inextensible membranes,
with bending rigidity, surface tension and, not least, a significant excess of con-
served membrane area.

– Capsules, which contain in-plane shear elasticity (beyond the scope of the present
work, but also have extensible interfaces with embedding fluid [1]).

– Drops, being the simplest fluid object, having an extensible interface governed only
by interfacial tension.

A common feature of these objects is that all are filled with incompressible fluid, of
a density similar to that of the embedding, background fluid. Furthermore, the interface
or membrane is regarded as discontinuous (i.e., very narrow), when the fluid object is
treated within the continuum regime of fluid mechanics [2].

The rheology of a wide range of complex fluids, defined as having emergent prop-
erties which rest upon their composition at the micron scale (which still lies within the
continuum regime, of fluid dynamics, note) is of central importance in physiology, bio-
medicine, chemical engineering, food rheology, material science and bio-engineering ap-
plications inter alia. The simulation of liquid drops has high importance, e.g., in the
emerging study of liquid drops’ impact upon and wetting of the elastic surfaces of new
materials [3]. Other fluid objects with small deflation and conserved membrane area
widely serve as cell proxies and are frequently found in food processing and pharmaco-
logical flows [4]. Finally, the simulation of vesicles being of unquestionable importance
in pharmacology and applied physiology (e.g., in establishing the principles of micro-
vascular resistance). The work presented here is aimed at the further computational ver-
ification of an accessible, lattice Boltzmann method (LBM) based tool, for investigating
the emergent rheology of dense suspensions of a wide class of fluid object.

It is appropriate to identify alternative approaches to this problem and differentiate our
own, at the outset, emphasizing LBM-based approaches. LBM, an increasingly main-
stream mesoscale fluid dynamics technique which indirectly solves the continuum Navier-
Stokes equations, has been applied to a wide range of multicomponent flow. The tech-
nique has been variously enhanced to simulate multiple phases, components and, hence,
complex fluid objects. The fluid-structure interaction process in LBM is, perhaps, its es-
sential feature. Approaches to the simulation of flow containing multiple fluid objects,
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i.e., erythrocytes, can be conveniently classified as: (i) single-framework; or (ii) modular,
multi-framework. We classify approaches by the number of techniques needed to resolve
the simulation: single-framework being a single technique and multi-framework being
based on multiple techniques. Advantages of the former are transparency of physical
content combined with implementational and computational simplicity- they offer direct
control of resolution, parameterisation and are implemented within a single computer
code platform.

Multi-framework approaches use distinct techniques, typically, LBM solvers for the
fluid domain, a separate finite element method (FEM) for the membrane dynamics, and
some means pairing them. The FEM-LBM approach achieved simulations containing
O(103) objects more than a decade ago [5, 6]. It employs Lagrangian markers on the
membrane surface (which are not co-registered with the LBM mesh, note) which are
two-way coupled to the fluid solver, via a membrane force distribution (the latter is in-
terpolated onto the local Eulerian nodes of the LBM fluid solver). The advantages of
such an approach are: (i) all mechanical properties are directly assigned; (ii) develop-
mental maturity; and (iii) portability (the fluid solver is readily interchangeable). An
example of this essential approach is the simulation by Krüger [7], of erythrocytes, in
which the governing dynamics of the membrane material are discretised, using finite
element method (FEM), then coupled to the LBM fluid solver via the immersed bound-
ary method (IBM) [8, 9]. A further relevant example is Hemocell, which uses discrete-
element method and the IBM to resolve and couple the cellular membranes with an LBM
fluid solver [10,11]. Applications of this multi-framework tool typically require grid-scale
computing resource, note, and specifically target hemodynamics. Furthermore, there are
a variety of other FEM-LBM models for such applications [7, 12]. In addition, the FEM-
LBM approach has been applied to the simulation of soft particles [13].

In contrast to these established, multi-framework approaches, we recently presented a
complementary, single-framework, chromodynamic multi-component lattice Boltzmann
method (cMCLBM), adapted to vesicle hydrodynamics (specifically RBCs), the scope of
which we extend here. We have addressed verification of physical content, based upon
steady state and dynamical data on single RBC deformation [14]. The model was shown
to be a promising tool, practically and theoretically, its foundations (kinematics and dy-
namics) being carefully constructed from prior art [15–17]. Its intended advanteages are:
(i) a single framework foundation within cMCLBM, carrying an automatic two-way cou-
pled fluid-structure interaction; and (ii) mathematical transparency of physical content.
The method also has some indirect advantages as follows; it contains an automatically
adaptive interface, with no re-meshing issues (even in the most intimate interactions, as
our data here demonstrate), it has strict mass conservation, it is robust and stable far
from mechanical equilibrium, it is amenable to parallelisation and, not least, it inherits
an ability to scale efficiently to many fluid objects, using previously developed method-
ologies [18] (which is also of concern here). Here, then, we extend our prior work by
pursuing two key aims:
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– To outline an extension to cMCLBM [14], which facilitates the simulation of mul-
tiple, immiscible fluid objects of variable character, as mutually immiscible fluid
components

– To verify this single-framework, enhanced cMCLBM for multiple fluid objects, to
verify that suspensions of liquid drops, erythrocytes, and other vesicles then fall
within the scope of the method.

Our second objective amounts to an address of the following question. Is the dynamics
of fluid objects, which previous work has validated (in isolation) [14], stable when such
objects encounter each other, in the presence of very high fluid object deformation, local
fluid strain rates and confinement effects? Our position is that this and a range of other
validations are inherited when the validated diphasic method is extended to multiple
immiscible fluids —because any two fluid pairs will behave as if they are diphasic. We
argue that validation then reduces to a myopic examination of the triple and quadruple
contacts (which matter has been addressed, in the past). In the envisaged applications
to suspensions, such contacts are very rare indeed. The next, truly significant step in the
workflow is therefore to verify the stability of a range of multiple objects in intimate in-
teraction —which is what we aim to address here. Put another way, we would argue that
extended validation must focus on the intimate behaviour of complex contacts (whose
stability we do address, note) for which no theory known to us exists – other than lubri-
cation theory, of course.

