Sheffield Hallam University

High discharge energy density in novel K1/2Bi1/2TiO3-BiFeO3 based relaxor ferroelectrics

WANG, X., FAN, Y., ZHANG, Bin, MOSTAED, A., LI, L., FETEIRA, Antonio http://orcid.org/0000-0001-8151-7009, WANG, D., SINCLAIR, D.C., WANG, G. and REANEY, I.M.

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/30725/

This document is the Supplemental Material

Citation:

WANG, X., FAN, Y., ZHANG, Bin, MOSTAED, A., LI, L., FETEIRA, Antonio, WANG, D., SINCLAIR, D.C., WANG, G. and REANEY, I.M. (2022). High discharge energy density in novel K1/2Bi1/2TiO3-BiFeO3 based relaxor ferroelectrics. Journal of the European Ceramic Society, 42 (15), 7381-7387. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Electronic Supplementary information (ESI)

High discharge energy density in novel K_{1/2}Bi_{1/2}TiO₃-BiFeO₃ based relaxor ferroelectrics

Xinzhen Wang,^{a, b} Yongbo Fan,^a Bin Zhang,^c Ali Mostaed,^d Linhao Li,^e Antonio Feteira,^f Dawei Wang,^c Derek C. Sinclair,^a Ge Wang^{a,g*} and Ian M. Reaney^{a*}

^a Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK ^b School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China

^c Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China

^d Department of Materials, University of Oxford, Oxford, OX1 3PH, UK

^e School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100013, China

^f Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, UK ^g Department of Materials, University of Manchester, Manchester, S13 9PL, UK

x	Lattice parameter/ Å	Volume / ų	GOF
0.00	3.95287(19)	61.764(9)	1.11
0.04	3.9550(3)	61.863(12)	1.05
0.08	3.95947(4)	62.0742(18)	1.09

Table S1. Refined crystallographic information for the KBT-BT-xSMN ceramics

Figure S1. BSE images obtained from polished surfaces of the KBT-BF-xSMN ceramics for (a) x=0.00, (b) x=0.02, (c) x=0.04, (d) x=0.06, (e) x=0.08 and (f) x=0.10 at the same magnification.

Figure S2. EDX elemental point analysis on a polished surface of the KBT-BF-0.08SMN ceramic.

	Bi(at%)	Fe(at%)	K(at%)	Ti(at%)	
Core 1 🔶	23.7 🕇	19.1 🕇	3.1	5.8	Di/Eo rich
Core 2 🕂	23.6 🔒	18.5 숡	3.2	6.4	bi/re-nch
Shell 1 🕂	17.7	14.5	4.9 🚹	10.3 懀	K/Ti rich
Shell 2 🕂	17.8	15.1	5.5 懀	11.0 🕇	N/ II-IICII

Compositions x	Average grain size (μm)
0.00	2.95±0.56
0.02	2.58±0.44
0.04	2.25±0.40
0.06	2.20±0.35
0.08	2.14±0.28
0.10	2.31±0.17

Table S2. Average grain size of the KBT-BF-xSMN ceramics.

Figure S3. Temperature-dependent permittivity and dielectric loss data of the KBT-BF-xSMN ceramics for (a) x=0.00, (b) x=0.02, (c) x=0.04, (d) x=0.06, (e) x=0.08 and (f) x=0.10 at frequencies of 10 kHz, 100 kHz, 250 kHz and 1 MHz.

Figure S4. Unipolar P-E loops of the KBT-BF-xSMN bulk ceramics for (a) x=0.04, (b) x=0.06, (c) x=0.08 and (d) x=0.10.

Figure S5. Calculated energy storage performance of the KBT-BF-xSMN ceramics for (a) x=0.04, (b) x=0.06, (c) x=0.08 and (d) x=0.10.

Figure S6. Complex Z* plots of the KBT-BF-xSMN ceramics x=0.00 and x=0.08 at 400°C.