We proceed as follows. Sec. 2 presents an enhanced, single-framework cMCLBM,
after Burgin et al., [14,15] incorporating extensions into our approach, specifically a com-
partmentalised immersed force system to target particular behaviours and an extension
to many immiscible fluids. In Sec. 3, tests demonstrating the model’s ability to simulate
multiple fluid objects, as well as its stability and robustness are presented. Simple tests
will employ geometries which encourage strong shear and squeeze motion in the con-
tact region, in presence of external confinement and will also showcase the advantages
of our single-framework methodology’s automatic interface tracking in the context of
heavily strained fluid objects. In Sec. 4, conclusions will be presented. For the sake of
completeness, we present an important, putative extension to our core cMCLBE method-
ology within Appendix. A, which has the potential to reduce algorithmic complexity and
reduce computational expense when scaling to many fluid object flows.

2 Methodology

We present an abbreviated account of single framework cMCLBM, emphasising the role
of the immersed boundary force distribution. The latter dictates the physics of the fluid
object. To address the simulation of liquid drops (superscript D), erythrocytes (super-
script E) and spherical vesicles (superscript SV), it is convenient to postulate three im-
mersed boundary force contributions: (a) F(D), (b) F(E) and (c) F(SV). Throughout, no-
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tation is chosen to align with that traditionally used within the LB community- see e.g.
[14, 15].

2.1 Chromodynamic MCLBM

LBM is a bottom-up Eulerian approach, in which the probability distribution function
for a fluid parcel is evolved on a discrete lattice. The method works at the length-scale
of a minimal form of kinetic theory and is constructed to recover the continuum Navier-
Stokes equations. The historic foundations of our variant trace back to 1991, in the work
of Gunstensen et al., [19, 20] and Latva-Kokko and Rothman [21], which extended the
prior Rothman-Keller lattice gas model [22]. From this work, distinct multi-component
(MC) and multi-phase (MP) lattice Boltzmann method (LBM) variants have been devel-
oped. For more information on these variants, see the following [14, 15, 23–27]. In this
work, we utilise Spendlove’s cMCLBM diphasic variant [14], for isolated RBCs, here ex-
tending, then verify this methodology, to reach multiple immiscible fluid objects. For
tractability and simplicity however, the key extensions of the methodology, necessary to
reach multiple immiscible fluids are presented in the context of two component flow.

Consider three-dimensional two-fluid simulation, using a multi-relaxation time (MRT)
scheme, on the D3Q19 lattice; see Tab. 1 for lattice Cartesian velocity vectors ci, our link
label convention i ∈ 0,1,..,18 and the two associated link weight sets (denoted ωi and
gi [28]).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
cix 0 1 1 0 -1 -1 -1 0 1 0 1 0 -1 0 0 1 0 -1 0
ciy 0 0 -1 -1 -1 0 1 1 1 0 0 1 0 -1 0 0 1 0 -1
ciz 0 0 0 0 0 0 0 0 0 1 1 1 1 1 -1 -1 -1 -1 -1
ωi ω0 ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2 ω2 ω2 ω2 ω1 ω2 ω2 ω2 ω2
gi g0 g1 g2 g1 g2 g1 g2 g1 g2 g1 g2 g2 g2 g2 g1 g2 g2 g2 g2

Table 1: D3Q19 lattice structure, showing lattice link (i), lattice velocity vector (ci) com-
ponents and lattice weights (ωi, gi). Here, ω0 =

1
3 , ω1 =

1
18 , ω2 =

1
36 and g0 = 1, g1 =−2,

g2=1.

For a binary fluid, identify the internal (external) fluid by a color label: Red (Blue).
The net fluid parcel distribution function is a sum of the contributions of the fluid species
[15, 19]:

fi(r,t)=Ri(r,t)+Bi(r,t), (2.1)

where, the forced evolution equation of the parcel distribution function is:

fi(r+ci∆t,t+∆t)= fi(r,t)−
Q−1

∑
j=0

Ωij( f j(r,t)− f (0)j (ρ,u))+Fi. (2.2)

Xu et al. [29] give the MRT collision matrix, Ω. The equilibrium distribution function
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( f (0)i ) and our source term (Fi), are [30]:

f (0)i (ρ,u)=ωiρ

(
1+

uαciα

c2
s

+
uαuβciαciβ

2c4
s

− u2

2c2
s

)
, (2.3)

Fi =ωi

[
F(T) ·ciα

c2
s

+
1

2c4
s

(
1− λ3

2

)(
F(T)

α uβ+F(T)
β uα

)]
. (2.4)

Above, r, t, ∆t, ρ, u, Q, F(T), cs and λp denote lattice position, lattice time, time step,
macroscopic fluid density, macroscopic fluid velocity, number of lattice links, total im-
mersed body force, color-blind speed of sound, and the pth eigenvalue corresponding to
the collision matrix Ωij, respectively. Greek subscripts identify Cartesian components. To
recover correct bulk hydrodynamics, the source term must meet the following conditions
(see Guo et al. [30]):

∑
i
(1,ci,cici)Fi =

(
0,nF(T),

1
2
[C+C⊺]

)
, (2.5)

where C (C⊺) is a correction term (correction term transposed), needed to recover the
Navier-Stokes equations [30, 31]. The MRT scheme collision matrix Ω is described in ref-
erence [29] and is conceived after that of Dellar [32]; it must also have certain properties:

∑
i
(ci,cici,cicici)Ωij =

(
0,λ4cjαcjβ,λ14cjαc2

jβ

)
, (2.6)

∑
i
(gi,gici,gicici)Ωij =

(
λ10gj,λ11gjcjα,λ17gjc2

jα

)
. (2.7)

To compute local, continuum properties (density and velocity), the force-corrected mo-
ments are used [30, 33]:

(ρR,ρB)=∑
i
(Ri,Bi), u= ∑i fi(r,t)ci

ρ
+

F(T)

2ρ
, (2.8)

where, ρR (ρB) is the Red (Blue) fluid density (nodal density is computed straightfor-
wardly as ρ = (ρR+ρB)). The flow velocity is adjusted, using the immersed boundary
force F(T), note. We shall return to this matter later.

A chromodynamic field is constructed from the distribution of the color degree of
freedom (see [34]):

ρN(r,t)≡ ρR(r,t)−ρB(r,t)
ρR(r,t)+ρB(r,t)

∈ [−1,1]. (2.9)

ρN=1 (−1) corresponds to bulk Red (Blue) components, ρN=0 corresponds to the centre
of the interface, taken here as the effective surface. From this definition, the local interface
unit normal is straightforwardly assigned as below:

n̂(r,t)=− ∇ρN(r,t)
|∇ρN(r,t)| . (2.10)
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The above quantity is utilised to calculate the surface curvatures, required by the im-
mersed force F(T) (see reference [14]).

To prevent mixing, a kinetic-scale, post-collision, color segregation rule, adapted from
that of d’Ortona et al., [35] is used:

Cψψ
i (r,t)=

ρC(r,t)
ρ(r,t)

fi(r,t)ψ±βωi
ρR(r,t)ρB(r,t)

ρ(r,t)
n̂·ci∆t. (2.11)

Here, C is the color index C∈[R,B] where operation + (−) is used for the Red (Blue) fluid.
Superscript ψψ (ψ) denotes the post-recolor (post-collision) value. We return to discuss
the interfacial width (or segregation parameter), β, below.

The immersed boundary force to be used in Eqs. (2.4, 2.8) carries the interaction be-
tween the fluid and the embedded object. It is a gradient-weighted vector (∇ρN lies in
the surface normal direction). Force F(T), by construction, encapsulates the continuum
scale physics of the boundary of the object being simulated:

F(T)=
1
2
∇ρN

(
F(χ)

)
, χ∈{D,E,SV}. (2.12)

Above, superscripts D, E, SV denote drops, erythrocytes and spherical vesicles, respec-
tively.
Modular Immersed Forces
As we consider three classes of object, for each there exists an appropriate immersed
boundary fluid body force. For each of the three cases, we consider:

(Drops) F(D)=F(l), (2.13)

(Erythrocytes) F(E)=F(a)+F(b)+F(l), (2.14)

(Spherical Vesicles) F(SV)=F(a)+F(b)+F(l), (2.15)

where F(a), F(b) and F(l) are the area conserving, the bending and the surface tension
forces, respectively. Of course, in addition to force structure, parameterisation dictates
the physics of the emergent fluid objects. We will return to this matter in Sec. 3.

The surface tension force (F(l)) reflects differential forces operating between molecules
of similar and mutually immiscible (we use the term “opposing”) components. Surface
tension effects emerge, within cMCLBM, from the application of the Lishchuk force [34]:

F(l)=2σHn̂, (2.16)

where σ is the surface tension parameter and H the mean interface curvature.
Area force, (F(a)), which conserves the area of the membrane or interface, close to a

target value A0 is:
F(a)=−αH(A−A0)An̂, (2.17)
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where α, A and A0 denote interface compressibility, actual area and target membrane or
interface area.

Bending force (F(b)) communicates membrane or interface bending rigidity energy ef-
fects into the interface fluid. Our bending rigidity force derives from Helfrich’s bending
energy [36,37], which follows Helrich’s proposal that by treating the membrane as a two-
dimensional sheet (based on the separation of length scales), the bending deformations
of this sheet play a key role in the membrane elasticity, and hence the shape of the ery-
throcyte [38]. As such, this force is used to determine the shape of the boundary between
the internal and external fluid at all times when simulating vesicles, and is given in the
form described in [14]:

F(b)=−κB

(
3
2

∆SH+H3−KH
)

n̂. (2.18)

Above, κB, ∆S and K represent the bending rigidity constant, the Laplace-Beltrami opera-
tor and the Gaussian curvature of the interface (i.e., the membrane surface), respectively.
Note, Eqs. (2.16, 2.17, 2.18) all depend upon H and K. Efficient methodologies for com-
puting them (and ∆S) solely from the instantaneous interface unit normal field, n̂(r,t),
were devised in reference [14]. We remark that the surface curvature (and hence defla-
tion) of an erythrocyte membrane is controlled in part by the cytoskeleton and in part by
the properties of the encapsulating lipid bi-layer. Clearly, F(b) is a meso-scale representa-
tion of the membrane which aggregates all effects on surface curvature.

2.2 Extension to many immiscible fluid objects

Section 2.1 considers binary lattice fluids. However, the binary method is readily extend-
able to many, mutually immiscible components and fluid objects. We remark the rate
of evolution of cMCLBM methodology in this direction is accelerating [18, 39–41], pre-
sumably, because cMCLBE offers strict species mass conservation and tuneable surface
tensions. Here we consider physics of three-component liquid-liquid contacts only, so it
is upon the physics of wetting alone that we base our control of fluids’ mutual immis-
cibility. Put another way, for tractability we neglect, e.g., bending force effects in our
approach to controlling the integrity of fluid objects. This assumption may only be justi-
fied a posteriori.

The relevant continuum-scale fluid mechanics of a three-phase contact is encapsu-
lated in Neumann’s triangle, which, at a contact, relates the surface tensions forces be-
tween three interacting fluids [42, 43]. For a triple contact, assigning individual sur-
face tension values for each fluid interface establishes the contact geometry illustrated
in Fig. 1.
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Figure 1: A representation of the forces at triple contact between three, mutually im-
miscible fluids, here denoted Red (R), Blue (B) and Green (G) which are in mechanical
equilibrium. The surface tensions between the fluid pairs are denoted σCC′ and the con-
tact angles by θCC′ , where C,C′∈ [R,B,G], with C ̸=C′.

Mutually immiscible, wetting fluids must produce a triple contact geometry consis-
tent with the Young-Laplace law and Neumann’s triangle. Unfortunately, in cMCLBM,
assigning differentiated surface tension values for which no stable contact exists does
not necessarily underwrite compliance with the Young-Laplace law. This is due to the
method’s inherent dispersion and the pathological finite width of its continuum inter-
face. Consequently, one cannot simply parameterise interfacial tension so as to preclude
contact formation- further methodological enhancements are necessary. The cMCLBE
segregation rule has been enhanced to treat triple contacts [18,39,41], most recently by Yu
et al., [41], who define a form which successfully approximates physical three-component
behaviour. Here, once correct contact geometry is enforced, no explicit hydrodynamic re-
pulsion is postulated into the method; put another way, causal lubrication forces emerge.
This contact behaviour is of course fully consistent with lubrication theory, which is im-
plicit within any method which solves the Navier-Stokes equations. We adopt and con-
textualise their process, now with a form of Eq. (2.11), extended to the simulation of three
components [18]:

Cψψ
i =

ρC

ρ
f ψ
i ±ωi∆tci ·

(
∑
C′

βCC′
ρCρC′

ρ
n̂CC′

)
.

The cMCLBE segregation parameter (effective interface width) between fluids C and C′

is controlled by βCC′ , but in the case of a triple contact, also by the surface tension values
themselves. For triple contact behaviour, then, appropriate values of βCC′ are calculated
using the cosine rule in the form by Eq. (2.19a) (see also Fig. (1)), then, using this value
to determine how the interface width between fluids C and C′ should be perturbed. This
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process gives correct wettability between the fluids, in the form of Eqs. (2.19b,2.19c), [41]:

XCC′ =
σ2

C′′C+σ2
C′′C′−σ2

CC′

2σC′′CσC′′C′
, (2.19a)

βCC′ =β0+β0min
(

35ρCρC′ρC′′

ρ3 ,1
)

g(XCC′), (2.19b)

g(XCC′)=


1, XCC′ <−1
1−sin(arccos(XCC′)), −1≤XCC′ <0
sin(arccos(XCC′))−1, 0≤XCC′ <1
−1, XCC′ <1

(2.19c)

Above, component indices C ̸=C′ ̸=C′′ represent the three separate fluids, and β0 = 0.6
was used for all simulations in this work.

We consider completely immiscible fluid objects, here. Accordingly, segregation must
maintain complete immiscibility between all fluid pairs, i.e., no stable Neumann’s trian-
gle geometry must be permitted. Suppose fluid objects are not initialised overlapping
each other; the surface relative tension of the fluid object O to background fluid B being
σOB = σ0. Then by ensuring the surface tension between two fluid objects, O and O′, is
such that σOO′ ≥2σ0, the fluids should remain immiscible. Under these assumptions, the
equations developed in [41] can be simplified. Now the interface width parameter values
for a given object-background OB and object-object pairing OO′ are chosen as:

βOB =β0−β0min
(

35ρOρBρC

ρ3 ,1
)

(2.20a)

βOO′ =β0+β0min
(

35ρOρO′ρC

ρ3 ,1
)

(2.20b)

where subscripts B, O, O′, C denote background fluid, a given fluid object, a different
fluid object, and the component with largest density at a given lattice site excepting O,
O′, respectively. Eqs. (2.20a, 2.20b) now represent the revised perturbations needed to
control the interface widths between fluid pairs. This device, (and setting the surface
tension value of an object-object interface to twice that of an object-background interface)
supports many mutually immiscible objects. We remark that the computational cost of
these steps is significant. Currently, interfaces between possible pairs of fluids are de-
fined; hence the number of binary interfaces dramatically increases with the number of
fluids as:

No. of interfaces=
n(n−1)

2
. (2.21)

The storage required increases quickly with the number of fluids, as well as the direct
computational time (there is a need to loop over more interface pairs, performing expen-
sive calculations of color fields, unit normals, and segregation allocations steps). To ad-
dress this, we propose a re-defined color-field, defined between fluid components and the
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totality of its complement, a derivation of which is given in Appendix A. This simplifica-
tion reduces the number of interfaces to parity with the number of individual fluids, i.e.,
fluid objects. An interface between a given fluid and all the remaining fluids, regarded
as a single effective species is, of course, valid only within the context of forbidden triple
contacts. However, a simplified color-field, generating only a single segregation term for
each nodal fluid must dramatically decrease computational complexity and lead to fewer
frequently executed, nested computational loops. Note that scheme in Appendix A is not
used in the present work.

3 Results

We created squeeze and shear contact flows for each of the three classes of fluid object, to
generate very high deformations, for fluid objects in close proximity. The tests reported
below should be viewed as limiting cases, designed to probe and verify the computa-
tional stability of our method. The fact that such interactions are unlikely in practice is
therefore beside the point. A positive outcome is that our data tend to verify that the
physical character of fluid objects is preserved in the combined presence of high defor-
mation, close proximity of other, equivalent, objects and large spatial velocity gradients
in the contact region. The simplest and most measurable proxy for physical character,
in the current context, is the area of interface/membrane of the fluid object, with the
background fluid, A. A must be conserved for all classes of vesicles, at all stages of any
interaction (in contradistinction, A can vary dramatically for drops in equivalent circum-
stances). Note, all the color maps within this work correspond to the surface area of the
fluid objects.

3.1 Liquid Drops, Erythrocytes and Spherical Vesicles

We test three different classes of fluid objects: liquid drops (D), erythrocytes (E) and
spherical vesicles (SV) and characterise them as follows:

– Mutually immiscible liquid drops’ interface behaviour is governed by surface ten-
sion forces alone. They have an initial area A=Asphere, which is not conserved.

– Erythrocytes are fluid-filled vesicles, with interface properties governed by surface
tension, area conserving and bending bending rigidity forces. They have an initial
membrane area A=ΥAsphere which is conserved and we restrict our attention to a
bicuspid shape, by regulating the deflation. In this work, Υ is a deflation parameter,
controlling the surface area to volume ratio [14].

– Spherical vesicles are also treated as vesicles with a reduced deflation - set to unity,
here.

These three different fluid objects are represented schematically in Fig. 2 and a parame-
terisation, established based of prior work [14], is given in Tab. 2. For the fluid objects,
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an initial resolution of fluid object radius R= 15 is applied following prior work by the
authors which checked grid independence, and deemed this resolution to be an appro-
priate option for balancing both accuracy and computational expense [14]. The area force
parameter, α, is excluded from this tabulation because its value needs only to exceed a
threshold. Accordingly, the emergent fluid object is determined by the parameter vector
(Υ,κB,σ) The color depiction in Fig. 2 is utilised throughout this article.

Figure 2: Schematic of the color and naming convention used for the three fluid objects
simulated in this work. Drops are denoted D, erythrocytes E and spherical vesicles SV.
Drops are depicted in blue, erythrocytes in red and spherical vesicles in green. Vesicles
have a regulated surface area, drops do not. For cMCLBE parameterisations from which
these fluid objects emerge (for a given lattice resolution and initial fluid object radius) see
Tab. 2. See also [14].

Deflation, Υ Bending rigidity, κB Surface tension, σ

Drops NA NA 10−3

Erythrocytes 1.31 1.5 10−4

Spherical vesicle 1.0 10−5 10−3

Table 2: Parameterisations for the fluid objects simulated in this work, all expressed in
lattice units. Force density amplitude constants are stated in lattice units and applied to
a fluid object initialised with spherical shape, with an initial radius of 15 lattice units.

3.2 Pseudo-Ballistic Fluid Object Interactions

By using buoyancy forces and appropriate initial fluid object locations, we will propel
the fluid objects towards each other. The resulting orbits and concurrent deformations
will bring the objects into close proximity, but not into contact, due to the action of lubri-
cation forces. We designate these processes pseudo ballistic. We stress that no physical
forces other than buoyancy forces and the required immersed boundary forces already
described are applied between the fluid objects in any of the tests reported here. Ap-
parent hydrodynamic repulsion effects emerge from fluid conservation and lubrication
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effects. Of course Van der Waals forces and other electrostatic effects can be postulated
into our approach, if required.

As an initial test of the revised segregation rule (Sec. 2) and our cMCLBE methodol-
ogy, we consider pseudo-ballistic impacts of multiple drops, erythrocytes and spherical
vesicles. These tests verify: (i) the extended segregation rule, (ii) simulation stability and
(iii) fluid objects’ integrity. We consider two fluid objects in Sec. 3.2.1 and three fluid
objects in Sec. 3.2.2. The motion of the background fluid in the contact region is best
characterised as a shear flow.

3.2.1 Two Fluid Objects

All data presented correspond to a cuboid simulation box size 160×100×100 on a D3Q19
lattice with periodic boundary conditions enforced between all faces. We initialise the
objects such that there is no common interface between them, with their axes of rotation
parallel. The test geometry is depicted in Fig. 3. The fluid objects are propelled towards
each other by buoyancy forces, impressed parallel and anti-parallel to the x-axis, causing
them to interact: Object1 (Object2) is pushed in the positive (negative) x-direction.

Figure 3: The initialisation of a pseudo-ballistic impact test for two equivalent fluid ob-
jects. Two fluid objects are to be buoyancy-forced parallel to the x direction, their centres
being offset by an impact parameter r, equal in value to the objects’ initial radius. Fol-
lowing initialisation, Object1 (Object2) is accelerated by application of a buoyancy force
in the positive (negative) x-direction.

Figures 5 show six sequential time frame snapshots indexed (A) - (F), from a pseudo-
ballistic impact orbit of two: liquid drops (a); erythrocytes (b); and spherical vesicles
(c). Fluid objects’ surfaces were taken at the level set ρN = 0 (the centre of the fluid in-
terface). The color intensity in the figures shows the surface area of the fluid objects.
In all simulations, for these data, the applied buoyancy force for fluid Object1 (Object2)
was G = 1×10−4êx (G =−1×10−4êx) lattice units. The data from Figs. 5, show that the
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fluid objects partially orbit around each other, presumably due to hydrodynamic repul-
sion (i.e., lubrication effects) which is expected to emerge, within the single framework
methodology. This behaviour would not manifest, were the segregation stage outlined
in section 2, not enforcing complete immiscibility. Our liquid drops’ interface surface
area fluctuates by a maximum of ≈5.4%. In contradistinction, for the erythrocyte and
spherical vesicle simulations, there is a maximal fluctuation in surface area ≈0.2% and
≈2.0%, respectively. See Tab. 3. The latter result is, of course, expected - both the ery-
throcyte and spherical vesicle resist change in surface area due to their more complex
membranes, providing further conformation of the effectiveness of the area conserving
force outlined in [14], and given in Eq. (2.17). More unexpected, though, is the observa-
tion that the much simpler liquid drop objects do not change their surface areas much,
though, of course, this may be due to the chosen paramterisation.

Initial Area Max Deviation Max Relative Deviation %
Drops 2768 2917 5.4

Erythrocytes 3575 3581 0.2
Spherical Vesicle 2776 2718 2.0

Table 3: The maximum change in surface area during two-object pseudo-ballistic impact
tests for the liquid drops, erythrocyte and spherical vesicle orbits depicted in Figs. 5. We
record the initial area of the fluid object, before the force was applied, the maximum
deviation of fluid object surface area, and the relative maximum surface area deviation
throughout the simulation.

Within dense suspensions, like blood, multiple fluid object interactions are likely. It
is therefore appropriate to verify the stability of our cMCLBM method, in the context
of complex, three-body interactions. Moreover, greater deformation levels in particular
should be verified; the latter can be induced using three fluid object tests.

3.2.2 Three Fluid Objects

All data presented correspond to cuboid simulation box size 160×100×100 on a D3Q19
lattice with periodic boundary conditions enforced between all faces. We choose to con-
sider a representative subset of three fluid object interactions, viewed from the rest frame
of a central fluid object, towards which two other, distinct fluid objects are propelled.
The central object is expected to undergo a strong elongational straining motion, with
the background fluid again shearing strongly in the contact region. We consider the sym-
metric process as follows (see Fig. 4).

We initialise the three objects such that there is no interface between them, off-setting
two fluid objects in relation to the third, central, approximately stationary fluid object’s
centre of mass, by their radius. In this way, the interaction may be characterised by a
single impact parameter. The two fluid objects (Object1 and Object3) “sandwiching” the
central fluid object (Object2) and are again propelled towards it, using a buoyancy force,
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with Object1 (Object3) being driven in the positive (negative) x-direction. It should be
noted that no control was applied to the relative orientation of fluid objects, initially,
in these tests. Of course, in the case of drops and spherical vesicles, no such control is
necessary. Note,the initial orientation of non-spherical erythrocytes, shown in Fig. (6b) is
arbitrary.

Figures 6, show sequential orbit snapshots (A)-(D), taken from a pseudo-ballistic im-
pact of three: liquid drops (a); erythrocytes (b); and three spherical vesicles (c). Fluid
objects’ interfaces are defined by the level set ρN = 0. The color density in these figures
represents the surface area of the fluid objects. In all simulations, the applied buoyancy
force for fluid Object1 (Object3) was G=1×10−4êx (G=−1×10−4êx) —see Fig. 4 for the
objects’ initial orientation.

Figure 4: Schematic for the initialisation of a pseudo-ballistic impact test for three equiv-
alent fluid objects. Two fluid objects (Object1 and Object3) are to be buoyancy-forced
parallel to the x direction. Each of their centres is offset by an pseudo impact parameter,
r, equal in value to the objects’ initial radius, relative to a central, unforced fluid object
(Object2). Following initialisation, Object1 (Object3) is forced in the positive (negative) x-
direction, generating a complex orbit about the central fluid object. Object 3 is expected
to deform but to remain approximately at the centre of mass.

From Figures 6, we see that during the simulation of the liquid drops, the surface area
of the drops now fluctuates, with a maximum relative fluctuation ≈33.6%. However, in
the erythrocyte and spherical vesicle simulations, there is a much reduced membrane
area fluctuation, of ≈1.5% and ≈1.6% respectively (across all objects in any one simula-
tion). Tab. 4 gives numerical values. This result is of course expected by construction,
both the erythrocyte and spherical vesicle should resist changes in membrane area. Ac-
cordingly, the most significant message conveyed by these data is that they provide veri-
fication of the effectiveness of our area-conserving force, outlined in [14], and defined in
Eq. (2.17) above. The sandwiched drop however deforms significantly.
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Initial Area Max Deviation Max Relative Deviation %
Drops 2762 3690 33.6

Erythrocytes 3633 3687 1.5
Spherical Vesicle 2771 2816 1.6

Table 4: Quantification of the maximum change in surface area, during the three object
pseudo-ballistic impact tests for liquid drops, erythrocytes and spherical vesicles, shown
in Figs. 6. This table shows the initial area of the fluid objects before the force was applied
(Frame (A)), the maximum deviation of fluid object surface area, and then the relative
maximum deviation for the fluid objects throughout the test.

The data presented in this sub-section relate to fluid object interactions in the presence
of shear flow in the contact region. Of course other classes of interaction, characterised
by squeeze flows in the contact will occur in practice; (it is to the examination of these
flows that we turn in the next sub-section). We also note that the maximum number
of mutually immiscible fluids we have so far considered is four (three fluid objects and
the background fluid). We have previously stated that, in three dimensions, stability
of a cMCLBM algorithm with five local fluids is necessary to underwrite applications
containing unlimited numbers of fluid objects [44].

3.3 Two Fluid Object Sedimentation

All data presented in this section derive from a cuboid simulation box of size 80×80×110
using a D3Q19 lattice with no-slip boundary conditions, enforced by mid-link bounce-
back imposed on all faces. Clearly, such a geometry will promote strong confinements
effects.

Let us now consider orbits in which the background fluid motion in the contact is
a squeeze flow, by sedimenting two fluid objects. Two fluid objects are initialised with
their axes of rotational symmetry parallel to one another, separated by a distance such
that there is no initial object-object interface. Once the objects have reached steady state
shape, a buoyancy force of G=−1×10−4êz is applied to both of the objects in the vertical
direction. The objects then sediment towards the bottom of a simulation box enclosure,
where they are forced to interact. The results from this test for multiple fluid objects are
shown in Figs. 7. These data show the time evolution of the fluid objects in sequence (A)
- (D) (time step counts and other parameters are case-specific and stated in the relevant
figure caption); the color map corresponds to the fluid objects surface area.

These data represent a stringent test of the stability under flow stresses, amplified by
confinement effects (the no-slip boundaries operate at the bottom of the domain). Data
from Figs. 7, show all three simulation cases remained stable. As in the results in the
ballistic impact tests, it can be seen that there is a much larger deformation of the liquid
drops, in comparison to erythrocytes and spherical vesicles, for equivalent forcing and
object size. For liquid drops, there is now a maximum relative fluctuation in surface area
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≈94.1%, compared with ≈5.0% and ≈7.7%, for the erythrocyte and vesicle, respectively,
summarised in Tab. 5.

Initial Area Max Deviation Max Relative Deviation %
Drops 2768 5374 94.1

Erythrocytes 3631 3812 5.0
Spherical Vesicle 2778 2993 7.7

Table 5: The maximum change in surface area during the two object sedimentation tests
for liquid drops, erythrocytes and spherical vesicles, shown in Figs. 7. Columns param-
eterise the initial area of the fluid objects before the force was applied (Frame (A)), the
maximum deviation of fluid object surface area during the test, and the relative maxi-
mum deviation for the fluid objects throughout the tests.

3.4 Four Fluid Object Sedimentation

Finally, we consider the sedimentation of four fluid objects in a direct generalisation of
the two fluid object test, considered in the previous subsection. All data presented in
this subsection correspond to a cuboid simulation box size 75×75×250 lattice units, on a
D3Q19 lattice with no-slip boundary conditions, enforced by mid-link bounce-back im-
posed on all faces. Again, the fluid objects are initialised with their axes of rotational
symmetry parallel to one another, separated by a distance such that there is no initial
object-object interface. Once the objects have reached steady state shape, a buoyancy
force of G=−1×10−4êz is applied to all of the objects in the vertical direction. The objects
then sediment towards the bottom of the enclosure, where they are forced to interact.
Clearly, the dynamic contact flow and confinement effects must be expected to resemble
those in the previous test, the key difference being that the compression force on the low-
est fluid object in the stack will be increased. This test not only demonstrates the ability
to simulate multiple fluid object interactions with our model, but also has considerable
practical significance to the simulation of dense suspensions of fluid objects - the test
demonstrates a five fluid simulation (the four fluid objects and the background fluids),
which has been previously shown to correspond to the limiting number of independent
fluids [44]. Put another way, it is established that, even when simulating extremely dense
suspensions of fluid objects, one only needs to be concerned with the five fluids, with
highest concentration at each lattice site (remaining fluid contributions being deemed in-
significant).

The effect of the increased compression force due to the additional number of fluid object
is very clear indeed in the drop data, from Fig. 8a, when compared with data from the
corresponding erythrocyte and spherical vesicle tests in Figs. 8b and 8c. Indeed, we see
that three out of the four liquid drops rupture, splitting into smaller drops, due to the in-
creased compression force. Importantly however, the separate fluid species still remain
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immiscible with one another, highlighting the robustness of the extension to many immis-
cible fluids presented in Sec. 2.2. A comparison of the maximum change in cross-sectional
area of the different fluid objects for this test, is shown in Tab. (6). Results confirm that, in
the presence of the area conservation force, such as for the spherical vesicle and erythro-
cyte, the maximum change in cross-sectional area is much less than liquid drops with an
extensible membrane. Ideally, we expect zero fluctuation for both the spherical vesicles
and erythrocytes, however, due to the large flow stresses in this test and the inevitable
presence of numerical error mainly in the constraint force, we see slight fluctuation in
cross-sectional surface area. This is deemed as small, especially considering the fluid ob-
jects attempt to maintain shape throughout the test, as well as the large forces involved.

Initial Area Max Deviation Max Relative Deviation %
Drops 2769 5624 103.1

Erythrocytes 3632 3921 8.0
Spherical Vesicle 2776 3089 11

Table 6: Change in surface area during the four object sedimentation tests for liquid
drops, erythrocytes and spherical vesicles, shown in Figs. 8. The initial area refers to
the fluid objects before the force was applied (Frame (A)). The maximum deviation of
fluid object surface area, and the relative maximum deviation apply to the entire test.

4 Conclusion

We have confirmed in this work, the utility of an enhanced single framework cMCLBE
method based upon the recent work of Spendlove et al. [14], here extended to three
classes of fluid objects (spherical vesicles, erythrocytes and liquid drops), within the con-
text of complex flows, induced in confined geometries, which constitute a searching test
of simulation performance. Specifically, previously validated methodology [14] was ex-
tended in this work, to treat (i) a range of isolated fluid objects, characterised by different
physical properties and (ii) multiple equivalent fluid objects. The resulting method in-
volves complex immersed boundary forces (which we classify here) and therefore an
obvious question arises regarding the integrity of fluid objects in fierce collisions- within
cMCLBE, can one be confident that fluid objects’ interfacial physics is preserved in the
presence of potentially large local stain rates (viscous stresses) generated as multiple fluid
objects interact? We deem the simplest way to answer this important question is to mea-
sure a defining property of the system - the fluid objects’ interfacial area, A. Accordingly,
the latter was taken as an accessible proxy for stability and physical veracity, for mem-
brane area simply must be conserved in all interactions between vesicles, constraining
even the most extreme deformation, whilst it can vary significantly when immiscible
drops interact. Previous work has validated drop simulations [45]; accordingly we have
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emphasised vesicles here, but also provided data on equivalent drops tests, for context
and to emphasise the ease with which a spectrum of fluid objects emerge from simple
differential parameterisation of the method.

We might conclude from our reported series of tests, that the cross-sectional area of
a vesicle membrane is a practical constant of the motion (but see below), verifying the
algorithmic and computational integrity of the enhanced method (questions of quantita-
tive validation of course remain). Put another way, A is confirmed to be almost constant,
when measured along orbits of interacting vesicle objects whereas in equivalent drop
simulations, A varies greatly. We note that even though only a finite number of flow
geometries have been considered in this work, the simulated interactions encompass
complex shear, squeeze and elongational-straining flows. Of course, some fluctuation
in cross-sectional area is expected, even when simulating vesicles, due to numerical er-
ror arising from the discrete calculation of the vesicle’s cross-sectional area and surface
curvatures in simulation, and from the numerical implementation of the area constraint
force. As one might expect, the magnitude of observed fluctuations depends upon the
magnitude of the shear and/or squeeze flow applied within the simulation. For instance,
in the four erythrocyte sedimentation test, there was a larger fluctuation in cross-sectional
area compared to the two erythrocyte pseudo-ballistic impact test, presumably due to the
larger squeeze and compression forces exerted on the erythrocytes in the four fluid object
case. However, we repeat that even though some level of error is expected in any numer-
ical method, here manifest through the slight fluctuation of fluid object cross-sectional
area, the fluid objects maintain their target shape, underscoring the effectiveness of the
applied forces.

Procedurally, we have herein, treated up to five fluids (four fluid objects and back-
ground fluid). It has been shown previously [44] that algorithmic support for the simula-
tion of five mutually immiscible species is sufficient to underwrite the efficient extension
of the cMCLBE method to any number of mutually immiscible objects. To offset concerns
regarding computational overhead, we remark here that the efficiency of the essential
method applied to immiscible fluid objects will be considerably enhanced by proposed
simplification of the definition of chromodynamic field, given in the appendix. We also
note that a review of the computational cost and efficiency of the model is evidently
needed, and is a legitimate concern for future work, where the impact of the proposed
simplification of the definition of the chromodynamic field may also be assessed. Com-
putational effort is not, of course, independent of: (i) the algorithm’s physical veracity;
(ii) the accuracy of the method; (iii) the convenience of the method; (iv) the level of soft-
ware refinement.
In this work we have presented simulations characterised by the class of the fluid object;
of course, there is no reason whatsoever to preclude mixing of object classes. Simulations
containing poly-disperse populations of vesicles and drops straightforwardly fall within
the scope of the method.
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A Chromodynamic Method for Isolated Fluid Objects with Im-
proved Computational Efficiency

Currently, in cMCLBE, each fluid has an interface with every other fluid. When dealing
with droplets, in the regime of completely arrested coalescence (where, by assumption,
the surface of one drop will not wet another) and vesicles (which of course have no wet-
ting interaction), this is an unnecessary expense —which will increase dramatically with
the number of fluid objects. Therefore, a method to reduce the number of interfaces,
through straightforward manipulation of the chromodynamic field definition, together
with a commensurate modification to the segregation rule is a worthwhile step.

The currently accepted method for cMCLBM segregation is based of defining phase
fields between each pair of fluids as follows:

Cψψ
i =

ρC

ρ
f ψ
i +βωi

ρCρC′

ρ
ci ·n̂+βωi

ρCρC′′

ρ
ci ·n̂+..., (A.1)

where C, C′ and C′′ are three separate fluid species, Ci is the ith distribution of the fluid
color C, and ψ (ψψ) is a post collision (post re-color) value. Now, for two particular
fluids, say C and C′, of equal density ρ, we straightforwardly obtain [15]:

2ρC(x)
ρ

=(1+tanh(βx)),
2ρC′(x)

ρ
=(1−tanh(βx)), (A.2)

and so noting that the stable interface transect is well-approximated by the expression
ρN ≈ tanh(βx), we multiply the two equations together to obtain an approximate, alge-
braic expression for the color field:

4ρCρC′

ρ2 =1−tanh2(βx)≈ 1
β
∇ρN

CC′ , (A.3)

where we have defined:
ρN

CC′ =
ρC−ρC′

ρC+ρC′
, C ̸=C′. (A.4)

We now substitute Eq. (A.3) into the segregation rule, Eq. (A.1):

Cψψ
i =

ρC

ρ
f ψ
i +

ρ

4
ωi∇ρN

CC′ci ·n̂+
ρ

4
ωi∇ρN

CC′′ci ·n̂+... (A.5)

Now, seeking to define only as many phase-fields as there are fluids, the traditional chro-
modynamic field between components C and C′ is replaced as follows:

ρN
C →

ρC−ρC
ρC+ρC

, (A.6)

where we have defined:
(ρ−ρC)=ρC. (A.7)
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Substituting the definition of ρC into our modified definition, we obtain a revised chro-
modynamic (phase) field as follows:

ρN
C =2

ρC

ρ
−1, (A.8)

with a complementary segregation rule which has been adapted to only have a single
dispersion term and a single segregation term:

Cψψ
i =

ρC

ρ
f ψ
i +

ρ

4
ωi∇ρN

C ci ·n̂. (A.9)

Of course, it is important to verify that the new segregation is constrained by mass and
momentum conservation, which is check by summing over i (directions) and all fluids,
C∈n (n is the number of nodal species).

∑
i

Cψψ
i =

ρC

ρ ∑
i

f ψ
i +

ρ

4
∇ρN

C ∑
i

ωici =ρC, (A.10)

as required, mass is conserved. Proceeding, we next sum the putative segregation over
all fluids, C∈n:

∑
∀C

Cψψ
i = f ψ

i ∑
∀C

ρC

ρ
+

ρ

4
ωici ·v, (A.11)

where we have defined:

v=∑
∀C

∇ρN
C =∇

(
ρN

C +ρN
C′+...+ρN

Cn

)
, (A.12)

where the n superscript in ρN
Cn , corresponds to the number of phase fields in the system,

i.e., the number of nodal species.
Substituting the Eq. (A.8) into the above equation

v=∇
(

2ρC−ρ

ρ
+

2ρC′−ρ

ρ
+...+

2ρCn −ρ

ρ

)
,

=∇
(

2(ρC+ρC′+...+ρCn)

ρ
−n
)

,

=∇(2−n)=0,

(A.13)

again, where n is the number of nodal species, and is constant. Momentum may be
shown to be conserved in like fashion.

Where a fixed number of fluids is tracked, the above simple re-definition has the
potential to reduce the number of computations necessary at each node considerably.
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(a) Drops.
0, 4500, 7000, 8250, 9500 and 10500 time steps.

(b) Erythrocytes.
0, 1800, 2700, 3600, 4200 and 4800 time steps.

(c) Spherical Vesicles.
0, 4500, 7000, 8250, 9500 and 12000 time steps.

Figure 5: A two fluid object pseudo-ballistic impact experiment, with sub-figures (a), (b),
(c), corresponding to drops, erythrocytes and spherical vesicles, respectively. Here, the
objects were pushed in the positive (negative) x-direction, causing them to interact. Time
evolution is ordered as (A) - (F) at increasing times steps (given in sub-figure captions).
The simulation view is from the positive z-axis (x−y plane) (see Fig. 3 for axis orienta-
tion).
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(a) Drops.
0, 7000, 14500 and 44500 time steps.

(b) Erythrocytes.
0, 7000, 15000 and 25000 time steps.

(c) Spherical Vesicles.
0, 7500, 10500 and 15500 time steps.

Figure 6: A three fluid object pseudo-ballistic impact experiment, with sub-figures (a),
(b), (c), corresponding to drops, erythrocytes and spherical vesicles, respectively. The
system axes are as defined in Fig. 4, with snapshots viewed from a point on the positive
z-axis. The bottom and top fluids objects were buoyancy forced in the positive (negative)
x-direction, causing them to impinge on the central, unforced fluid objects. The indexed
snapshots show the simulation time evolution in order (A) - (D) (given in sub-figure
captions).
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(a) Drops.
0, 7000, 14500 and 44500. time steps.

(b) Erythrocytes.
0, 20000, 40000 and 50000 time steps.

(c) Spherical Vesicles.
0, 19500, 42000 and 97000 time steps.

Figure 7: Time evolution of two fluid objects in a sedimenting flow under confinement
effects, with sub-figures (a), (b), (c), corresponding to drops, erythrocytes and spherical
vesicles, respectively. The axes were orientated so that the x-y axes span the horizontal
plane, and the z axis is orientated in the vertical direction. A buoyancy force was applied
to all fluid objects in the negative z direction, with magnitude 0.0001 lattice units. The
indexed snapshots show the simulation time evolution in order (A) - (D) (given in sub-
figure captions).
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(a) Drops.
0, 29500, 42000 and 69500 time steps.

(b) Erythrocytes.
0, 50000, 85000 and 120000 time steps.
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(c) Spherical Vesicles.
0, 19500, 24500 and 67000 time steps.

Figure 8: Time evolution of four fluid objects in a sedimenting flow under confinement
effects, with sub-figures (a), (b), (c), corresponding to drops, erythrocytes and spherical
vesicles, respectively. The axes were orientated so that the x-y axes span the horizontal
plane, and the z axis is orientated in the vertical direction. A buoyancy force was applied
to all fluid objects in the negative z direction, with magnitude 0.0001 lattice units. The
indexed snapshots show the simulation time evolution in order (A) - (D) (given in sub-
figure captions).


